On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties

Pablo J. Peruzzo a,⁎, Pablo S. Anbinder b, Francisco M. Pardini c, Oscar R. Pardini a, c, Tomas S. Plivelic d, Javier I. Amalvy a, c

a Instituto de Investigaciones Físicoquímicas Teóricas y Aplicadas (UNIFITA: UNLP−CONICET CCT La Plata), Universidad Nacional de La Plata, Diag. 113 y 64CC 16 Suc. 4, B1900MCP La Plata, Argentina
b Instituto de Física de Materiales Tandil (IFMAT), CIFICIN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad del Centro de la Provincia de Buenos Aires, Pinto 391, B7000HGF Tandil, Argentina
c Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDIPINT; CICPBA−CONICET CCT La Plata), Av. S2 e/121 y 122, B1900WV La Plata, Argentina
d MAX IV Laboratory, Lund University, P.O. Box 118, 221 00 Lund, Sweden

A B S T R A C T

In this work the synthesis of waterborne polyurethane/nanosilica nanocomposites by using two different strategies is presented, starting from a vinyl terminated polyurethane prepolymer (PUF) based on isophorone diisocyanate and polypropylene glycol, and varying the nanosilica content. In one case, the PUF was dispersed in an aqueous solution containing glycerol-functionalized colloidal nanosilica particles and the dispersion was further polymerized; in the other case, the PUF was dispersed in an aqueous media, then colloidal nanosilica was added to the dispersion and then polymerized. A physical mixture was also prepared for comparative purpose. Films were prepared by casting of the aqueous dispersion. The morphology of the dispersions and films depended on the incorporation route of nanoparticles as was observed by SAXS, SEM and TEM. While the blends had significantly less hydrogen bonding between the hard segments of the PU and nanosilica particles, samples prepared by the two different methods proposed in this work showed strong interactions between both materials in agreement with FTIR and DSC results. Synthesis pathway plays an important role in order to obtain high performance waterborne polyurethane/nanosilica composites, since final properties of the films also depended on the nanoparticle incorporation strategy.

Keywords:
Nanocomposites
Polyurethane/nanosilica
Waterborne dispersions

1. Introduction

Organic/inorganic composite materials have been extensively studied for a long time. When inorganic phases in organic/inorganic composites become nanosized, they are called nanocomposites. In polymer nanocomposites the polymer chains are confined to nanoscale dimensions (1−10 nm). These materials have unusual properties which cannot be obtained simply by co-mixing the polymeric component with the inorganic phase at the macroscopic level [1−4]. However, the properties of nanocomposites strongly depend on the organic matrix, inorganic nanofiller and the way in which they are prepared [5−7].

Polyurethane/silica (PU/silica) nanocomposites is one of the combinations that have attracted substantial academic and industrial interest in the last 20 years. In fact, among the numerous organic/inorganic nanocomposites, PU/silica nanocomposites have received much attention in recent years and they have been employed in a variety of applications [8,9]. The incorporation of nanosilica to the polyurethane matrix provide films with improved properties like increased indentation hardness, high resistance to whitening and high permeability to water vapor [10]. These materials are useful also as tough, abrasion-resistant coatings with increasing friction coefficient and reduced tackiness, with no change in gloss [11].

According to the starting materials and processing techniques PU/silica nanocomposites are prepared by three general methods

⁎ Corresponding author. Tel.: +54 221 4257291/7434 (int: 115); fax: +54 221 4254642.
E-mail address: jjperuzzo@inifta.unlp.edu.ar (P.J. Peruzzo).
On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties

Pablo J. Peruzzo a,*, Pablo S. Anbinder a,*, Francisco M. Pardini c, Oscar R. Pardini a,*, Tomas S. Plivelic a, Javier I. Amalvy a,*

a Instituto de Investigaciones Biomédicas y Aplicadas (INIFTA- UNLP—CONICET CCT La Plata), Universidad Nacional de La Plata, Diag. 113 y 64CC 16 Suc 4, B1904DRH La Plata, Argentina
b Instituto de Física de Materiales Tandil (IFMAT), CFICEN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad del Centro de la Provincia de Buenos Aires, Pinto 399, B1000GIG Tandil, Argentina
c Centro de Investigación y Desarrollo en Tecnología de Plásticos (CIDEPINT—CONICET CCT La Plata), Av. 52 e/121 y 122. B1900WB La Plata, Argentina
d MAX IV Laboratory, Lund University, P.O. Box 118, 221 00 Lund, Sweden

A B S T R A C T

In this work the synthesis of waterborne polyurethane/nanosilica nanocomposites by using two different strategies is presented, starting from a vinyl terminated polyurethane prepolymer (PUP) based on isophorone diisocyanate and polypropylene glycol, and varying the nanosilica content. In one case, the PUP was dispersed in an aqueous solution containing glycerol-functionalized colloidal nanosilica particles and the dispersion was further polymerized; in the other case, the PUP was dispersed in an aqueous medium, then colloidal nanosilica was added to the dispersion and then polymerized. A physical mixture was also prepared for comparative purpose. Films were prepared by cooling of the aqueous dispersion. The morphology of the dispersions and films depended on the incorporation route of nanoparticles as was observed by SAXS, SEM and TEM. While the blends had significantly less hydrogen bonding between the hard segments of the PU and nanosilica particles, samples prepared by the two different methods proposed in this work showed an strong interaction between both materials in agreement with FTIR and DSC results. Synthesis pathway plays an important role in order to obtain high performance waterborne polyurethane/nanosilica composites, since final properties of the films also depended on the nanoparticle incorporation strategy.

Keywords:
Polyurethane nanocomposites
Polyurethane/nanosilica
Waterborne dispersions

1. Introduction

Organic/inorganic composite materials have been extensively studied for a long time. When inorganic phases in organic/inorganic composites become nanosized, they are called nanocomposites. In polymer nanocomposites the polymer chains are confined to nanoscale dimensions (1–10 nm). These materials have unusual properties which cannot be obtained simply by co-mixing the polymeric component with the inorganic phase at the macroscopic level [1–4]. However, the properties of nanocomposites strongly depend on the organic matrix, inorganic nanofiller and the way in which they are prepared [5–7].

Polyurethane/silica (PU/silica) nanocomposites is one of the combinations that have attracted substantial academic and industrial interest in the last 20 years. In fact, among the numerous organic/inorganic nanocomposites, PU/silica nanocomposites have received much attention in recent years and they have been employed in a variety of applications [8,9]. The incorporation of nanosilica to the polyurethane matrix provide films with improved properties like increased indentation hardness, high resistance to whitening and high permeability to water vapor [10]. These materials are useful also as tough, abrasion-resistant coatings with increasing friction coefficient and reduced tackiness, with no change in gloss [11].

According to the starting materials and processing techniques PU/silica nanocomposites are prepared by three general methods
On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties

Pablo J. Peruzzoa,b, Pablo S. Anbinderb, Francisco M. Pardinic, Oscar R. Pardinia,b,c, Tomas S. Plivecd, Javier I. Amalva,c

a Instituto de Investigaciones Químicas Básicas y Aplicadas (IQUIBA-MICINN), Universidad Nacional de La Plata, C.C. 1012, S1900GMN La Plata, Argentina
b Instituto de Fisica de Materiales Tandil (IFMAT), CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad del Centro de la Provincia de Buenos Aires, Pinto 399, 87000111 Tandil, Argentina
c Centro de Investigación y Desarrollo en Tecnología de Plásticos (CIDEPINT: CICIPBA-CONICET La Plata), Av. 52 e/121 y 122, 8190WB La Plata, Argentina
d MAX IV Laboratory, Lund University, P.O. Box 118, 221 00 Lund, Sweden

\textbf{A B S T R A C T}

In this work the synthesis of waterborne polyurethane/nanosilica nanocomposites by using two different strategies is presented, starting from a vinyl terminated polyurethane prepolymer (PUP) based on isophorone diisocyanate and polypropylene glycol, and varying the nanosilica content. In one case, the PUP was dispersed in an aqueous solution containing glycerol-functionalized colloidal nanosilica particles and the dispersion was further polymerized; in the other case, the PUP was dispersed in an aqueous media, then colloidal nanosilica was added to the dispersion and then polymerized. A physical mixture was also prepared for comparative purpose. Films were prepared by casting of the aqueous dispersion. The morphology of the dispersions and films depended on the incorporation route of nanoparticles as was observed by SAXS, SEM and TEM. While the blends had significantly less hydrogen bonding between the hard segments of the PU and nanosilica particles, samples prepared by the two different methods proposed in this work showed an strong interaction between both materials in agreement with FTIR and DSC results. Synthesis pathway plays an important role in order to obtain high performance waterborne polyurethane/nanosilica composites, since final properties of the films also depended on the nanoparticle incorporation strategy.

1. Introduction

Organic/inorganic composite materials have been extensively studied for a long time. When inorganic phases in organic/inorganic composites become nanosized, they are called nanocomposites. In polymer nanocomposites the polymer chains are confined to nanoscale dimensions (1–10 nm). These materials have unusual properties which cannot be obtained simply by co-mixing the polymeric component with the inorganic phase at the macroscopic level [1–4]. However, the properties of nanocomposites strongly depend on the organic matrix, inorganic nanofiller and the way in which they are prepared [5–7].

Polyurethane/silica (PU/silica) nanocomposites is one of the combinations that have attracted substantial academic and industrial interest in the last 20 years. In fact, among the numerous organic/inorganic nanocomposites, PU/silica nanocomposites have received much attention in recent years and they have been employed in a variety of applications [8,9]. The incorporation of nanosilica to the polyurethane matrix provide films with improved properties like increased indentation hardness, high resistance to whitening and high permeability to water vapor [10]. These materials are useful also as tough, abrasion-resistant coatings with increasing friction coefficient and reduced tackiness, with no change in gloss [11].

According to the starting materials and processing techniques PU/silica nanocomposites are prepared by three general methods...
On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties

Pablo J. Peruzzo, Pablo S. Anbinder, Francisco M. Pardini, Oscar R. Pardini, Tomas S. Plivelic, Javier I. Amalvy

1 Instituto de Investigaciones Bioquimicas Teoricas y Aplicadas (INIFTA-UNLP—CONICET CCT La Plata), Universidad Nacional de La Plata, D1 113 y 64 CC 16 Sur, 81934627 La Plata, Argentina
2 Instituto de Fisica de Materiales Tandil (IFMAT), CIICEN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad del Centro de la Provincia de Buenos Aires, Pinto 399, 87000037 Tandil, Argentina
3 Centro de Investigación y Desarrollo en Tecnología de Polímeros (CIDETP–CIICEN–CONICET CCT La Plata), Av. 52 e/121 y 122, 81900034 La Plata, Argentina
4 Max IV Laboratory, Lund University, P.O. Box 118, 221 00 Lund, Sweden

Abstract

In this work the synthesis of waterborne polyurethane/nanosilica nanocomposites by using two different strategies is presented, starting from a vinyl terminated polyurethane prepolymer (PUP) based on isophorone diisocyanate and polypropylene glycol, and varying the nanosilica content. In one case, the PUP was dispersed in an aqueous solution containing glycerol-functionalized colloidal nanosilica particles and the dispersion was further polymerized; in the other case, the PUP was dispersed in an aqueous media, then colloidal nanosilica was added to the dispersion and then polymerized. A physical mixture was also prepared for comparative purpose. Films were prepared by casting of the aqueous dispersion. The morphology of the dispersions and films depended on the incorporation route of nanoparticles as was observed by SAXS, SEM and TEM. While the blends had significantly less hydrogen bonding between the hard segments of the PU and nanosilica particles, samples prepared by the two different methods proposed in this work showed an strong interaction between both materials in agreement with FTIR and DSC results. Synthesis pathway plays an important role in order to obtain high performance waterborne polyurethane/nanosilica composites, since final properties of the films also depended on the nanoparticle incorporation strategy.

Keywords:
Polyurethane/nanosilica
Waterborne dispersions

1. Introduction

Organic/inorganic composite materials have been extensively studied for a long time. When inorganic phases in organic/inorganic composites become nanosized, they are called nanocomposites. In polymer nanocomposites, the polymer chains are confined to nanoscale dimensions (1–10 nm). These materials have unusual properties which cannot be obtained simply by co-mixing the polymeric component with the inorganic phase at the macroscopic level [1–4]. However, the properties of nanocomposites strongly depend on the organic matrix, inorganic nanofiller and the way in which they are prepared [5–7].

Polyurethane/silica (PU/silica) nanocomposites is one of the combinations that have attracted substantial academic and industrial interest in the last 20 years. In fact, among the numerous organic/inorganic nanocomposites, PU/silica nanocomposites have received much attention in recent years and they have been employed in a variety of applications [8,9]. The incorporation of nanosilica to the polyurethane matrix provide films with improved properties like increased indentation hardness, high resistance to whitening and high permeability to water vapor [10]. These materials are useful also as tough, abrasion-resistant coatings with increasing friction coefficient and reduced tackiness, with no change in gloss [11].

According to the starting materials and processing techniques, PU/silica nanocomposites are prepared by three general methods...
On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties

Pablo J. Peruzzo, Pablo S. Anbinder, Francisco M. Pardini, Oscar R. Pardini, Tomas S. Plivetic, Javier I. Amalvy

A B S T R A C T

In this work the synthesis of waterborne polyurethane/nanosilica nanocomposites by using two different strategies is presented, starting from a vinyl terminated polyurethane prepolymer (PUP) based on isophorone diisocyanate and polypropylene glycol, and varying the nanosilica content. In one case, the PUP was dispersed in an aqueous solution containing glycerol-functionalized colloidal nanosilica particles and the dispersion was further polymerized; in the other case, the PUP was dispersed in an aqueous media, then colloidal nanosilica was added to the dispersion and then polymerized. A physical mixture was also prepared for comparative purpose. Films were prepared by casting of the aqueous dispersion. The morphology of the dispersions and films depended on the incorporation route of nanoparticles as was observed by SAXS, SEM and TEM. While the blends had significantly less hydrogen bonding between the hard segments of the PU and nanosilica particles, samples prepared by the two different methods proposed in this work showed an strong interaction between both materials in agreement with FTIR and DSC results. Synthesis pathway plays an important role in order to obtain high performance waterborne polyurethane/nanosilica composites, since final properties of the films also depended on the nanoparticle incorporation strategy.

1. Introduction

Organic/inorganic composite materials have been extensively studied for a long time. When inorganic phases in organic/inorganic composites become nanosized, they are called nanocomposites. In polymer nanocomposites the polymer chains are confined to nanoscale dimensions (1–10 nm). These materials have unusual properties which cannot be obtained simply by co-mixing the polymeric component with the inorganic phase at the macroscopic level [1–4]. However, the properties of nanocomposites strongly depend on the organic matrix, inorganic nanofiller and the way in which they are prepared [5–7]. Polyurethane/silica (PU/silica) nanocomposites is one of the combinations that have attracted substantial academic and industrial interest in the last 20 years. In fact, among the numerous organic/inorganic nanocomposites, PU/silica nanocomposites have received much attention in recent years and they have been employed in a variety of applications [8,9]. The incorporation of nanosilica to the polyurethane matrix provide films with improved properties like increased indentation hardness, high resistance to whitening and high permeability to water vapor [10]. These materials are useful also as tough, abrasion-resistant coatings with increasing friction coefficient and reduced tackiness, with no change in gloss [11].

According to the starting materials and processing techniques PU/silica nanocomposites are prepared by three general methods
On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties

Pablo J. Peruzzo, Pablo S. Anbinder, Francisco M. Pardini, Oscar R. Pardini, Tomas S. Plivelic, Javier I. Anamly

1 Instituto de Investigaciones Biomédicas y Aplicadas (INIFTA—UNLP—CONICET La Plata), Universidad Nacional de La Plata, Dpto 113 y 64CC 16 Suc. 4, B1904MDN La Plata, Argentina
2 Instituto de Física de Materiales Tandil (IFMART), CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad del Centro de la Provincia de Buenos Aires, Pinto 399, B1700GHS Tandil, Argentina
3 Centro de Investigación y Desarrollo en Tecnología de Polímeros (CIDEPT—CONICET CCT La Plata), Av. 52 o/121 y 122, B1904WB La Plata, Buenos Aires
4 MAX IV Laboratory, Lund University, P.O. Box 118, 221 00 Lund, Sweden

Abstract

In this work the synthesis of waterborne polyurethane/nanosilica nanocomposites by using two different strategies is presented, starting from a vinyl terminated polyurethane prepolymer (PUP) based on isophorone diisocyanate and polypropylene glycol, and varying the nanosilica content. In one case, the PUP was dispersed in an aqueous solution containing glycerol-functionalized colloidal nanosilica particles and the dispersion was further polymerized; in the other case, the PUP was dispersed in an aqueous media, then colloidal nanosilica was added to the dispersion and then polymerized. A physical mixture was also prepared for comparative purpose. Films were prepared by casting of the aqueous dispersion. The morphology of the dispersions and films depended on the incorporation route of nanoparticles as was observed by SAXS, SEM and TEM. While the blends had significantly less hydrogen bonding between the hard segments of the PU and nanosilica particles, samples prepared by the two different methods proposed in this work showed a strong interaction between both materials in agreement with FTIR and DSC results. Synthesis pathway plays an important role in order to obtain high performance waterborne polyurethane/nanosilica composites, since final properties of the films also depended on the nanoparticle incorporation strategy.

Keywords:
Nanocomposites
Polyurethane/nanosilica
Waterborne dispersions

1. Introduction

Organic/inorganic composite materials have been extensively studied for a long time. When inorganic phases in organic/inorganic composites become nanosized, they are called nanocomposites. In polymer nanocomposites the polymer chains are confined to nanoscale dimensions (1–10 nm). These materials have unusual properties which cannot be obtained simply by co-mixing the polymeric component with the inorganic phase at the macroscopic level [1–4]. However, the properties of nanocomposites strongly depend on the organic matrix, inorganic nanofiller and the way in which they are prepared [5–7].

Polyurethane/silica (PU/silica) nanocomposites is one of the combinations that have attracted substantial academic and industrial interest in the last 20 years. In fact, among the numerous organic/inorganic nanocomposites, PU/silica nanocomposites have received much attention in recent years and they have been employed in a variety of applications [8,9]. The incorporation of nanosilica to the polyurethane matrix provide films with improved properties like increased indentation hardness, high resistance to whitening and high permeability to water vapor [10]. These materials are useful also as tough, abrasion-resistant coatings with increasing friction coefficient and reduced tackiness, with no change in gloss [11]. According to the starting materials and processing techniques PU/silica nanocomposites are prepared by three general methods
On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties

Pablo J. Peruzzo a,b, Pablo S. Anbinder a, Francisco M. Pardini c, Oscar R. Pardini a,b, Tomas S. Plivelic b,c, Javier I. Amalvy a,b

a Instituto de Investigaciones Químicas Teóricas y Aplicadas (INQITA-UNLP—CONICET CCT La Plata), Universidad Nacional de La Plata, Diag. 113 y 64CC 16 Suc. 4, 8190447 La Plata, Argentina
b Instituto de Fisica de Materiales Tandil (IFM Tandil), CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad del Centro de la Provincia de Buenos Aires, Pinto 399, 8170001 Hg Tandil, Argentina
c Centro de Investigación y Desarrollo en Tecnología de Polímeros (CIDEPINT-CKPBA—CONICET CCT La Plata), Av. S. y 121 y 122, 8190447 La Plata, Argentina

ABSTRACT

In this work the synthesis of waterborne polyurethane/nanosilica nanocomposites by using two different strategies is presented, starting from a vinyl terminated polyurethane prepolymer (PUP) based on isophorone diisocyanate and polypropylene glycol, and varying the nanosilica content. In one case, the PUP was dispersed in an aqueous solution containing glycerol-functionalized colloidal nanosilica particles and the dispersion was further polymerized; in the other case, the PUP was dispersed in an aqueous media, then colloidal nanosilica was added to the dispersion and then polymerized. A physical mixture was also prepared for comparative purpose. Films were prepared by casting of the aqueous dispersion. The morphology of the dispersions and films depended on the incorporation route of nanoparticles as was observed by SAXS, SEM and TEM. While the blends had significantly less hydrogen bonding between the hard segments of the PU and nanosilica particles, samples prepared by the two different methods proposed in this work showed a strong interaction between both materials in agreement with FTIR and DSC results. Synthesis pathway plays an important role in order to obtain high performance waterborne polyurethane/nanosilica composites, since final properties of the films also depended on the nanoparticle incorporation strategy.

Keywords:
Nanosilica
Polyurethane
Polyurethane/nanosilica
Waterborne dispersion

1. Introduction

Organic/inorganic composite materials have been extensively studied for a long time. When inorganic phases in organic/inorganic composites become nanosized, they are called nanocomposites. In polymer nanocomposites the polymer chains are confined to nanoscale dimensions (1–10 nm). These materials have unusual properties which cannot be obtained simply by co-mixing the polymeric component with the inorganic phase at the macroscopic level [1–4]. However, the properties of nanocomposites strongly depend on the organic matrix, inorganic nanofiller and the way in which they are prepared [5–7].

Polyurethane/silica (PU/silica) nanocomposites is one of the combinations that have attracted substantial academic and industrial interest in the last 20 years. In fact, among the numerous organic/inorganic nanocomposites, PU/silica nanocomposites have received much attention in recent years and they have been employed in a variety of applications [8,9]. The incorporation of nanosilica to the polyurethane matrix provide films with improved properties like increased indentation hardness, high resistance to whitening and high permeability to water vapor [10]. These materials are useful also as tough, abrasion-resistant coatings with increasing friction coefficient and reduced tackiness, with no change in gloss [11].

According to the starting materials and processing techniques PU/silica nanocomposites are prepared by three general methods
On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties

Pablo J. Peruzzo1,2, Pablo S. Anbinder1,2, Francisco M. Pardini1,2, Oscar R. Pardini1,2, Tomas S. Plivelic1,2, Javier I. Amalvy3,4

1 Instituto de Investigaciones Químicas y Aplicadas (INIFTA-UNLP—CONICET CCT La Plata), Universidad Nacional de La Plata, Diag 113 y 64cc 16 Suc. 4, 18904DLP La Plata, Argentina
2 Instituto de Fisica de Materiales Tandil (IFMAT), CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad del Centro de la Provincia de Buenos Aires, Pinto 399, 77000GIG Tandil, Argentina
3 Centro de Investigación y Desarrollo en Tecnología de Polímeros (CIDIPINT: CICPBA—CONICET CCT La Plata), Av. 52 e/121 y 122, 18904WB La Plata, Argentina
4 Max IV Laboratory, Lund University, P.O. Box 118, 22100 Lund, Sweden

\textbf{Abstract}

In this work the synthesis of waterborne polyurethane/silica nanocomposites by using two different strategies is presented, starting from a vinyl terminated polyurethane prepolymer (PUP) based on isophorone diisocyanate and polypropylene glycol, and varying the nanosilica content. In one case, the PUP was dispersed in an aqueous solution containing glycerol-functionalized colloidal nanosilica particles and the dispersion was further polymerized; in the other case, the PUP was dispersed in an aqueous media, then colloidal nanosilica was added to the dispersion and then polymerized. A physical mixture was also prepared for comparative purpose. Films were prepared by casting of the aqueous dispersion. The morphology of the dispersions and films depended on the incorporation route of nanoparticles as was observed by SAXS, SEM and TEM. While the blends had significantly less hydrogen bonding between the hard segments of the PU and nanosilica particles, samples prepared by the two different methods proposed in this work showed an strong interaction between both materials in agreement with FTIR and DSC results. Synthesis pathway plays an important role in order to obtain high performance waterborne polyurethane/silica nanocomposites, since final properties of the films also depended on the nanoparticle incorporation strategy.

\textbf{Keywords:} Nanocomposites, Polyurethane/silica, Waterborne dispersions

\section{Introduction}

Organic/inorganic composite materials have been extensively studied for a long time. When inorganic phases in organic/inorganic composites become nanosized, they are called nanocomposites. In polymer nanocomposites the polymer chains are confined to nanoscale dimensions (1–10 nm). These materials have unusual properties which cannot be obtained simply by co-mixing the polymeric component with the inorganic phase at the macroscopic level [1–4]. However, the properties of nanocomposites strongly depend on the organic matrix, inorganic nanofiller and the way in which they are prepared [5–7].

Polyurethane/silica (PU/silica) nanocomposites is one of the combinations that have attracted substantial academic and industrial interest in the last 20 years. In fact, among the numerous organic/inorganic nanocomposites, PU/silica nanocomposites have received much attention in recent years and they have been employed in a variety of applications [8,9]. The incorporation of nanosilica to the polyurethane matrix provide films with improved properties like increased indentation hardness, high resistance to whitening and high permeability to water vapor [10]. These materials are useful also as tough, abrasion-resistant coatings with increasing friction coefficient and reduced tackiness, with no change in gloss [11].

According to the starting materials and processing techniques PU/silica nanocomposites are prepared by three general methods...
On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties

Pablo J. Peruzzo, Pablo S. Anbinder, Francisco M. Pardini, Oscar R. Pardini, Tomas S. Plivelic, Javier I. Amalvy

ABSTRACT

In this work the synthesis of waterborne polyurethane/nanosilica nanocomposites by using two different strategies is presented, starting from a vinyl terminated polyurethane prepolymer (PUP) based on isophorone diisocyanate and polypropylene glycol, and varying the nanosilica content. In one case, the PUP was dispersed in an aqueous solution containing glycerol-functionalized colloidal nanosilica particles and the dispersion was further polymerized; in the other case, the PUP was dispersed in an aqueous media, then colloidal nanosilica was added to the dispersion and then polymerized. A physical mixture was also prepared for comparative purpose. Films were prepared by casting of the aqueous dispersion. The morphology of the dispersions and films depended on the incorporation route of nanoparticles as was observed by SAXS, SEM and TEM. While the blends had significantly less hydrogen bonding between the hard segments of the PU and nanosilica particles, samples prepared by the two different methods proposed in this work showed an strong interaction between both materials in agreement with FTIR and DSC results. Synthesis pathway plays an important role in order to obtain high performance waterborne polyurethane/nanosilica composites, since final properties of the films also depended on the nanoparticle incorporation strategy.

1. Introduction

Organic/inorganic composite materials have been extensively studied for a long time. When inorganic phases in organic/inorganic composites become nanosized, they are called nanocomposites. In polymer nanocomposites the polymer chains are confined to nanoscale dimensions (1–10 nm). These materials have unusual properties which cannot be obtained simply by co-mixing the polymeric component with the inorganic phase at the macroscopic scale [1–4]. However, the properties of nanocomposites strongly depend on the organic matrix, inorganic nanofiller and the way in which they are prepared [5–7].

Polyurethane/silica (PU/silica) nanocomposites is one of the combinations that have attracted substantial academic and industrial interest in the last 20 years. In fact, among the numerous organic/inorganic nanocomposites, PU/silica nanocomposites have received much attention in recent years and they have been employed in a variety of applications [8,9]. The incorporation of nanosilica to the polyurethane matrix provide films with improved properties like increased indentation hardness, high resistance to whitening and high permeability to water vapor [10]. These materials are useful also as tough, abrasion-resistant coatings with increasing friction coefficient and reduced tackiness, with no change in gloss [11].

According to the starting materials and processing techniques PU/silica nanocomposites are prepared by three general methods
On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties

Pablo J. Peruzzo a,b, Pablo S. Anbinder b, Francisco M. Pardini b, Oscar R. Pardini b,c, Tomas S. Plivelic a, Javier I. Amalvy a,c

a Instituto de Investigaciones Físicas Teóricas y Aplicadas (IFITA–UNLP–CONICET CCT La Plata), Universidad Nacional de La Plata, Dpto. 113 y 64 CC 16 Sur 4, 8190000 La Plata, Argentina
b Instituto de Física de Materiales Tandil (IFMAT), CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad del Centro de la Provincia de Buenos Aires, Pinto 399, 8700001 Tandil, Argentina
c Centro de Investigación y Desarrollo de Polímeros (CIDEPOL–CICPBA–CONICET CCT La Plata), Av. 52 e/121 y 122, 8190016 La Plata, Argentina

A B S T R A C T

In this work the synthesis of waterborne polyurethane/silica nanocomposites by using two different strategies is presented, starting from a vinyl terminated polyurethane prepolymer (PUP) based on isophorone diisocyanate and polypropylene glycol, and varying the nanosilica content. In one case, the PUP was dispersed in an aqueous solution containing glycerol-functionalized colloidal nanosilica particles and the dispersion was further polymerized; in the other case, the PUP was dispersed in an aqueous media, then colloidal nanosilica was added to the dispersion and then polymerized. A physical mixture was also prepared for comparative purpose. Films were prepared by casting of the aqueous dispersion. The morphology of the dispersions and films depended on the incorporation route of nanoparticles as was observed by SAXS, SEM and TEM. While the blends had significantly less hydrogen bonding between the hard segments of the PU and nanosilica particles, samples prepared by the two different methods proposed in this work showed an strong interaction between both materials in agreement with FTIR and DSC results. Synthesis pathway plays an important role in order to obtain high performance waterborne polyurethane/silica nanocomposites, since final properties of the films also depended on the nanoparticle incorporation strategy.

Keywords:
Polyurethane composites
Polyurethane/nanosilica
Waterborne dispersions

1. Introduction

Organic/inorganic composite materials have been extensively studied for a long time. When inorganic phases in organic/inorganic composites become nanosized, they are called nanocomposites. In polymer nanocomposites the polymer chains are confined to nanoscale dimensions (1–10 nm). These materials have unusual properties which cannot be obtained simply by co-mixing the polymeric component with the inorganic phase at the macroscopic level [1–4]. However, the properties of nanocomposites strongly depend on the organic matrix, inorganic nanofiller and the way in which they are prepared [5–7].

Polyurethane/silica (PU/silica) nanocomposites is one of the combinations that have attracted substantial academic and industrial interest in the last 20 years. In fact, among the numerous organic/inorganic nanocomposites, PU/silica nanocomposites have received much attention in recent years and they have been employed in a variety of applications [8,9]. The incorporation of nanosilica to the polyurethane matrix provide films with improved properties like increased indentation hardness, high resistance to whitening and high permeability to water vapor [10]. These materials are useful also as tough, abrasion-resistant coatings with increasing friction coefficient and reduced tackiness, with no change in gloss [11].

According to the starting materials and processing techniques PU/silica nanocomposites are prepared by three general methods
On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane/silica nanocomposites: Effects on morphology and properties

Pablo J. Peruzzo a,⁎, Pablo S. Anbinder a, Francisco M. Pardini c, Oscar R. Pardini a,c, Tomas S. Plivelic a,c, Javier I. Amalvy a,c

a Instituto de Investigaciones Básicas en Tecnología y Aplicaciones (INIFTA-UNLP-CONICET CCT La Plata), Universidad Nacional de La Plata, Diag. 113 y 64 CC 16 Sur, 1900 La Plata, Argentina
b Instituto de Física de Materiales Tandil (IFMAT), CIFFCEN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad del Centro de la Provincia de Buenos Aires, Pinto 399, 18700 G13 Tandil, Argentina
c Centro de Investigación y Desarrollo en Tecnología de Polímeros (CIDIPINT-EXCPA—CONICET CCT La Plata), Av. S2 e/121 y 122, 1900WB La Plata, Argentina

⁎ Corresponding author. Tel.: +54 221 4257291/7434 (int: 115); fax: +54 221 4254642.
E-mail address: piperuzzo@inifta.unlp.edu.ar (P.J. Peruzzo).

A B S T R A C T

In this work the synthesis of waterborne polyurethane/silica nanocomposites by using two different strategies is presented, starting from a vinyl terminated polyurethane prepolymer (PUP) based on isophorone diisocyanate and polypropylene glycol, and varying the nanosilica content. In one case, the PUP was dispersed in an aqueous solution containing glycerol-functionalized colloidal nanosilica particles and the dispersion was further polymerized; in the other case, the PUP was dispersed in an aqueous media, then colloidal nanosilica was added to the dispersion and then polymerized. A physical mixture was also prepared for comparative purposes. Films were prepared by casting of the aqueous dispersion. The morphology of the dispersions and films depended on the incorporation route of nanoparticles as was observed by SAXS, SEM and TEM. While the blends had significantly less hydrogen bonding between the hard segments of the PU and nanosilica particles, samples prepared by the two different methods proposed in this work showed an strong interaction between both materials in agreement with FTIR and DSC results. Synthesis pathway plays an important role in order to obtain high performance waterborne polyurethane/silica nanocomposites, since final properties of the films also depended on the nanoparticle incorporation strategy.

1. Introduction

Organic/inorganic composite materials have been extensively studied for a long time. When inorganic phases in organic/inorganic composites become nanosized, they are called nanocomposites. In polymer nanocomposites the polymer chains are confined to nanoscale dimensions (1–10 nm). These materials have unusual properties which cannot be obtained simply by co-mixing the polymeric component with the inorganic phase at the macroscopic level [1–4]. However, the properties of nanocomposites strongly depend on the organic matrix, inorganic nanofiller and the way in which they are prepared [5–7].

Polyurethane/silica (PU/silica) nanocomposites is one of the combinations that have attracted substantial academic and industrial interest in the last 20 years. In fact, among the numerous organic/inorganic nanocomposites, PU/silica nanocomposites have received much attention in recent years and they have been employed in a variety of applications [8,9]. The incorporation of nanosilica to the polyurethane matrix provides films with improved properties like increased indentation hardness, high resistance to whitening and high permeability to water vapor [10]. These materials are useful also as tough, abrasion-resistant coatings with increasing friction coefficient and reduced tackiness, with no change in gloss [11].

According to the starting materials and processing techniques PU/silica nanocomposites are prepared by three general methods