CO2 Capture in Large Industries: The Post-Combustion Method

NATIONAL TECHNOLOGICAL UNIVERSITY, PARANÁ REGIONAL SCHOOL

Students of electromechanical engineering:

- Maximiliano Lódolo
- Martin Rausch

English II - 2023

This work is an EFL engineering student project. The pictures and content in this presentation are only used for educational purposes. If there is any copyright conflict, they will be immediately removed.

Introduction

- Carbon dioxide: emission sources
- Relationship with SDG 13, "Climate Action", of the United Nations 2030 Agenda
- Objective of the paper: CO2 capture
 - Methods of post-combustion capture
 - Comparison between these methods
 - Feasibility for large-scale application

Map of the Presentation

Problem Description: Environmental Impact of Carbon Dioxide

Problem Approach: CO2 Capture

Post-Combustion Methods

Advantages and Disadvantages

Viability Analysis

Chemical Absorption

Physical Absorption

Adsorption

Membrane Separation

Problem Description: Environmental Impact of Carbon Dioxide

Climate change:

Increase in the Earth's average temperature

► Natural Causes:

- Distance of earth to the sun
- Variation in the angle of rotation of the Earth
- The energy emitted

Impact of greenhouse gases:

- Where are they produced?
- Why are they negative?

Process	CO ₂ concentration in gas stream %	Number of sources	Emissions	% of total CO ₂ emissions	Cumulative total CO,	Average emissions/source
	by vol.	aourees	(MtCO ₂)		emissions (%)	(MtCO ₂ per source)
CO ₂ from fossil fuels or	minerals					
Power						
Coal	12 to 15	2,025	7,984	59.69	59.69	3.94
Natural gas	3	985	759	5.68	65.37	0.77
Natural gas	7 to 10	743	752	5.62	70.99	1.01
Fuel oil	8	515	654	4.89	75.88	1.27
Fuel oil	3	593	326	2.43	78.31	0.55
Other fuels*	NA	79	61	0.45	78.77	0.77
Hydrogen	NA	2	3	0.02	78.79	1.27
Natural-gas sweetening						
	NA ^b	NA	50°	0.37	79.16	
Cement production						
Combined	20	1175	932	6.97	86.13	0.79
Refineries						
	3 to 13	638	798	5.97	92.09	1.25
Iron and steel industry						
Integrated steel mills	15	180	630 ^a	4.71	96.81	3.50
Other processes ^d	NA	89	16	0.12	96.92	0.17
Petrochemical industry						
Ethylene	12	240	258	1.93	98.85	1.08
Ammonia: process	100	194	113	0.84	99.70	0.58
Ammonia: fuel combustion	8	19	5	0.04	99.73	0.26
Ethylene oxide	100	17	3	0.02	99.75	0.15

TABLE 1-Profile of worldwide large CO2 stationary sourcesemitting more than 0.1 Mt CO2 per year [4]

Problem Approach: CO2 Capture

- Current methods available:
 Pre-combustion
 Oxy-fuel combustion
 - Post-combustion
- Post-combustion is the method more generally used

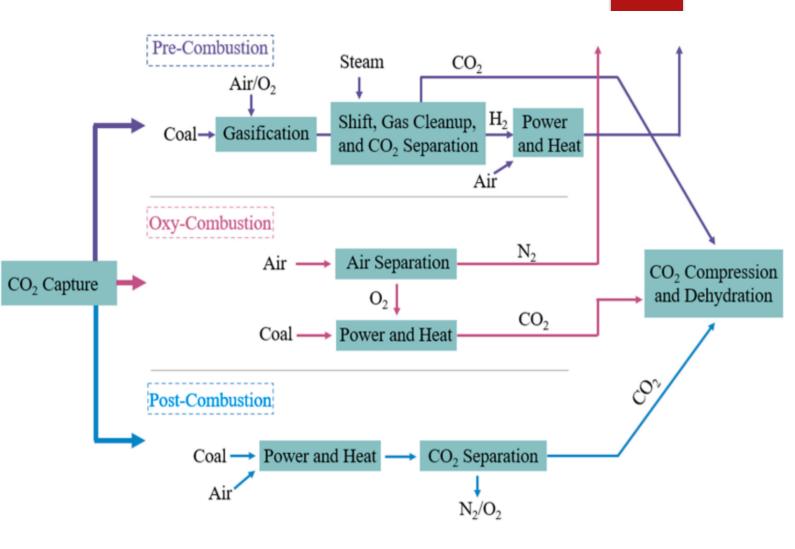
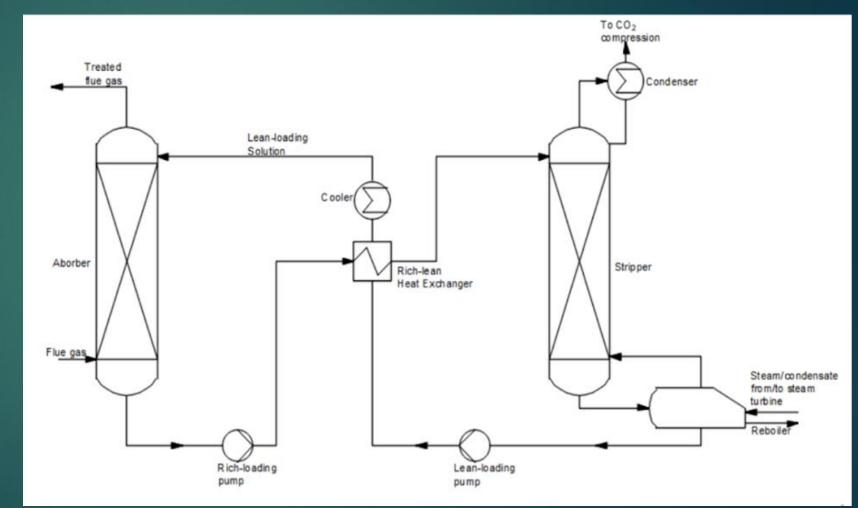


Fig. 1 Diagram of the different methods of CO2 capture [2]

Post-Combustion Method: Chemical Absorption


Process description

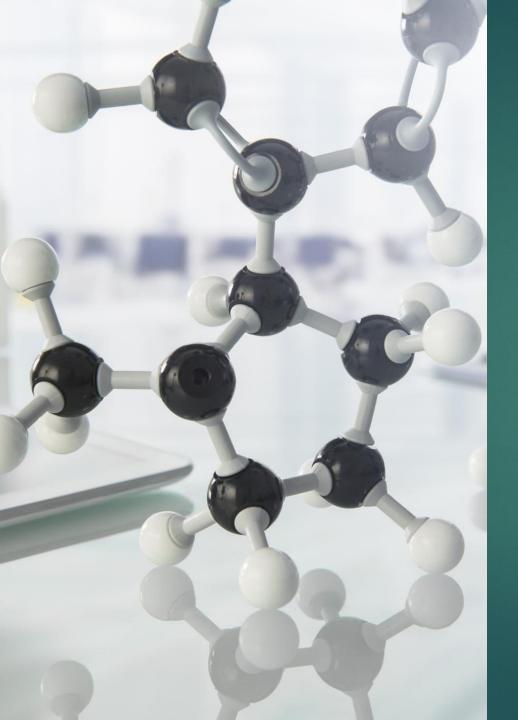
Chemical solvents:

- MEA
- DEA
- MDEA

► Main parameters:

- Flow of combustion gases
- CO2 concentration
- Elimination of CO2
- Solvent flow
- Energy requirements
- Others

Fig. 2 Chemical absorption process [6]


Post-Combustion Method: Physical Absorption

Process description

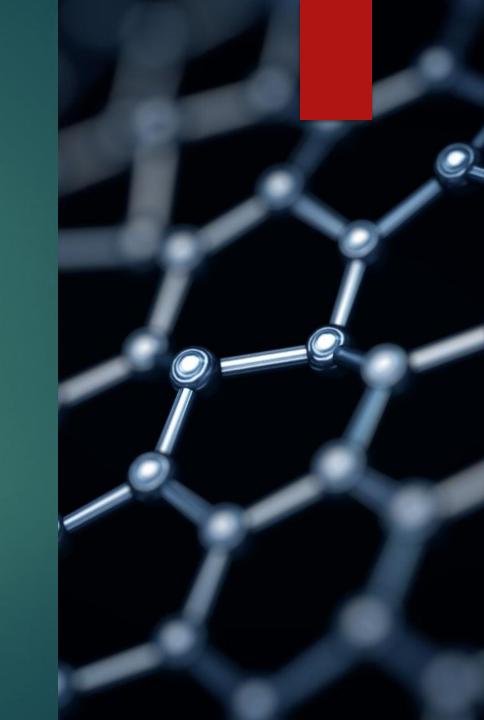
► Application:

Capture of CO2 from the coal gasification process

Post-Combustion Method: Adsorption

Process description:
 Adsorption
 Regeneration

Techniques:
 Physical
 Chemical


Most used materials

Post-Combustion Method: Membrane Separation

Process description

Membrane types:

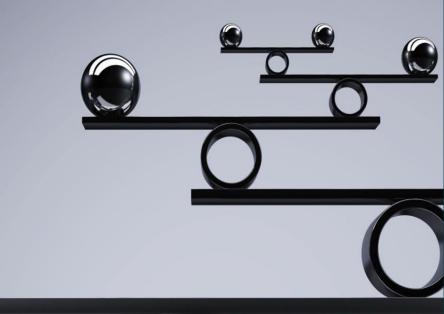
- Polymeric membranes
- Inorganic membranes

Viability Assessment and Advantages and Disadvantages of Post Combustion Methods

> Chemical absorption:

- Low partial pressure
- High capture capacity
- Large energy consumption
- Solvents are corrosive

\succ Physical absorption:


- It allows the selective of CO2
- High capture efficiency
- It needs high pressures and concentrations

> Adsorption:

- Application versatility
- High capture efficiency
- It requires prior compression of the gas
- High energy consumption

> Membrane separation:

- High selectivity
- High partial pressure is required
- Membranes are expensive

Economic Study

Costs impact Increment of costs with capture

Largest Plant in the World: "Orca"

plant type	cost	high/low
coal	47	55/37
natural gas	76	114/49

TABLE 2-COST OF CO2 CAPTURE PER TONS [7]

Туре	Costs in US\$/KWh		
New non-capture fossil fuel plants	0.03 - 0.06		
New fossil fuel plants with capture	0.04 - 0.09		
Capture by itself	0.01 - 0.03		

 TABLE 3-COST OF CO2 CAPTURE [11]

The use of fossil fuels will remain inevitable until renewable energy is developed on a large scale.

- The energy sector is the one that must be urgently addressed.
- > Carbon capture is a good option.
- > Industries can opt for a type of capture technique.

There must be commitment of governments and companies to the environment.

References

1.United Nations. 2030 Agenda for Sustainable Development. New York, USA. September 2015. Available: https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019_Spanish.pdf

2.Lipei Fu, Zhangkun Ren, Wenzhe Si, Qianli Ma, Weiqiu Huang, Kaili Liao, Zhoulan Huang, Yu Wang, Junhua Li, Peng Xu. "Research progress on CO2 capture and utilization technology". sciencedirect.com. <u>https://www.sciencedirect.com/science/article/pii/S2212982022003791</u> (Accessed: May 5, 2023).

3.Co2.earth, Global temperatures, June 16, 2023. Available: https://www.co2.earth/global-warming-update

4.B. Metz, O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer, *IPCC*, 2005: *IPCC Special Report on Carbon Dioxide Capture and Storage*. Cambridge University Press, Cambridge, United Kingdom and New York, 2005. [Online]. Available: <u>https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/</u> [Accessed: Jun. 16, 2023].

5.Paweł Madejski, Karolina Chmiel, Navaneethan Subramanian and Tomasz Kus. "Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies". ResearchGate.net. Available: https://www.researchgate.net/publication/358134450_Methods_and_Techniques_for_CO2_Capture_Review_of_Potential_Solutions_and_Application is in Modern Energy Technologies [Accessed: Jun. 25, 2023].

6.Adrián Q. Fraga. "Sistemas de captura de CO2", 2017. [Online]. Available: <u>https://ruc.udc.es/dspace/bitstream/handle/2183/19925/Queijo_Fraga_Adrian_TFM_2017.pdf.pdf?sequence=2&isAllowed=y</u> [Accessed: Jun. 20, 2023].

7.William J. Schmelz, Gal Hochman and Kenneth G. Miller. "Total cost of carbon capture and storage implemented at a regional scale: northeastern and midwestern United States" The Royal Society publishing. Available: <u>https://royalsocietypublishing.org/doi/10.1098/rsfs.2019.0065</u> [Accessed: Jul. 13, 2023]

8. Climeworks: "Orca: the first large-scale plant" [Online]. Available: <u>https://climeworks.com/roadmap/orca</u> [Accessed: Aug. 24, 2023].

9.M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. Mac Dowell, J. R. Fernandez, M.-C. Ferrari, R. Gross, J. P. Hallett, R. S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R. T. J. Porter, M. Pourkashanian, G. T. Rochelle, N. Shah, J. G. Yao and P. S. Fennell "Carbon Capture and Storage Update" Royal Society of Chemistry publishing. Available:

https://pubs.rsc.org/en/content/articlelanding/2014/EE/C3EE42350F [Accessed: Jun. 28, 2023].

1.P3 Cost Analyst, "Top 10 Largest Electric Utility Companies in the US", <u>https://www.costanalysts.com/top-electric-utility-companies/</u> [Accessed: Aug. 26, 2023]

2."Consenso Científico sobre Captura y Almacenamiento de CO2" Captura y Almacenamiento de CO2 (greenfacts.org) [Accessed: Aug. 28, 2023].

THANK YOU FOR YOUR ATTENTION

CO2 Capture in Large Industries: The Post-Combustion Method

NATIONAL TECHNOLOGICAL UNIVERSITY, PARANÁ REGIONAL SCHOOL

Students of electromechanical engineering:

- Maximiliano Lódolo
- Martin Rausch

English II - 2023

This work is an EFL engineering student project. The pictures and content in this presentation are only used for educational purposes. If there is any copyright conflict, they will be immediately removed.