Developing RDEVS Simulation Models from Textual
Specifications

Clarisa Espertino', Maria Julia Blas!:2, Silvio Gonnet' >

! Facultad Regional Santa Fe (FRSF) — Universidad Tecnolégica Nacional (UTN)
Lavaisse 610 — Santa Fe — CP 3000 — Argentina

*Instituto de Desarrollo y Disefio INGAR — CONICET & UTN
Avellaneda 3657 — Santa Fe — CP 3000 — Argentina

cespertino@frsf.utn.edu.ar,

{mariajuliablas, sgonnet}@santafe-conicet.gov.ar

Abstract. The Routed DEVS (RDEVS) formalism provides a formalization for
routing process simulation. This paper presents the mapping between con-
strained network models obtained from textual specifications of routing pro-
cesses and RDEVS simulation models implemented in Java. The proposal is part
of a work-in-progress intended to develop M&S software tools for the RDEVS
formalism using well-known abstractions to get the computational models at-
tached to such abstraction models through conceptual mapping. Then, modelers
can have simulation models without needing to codify any routing implementa-
tion. Benefits are i) reduction of implementation times and ii) simulation model
correctness regarding the RDEVS formalism.

1. Introduction

A formalism provides a set of conventions for specifying a class of objects in a pre-
cise, unambiguous, and paradigm-free manner. The Discrete Event System Specification
(DEVYS) is a modular and hierarchical Modeling and Simulation (M&S) formalism based
on systems theory that provides a general methodology for the construction of reusable
models [Zeigler et al. 2018]. The Routed DEVS formalism (RDEVS) employs the “em-
bedding routing functionality” strategy over DEVS models to provide routing capability
from the simulation model conception [Blas et al. 2022]. Although RDEVS is based on
DEVS, it is a new formalism that emerges from the M&S community to address new
types of problems. Due to its nature, RDEVS simulation models can be executed using
DEVS simulators. For RDEVS modeling, new software tools are needed to help practi-
tioners with the specification task. Software tools based on high-level specifications are
preferred to promote implementation-independent modeling. One way to do this is by
using routing process definitions to structure RDEVS simulation models.

A routing process is a system of interacting components in which the operation
of an element (i.e., a routing process component) and the routing of its outputs depend
on what is happening throughout the process [Alshareef et al. 2022]. That means interac-
tions between components depend on local information and external data derived from the
process structure. As shown later in this paper, for RDEVS models, local information is
related to component behavior, and external data is attached to routing functions. Hence,
the RDEVS formalism provides a formalization for routing process simulation.
ESPERTINO, Clarisa; BLAS, Maria Julia; GONNET, Silvio.
Developing RDEVS Simulation Models from Textual Specifications.
In: WORKSHOP EM MODELAGEM E SIMULACAO DE SISTEMAS INTENSIVOS EM SOFTWARE (MSSIS), 4.,

2022, Uberlandia/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computagdo, 2022 . p. 41-50.
DOI: https://doi.org/10.5753/mssis.2022.226306.

In [Blas et al. 2021], we have introduced a context-free grammar for defining rout-
ing process structures as a particular case of constrained network models. We have pro-
vided a set of syntactical elements and a metamodel to specify a valid representation of a
routing process structure as a constrained network model. From such a constrained net-
work model, in this paper, we show how the Java implementation of RDEVS simulation
models can be mapped to the elements defined in the constrained network metamodel to
build an accurate transformation between both levels (i.e., the textual specification as the
high-level abstraction and the Java code as the low-level implementation). The goal is
i) to provide a transformation process between constrained network models and RDEVS
simulation models using the Eclipse technology, and ii) to add such a transformation pro-
cess as a new feature of the M&S software tool introduced in [Blas et al. 2021] for the
execution of RDEVS models in DEVS simulators as discrete-event simulation models.

The remainder of this paper is organized as follows. Section 2 introduces the
background and motivation of our proposal. It also presents the RDEVS library used at
the core of the transformation. Section 3 summarizes the textual specification that sup-
ports the routing process definition and the software tool attached. Section 4 defines the
transformation process from the textual specification to Java classes attached to RDEVS
implementations. Section 5 is dedicated to discussing our results and their relation with
existing proposals. Finally, Section 6 is devoted to conclusions and future work.

2. Related Work

The RDEVS formalism has been presented as an extension of DEVS in [Blas et al. 2022].
RDEVS is an adaptation of Classic DEVS [Zeigler et al. 2018] that adds routing features
to the models by introducing a new modeling level: routing behavior.

DEVS models are designed to provide behavior and structure definitions through
atomic and coupled models, respectively. In RDEVS, three types of models are formal-
ized: essential, routing, and network models. These models take advantage of DEVS
modeling levels by partitioning the behavior into two distinct modeling levels: domain
behavior and routing behavior. The RDEVS essential model defines a DEVS atomic
model that specifies a domain behavior (i.e., the primary behavior of a component). The
routing model defines a container for an essential model that uses a routing policy to
manage its inputs and outputs (i.e., it adds a routing behavior over a domain behavior).
Finally, the network model defines a set of routing models coupled all-to-all to leave the
routing functionality to routing policies (i.e., it describes a structure over routing behav-
iors). Hence, based on the use of routing policies, RDEVS simulation models provide
a formalization of routing processes through the use of three modeling levels: domain
behavior, routing behavior, and structure. Each model belongs to a modeling level and
plays a role in the routing process specification (see Table 1).

Centered in the M&S framework of DEVS [Zeigler et al. 2018], RDEVS models
can be executed using DEVS simulators. Such a framework shows how M&S activities
are related by using four conceptual entities [Zeigler and Nutaro 2016]: i) the source sys-
tem as the real/virtual environment to be modeled, i) the model as the set of instructions
for generating data comparable to the data observable in the system, iii) the simulator
as the computation specified in the model, and iv) the experimental frame as the condi-
tions under which the source system is observed. In this way, it emphasizes the notion

RDEVS Model | Modeling Level Role in Routing Process
Essential model | Domain behavior Component behavior
Routing model | Routing behavior | Component routing functionality
Network model Structure Process routing functionality

Table 1. RDEVS simulation models, modeling levels, and routing processes. For
simplicity, we consider a routing process as a set of linked components.

of model and simulator as two independent entities linked by the simulation relation-
ship when a model is executed on a computational environment (i.e., a simulator). Since
RDEVS formalism is proposed as a subclass of DEVS for modeling new types of prob-
lems [Blas et al. 2018], the model entity of RDEVS formalism can be seen as a subclass
of the DEVS model entity.

In conceptual modeling theory, the subtyping used to represent class-
subclass dependence reflects the concepts at a more detailed specification level
[Parsons and Wand 1997]. Hence, any subclass of the DEVS model must be more spe-
cific than the DEVS model. For RDEVS, introducing a new modeling level is the core of
such specification. Given that the RDEVS model entity inherits a base set of the super-
class properties (i.e., the properties of the DEVS model entity), the simulator used for its
execution could be the same (i.e., the DEVS abstract simulator can execute RDEVS sim-
ulation models). However, due to the modeling distinction between DEVS and RDEVS,
new modeling strategies are needed to support the development of RDEVS models.

One way to do this is by using abstraction models to design routing processes
and then getting the computational models attached to such abstraction models through
conceptual mapping. Abstraction creates a conceptual model by extracting only those
elements needed for addressing a modeler’s concerns. Software tools with such a feature
reduce the knowledge required for building discrete-event simulation models (in our case,
for routing processes), and modeling tasks can be performed by anyone that understands
the problem domain through the abstraction.

Following this approach in [Blas and Gonnet 2021], we abstract the routing pro-
cess definition into a graph model based on nodes and edges. Instead of using a modeling
language, we define a graphical representation for routing processes based on i) two types
of nodes (one for the component behavior and the other for the component routing func-
tionality) and ii) two types of links (one for the routing path and the other for linking
the component behavior with its routing functionality). The graph representation is de-
tailed in a metamodel that supports the instantiation of valid abstractions. These abstrac-
tions are mapped to the modeling levels presented in Table 1 to define RDEVS equiv-
alences. Then, we show how the metamodel can be deployed using Eclipse Modeling
Framework [The Eclipse Foundation: Eclipse Modeling Project 2022]. Furthermore, we
present a plug-in for Eclipse [The Eclipse Foundation 2022b] that supports the graphical
modeling of routing processes (through metamodel instantiation) as the core specifica-
tion for the creation of the related RDEVS models. To integrate the implementation of
RDEVS models with the Eclipse technology used to support the graph metamodel, the
simulation models obtained from the routing process definition were developed as Java
classes that extend the RDEVS library (Section 2.1). In this way, modelers can have
RDEVS simulation models without needing to program any routing implementation.

Aiming to continue using abstraction models to define routing processes, in
[Blas et al. 2021], we have presented a textual representation based on network theory.
Such a textual representation (supported by the context-free grammar detailed in Sec-
tion 3) can be used as an alternative specification of the graphical representation based
on graphs. In Section 4, we show how conceptual elements defining the constrained net-
work model attached to a routing process are mapped to the set of Java classes required
to implement the related RDEVS simulation models.

2.1. The RDEVS Library (Java Implementation of RDEVS Simulation Models)

As stated before, the RDEVS formalism is a subclass of DEVS. This means that
existing implementations of DEVS can be used to support RDEVS implementa-
tions. From this perspective, a Java library was developed using DEVSJAVA
[Sarjoughian and Zeigler 1998] as the underlying M&S layer. DEVSJAVA is a software
tool implemented in Java that supports defining models in DEVS formalism through an
object-oriented conceptualization. By extending DEVSJAVA, the RDEVS library pro-
vides a solution for implementing RDEVS simulation models in Java and, later, executing
these models using the DEVSJAVA engine.

Figure 1 illustrates the main classes of the RDEVS library using a UML class
diagram. As the figure shows, all the concepts included in the formalism were defined
as Java classes. For example, the library includes a Java class for each type of RDEVS
model defined in the formalism (i.e., EssentialModel.java, RoutingModel.java, and Net-
workModel.java). Relationships are used to denote dependencies among classes. Then,
for example, the library defines the routing policy of a routing model as the RoutingFunc-
tion.java linked to the RoutingModel.java definition as the delr property of the related
Omega.java class (which is linked to the model by the w property). Moreover, the Net-
workModel.java class is related to one instance of InputTranslationFunction.java class
through the 7in property to define the transformation of input events to input events with
identification (i.e., instances of the IdentifiedEvent.java class). A similar strategy is used
to relate the NetworkModel.java with the OutputTranslationFunction.java. The Identi-
fiedEvent.java class is used to denote the structure of events managed by the models with
routing functionality.

The diagram includes a few operations for the classes that represent RDEVS sim-
ulation models. These operations are added to illustrate how the library supports the
behavioral definition of routing processes. Considering the modeling levels detailed in
Table 1, the classes defined in the library support the structure definition (i.e., the set of
classes allows implementing the NetworkModel.java class using accurate routing model
definitions). The routing behavior level is supported by the set of operations defined as
“final” in RoutingModel.java. These operations (e.g., delext(), delint(), and out()) are im-
plemented as Java code in the library and cannot be changed in further subclasses. In
this way, the library ensures the correctness of the routing functionality defined at the
core of the RDEVS formalism. Finally, the operations defined as “abstract” in the Essen-
tialModel.java class support the domain behavior. As with any abstract element, these
operations require a Java implementation in further subclasses to define the behavioral
specification of components included in the routing process. Since the behavioral spec-
ification of such components is part of the domain problem, the RDEVS library only
provides the interface required for their simulation.

InputTranslationFunction

(from rdevs.i 1.model functions)
1
#Tin OutputTranslationFunction
scalableDigraph (from rdevs.i ion.models.)
(from genDevs.modeling)
Content 1
(from rdevs.implementation.models.events) #Tout
NetworkModel
(from rdevs.implementation.models)

0..1 | ViewableDigraph|

"5l (from simView) Qi +getZIn(): InputTranslationFunction

+getZOut(): OutputTranslationFunction
#myPargnt

0-1 LR
i Atomi RoutingModel
(from simView) Q— (from rdevs.implementation.models)

#myParent
+deltext(e: double, x: message): void

content entity *deltint(): void
(from genDevs.modeling) (from GenCol) <}— :;‘i‘&gl’lgﬁis‘gz
+getE(): EssentialModel

0.1 #initialize State(): void
-value scalableAtomic
(from genDevs.modeling)
IdentifiedEvent
(from rdevs.implementation.models.events) 0.1
w
-h:int
-T: int[0..*] Omega
(from rdevs.i ion.model)|
y
0.1
B
EventContent L 0.1
(from rdevs.i ion.models.events) -
EssentialModel

(from rdevs.implementation.models)

#state | 0.1 #externalTransitionFunction(s: State, e: double, p: int, m: EventContent): State
Stat #internalTransitionFunction(State state): State
" d imol |a‘_e dels.el " #outputFunction(State state): Output
0.1 | (from rdevs.implementation.models.elements) #getNewState(): State
#state
0.1
RoutingFunctionElement el " RoutingFunction
(from rdevs.i ion.model: functions) ements (from rdevs.i ion.models.elements.functions) | delr

Figure 1. UML class diagram of the Java classes included in the RDEVS library.
Classes highlighted in gray belong to the DEVSJAVA package.

The Java classes detailed in the RDEVS library are designed as extension points
for building RDEVS implementations. An extension point is the definition of the pro-
vided interface for extensions [Klatt and Krogmann 2008]. That is, an extension itself of
the classes that represent RDEVS models is an implementation of the RDEVS model ac-
cording to the extension point defined in the library. Hence, the RDEVS library includes
extension points configured for designing explicit instances of RDEVS models as reusable
components slated for executing the routing simulation without any other consideration.

Following this consideration, each element included in an abstraction model that
defines a routing process can be mapped to an implementable RDEVS model over an
extension point of the library (i.e., a new Java class based on the existing ones).

3. Defining Routing Processes using Constrained Network Models

3.1. The Textual Specification: RDEVSNL

The context-free grammar RDEVSNL [Blas et al. 2021] is based on a constrained net-
work model to approach the definition of routing processes through the RDEVS formal-
ism. It abstracts the definition of these processes into textual representations using nodes
and links to describe their structure.

Two versions of the syntax were developed, one in English and the other in Span-
ish. Both were specified and implemented using ANTLR4 [Parr 2022]. In the English

specification, three primary building blocks can be identified: i) network, ii) materializes,
and iii) edges. When a RDEVSNL specification is used to structure a routing process, a
Network 1s defined to model that process. The sentences from the network block allow to
assign an id and describe the list of nodes that are part of the network. This can be done in
a unique specification (e.g., the A and B nodes are part of a C network) or in multiple text
lines (e.g., the A node is part of C network; the C network includes B node). As well, in
a routing process, each component exhibits an internal operation and defines the behavior
of a node or list of nodes. Sentences from the materializes block can be used to establish
the behavior that each node will execute, that is associated with the internal operation of
a component (e.g., the D component defines the behavior of A and B nodes; the A node
performs the behavior of D component). Moreover, links define directed interactions be-
tween nodes. The grammar enables the definition of these interactions in multiple ways,
using sentences from the edges block (e.g., the A node sends outputs to B node; the B
and E nodes receive inputs from the A node). Table 2 summarizes some of the syntactical
expressions included in RDEVSNL.

To instantiate valid routing processes from textual specifica-
tions, the metamodel illustrated in Figure 2 was developed using EMF
[The Eclipse Foundation: Eclipse Modeling Project 2022]. Stereotypes are used to
indicate the network model component to which the routing element refers. A RDE-
VSNL specification (NLSpecification) includes a Routing Process. This concept is
associated with the Network Model. The constrained network model used to structure
a routing process is defined over a set of nodes (Node), where each of them denotes
a Component and executes the behavior of a Component Type. Moreover, the routing
process is composed of a set of directed interactions between components (Link), where
one of them acts as a source and the other acts as a destination.

In Figure 2, the notes highlighted in gray detail OCL constraints added to ensure
obtaining a routing process from a network model definition. This is what we called the
constrained network model. These constraints guarantee the integrity of the metamodel
as follows: i) at least one node must be identified as initial, ii) at least one node must
be identified as final, iii) nodes cannot be isolated, iv) multiple links cannot connect the
same pair of nodes, v) self-links are not allowed, vi) a component must execute a single
behavior, and vii) a single routing process must be described in a RDEVSNL specification.

Primary Building Block Allowed Sentences
The A node is part of C network
Network The C network includes B node

The A and B nodes are part of a C network
The A node performs the behaviour of D component
Materializes The B node materializes D component
The D component defines the behaviour of A and B nodes
The A node sends outputs to B node
Edges The E and F nodes receive inputs from the B node
The connections are: A with B, B with E and B with F

Table 2. Examples of syntactical expressions allowed in the context-free gram-
mar RDEVSNL (English version).

6 att «Network Model»
NL Specification| 1 1 Routing Process 1

includes routingProcessName: String inclydes
| «C Of» o «C Of»
; 1.0
H AN 1 [N
OCL: vii) GEETiyandlli) «Starts at» «Link» |- OCE)
from 0. i
«Composed Of»
is defined over output link
P I\ 0.*
OCL: iii), iv), and vi * .
). V)) 2. 1 | source input link

) «Node»
Component Type behavior component C 1

behaviorName: String| 4 1.* | nodeName: String | destination to
«EndsAt»

Figure 2. Metamodel used to validate the routing process definition from a con-
strained network model specification.

3.2. The Plug-in for Eclipse: RDEVSNL Editor

Based on the Ecore metamodel, a new plugin for the Eclipse platform was developed. This
software tool is composed of a text editor that allows specifying valid constrained network
models using the RDEVSNL syntax, a “wizard” for creating files with the “*.rdevsnl”
extension that stores textual descriptions, and a validation process that instantiates the
defined metamodel following the parsing of the textual specification.

The text editor provides writing aids during the edition (such as syntax highlight-
ing and typing suggestions) using the language selected by the modeler. When the vali-
dation option for a specification is activated, the RDEVSNL syntax analysis is executed
over the current content of the “*.rdevsnl” file. Then, the parser tries to recognize the
sentence’s structures from a stream of tokens given by the actual specification. If the anal-
ysis is successful (i.e., all the sentences that the modeler used to create the specification
are valid), using the tokens identified by the parser, an instance of the Ecore metamodel
shown in Figure 2 is automatically generated. Afterwards, the metamodel’s concepts, re-
lationships, multiplicities and OCL restrictions are verified over the obtained instance. If
no issues are found, the modeler will receive a success message that ensures the textual
definition of the network model is in correspondence with a valid routing process. On the
contrary, the modeler will visualize an error message and a list with more details in the
Problems view of Eclipse (having the possibility to fix its specification and check the new
content). A video of the tool operation can be seen here.

4. From Textual Specifications to Java Classes

The routing elements used as stereotypes in Figure 2 are equivalent to the RDEVS
modeling levels presented in Table 1. These equivalences are used to get the im-
plementation of the RDEVS models attached to the textual specification already val-
idated by the plug-in as an instance of the metamodel. To do this, we use Acceleo
[The Eclipse Foundation 2022a].

Acceleo is a template-based technology that allows the creation of code genera-
tors from any data source available in EMF format. By defining a generation model for
the text-to-code transformation, the elements defined in the abstraction model (i.e., the in-
stance of the metamodel) are navigated to “write” the corresponding Java classes. These
classes are created as extensions of the ones defined in the RDEVS library.

Each Component included in the Routing Process is used to define an extension
of the RoutingModel.java class. These extensions are named using the value of the node-

https://drive.google.com/file/d/1BoGkjAqoj5ODVRq6f94XPLhSa0vZj3dz/view?usp=sharing

Name attribute. The routing functionality of the routing models is defined through a new
set of extensions of the RoutingFunctionElement.java class. These extensions use the
output links to define available destinations. Accurate sources are defined considering
the input links as part of the nodeName (class) definition. In this way, Interactions and
Components are used to define the routing behavior (i.e., the intermediate modeling level
detailed in Table 1).

Using the Routing Process definition, an extension of the NetworkModel.java
class is defined. This class refers to the structure (i.e., the final modeling level of Table 1).
The name of such an extension is defined using the value of the routingProcessName at-
tribute. The extension includes the full coupling of all routing model classes that define
Components of the Routing Process.

It is important to denote that the domain behavior (i.e., the first modeling level of
Table 1) cannot be fully defined from the routing process definition. Each ComponentType
defined as part of the NetworkModel is used only to structure an extension of the Essen-
tialModel.java class. Following other extensions, the value of the behaviorName attribute
is used to name the new subclass. However, the specification of the abstract operations to
be redefined at the subclass level cannot be obtained from the Routing Process definition.
Such a behavioral specification is part of the domain problem. Then, the modeler should
detail these operations using Java code or another type of DEVS modeling specification.
Since essential models are defined as DEVS atomic models, DEVS modeling tools can
be used to achieve the domain behavior specification.

5. Discussion

To illustrate proof of concepts, we follow the example presented in [Blas et al. 2021].
Table 3 summarizes the Java classes obtained during the transformation process executed
over the metamodel instances of such an example.

Metamodel Instance RDEVS Java Implementation
Name Type New class “extends”
MACHINE_TYPEAEssentialModel.java EssentialModel.java
MACHINE-TYPEA | Component Type MACHINE_TYPEAState.java State java
MACHINE_TYPEBESssentialModel.java EssentialModel.java
MACHINE-TYPEB | Component Type MACHINE_TYPEBState java State java
Machine_1RoutingModel.java RoutingModel.java
Machine_1 Component Machine_1RoutingFunction.java RoutingFunction.java
Machine_1RoutingFunctionElement.java RoutingFunctionElement.java
Machine_2RoutingModel.java RoutingModel.java
Machine_2 Component Machine_2RoutingFunction.java RoutingFunction.java
Machine 2RoutingFunctionElement.java RoutingFunctionElement.java
Machine_3RoutingModel.java RoutingModel.java
Machine 3 Component Machine_3RoutingFunction.java RoutingFunction.java
Machine_3RoutingFunctionElement.java RoutingFunctionElement.java
Machine 4RoutingModel.java RoutingModel.java
Machine 4 Component Machine 4RoutingFunction.java RoutingFunction.java
Machine 4RoutingFunctionElement.java RoutingFunctionElement.java
Machine_SRoutingModel.java RoutingModel.java
Machine 5 Component Machine_SRoutingFunction.java RoutingFunction.java
Machine_SRoutingFunctionElement.java RoutingFunctionElement.java
Routing ProcessNetworkModel.java NetworkModel.java
Routing_Process Network Model | Routing_ProcessInputTranslationFunction.java | InputTranslationFunction.java
Routing_ProcessOutputTranslationFunction.java | OutputTranslationFunction.java

Table 3. List of the Java classes obtained for the proof of concepts.

The main advantages of our proposal are i) reduction of implementation times
through fast modeling solutions and ii) simulation model correctness regarding the for-
malism through well-defined and standardized simulation models. We are now conclud-
ing the testing of the transformation process.

The plug-in in development will be more suitable than other software tools be-
cause it employs a general abstraction model (i.e., a network model) as the core definition
of the RDEVS simulation models. This provides a more accurate representation of the
problem to the modeler. That is the main difference with other approaches like DEVS
Modeling Language (DEVSML) and DEVS Natural Language (DEVSNL).

DEVSML [Mittal and Douglas 2012] provides a platform-independent way to
specify DEVS models that are transformed to platform-specific language implementa-
tion in Java, C++, or any other programming language. On the other hand, DEVSNL
[Zeigler and Sarjoughian 2017] provides a natural language specification to understand
FDDEVS (Finite Deterministic DEVS) models. These models can be used to automati-
cally generate DEVS atomic models in Java that have full capability to express messages
and states. In both cases (i.e., DEVSML and DEVSNL), the modeler needs to understand
how DEVS models are structured to build specifications. Instead, in our case, the modeler
is abstracted from the notions of RDEVS formalism and generates an (abstract) network
model to represent a problem. Such an abstract model is used to create the related simu-
lation models in Java. The separation of concerns between the abstraction model and the
programming language used to support the simulation model implementations allows a
further mapping to other programming languages.

6. Conclusions and Future Work

The RDEVS formalism provides a formal definition for the M&S of general routing pro-
cesses employing the “embedding routing functionality” strategy over DEVS models. In
this paper, we have presented a plug-in in development intended to obtain Java imple-
mentations of RDEVS models from an abstract model defined in a textual specification.
For the textual representation, we propose a context-free grammar based on a constrained
network model. Such grammar has been implemented using ANTLR4. A metamodel is
used to map the textual definition with valid routing processes. This metamodel allows a
direct mapping between its concepts and RDEVS simulation models. Then, Java classes
are derived using Acceleo. The RDEVS library is used as support since it enhances the
development of RDEVS models in Java using some features provided by DEVSJAVA.

Our proposal is part of a work-in-progress intended to develop M&S software
tools for the RDEVS formalism as a discrete-event specification for routing processes.
Our final aim is to provide a tool that allows modelers to i) define the problem domain
using well-known abstractions and ii) get the computational models attached to such ab-
straction models through conceptual mapping. Then, modelers will be able to have sim-
ulation models without needing to codify any routing implementation. Moreover, they
can get simulation models without having programming skills. The plug-in presented in
this paper is a fundamental part of such research as an additional feature of the graphical
specifications already defined in [Blas and Gonnet 2021]. Future work is devoted to the
development of new representations for large-scale routing processes.

References

Alshareef, A., Blas, M. J., Bonaventura, M., Paris, T., Yacoub, A., and Zeigler, B. P.
(2022). Using DEVS for Full Life Cycle Model-Based System Engineering in Complex
Network Design, pages 215-266. Springer International Publishing, Cham.

Blas, M., Espertino, C., and Gonnet, S. (2021). Modeling routing processes through net-
work theory: A grammar to define rdevs simulation models. In Anais do 111 Workshop
em Modelagem e Simulagdo de Sistemas Intensivos em Software, pages 10-19, Porto
Alegre, RS, Brasil. SBC.

Blas, M. J. and Gonnet, S. (2021). Computer-aided design for building multipurpose
routing processes in discrete event simulation models. Engineering Science and Tech-
nology, an International Journal, 24(1):22-34.

Blas, M. J., Gonnet, S. M., Leone, H. P., and Zeigler, B. P. (2018). A conceptual frame-
work to classify the extensions of devs formalism as variants and subclasses. In 2018
Winter Simulation Conference (WSC), pages 560-571. IEEE.

Blas, M. J., Leone, H., and Gonnet, S. (2022). Devs-based formalism for the modeling of
routing processes. Softw. Syst. Model., 21(3):1179-1208.

Klatt, B. and Krogmann, K. (2008). Software extension mechanisms. Fakultt fr Infor-
matik, Karlsruhe, Germany, Interner Bericht, 8:2008.

Mittal, S. and Douglas, S. A. (2012). Devsml 2.0: The language and the stack. Technical
report, AIR FORCE RESEARCH LAB WRIGHT-PATTERSON AFB OH.

Parr, T. (2022). Antlr. https://www.antlr.org/.

Parsons, J. and Wand, Y. (1997). Choosing classes in conceptual modeling. Communica-
tions of the ACM, 40(6):63-69.

Sarjoughian, H. S. and Zeigler, B. (1998). Devsjava: Basis for a devs-based collaborative
mé&s environment. Simulation Series, 30:29-36.

The Eclipse Foundation, . (2022a). Acceleo. https://www.eclipse.org/
acceleo/.

The Eclipse Foundation, . (2022b). Eclipse. https://www.eclipse.org/.

The Eclipse Foundation: Eclipse Modeling Project, . (2022). Eclipse modeling frame-
work. https://www.eclipse.org/modeling/emf/.

Zeigler, B. P, Muzy, A., and Kofman, E. (2018). Theory of modeling and simulation:
discrete event & iterative system computational foundations. Academic press.

Zeigler, B. P. and Nutaro, J. J. (2016). Towards a framework for more robust validation
and verification of simulation models for systems of systems. The Journal of Defense
Modeling and Simulation, 13(1):3-16.

Zeigler, B. P. and Sarjoughian, H. S. (2017). DEVS Natural Language Models and Elab-
orations, pages 43—69. Springer International Publishing, Cham.

https://www.antlr.org/
https://www.eclipse.org/acceleo/
https://www.eclipse.org/acceleo/
https://www.eclipse.org/
https://www.eclipse.org/modeling/emf/

	Introduction
	Related Work
	The RDEVS Library (Java Implementation of RDEVS Simulation Models)

	Defining Routing Processes using Constrained Network Models
	The Textual Specification: RDEVSNL
	The Plug-in for Eclipse: RDEVSNL Editor

	From Textual Specifications to Java Classes
	Discussion
	Conclusions and Future Work

