
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Microservices-based Approach for a Collaborative 
Business Process Management Cloud Platform 

 

 

Diego Cocconi  
Universidad Tecnológica Nacional (UTN) Facultad Regional 

San Francisco 
Av. de la Universidad 501, San Francisco (2400, Córdoba), 

Argentina 
dcocconi@sanfrancisco.utn.edu.ar

Pablo Villarreal 
Centro de Investigación y Desarrollo de Ingeniería en Sistemas 
de Información (CIDISI) / Consejo Nacional de Investigaciones 

Científicas y Técnicas (CONICET) 
Universidad Tecnológica Nacional (UTN) Facultad Regional 

Santa Fe 
Lavaisse 610, Santa Fe (3000, Santa Fe Province), Argentina 

pvillarr@frsf.utn.edu.ar 

Abstract—Nowadays, as a result of the adoption of new 

Internet technologies like cloud computing and containers, new 

software architectural styles like microservices, and emerging 

business models, organizations are able to establish 

collaborative networks for executing Collaborative Business 

Processes (CBPs) in a flexible way. Current approaches of 

Process-Aware Information Systems (PAISs) for implementing 

and executing CBPs have shortcomings, not only related to the 

services offered, but also about issues typical of the technological 

solution chosen, such as portability, elasticity, and privacy even 

when they are cloud-based. Portability refers to the dependency 

that is created due to the heterogeneity of the services offered by 

different cloud providers (generating a problem known as 

“vendor lock-in”), elasticity defines the degree to which a system 

is able to adapt to workload changes by provisioning and de-

provisioning resources in an autonomic manner, and privacy 

refers to sensitive information about one person or a group that 

is expected to be hidden from others (e.g., identity, address, 

health, and hobbies). Then, the purpose of this work is to define 

an adequate approach for a cloud architecture of a CBP 

management platform facing these issues. To do so, starting 

from a definition of a cloud platform architecture that solves 

(almost all) shortcomings for CBP services offered, an 

enhancement making use of the microservices paradigm is 

proposed, overcoming the cloud difficulties previously 

identified. 

Keywords—business process, inter-organizational collab-

oration, process-aware information system, cloud computing, 

microservices, containers 

I. INTRODUCTION 

Nowadays, as a result of the adoption of new Internet 
technologies like cloud computing and emerging business 
models, organizations are able to establish collaborative 
networks for executing Collaborative Business Processes 
(CBPs) in a flexible way. A collaborative network [1] consists 
of autonomous, geographically distributed, and heterogeneous 
organizations that collaborate to achieve common goals [2]. 
Collaborative networks contribute significantly to enhance 
performance of Small and Medium Enterprises (SMEs) [3]. 

In a collaborative network the integration and 
collaboration among the organizations are established and 
carried out through CBPs [4]. A CBP (also called process 
choreography [5-6]) specifies the global view of interactions 
between roles that organizations perform to achieve a 

 
1 https://aws.amazon.com  

2 https://www.openstack.org/  

common business goal, and it serves as a contractual basis for 
the inter-organizational collaboration involved [7]. The 
implementation of collaborative networks (and inter-
organizational collaborations) requires organizations can 
carry out the stages of the Business Process Management 
(BPM) lifecycle [5] to the agreed CBPs. These stages of the 
CBP management require to deal with: (1) organization 
autonomy; (2) decentralized execution; (3) global view of 
message exchange; (4) peer-to-peer interactions; and (5) 
adequate representation of communications [4]. 

Current solutions for CPBs based on Internet technologies 
like Web services require each organization to develop, 
implement, and maintain Process-Aware Information Systems 
(PAISs). A PAIS is necessary for each organization to execute 
its Integration Business Processes (IBPs) [7] whether using its 
own resources and infrastructure (hardware, software, 
network, etc.) or appealing to any Business Process as a 
Service (BPaaS) [25] cloud solution. An IBP (also known as 
private process [5] or orchestration process [6]) defines the 
public and private activities that an organization must perform 
to fulfill the message exchange agreed in a CBP. These 
solutions increase complexity and costs to the organizations, 
because they have to configure and implement a PAIS locally 
(or subscribe to a cloud service), and have to integrate all of 
them because they will need to interact with each other. Even 
though big companies can deploy this kind of solutions, the 
above aspects have a more negative impact on SMEs, 
governments of small cities and communities, and healthcare 
public or private institutions [8]. So it is important to use 
technologies that can make it feasible for organizations like 
these the application of CBP management in collaborative 
networks, enabling the access to easily integrable PAISs. 

A first step to provide an adequate approach which allows 
organizations to generate, deploy, and enact PAISs on-
demand, accordingly to the CBPs that the organizations agree 
to carry out, consists on exploiting the benefits of cloud 
computing technologies. As it was proposed in previous work 
[26], implementing a cloud solution based on an 
Infrastructure as a Service (IaaS) model (via a cloud provider 
like Amazon1, or by means of a private implementation using 
a proper platform such as OpenStack2 or Apache CloudStack3) 
could result in more agile collaborations, allowing to set up a 
collaboration at any moment and enacting more fluidly the 
involved processes, enabling to offer a Platform as a Service 

3 http://cloudstack.apache.org/  



(PaaS) and/or a Software as a Service (SaaS) model to the 
organizations . This solution solves the shortcomings of: high 
costs and complexity of IT infrastructure required to 
implement PAISs, and rigidity of platforms for PAISs that do 
not enable organizations to generate, deploy, and enact PAISs 
on-demand, accordingly to the CBPs agreed in collaborative 
networks. However, there are still additional challenges: (1) 
there is an important integration work to be done between the 
collaborative system and third-party or legacy systems that 
perform the activities to be carried out in the IBPs of each 
organization; (2) fulfillment of the requirements of CBPs 
management is partially accomplished, e.g. global view of 
message exchange requires an advanced global monitoring 
service, which is difficult to achieve, even with an architecture 
in the cloud.  

Besides, cloud solutions for CBPs have to deal with typical 
issues such as portability, elasticity, and privacy. Portability 
must be considered for conceiving a platform independent of 
the cloud provider; this should be contemplated for 
representing the different components in terms of an agnostic 
way. Elasticity is important for improving performance when 
several IBPs and PAISs are enacted, so the use of an 
appropriate elasticity controller, the definition of the correct 
metrics, and the selection of which components should be 
elastic is necessary. This leads to an appropriate degree of 
flexibility required to provide an appropriate QoS (Quality of 
Service) levels to the users [27]. Privacy issues are related to 
sensitive information shared in collaborations, or internal 
information managed in IBPs which handle sensitive data. 
However, cloud-based platforms for implementing and 
executing CBPs, such as the described in previous work [26] 
or others (Section 5), that  are based on the deployment of the 
components in an IaaS provider (based on Virtual Machines 
—VMs) have more difficulties to achieve these requirements. 

Microservices and containers allow going a step further. 
In one hand, micro-services can improve integration between 
the cloud platform and external systems (third-party or legacy 
systems) defining a microservice working as an interface 
between a process activity of an IBP and the third-party or 
legacy system that executes it; this allows that core 
microservices of the platform do work without taking care of 
the connection with the outside world. Only proper and well-
designed interfaces and lightweight protocols that connect 
core microservices and microservices for the external systems 
are required. As microservices architectures are naturally 
distributed, they must deal with issues typical of this kind of 
systems. A series of architectural patterns allow to face these 
difficulties [19]. 

On the other hand, containers (and their orchestration 
systems, like Kubernetes4  for Docker5  containers) allow to 
deal with the problem of portability in cloud computing 
environments without the use of any standard, because 
containers are portable per se. Elasticity management 
becomes easier because at container level, the orchestration 
system implements an scaling mechanism, which is 
independent of the application; if microservices make use of 
containers for their implementation, they can be benefited by 
this approach, allowing scalable microservices. With each 
activity of the IBPs implemented as microservices, all 
business processes become scalable at activity granularity by 
nature. Identity services transversal to all the remaining 

 
4 https://kubernetes.io/  

services —such as the ones that offers OpenStack for all its 
cloud IaaS services, named keystone— can be applied at 
microservice level, ensuring the privacy required by each 
organization. 

This work presents a new cloud-based platform for 
managing CBPs and proposes a microservice-based 
architecture for this platform to overcome the difficulties 
commented previously. Starting from a definition of the 
platform architecture proposed in previous work [26], an 
enhancement is provided by redefining the components in 
terms of microservices and adding new essential components 
to fulfill the requirements of the CBPs management. A 
concrete deployment of this architecture can be implemented 
chosen the proper technologies and cloud infrastructures 
already available for managing microservices architectures. 

This work is organized as follows. Section 2 presents a 
background related to microservices, containers, and CBPs. 
Section 3 summarizes the new architecture of the CBPs 
management platform —which evolves from the one 
presented in [26]—, now based on microservices, and the 
main functionalities with a possible implementation. In 
Section 4 a case study which could be handled by the platform 
is described, together with the interaction between its main 
components. Section 5 gives a synopsis of related work about 
business processes in the cloud. Finally, Section 6 presents 
conclusions and future works. 

II. BACKGROUND 

Cloud computing is a new paradigm for creating 
distributed systems based on the Internet [9]. From a business 
point of view, cloud computing could be seen as a model for 
delivering on-demand services, allowing organizations pay 
for resources or applications only when they use them (“pay-
per-use”) instead of facing the considerable costs of 
procurement and maintenance of a hardware and software 
infrastructure [10]. 

There are three service models for cloud computing: SaaS, 
PaaS, and IaaS, mentioned before [10]. In the SaaS model, 
applications are offered as services, accessed through the 
Internet on-demand by users. This model is mature today and 
there are several cloud applications available [8]. The PaaS 
model offers development services for building cloud 
applications. IaaS model implies the provisioning of hardware 
resources via virtualization [10]. Cloud computing also has 
different deployment models, such as private cloud, 
community cloud, public cloud, and hybrid cloud. In a private 
cloud, infrastructure is operated solely by one organization 
and managed by the organization or a third-party. In a 
community cloud several organizations jointly construct and 
share the same cloud infrastructure, which could be hosted by 
a third-party or by one of the organizations. In a public cloud, 
service provider has the full ownership of the cloud 
architecture with its own policy, value, profit, costing, and 
charging model. Finally, the hybrid cloud is a combination of 
private, community, or public clouds [11]. Additionally, the 
term cloud federation comprises services from different 
providers   aggregated   in   a   single   pool, supporting three 
basic interoperability features: resource migration, resource 
redundancy and combination of complementary resources 
[12]. 

5 https://www.docker.com/  



Cloud computing serves as a basis for other models 
requiring a more complex orchestration, like containers and 
microservices frameworks, providing APIs for provisioning 
data computing, storage, and delivery capabilities [13]. 

A. Microservices and Containers 

The microservices software architecture paradigm is 
gaining popularity as an approach towards a flexible execution 
and an independent deployment of service-oriented software 
systems [14]. This architectural style is characterized by a set 
of small independent services, running in their own processes 
and interacting through lightweight mechanisms, that together 
conform a single application [15]. 

Microservices architecture is often compared with the 
Service Oriented architecture (SOA).  SOA is often associated 
with Web  services protocols, tools, and formats such as 
SOAP, WSDL (Web Services Description Language), and the 
WS-* family  of standards [16], whilst microservices require 
the use of a simple and lightweight communication protocol 
which enhances decoupling property between services, like 
REST over HTTP, which can rely on multiple formats (XML, 
JSON) [17]. 

The downside of implementing an application as a group 
of autonomous components like microservices is that they 
form a distributed system, which by their nature, are very hard 
to deal with [19]. To have a fully functional microservices 
architecture and to take advantage of all its benefits, the 
following components have to be utilized to handle the main 
problems [18-20]: (1) a service discovery component, because 
there exist several services and many of them might have a lot 
of instances, so it is necessary to keeping track of the deployed 
services; (2) a configuration server that decouples source code 
from its configuration, enabling the change the configuration 
of the application without redeploying the code; (3) a load 
balancer component, which in order to make an application 
scalable, should be able to distribute the load on an individual 
service among its many instances; (4) a circuit breaker 
component for providing fault tolerance against chain failures 
product of the dependency between services that are working 
together; (5) an edge server, implementation of the API 
Gateway pattern, for exposing  external APIs to the public as 
an interface; (6) a centralized logging service, capable of 
detecting new microservice instances and collecting log 
events from them, and also interpreting and storing log events 
in a structured and searchable way; and (7) a monitoring 
service able to analyze hardware resource consumption per 
microservice, helping to discover the root cause of the 
problem when response times and/or the usage of hardware 
resources become unacceptably high, providing an early 
warning system of something going wrong. 

Microservices can reside on VMs to enhance the scaling 
of their instances properly, but the small size of the services 
does not require a huge machine size to rely on. Besides, 
cloning, transferring, and enacting large images across the 
network will result in a complex activity to be performed, even 
in the cloud. The overhead is caused by the hypervisor, which 
is a computer software layer that needs to manage all the VMs 
and how they access the resources. These drawbacks raised 
the need for technologies such as Linux containers [17]. 
Containers provide a mean to virtualize an operating system 
so that multiple workloads can run on a single operating 

 
6 http://mesos.apache.org/  

system instance, differently from VMs, that virtualize the 
hardware to run multiple operating system instances on it [14]. 
So, they provide a separate space for the processes without the 
need of a hypervisor to control the machines. On top of that, 
Docker platform contributed on building lightweight 
containers and handling them as well [17]. A Docker container 
wraps a piece of software in a complete filesystem that 
contains everything needed to run the software: code, runtime, 
system tools, system libraries and anything that can be 
installed on a server, guaranteeing that the software will 
always run the same, regardless of its hosting environment, 
providing code portability [14, 17]. 

Container orchestration technologies (for example, 
Kubernetes or Apache Mesos6) automate container allocation 
and management tasks, essentially abstracting away the 
underlying physical or virtual infrastructure [16]. A   
scalability feature of Kubernetes supporting several 
parameters allows an automation process that can be 
implemented according to the number of concurrent users 
accessing it. It is expected that the exploitation of scalability 
will   improve   performance   and   server   response   time   to   
users   without   reducing server utility capabilities [21]. With 
microservice architectures relying on containers, those 
microservices can be dynamically replicated to cloud 
infrastructures that are under heavy load. It is not necessary to 
scale the complete system, as it would be required with a 
monolithic system [20], or to scale in terms of entire VMs. 

B. Collaborative Business Processes (CBPs) 

As it was commented before, to carry out collaborations, 
organizations integrate their business processes, agree on 
common business goals, coordinate their actions, and 
exchange information by defining and executing 
Collaborative Business Processes (CBPs) [22]. The 
implementation of collaborations implies that organizations 
can run through the stages of the Business Process 
Management (BPM) lifecycle [5] for the CBPs involved. 

During the analysis and design stages of the BPM 
lifecycle, organizations must define not only CBPs but also 
their Internal Business Processes (IBPs), which model the 
private behavior of organizations and support the interactions 
and roles they perform in the collaboration. To deal with 
organizational autonomy issues, CBPs are defined as abstract 
processes. This means they are not directly executable by a 
centralized Process-Aware Information System (PAIS). 
Instead, they are enacted by means of the IBPs of each 
organization in a decentralized way, executed by their 
respective PAISs [7]. There are languages that emerged to 
support the modelling of CBPs, such as BPMN [6] and UP-
ColBPIP [4, 23]. These languages enable the definition of 
technology-agnostic models for CBPs. The purpose is to 
describe CBPs at a high level of abstraction from a conceptual 
point of view, providing concepts closely related to the 
business and organizational domains, which are suitable for 
both business and technological people. 

Implementation stage of the BPM lifecycle consists in the 
development, configuration, and deployment of PAISs 
required for each organization to execute their IBPs and to 
interoperate for managing CBPs. Inter-organizational 
collaborations rely on the capability of organizations to 
implement PAISs to enable the execution of their own IBPs 



and interact with the other PAISs to achieve the message 
exchange agreed in CBPs [7]. Finally, execution stage consists 
in the “enactment” of the CBPs by means of the real enactment 
of IBP instances by the PAISs of each organization, to execute 
the private activities organizations need to carry out, as well 
as the public activities related to the message exchange 
between them. 

Thus, collaborative networks can be defined from two 
different perspectives: (1) considering a global picture of the 
control flow of interactions, and (2) considering a local picture 
of the public and/or private activities of each organization 
together with the interaction points among them. The 
correspondence between these perspectives and the types of 
processes involved are shown in Figure 1. 

The global perspective describes the global and public 
behavior of a collaboration and the responsibilities of the 
participants [4]. This behavior is represented in CBPs as a 
single control flow that defines the order in which interactions 
(exchange of messages) between participants take place, with 
interactions defined as if they were seen by an observer who 
can only see the public and externally visible actions of each 
participant. This perspective can be defined and described by 
using the technology-independent languages mentioned 
before: BPMN (choreography diagrams) and UP-ColBPIP 
(interaction protocols). 

The local perspective describes the behavior of a 
collaboration based on the activities of each participant. From 
this perspective, a collaboration is described as a composition 
of business processes that define the independent behavior of 
each participant and the interactions between them. Each 
participant has its own control flow and interaction points. 
Two types of business processes can be defined for each 
participant according to this perspective (Figure 1): (1) 
interface processes (public behavior) and (2) integration 
processes (public and private behavior). An interface process 
describes the public and externally visible actions of a 
participant in terms of the activities that support the receiving 
and sending of messages with each other [4-5, 24]. On the 
contrary, an integration process describes both the public and 
private behavior required to support the role a participant 
performs in the collaboration. The private behavior adds the 
internal activities and events required to support the internal 
business logic of a participant. BPMN can be used to represent 
both kind of processes of this perspective (through its public 
and private processes) in an independent way from the final 
implementation technology. WS-BPEL is an example of a 
specific-technology language that enables the definition of 
both kind of processes of this perspective but based on the 
Web services technology. 

III. MICROSERVICES-BASED PLATFORM FOR CBPS 

In this Section the proposed platform for CBPs 
management is described. Then, first the offered services are 
summarized. Next, a conceptual architecture of the platform 
is presented, and all their components are described. Finally, 
implementation considerations are given. 

A. Offered Services 

The offered services to the final users (organizations) 
provided by the platform are based on those proposed in 
previous version [26], i.e. the support for the design, 
implementation, and execution stages of inter-organizational 
collaborations and CBPs lifecycles. 

1) Services for the Design and Implementation of CBPs 
Before starting to use the cloud provided services, 

organizations can register in the cloud platform and join 
collaborative networks. Then, they are ready to agree on new 
collaborations, which declares the CBPs to be executed. Once 
a CBP model is agreed by all organizations, the platform 
provides cloud services to generate the IBP models for each 
organization from the CBP model. Each IBP model contains 
the activities required to execute the collaboration from the 
point of view of the corresponding organization, but it is still 
an incomplete model that must be configured with execution 
details —private behavior, data, and resources necessary to 
carry out the activities, in order to achieve an executable 
implementation of the CBP. From the completed conceptual 
IBP models, there are services that allow the generation on-
demand of the PAISs organizations need to implement and 
execute their IBPs. This implies the generation of an 
executable model of each IBP to be executed by the PAIS. 

2) Services for the Execution and Monitoring of CBPs 
Once all PAISs are generated and configured with their 

respective executable IBP models, organizations can make use 
of cloud services to support the execution of the CBPs through 
the distributed (autonomous) execution of the IBP instances 
supported by the respective instantiation of their assigned 
PAISs. With all PAISs and IBPs already instantiated and 
enacted, messaging and monitoring services are started. These 
services enable organizations to be aware of the global state 
of the collaboration. 

B. Architecture of the Platform 

The architecture describes the set of microservices that 
support all the cloud services explained in previous 
Subsection. A general view of the architecture is shown in 
Figure 2. 

Due to organizations might not want to participate in 
collaborations by means of public cloud services that would 
expose or manage sensitive information, in the predecessor 
architecture —intended for deployment on an IaaS cloud 
service provider, it was proposed the use of private clouds for 
such organizations, interacting with a public cloud where the 
public cloud services reside. This enabled more autonomy to 
the organizations and attended the requirement that some of 
them would want to maintain and preserve the private 
information and activities of their IBP processes. The public 
cloud had components supporting all functionalities of the 
platform, including those that managed aspects related to the 
establishment of a collaboration as well as other functions that 
have to be necessarily global to all organizations; private 

 

Fig. 1. Global and local perspectives of collaborative networks. 



clouds, on the contrary, had only the components necessary to 
implement the processes of the owner organization, and a stub 
that provides the connection with the public cloud and its 
global services. 

 

Fig. 2. Architecture of the cloud-based platform for CBP management 
showing the main groups of microservices. 

Using microservices, the schema is similar: microservices 
can be deployed over different cloud providers —even in a 
private infrastructure. Anyway, services for accessing the 
collaborations and CBPs repository among others, which need 
to be global for all the organizations, requires to be deployed 
in a public cloud. All the services, both the global and those 
services (private services) required to be accessed in a private 
way for each organization can be deployed in a public cloud. 
But other configurations are allowed, in the sense that any 
organization can deployed their required private services in a 
private cloud (as it is shown in Figure 2). 

Anyway, there must be a main public service as before, 
which will provide global services for accessing the 
collaborations and CBPs repository, among others, which 
need to be global for all the participants. In the private clouds, 
this kind of services are not necessary. The services deployed 
in the different clouds are communicated to each other via 
communication services. This means that the final 
implementation of the platform can be done upon a cloud 
federation or a hybrid cloud model. 

The architecture of the platform is basically grouped in 
five categories of components/services: (1) basic 
components/services; (2) common services; (3) CBPs 
services; (4) IBPs services; and (5) PAISs services. 

The group of basic components/services includes the 
typical components and/or services required to provide a fully 
functional microservices platform —i.e. well known 
components or services that allow solving the challenges that 
this kind of architectural paradigm implies; some of them are 
implementations of typical patterns of this paradigm [18-20]. 

 Service discovery: allows the registration of all 
microservices, as well as mapping between the 
required service to the endpoints of instances, via a 
URL or an IP address. 

 Configuration server: provides configuration settings 
for each service independently of their 
implementation. 

 Load balancer: distributes the load on an individual 
service among its many instances. 

 Service autoscaler: automatically scales the number of 
service instances based on an observed metric, such us 
CPU utilization or another application-related metric. 

 Logging service: collects log events from each 
individual microservice, and also interprets and stores 
those log events in a structured and searchable way. 

 Monitoring service: collects data necessary to monitor 
failures of services when response times and/or the 
usage of hardware resources become unacceptably 
high. 

 Peer-to-peer communication service: provides 
asynchronous and scalable communication between 
services of the platform deployed in different 
providers/private infrastructures. 

Common services provide features widely used by the rest 
of the functionalities offered by the remaining microservices. 

 Identity services: manage the identities of all the users 
and organizations that use the platform, ensuring that 
they can access all the public data (like information in 
CBPs repository) and preserve the data that is private 
of each organization, even if they make use of a private 
cloud. 

 Frontend services: provide the interface to support 
user interactions and to delegate their requests to the 
corresponding microservices. 

The remaining three groups of services provide the 
business core services offered by the platform. The CBPs 
services group services for accessing to the CBPs repository, 
establishing a collaboration, and monitoring the CBPs 
execution. 

 CBPs repository service: manages access to the CBPs 
model repository, which stores collaborative networks, 
inter-organizational collaborations, and their CBP 
models. These services are only available from the 
public cloud and can be accessed by all organizations. 

 CBP-to-IBPs transformation service: provides the 
operations that implements the MDA-based method 
proposed in previous work [22] to generate an IBP 
model of an organization from a CBP model. This 
method provides a model-to-model transformation 
process that takes as inputs a CBP model and a target 
organization role, and automatically generates as 



output an IBP template model that contains the public 
and private activities and control flow logic that an 
organization has to implement for performing the 
target role in the CBP. 

 CBPs management service: manages aspects related to 
the establishment of the collaboration. They have to 
negotiate the selection of the CBP model agreed by all 
the organizations in the collaborative network that 
want to participate in the collaboration. These services 
are also only available from the public cloud and can 
be accessed by all organizations. 

 CBPs choreographic service: allows the coordination 
between the different independent IBP instances that 
are enacted to perform the real execution of the CBP, 
coordinating the sending/reception of asynchronous 
messages among those IBPs to carry out the 
collaboration. 

 CBPs monitoring service: responsible for monitoring 
the current CBPs execution states. 

IBPs services basically group services for accessing to the 
IBPs repositories and preparing the proper IBP models of each 
organization to be enacted. 

 IBPs repository service: manages access to the IBPs 
model repositories, which store IBP models owned by 
each organization, together with templates that 
organizations can define and will be used for the 
transformation from CBPs to IBPs takes place.  

 IBPs management service: manages the IBP models of 
each organization, saving/retrieving these models from 
the IBP repository and allowing to add the private 
activities that organizations require to complete the 
templates generated from the CBPs they participate in 
(in an agnostic way, i.e. ignoring the specification 
details of the PAISs that will execute the models). 

Finally, PAISs services comprise services for accessing to 
the PAISs repositories, configuring and deploying the 
executable IBP models of each organization, orchestrating its 
execution, and providing the interfaces to interact with 
external services and/or previous existent legacy systems. 

 PAISs repository service: stores the executable IBP 
models of each organization already configured, linked 
to all the required external services and/or legacy 
systems required for the execution.  

 IBPs configuration service: generates the 
specifications of the executable IBP models from the 
fully complete IBPs in terms of the PAISs that will 
enact them, with all the public and private behavior 
that are required to fulfill the activities that each 
organization needs for their execution, together with 
all those activities involved in the CBP orchestration. 

 PAISs management service: manages the PAISs of 
each organization on-demand, creating them, loading 
and deploying the executable IBP models retrieved 
from the PAISs repository, and acting as a dispatcher 

 
7 https://aws.amazon.com/ecs/  
8 https://aws.amazon.com/eks  

to the IBPs orchestration service, which will be in 
charge of the enactment. 

 IBPs orchestration service: once a PAIS is enacted, 
this service manages the execution of the IBP, 
performing the orchestration between the activities and 
the services that need to be called for executing the 
IBP. 

 Activity interface service: acts like an edge server that 
interacts with external programs or legacy systems. 

Then, the platform architecture is flexible enough 
considering the services it must provide. The main interactions 
between components/services to perform these offered 
services will be detailed using a case study in Section 4. But 
flexibility must be considered about cloud computing and 
microservices aspects too. Elasticity must be provided for all 
services, so it is necessary to count with the service autoscaler 
and load balancer components of the basic group. Portability 
(and vendor lock-in in consequence) is another important 
issue, considering that the platform is conceived to be 
independent of the cloud provider or private cloud platform; 
taking advantage of the fact that the microservices architecture 
can be easily deployed by means of a container infrastructure, 
which helps the process of setting up the platform, portability 
is achieved without the need of any standard. About privacy, 
two approaches are offered to deal with sensitive information: 
(1) a transversal identity service that only allows access to the 
services and data that correspond to a particular organization 
and (2) the possibility that the organization that would like can 
deploy the platform on a private environment, communicated 
with the public cloud, but sharing only the necessary 
information to interact in the CBPs, preserving its own 
sensitive data and processes. In general, components/services 
of the basic group allow to deal with all the difficulties that a 
platform based on microservices will face. 

C. Implementation of the Platform 

This Section describes an implementation of the 
microservices platform. There are several approaches that can 
be followed for implementing it, trying to get a practical 
balance between cloud and microservices issues (portability, 
elasticity, privacy, and microservices requirements), as 
commented before. 

The CBP platform can be implemented by means of an 
IaaS infrastructure for supporting the public cloud, where all 
the services will be available for the organization (Figure 2). 
Private clouds can be handled by the same or another IaaS 
provider, or even appealing to a private IaaS model. Then a 
proper deployment environment more microservices-friendly 
needs to be configured on those infrastructures, like 
Kubernetes as an orchestrator for Docker containers. Another 
way is to directly use a containers service, such as Amazon 
Elastic Container Service7  (Amazon ECS), Amazon Elastic 
Kubernetes Service 8  (Amazon EKS), Azure Kubernetes 
Service9 (AKS), or Red Hat OpenShift Container Platform10. 
The option chosen here is Amazon EKS for the public cloud 
services and the Red Hat OpenShift Container Platform for the 
private clouds, because Kubernetes counts with a proper 
scaling and load balancing mechanism, providing elasticity, 

9 https://azure.microsoft.com/en-us/services/kubernetes-service/  
10 https://www.openshift.com/products/container-platform  



and also offers good implementations for the basic group of 
microservices. 

Spring Boot11 is used for the implementation of almost all 
the remaining microservices, integrated with other 
technologies when they are required. Spring Boot is an open 
source Java-based framework used for creating microservices. 
The frontend services require a concrete framework for giving 
the proper interaction with users. One advantage of using 
Spring Boot is the ability to easily set up web applications with 
a built-in embedded Apache Tomcat, so the frontend is 
developed using JavaServer Pages (JSP). The repositories (for 
CBPs, IBPs, and PAISs) require a database connection. Spring 
Boot is easily integrable to MySQL databases, the DB 
management system also used in a previous work where the 
repositories are fully described [7]. 

For implementing the CBPs choreographic service a 
technology allowing asynchronous sending/receiving of 
messages is required, because all IBPs services are 
autonomous and decentralized. The Spring AMQP12 API is 
used for interacting with RabbitMQ13 message broker to this 
end. The IBPs orchestration service also needs an additional 
technology for enacting an entire IBP executable model and 
perform the interactions with another IBPs (via messages 
using the CBPs choreographic service) and between the 
different activities and the external services and/or 
interactions with legacy system that they may require. Any 
process engine based on microservices would be suitable, but 
in this case, a workflow engine for microservices orchestration 
called Zeebe14 is used. In workflows orchestrated by Zeebe, 
each task is usually carried out by a different microservice and 
send/receive tasks can interact with the CBPs choreographic 
service. 

IV. CASE STUDY 

This section describes the functionality, applicability, and 
interaction between components/services of the proposed 
microservices-based platform for executing CBPs, by means 
of an implementation of a case study from a distribution 
network of electronic products, previously presented in [7]. 
This distribution network is a collaborative network 
consisting of: Megatronic, a retailer with points of sales 
around the center and east regions of Argentina; and Philkaw, 
Grundrive, and Sanx, which are assemblers of electronic 
products and suppliers of the retailer. Suppliers collaborate 
with the retailer in a separate and peer-to-peer way. Each 
supplier establishes an independent inter-organizational 
collaboration with the retailer to carry out a concrete CBP 
model. Megatronic agreed to carry out a Vendor Managed 
Inventory (VMI) [29] model with Philkaw and Grundrive, and 
a Collaborative Planning, Forecasting, and Replenishment 
(CPFR) [28] model with Sanx. 

The deployment of the platform is as follow: Megatronic 
and Philkaw use a public cloud, and Grundrive and Sanx 
implement private clouds. 

Now to use the platform, first, the retailer accesses to the 
frontend services of the public cloud (which make use of the 
identity services for authentication) and creates the 
collaborative network Electronic Products Collaborative 
Distribution using the CBPs management service, which is 
saved via the CBPs repository service. Then the retailer looks 

 
11 https://spring.io/projects/spring-boot  

12 https://spring.io/projects/spring-amqp  

for suppliers in the platform and sent them an invitation to join 
this network. Afterwards, the suppliers join in the 
collaborative network created by the retailer. Then, the 
retailer creates three inter-organizational collaborations 
which refer to collaborations defined by the retailer with each 
supplier (all by means of the CBPs management service). 
Each collaboration indicates the business model adopted and 
the role the organizations fulfill. For each one of the created 
collaborations, organizations can manage the CBP models by 
using the CBPs management service, which interacts with the 
CBPs repository service. As an example, the retailer added 
several CBP models to the CBPs model repository as part of 
the CPFR-based collaboration with Sanx, for instance the 
Collaborative Replenishment Plan Management model 
(CPFR process). Figure 3 shows a choreography diagram in 
BPMN which defines the behavior of this CBP model. 

 

Fig. 3. Collaborative Replenishment Plan CBP model (adapted from [7]). 

This model manages a simple negotiation process between 
the retailer and the supplier for agreeing on a replenishment 
plan of several products for a short-time period. It starts with 
the supplier that proposes a supply plan to the retailer, who 
evaluates it and decides to reject, accept or make a counter-
proposal. The decision is sent to the supplier. In case of 
rejection or acceptance, the process finishes. In case of a 
counter-proposal, the supplier evaluates it and responds to the 
retailer with an acceptance or rejection. Having all 
organizations agreed the collaboration (and the CBP model), 
the collaboration status is automatically set to “active” and it 
can be accessed via the CBPs monitoring service. 

What happens next is illustrated with the sequence 
diagram of Figure 4.a. The CBPs management service calls 
the CBPs repository service to get the final CBP model. Next, 
it calls the CBP-to-IBPs transformation service to generate the 
public behavior of the IBP for each organization (Megatronic, 
Philkaw, Grundrive, and Sanx) from the CBP as a template (if 
it does not exist previously in the correspondent IBPs 
repositories) and saves it in the IBPs repositories with the IBPs 
repository service. To perform its actions, the CBP-to-IBPs 

13 https://www.rabbitmq.com  
14 https://zeebe.io/  



transformation service employs the method and tool proposed 
in [24]. 

From the generated IBP template models, and by means of 
the frontend services and the IBPs management service, 
organizations complete their corresponding IBP models and 
add all the private activities they consider for carrying out the 
collaboration properly (Figure 4.b, complete IBP model 
interaction). This is still made in terms of a technology-
independent language, such as BPMN. The completed IBP 
models are also saved to the IBPs repositories with the IBPs 
repository service. 

Finally, organizations are now able to configure the 
complete IBP models to generate the executable specification. 
Again, with help of the frontend services and the IBPs 
management service, organizations retrieve their 
corresponding complete IBP models and generates the 
specification for the PAISs, with all the information and 
resource links necessary to interact with external services 
and/or legacy systems, using the IBPs configuration service 
(Figure 4.b, generate IBP specification interaction). The 
specifications of the IBP models are saved to the PAISs 
repositories by means of the PAISs management service and 
PAISs repository service. 

When the code of the PAIS is available, each organization 
is able to enact their IBPs and start the decentralized execution 
of the CBP (Figure 4.c). Again, this is done in the same way 
either in the public cloud and the private clouds. The execution 
implies accessing the PAISs repositories (via the PAISs 
management service and PAISs repository service) and 
retrieving the executable IBPs specifications. These 
specifications are made available to the IBPs orchestration 
service, which will enact them. During the execution of the 
IBPs, the IBPs orchestration service makes use of the CBPs 
choreographic service to interchange messages between IBPs, 
according to the CBP, and also uses the activity interface 

service to communicate each activity of the IBP models with 
the proper external services and/or legacy systems. The 
collaboration status is now set to “in execution”. 

Once in execution the IBPs (and the CBP, in 
consequence), each organization can follow the state of the 
collaboration using the CBPs monitoring service. This is 
particularly useful for the retailer, which can be aware of the 
progress of the collaboration established with each provider. 

V. RELATED WORK 

Existing approaches for offering BPM in cloud 
environments (BPaaS) mainly focus on fulfilling elasticity 
issues [30-33]. Authors of [34] propose a PaaS model for 
cloud applications implemented in terms of active 
components to accomplish non-functional requisites. Other 
works focus on security and privacy in the cloud. In [35] 
authors propose an anonymization-based approach to preserve 
client business activity while sharing process fragments 
between organizations on the cloud. In [36] the author exposes 
that although outsourcing (the execution of business 
processes) harbors an economic potential, cloud consumers 
lose control over their data and executions, so they review the 
role of remote auditing as a mean to address this issue. 

Although these works provide interesting approaches for 
privacy and security, they do not focus on privacy and security 
in CBPs that are executed in a decentralized way in the same 
or different clouds. About portability, several works suggest 
the attachment to cloud standards definitions are a way to 
achieve portability. Most standards available depend of the 
cloud service model: Topology and Orchestration 
Specification for Cloud Applications (TOSCA) is an IaaS 
standard from OASIS [37-39]; Open Cloud Computing 
Interface (OCCI) is a RESTful protocol and provides APIs for 
all kinds of management tasks in cloud environments [40-42]; 
Cloud Application Management for Platforms (CAMP) is a 

 

Fig. 4. Interaction between the components/services of the platform. (a) Generation of the IBP model templates for each organization from the CBP model. 
(b) Completing an IBP model template with the required private activities to get a complete IBP model, and from this completed IBP, getting an IBP 
specification. (c) Execution of the CBP by means of the decentralizes execution of the individual IBPs. 

(a) 

(b) 

(c) 



standard that addresses the problem of portability of artifacts 
and interoperability of APIs in PaaS environments [43-44]. 

There are few proposals that support cloud services for 
CBPs, such as [45-47]. In [46] authors present a SOA 
architecture based on an Enterprise Service Bus (ESB) for 
supporting collaborative processes. However, the architecture 
does not offer a clear vision of a cloud service model that 
could be used for supporting it. It is focused on offering 
interoperability (not portability) and agility not in the sense of 
dynamism for supporting CBPs on-demand. All of these 
proposals have still an important shortcoming for 
collaborative networks: they provide a centralized approach 
for CBPs being their execution driven by one organization, 
and do not deal with autonomous process execution. 

In the microservices world, approaches for BPaaS include 
service orchestration, where a single executable process uses 
a flow   description (such as WS-BPEL) to coordinate service 
interaction orchestrated from a centralized point. In [48], 
authors describe business process modeling integration with 
an automatic lightweight declarative approach for the 
workflow-centric orchestration of semantically-annotated 
microservices. Zeebe is a horizontally scalable and fault 
tolerant workflow engine developed by Camunda that uses 
BPMN to specify orchestration logic, simplifying 
collaboration within the teams in organizations [49]. Another 
microservices based architectural approach mainly for 
offering Industry 4.0 B2B and IoT (Internet of Things) support 
is the NIMBLE Collaborative Platform, which performs IoT-
based real-time monitoring, optimization and negotiation in 
manufacturing supply chains [50], but it seems not suitable for 
general collaborations support. 

Finally, outside the area of cloud computing, there are also 
software agent-based platforms proposed for executing CBPs 
[51-52]. In particular, in [51] a platform that deals with the 
issues of dynamic collaborations is proposed. However, these 
proposals require organizations to deploy PAISs in their own 
private infrastructures, which implies more complexity, costs, 
and poor agility for managing collaborations. This results in a 
more difficult adoption of these solutions by the organizations 
that are interested in the implementation of collaborative 
networks. 

VI. CONCLUSIONS AND FUTURE WORKS 

This work proposed a microservice-based architecture for 
a cloud-based CBP management platform. By using 
microservices and the deployment of them in orchestrated 
containers it provides a more suitable approach to deal with 
the issues of portability, elasticity, and privacy of CBPs 
executed in the cloud. In addition, the proposed architecture 
brings a more flexibility for the deployment of the 
microservices, since microservices that support the 
management of the private IBPs and their data can be 
deployed into a public cloud, or in a private cloud if an 
organization prefers it. This is enabled by the defined specific 
microservices that allow the communication between the 
global services deployed in the public cloud with the private 
services deployed in private clouds. 

The proposed architecture fulfills the requirement of 
autonomy of the organization for executing their IBPs, along 
with the requirement of decentralized execution of CBPs. This 
is achieved by the services that support the execution of IBPS 
by means of the PAISs each organization implement into the 
platform, and the communication and synchronization of the 

IBPs by means of an asynchronous message-based 
microservices to support the decentralized execution of CBPs, 
as well as the monitoring of these process to provide a global 
view of the message exchange of CBPs.  

In addition, the architecture provides the microservices 
that allow the on-demand generation of PAISs and IBPs that 
organizations require to be part of the execution of CBPs. This 
enhances the platform by reducing the effort curve required 
for the organization to engage in collaborations and execute 
CBPs.  This also enables organizations can join in dynamic 
collaborative networks that do not have preset the CBPs that 
can be executed (i.e. implementations of CBPs and their 
corresponding IBPs must not be predefined in the platform), 
which allows the support to offer on-demand services to build 
collaborations in a dynamic and agile way. 

A concrete deployment of this architecture with the proper 
technologies was given along with a case study illustrating the 
interactions between services. Next steps focus on fully 
conclude and validate the platform through the 
implementation of real cases from different domains such as 
supply chain, e-healthcare, or e-government. 

REFERENCES 
[1] Chituc, C. M., Azevedo, A., & Toscano, C. (2009). “A framework 

proposal for seamless interoperability in a collaborative networked 
environment”. Computers in industry, 60(5), 317-338. 

[2] Camarinha-Matos, L. M., Afsarmanesh, H., Galeano, N., & Molina, A. 
(2009). “Collaborative networked organizations–Concepts and practice 
in manufacturing enterprises”. Computers & Industrial Engineering, 
57(1), 46-60. 

[3] Andres, B., Macedo, P., Camarinha-Matos, L. M., & Poler, R. (2014, 
October). “Achieving coherence between strategies and value systems 
in collaborative networks”. In Working Conference on Virtual 
Enterprises, 261-272, Springer Berlin Heidelberg. 

[4] Villarreal, P. D., Salomone, E., & Chiotti, O. (2007). “Modeling and 
Specification of Collaborative Business Processes with a MDS 
Approach and a UML Profile”. In Enterprise modeling and computing 
with UML, 13-44, IGI Global. 

[5] Weske, M. (2012). “Business process management: concepts, 
languages, architectures” (2nd. Edition). Springer Publishing 
Company, Incorporated. 

[6] Object Management Group, OMG. (2011). “Business Process Model 
and Notation version 2.0”. Specification “formal/2011-01-03”. Object 
Management Group. URL: 

http://www.omg.org/spec/BPMN/2.0/PDF/.  

[7] Lazarte, I. M., Thom, L. H., Iochpe, C., Chiotti, O., & Villarreal, P. D. 
(2013). “A distributed repository for managing business process 
models in cross-organizational collaborations”. Computers in Industry, 
64(3), 252-267. 

[8] Gupta, P., Seetharaman, A., & Raj, J. R. (2013). “The usage and 
adoption of cloud computing by small and medium businesses”. 
International Journal of Information Management, 33(5), 861-874. 

[9] Pallis, G. (2010). “Cloud computing: the new frontier of internet 
computing”. IEEE internet computing, 14(5), 70-73. 

[10] Lin, A., & Chen, N. C. (2012). “Cloud computing as an innovation: 
Perception, attitude, and adoption”. International Journal of 
Information Management, 32(6), 533-540. 

[11] Dillon, T., Wu, C., & Chang, E. (2010, April). “Cloud computing: 
issues and challenges”. In Advanced Information Networking and 
Applications (AINA), 2010 24th IEEE International Conference on, 
27-33, IEEE. 

[12] Kurze, T., Klems, M., Bermbach, D., Lenk, A., Tai, S., & Kunze, M. 
(2011). “Cloud federation”. Cloud Computing, 2011, 32-38. 

[13] Esposito, C., Castiglione, A., & Choo, K. K. R. (2016). “Challenges in 
delivering software in the cloud as microservices”. IEEE Cloud 
Computing, 3(5), 10-14. 

[14] Bocciarelli, P., D'Ambrogio, A., Paglia, E., & Giglio, A. (2018, July). 
“A service-in-the-loop approach for business process simulation based 



on microservices”. In Proceedings of the 50th Computer Simulation 
Conference (p. 24), Society for Computer Simulation International. 

[15] Lewis, J., & Fowler, M. (2014). “Microservices: a definition of this 
new architectural term” (2014). URL:  

http://martinfowler.com/articles/microservices.html.  

[16] Jamshidi, P., Pahl, C., Mendonça, N. C., Lewis, J., & Tilkov, S. (2018). 
“Microservices: The journey so far and challenges ahead”. IEEE 
Software, 35(3), 24-35. 

[17] Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., & Al-Hammadi, 
Y. (2016, December). “The evolution of distributed systems towards 
microservices architecture”. In 2016 11th International Conference for 
Internet Technology and Secured Transactions (ICITST), 318-325, 
IEEE. 

[18] Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2015, September). 
“Migrating to cloud-native architectures using microservices: an 
experience report”. In European Conference on Service-Oriented and 
Cloud Computing, 201-215, Springer, Cham. 

[19] Larsson, M. (2019). “Hands-on microservices with Spring Boot and 
Spring Cloud: build and deploy Java microservices using Spring Cloud, 
Istio, and Kubernetes”, Packt Publishing. 

[20] Hasselbring, W., & Steinacker, G. (2017, April). “Microservice 
architectures for scalability, agility and reliability in e-commerce”. In 
2017 IEEE International Conference on Software Architecture 
Workshops (ICSAW), 243-246, IEEE. 

[21] Dewi, L. P., Noertjahyana, A., Palit, H. N., & Yedutun, K. (2019, 
December). “Server Scalability Using Kubernetes”. In 2019 4th 
Technology Innovation Management and Engineering Science 
International Conference (TIMES-iCON), 1-4, IEEE. 

[22] Villarreal, P. D., Salomone, E., & Chiotti, O. (2006). “A MDA-based 
development process for collaborative business processes”. 
Milestones, Models and Mappings for Model-Driven Architecture, 17. 

[23] Villarreal, P. D., Lazarte, I. M., Roa, J., & Chiotti, O. (2009). “A 
Modeling Approach for Collaborative Business Processes Based on the 
UP-ColBPIP Language”. In Business Process Management 
Workshops, 43, 318-329. 

[24] Lazarte, I. M., Tello-Leal, E., Roa, J., Chiotti, O., & Villarreal, P. D. 
(2010, October). “Model-driven development methodology for B2B 
collaborations”. In Enterprise Distributed Object Computing 
Conference Workshops (EDOCW), 2010 14th IEEE International, 69-
78, IEEE. 

[25] del–Río–Ortega, A., Gutiérrez, A. M., Durán, A., Resinas, M., & Ruiz–
Cortés, A. (2015, June). “Modelling service level agreements for 
business process outsourcing services”. In International Conference on 
Advanced Information Systems Engineering, 485-500, Springer, 
Cham. 

[26] Cocconi, D., Roa, J., Villarreal, P. (2018). “Collaborative Business 
Process Management Through a Platform Based on Cloud 
Computing”. CLEI Electronic Journal, 21(2). DOI: 
https://doi.org/10.19153/cleiej.21.2.6. 

[27] Cocconi, D., Roa, J., Villarreal, P. (2019). “eBPSim: A Simulation 
Tool for Testing Elasticity Strategies in Cloud-based Business Process 
Solutions”. In proceedings of the XXII Iberoamerican Conference on 
Software Engineering, CIbSE 2019, La Habana, Cuba, 377-390. 

[28] Min, H., & Yu, W. B. V. (2008). “Collaborative planning, forecasting 
and replenishment: demand planning in supply chain management”. 
International Journal of Information Technology and Management, 
7(1), 4-20. 

[29] Franke, P. D. (2010). “Vendor-managed inventory for high value parts: 
results from a survey among leading international manufacturing 
firms”, 3, Univerlagtuberlin. 

[30] Mohamed, M., Amziani, M., Belaïd, D., Tata, S., & Melliti, T. (2015). 
“An autonomic approach to manage elasticity of business processes in 
the Cloud”. Future Generation Computer Systems, 50, 49-61. 

[31] Han, Y. B., Sun, J. Y., Wang, G. L., & Li, H. F. (2010). “A cloud-based 
bpm architecture with user-end distribution of non-compute-intensive 
activities and sensitive data”. Journal of Computer Science and 
Technology, 25(6), 1157-1167. 

[32] Schulte, S., Janiesch, C., Venugopal, S., Weber, I., & Hoenisch, P. 
(2015). “Elastic business process management: state of the art and open 
challenges for BPM in the cloud”. Future Generation Computer 
Systems, 46, 36-50. 

[33] Woitsch, R., & Utz, W. (2015, October). “Business process as a 
service: Model based business and IT cloud alignment as a cloud 

offering”. In Enterprise Systems (ES), 2015 International Conference 
on (pp. 121-130). IEEE. 

[34] Pokahr, A., & Braubach, L. (2015). “Elastic component-based 
applications in PaaS clouds”. Concurrency and Computation: Practice 
and Experience. 

[35] Bentounsi, M., Benbernou, S., & Atallah, M. J. (2012, June). “Privacy-
preserving business process outsourcing”. In Web Services (ICWS), 
2012 IEEE 19th International Conference on, 662-663, IEEE. 

[36] Accorsi, R. (2011, July). “Business process as a service: Chances for 
remote auditing”. In Computer Software and Applications Conference 
Workshops (COMPSACW), 2011 IEEE 35th Annual, 398-403, IEEE. 

[37] Binz, T., Breitenbücher, U., Kopp, O., & Leymann, F. (2014). 
“TOSCA: portable automated deployment and management of cloud 
applications”. In Advanced Web Services, 527-549, Springer, New 
York, NY. 

[38] Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, 
A., & Wagner, S. (2013, December). “OpenTOSCA–a runtime for 
TOSCA-based cloud applications”. In International Conference on 
Service-Oriented Computing, 692-695, Springer, Berlin, Heidelberg. 

[39] Carrasco, J., Cubo, J., Durán, F., & Pimentel, E. (2016, June). 
“Bidimensional cross-cloud management with TOSCA and Brooklyn”. 
In Cloud Computing (CLOUD), 2016 IEEE 9th International 
Conference on, 951-955, IEEE. 

[40] Ahmed-Nacer, M., Gaaloul, W., & Tata, S. (2017, June). OCCI-
Compliant Cloud Configuration Simulation. In Edge Computing 
(EDGE), 2017 IEEE International Conference on, 73-81, IEEE. 

[41] Metsch, T., Edmonds, A., Nyren, R., & Papaspyrou, A. (2010, 
November). “Open cloud computing interface–core”. In Open Grid 
Forum, OCCI-WG, Specification Document. URL:  

http://forge.gridforum.org/sf/go/doc16161. 

[42] Parák, B., Šustr, Z., Feldhaus, F., Kasprzakc, P., & Srbac, M. (2014, 
March). “The rOCCI Project–Providing Cloud Interoperability with 
OCCI 1.1”. In International Symposium on Grids and Clouds (ISGC), 
23(28). 

[43] Karmarkar, A. (2014, October). “CAMP: a standard for managing 
applications on a PaaS cloud”. In Proceedings of the 2014 Workshop 
on Eclipse Technology eXchange, 1-2, ACM. 

[44] “Cloud Application Management for Platforms”. Version 1.1. 
Committee Specification 01. URL: docs.oasisopen.org/camp/camp-
spec/v1.1/camp-spec-v1.1.html. 

[45] Camarinha-Matos, L. M., Juan-Verdejo, A., Alexakis, S., Bär, H., & 
Surajbali, B. (2015, February). “Cloud-based collaboration spaces for 
enterprise networks”. In Computing and Communications 
Technologies (ICCCT), 2015 International Conference on, 185-190, 
IEEE. 

[46] Benaben, F., Mu, W., Boissel-Dallier, N., Barthe-Delanoe, A. M., 
Zribi, S., & Pingaud, H. (2015). “Supporting interoperability of 
collaborative networks through engineering of a service-based 
Mediation Information System (MISE 2.0)”. Enterprise Information 
Systems, 9(5-6), 556-582. 

[47] Sun, Y., Su, J., & Yang, J. (2014, September). “Separating execution 
and data management: A key to business-process-as-a-service 
(BPaaS)”. In International Conference on Business Process 
Management, 374-382, Springer, Cham. 

[48] Oberhauser, R., & Stigler, S. (2017). “Microflows: enabling agile 
business process modeling to orchestrate semantically-annotated 
microservices”. In Proceedings of the Seventh International 
Symposium on Business Modeling and Software Design (BMSD 
2017), 19-28. 

[49] Hamidehkhan, P. (2019). “Analysis and evaluation of composition 
languages and orchestration engines for microservices” (Master's 
thesis). 

[50] Innerbichler, J., Gonul, S., Damjanovic-Behrendt, V., Mandler, B., & 
Strohmeier, F. (2017, June). “Nimble collaborative platform: 
Microservice architectural approach to federated iot”. In 2017 Global 
Internet of Things Summit (GIoTS), 1-6, IEEE. 

[51] Tello-Leal, E., Chiotti, O., & Villarreal, P. D. (2014). “Software agent 
architecture for managing inter-organizational collaborations”. Journal 
of applied research and technology, 12(3), 514-526. 

[52] Küster, T., Lützenberger, M., Heßler, A., & Hirsch, B. (2012). 
“Integrating process modelling into multi-agent system engineering”. 
Multiagent and Grid Systems, 8(1), 105-124. 

 


