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Abstract 

The Discrete Event System Specification (DEVS) is a modular and hierarchical Modeling and Simulation 

(M&S) formalism based on systems theory that provides a general methodology for the construction of 

reusable models. Well-defined M&S structures have a positive impact when building simulation models 

because they can be applied systematically. However, even when DEVS can be used to model routing 

situations, the structures that emerge from this kind of problem are significant due to the handling of the 

flow of events. Often, the modeler ends with a lot of simulation models that refer to variants of the same 

component. The goal of this paper is to analyze the routing process domain from a conceptual modeling 

perspective through the use of a new DEVS extension called Routed DEVS (RDEVS). The RDEVS 

formalism is conceptually defined as a subclass of DEVS that manages a set of identified events inside a 

model network where each node combines a behavioral description with a routing policy. In particular, we 

study the modeling effort required to solve the M&S of routing problems scenarios employing a 

comparison between RDEVS modeling solutions and DEVS modeling strategies. Such a comparison is 

based on measures that promote the capture of the behavioral complexity of the final models. The results 

obtained highlight the modeling benefits of the RDEVS formalism as a constructor of routing processes. 

The proposed solution reduces the modeling effort involved in DEVS by specifying the event routing 

process directly in the RDEVS models using design patterns. The novel contribution is an advance in the 

understanding of how DEVS as a system modeling formalism supports best practices of software 

engineering in general and conceptual modeling in particular. The reusability and flexibility of the final 

simulation models, along with designs with low coupling and high cohesion are the main benefits of the 

proposal that improve the M&S task applying a conceptual modeling perspective. 
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1) Introduction 

A formalism provides a set of conventions for specifying a class of objects in a precise, unambiguous, and 

paradigm-free manner. In particular, the Discrete Event System Specification (DEVS) is a modular and 

hierarchical Modeling and Simulation (M&S) formalism based on systems theory that provides a general 

methodology for the construction of reusable models [1]. Several applications of DEVS can be found in 

the literature. For example, in the mobile application field, DEVS models have been used to design mobile 

application behaviors [2] and to compare the performance of distinct network architectures [3]. In supply 

chain management, the authors of [4] propose a strategy to generate DEVS and Linear Programming 

models semi-automatically from industry-scale relational databases. A combination of micro and macro 

views of biological systems with DEVS is proposed in [5,6] with aims to improve the M&S in 

computational biology. Since it is very costly to construct a real battle field situation and to verify the 

performance of military devices, in [7] the authors use the DEVS formalism to define a robotic vehicle 

model to conduct tests through the simulation of several scenarios. In this case, the final model was 

embedded in a tank shaped robot. Finally, in the software engineering field, the DEVS formalism has been 

used to support the evaluation of software architectures [8], provide formal specifications for real-time 

systems [9], and model web user behaviors [10]. Therefore, DEVS is a popular formalism for modeling 

complex dynamic systems using a discrete-event abstraction [11]. However, although effective conceptual 

modeling is a vital aspect of a simulation study, it is probably the most difficult and least understood. The 

design of the simulation model impacts all aspects of the study, in particular the data requirements, the 

speed with which the model can be developed, the validity of the model, the speed of experimentation, 

and the confidence that is placed in the model results [12]. 

During the design phase of any DEVS model, the modeler designs a simulation model that tries to 

replicate the operation of a real-world or imaginary system over time to achieve a goal. That is, the 

problem owner expresses its needs, and the modeler makes an abstraction of the problem to prepare a 

conceptual model for the simulation study. The conceptual models generally describe the structure and the 

behavior of the system independent from the implementation details [13]. Frequently, as part of such 

modeling, the modeler defines several views of the problem. For example, in [14] the authors deal with 

the M&S of systems described according to several levels of abstraction and levels of granularity. In this 

context, one recurrent problem during the M&S with DEVS is the need to design an implicit routing 

process over a discrete-event simulation model that solves a predefined primary goal. For example, when 

simulation models are designed to evaluate the quality of software architectures, the effectiveness of 

functionalities is the primary goal. Still, given that components are linked by architecture interactions, the 

routing of user requests among components becomes an issue to be solved during the M&S task [15, 16]. 

Another case is frequently observed in the manufacturing domain where real-life scenarios are composed 



 

of several machines with the same behavior replicated in multiple work stations that send/receive different 

kinds of jobs to be processed. Even when all machines involve the same processing, inputs and outputs 

vary from one workstation to another due to the flow of jobs. When simulation models are used to 

represent this domain, the final simulation model is composed of several variants of the same component 

to deal with the flow of events. 

In this context, we define the routing process as “the part of a modeling scenario where the components 

need to interact among them by distinguishing the event sources and destinations to ensure their diffusion 

into the right model”. In DEVS simulation models, the routing processes are commonly solved as pre-

wired connections detailed as part of the coupling specification. That is, even when couplings are 

explicitly defined, the routing functionality of a component is hidden into its behavioral description. For 

example, in the manufacturing domain, if the machine of a workstation sends its outputs to three different 

destinations (machines), its DEVS model is defined with three output ports. Each output port is connected 

to the appropriate input port of the other machines. Now, if another workstation uses the same machine 

but requires five destination points, the previous model is adapted to use five output ports. Again, routes 

will be defined using appropriate couplings between models. Hence, from the structural perspective, the 

functionality of the routing process is implicitly defined in the pre-wired connections defined by the 

couplings. Other DEVS-based solutions involve the modeling of handlers that (explicitly) provides the 

routing functionality. That is, for the previous manufacturing scenario, the model of the machine used in 

both workstations is (in each case) coupled with an appropriate model of a handler that manages the routes 

(e.g., by adding a tag to the events). One way or another, besides solving the primary goal, the modeler 

needs to solve a routing situation by defining (implicitly or explicitly) a routing process specification. 

Then, due to the modular and hierarchical nature of DEVS, such a routing process specification becomes a 

systematic problem that is modeled following a predefined structure (i.e., an implicit or explicit definition 

of routes) that can be seen as a design pattern over the DEVS formalism. 

A design pattern is the re-usable form of a solution to a design problem [17]. Design patterns are general, 

reusable solutions defined from the study of commonly occurring problems within a given context that 

ensure the success of the modeling task. For example, object-oriented design patterns capture the intent 

behind a design by identifying objects, their collaborations, and the distribution of responsibilities [18]. In 

the M&S of routing processes, DEVS-based solutions (either explicitly or implicitly modeled) can be 

interpreted as design patterns because they capture the structure behind a simulation model design by 

defining the connections and routes between models. These well-defined design structures have a positive 

impact when building DEVS simulation models because they can be applied systematically. Hence, these 

design patterns are powerful modeling tools that provide a good start to define new strategies for solving 

routing problems. When building a simulation model for solving a routing process, the modeler is solving 



 

a routing problem. Taking advantage of the modular and hierarchical nature of DEVS, a deeper analysis 

of the DEVS design patterns can help to improve the modeling of routing processes. That is, from the 

analysis of the explicit and implicit DEVS-based solutions of routing problems, new structures emerge 

that can be used to define new types of simulation models that improve the M&S of such problems. 

This paper presents an adaptation of the DEVS formalism called Routed DEVS (RDEVS), designed to 

improve the M&S of routing processes over DEVS models. Such an adaptation is based on the study of 

the DEVS design patterns from a conceptual modeling view. By following the approach described in [19], 

the conceptual modeling problem serves as a bridge between the routing problem owner and the 

simulation modeler. In this paper, we propose a conceptual model of generic routing processes to analyze 

the DEVS design patterns exhibit in the literature. Then, we show how the RDEVS formalism acts as a 

formalization of the elements that compose the conceptual model to improve the modeling task. Our 

motivation is to reduce the modeling effort when routing processes are defined over DEVS models. To get 

an estimation of the effort required for building RDEVS models instead of DEVS models, we use a set of 

metrics that allow classifying the modeling effort in four cases (high, medium, regular, low). These 

metrics are tested in this paper as a first attempt to measure the behavioral modeling effort. Hence, we 

align DEVS and RDEVS solutions over the same situation with the aim to compare such modeling efforts. 

Such an alignment provides a suitable scenario to discuss the comparison between RDEVS models and 

DEVS design patterns as vehicles for the M&S of routing processes. Hence, the main contributions of the 

paper are: i) the routing problem definition through the specification of a conceptual model that abstracts 

the elements required for its modeling, ii) the analysis of the DEVS-based solutions for routing processes 

as design patterns, iii) the formal specification of the RDEVS formalism, and iv) the definition and use of 

metrics to evaluate the modeling effort. 

The remainder of this paper is organized as follows. Section 2 introduces the foundations of our work in 

terms of DEVS extensions, the routing problem description, and the conceptual model designed for 

studying the composition of routing processes. It also includes the definition of DEVS modeling 

complexity along with the DEVS design patterns commonly used for modeling routing processes. These 

design patterns are presented as implicit and explicit routing strategies commonly used when modeling 

routing processes with DEVS. To overcome the main issues of such design patterns, Section 3 presents the 

formal specification of RDEVS formalism as an extension of DEVS defined using a set of predefined 

simulation models. Moreover, it details the mapping between the conceptual modeling problem and the 

RDEVS simulation models to ensure an appropriate modeling construction for routing processes. Hence, 

this section shows how RDEVS models cover the same concepts that explicit and implicit design patterns 

described in Section 2. The main benefits of using RDEVS models instead of DEVS design patterns are 

described in Section 4. Finally, Section 5 is devoted to conclusions and future work. 



 

2) Background and Foundations 

DEVS is a popular formalism for modeling complex dynamic systems using a discrete-event abstraction 

[11]. It provides a general methodology for the hierarchical construction of reusable models in a modular 

way.  

In this context, the DEVS formalism defines two kinds of simulation models. An atomic model describes 

the autonomous behavior of a discrete-event system as a sequence of deterministic transitions between 

sequential states. Moreover, it also specifies how the system reacts to external input events and how it 

generates output events. On the other hand, a coupled model describes a system as a structure of coupled 

components. Such components can be either atomic or coupled models. The connections between 

components are structured as couplings that denote how components influence each other. Hence, DEVS 

is a system theoretic-based formalism that provides representation for systems whose input/output 

behavior can be described by sequences of events. While an atomic DEVS defines the system behavior, a 

coupled DEVS defines the system structure. Given that DEVS embodies a set of concepts related to 

systems theory and modeling with aims to describe discrete-event models in terms of their behavior and 

structure, such notions of systems can be used as support for the M&S of new definitions. 

Over the years, several authors have improved the formalism specification through DEVS extensions to 

solve new types of problems. Such extensions include: Cell-DEVS [20], Dynamic Structure DEVS [21], 

Fuzzy-DEVS [22], Min-Max-DEVS [23], Multi-level DEVS [24], Parallel DEVS [25], Real-Time DEVS 

[26] and Vectorial DEVS [27]. Hence, the extensions of DEVS formalism expand the classes of systems 

models that can be represented in DEVS [1]. In fact, DEVS can serve as a simulation assembly language 

to which models in other formalisms can be mapped [11]. Moreover, the extensions of DEVS can be 

interpreted as sub-formalisms derived from the original specification. 

However, with a growing number in new extensions of DEVS and an increasing number of problems to be 

solved using discrete simulation techniques, the DEVS sub-formalisms can be studied as variants and 

subclasses [28]. From such a perspective, DEVS variants act as a layer below the DEVS formalism that 

summarizes a set of models useful to specify new types of systems. Although all extensions provide well-

defined solutions for specific contexts, the subset of extensions classified as variants tries to solve 

modeling and simulation issues from the system representation perspective. The variants of DEVS provide 

feasible solutions for representing new types of systems dynamics that allow building powerful simulation 

models. For example, the Cell-DEVS [20] formalism combines cellular automata with DEVS theory to 

describe n-dimensional cell spaces as discrete event models, where each cell is represented as a DEVS 

atomic model that can be delayed using explicit timing constructions [29]. On the other hand, DEVS 

subclasses act as a layer above the DEVS formalism that structures a set of suitable models for solving 

specific types of problems without requiring dip down into the DEVS structure itself for modeling special 



 

functions. The subset categorized as subclasses tries to solve modeling and simulation issues from the 

problem representation perspective. Subclasses of DEVS provide reliable solutions for structuring 

efficient models that allow representing structural problems commonly modeled with DEVS. A well-

designed model significantly enhances the possibility that a simulation study will be a success [12]. 

The RDEVS formalism is an adaptation of DEVS conceptually defined as a subclass of DEVS [28]. The 

core of RDEVS defines a set of DEVS atomic models that use routing information to authenticate senders, 

receivers, and transactions. Interpreting this incoming information, routing models only accept specific 

input messages before passing on the message payload to an associated model for processing. Also, 

routing models are capable of directing processing results to a specific set of receivers. This allows the use 

of the RDEVS formalism as a layer above the DEVS formalism that provides routing functionality 

without requiring the user to dip down to DEVS itself for any function [1]. 

The first description of RDEVS was presented in [30]1. In this paper, we present an adaptation of the 

original RDEVS specification that provides a general solution for routing problems. Even when routing 

problems have been solved in the M&S community for years (as we will show in Section 2.3), we have 

not found an explicit definition of such a problem. Hence, we propose a definition in Section 2.1. Here, 

routing problems are analyzed in terms of the independence of the components. This independence gives a 

full separation of concerns at modeling time that reduces the modeling effort involved in the DEVS 

modeling complexity (Section 2.2). To prove that RDEVS is better than DEVS for routing problems, we 

analyze the structure of the DEVS patterns used in regular routing problems (Section 2.3). The modeling 

effort of each pattern is studied to get structural criteria (defined as a design metric) for measuring routing 

solutions. 

2.1. The Routing Problem 

Frequently, simulation scenarios require selectively sending/receiving events from one component to 

another. We have defined the routing process as “the part of a modeling scenario where the components 

need to interact among them by distinguishing the event sources and destinations to ensure their diffusion 

into the right model”. Fig. 1 presents two scenarios that depict different types of routing processes: output 

routing using internal information (scenario #1) and input routing using external information (scenario 

#2). 

In scenario #1, there are three types of components: C1, C2, and C3. The behavior required is the 

following: “The component C1 must alternate its output events between components C2 and C3. That is, if 

 
1 It is important to denote that [30] only includes the RDEVS formalization in set-theoretical notation. In 

this new version, the RDEVS formalization and the closure under coupling proofs have been improved. 

Moreover, here we introduce conceptual models to characterize RDEVS definition and compare it with 

DEVS-based solutions. 



 

C1 sends an event to C2, the next event will be sent to C3 and vice versa, after sending an event to C3, the 

next event will be sent to C2”. In this situation, component C1 needs to route its output events to C2 and 

C3 using its internal information. Such internal information gives the next destination for the outgoing 

event. Then, the routing process is exhibited from the source component (C1) into the set of possible 

destinations (C2 and C3). 

On the other hand, scenario #2 shows the opposite situation. There are four components in scenario #2: 

C4, C5, C6, and C7. Here, the expected behavior is the following: “The component C7 processes input 

events from components C4, C5, and C6 with different strategies according to their previous processing. 

That is, component C7 executes different processes P1, P2, and P3 for the events that come from C4, C5, 

and C6, respectively. Each process has a unique behavior.”. Hence, C7 needs to route its input events 

from C4, C5, and C6 to, respectively, the behavior of P1, P2, and P3 using external information. Such 

external information provides the source component of the incoming event. Then, the routing process is 

exhibited in the destination component (C7) according to the set of possible sources (C4, C5, and C6). 

 

 
 

(a) Scenario #1: Sending events from one component to 

several destinations in a selective way. 

(b) Scenario #2: Receiving events in the same 

component from multiple sources in a selective way. 

 

Fig. 1 Scenarios including routing processes in their structure. 

 

The above routing process definition includes both types of routing (scenario #1 and scenario #2) as part 

of the modeling scenario. Then, the modeling strategy used for solving a full routing process description 

affects the structure of the final simulation model. When building a simulation model for solving a routing 

process, the modeler is solving a routing problem. 

Defining the Routing Problem as Conceptual Modeling Problem 

From a conceptual point of view, the routing problem can be studied as a graph model over a set of 

predefined components. The aim here is structuring the model as a graph, with the nodes of the graph 

representing the components, and the edges representing the connections (i.e., the relationships) among 

these components. Such representations allow modeling a strict separation of concerns between the 



 

model’s primary goal and the routing process. For example, the set of predefined components in scenario 

#1 is delimited by C1, C2, and C3. The equivalent graph model for such a scenario will be composed of 

three nodes NC1, NC2, and NC3 (one node per component) and two edges (one edge per relationship).  

Fig. 2 presents a UML class diagram [31] that formalizes the routing problem domain in terms of a set of 

elements commonly identified as part of the routing modeling scenarios. Concepts stereotyped as 

<<routing process>> are used to define the routing process domain. Meanwhile, the concepts stereotyped 

as <<scenario goal>> describe the main elements to be modeled as part of the primary goal of the 

scenario. 

 
 

Fig. 2 UML class diagram used for studying the components and their interactions in routing scenario 

configurations. 

 

A Routing Scenario is structured in, at least, two nodes (Node concept). Each Node can be conceptually 

defined as the fundamental unit from which routing processes are made. Then, the relationship Composed 

by defined between Routing Scenario and Node is detailed as a UML composition. Moreover, nodes are 

linked by edges (Edge concept). Therefore, each Node has one input (Input concept) and one output 

(Output concept). An Edge is an ordered pair of nodes that Starts at the Output of a Node and Ends at the 

Input of another Node. Then, the concept Edge includes the relationships Starts at and Ends at as 

mandatory associations with Output and Input concepts, respectively. However, the Input and Output of a 

Node can be related to more than one Edge (i.e. the associations detailed with multiplicities 1..*).  

All the nodes included in a Routing Scenario must materialize a component (Component concept). A 

Component is an entity of the real world or imaginary system to be modeled that can be characterized by 

its operation. Such an operation is described as a set of behaviors. Hence, a Component definition Includes 

(at least) one behavioral description defined using the Behavior concept. The Materializes relationship 



 

between concepts Node and Component is mandatory for the Node concept (multiplicity 1). However, the 

same Component can be used to build multiple nodes (then, the Materializes association for the Node 

concept is detailed with multiplicity 1..*). 

When a Node Materializes a Component, the routing information to be used for controlling the 

input/output of the Component related to the Node (i.e. the Routing Policy concept) needs to be detailed. 

Such a Routing Policy is used to route the input/output events that flow to/from the actual Node from/to 

the other nodes that compose the Routing Scenario. For example, in scenario #1 a Routing Policy for NC1 

will involve nodes NC2 and NC3. Even when a new Node NC1' can be included in the Routing Scenario 

as a materialization of Component C1, the routing policies of NC1 and NC1' may be different. Then, NC1 

and NC1' will share the same internal behavior (that is, the Component C1) but each node will 

send/receive events following its own Routing Policy. Therefore (as the class diagram of Fig. 2 shows), a 

Routing Policy must be Defined over a set of nodes (at least, one Node). Moreover, a Node included as 

part of a Routing Scenario must be attached to, at least, one Routing Policy. Hence, even when the 

Routing Policy is encouraged to manage the flow of events over the edges, its definition must be attached 

to the Node detailed at design time over a Component. Then, the Routing Policy is defined as an 

association class linked to the Materializes association between Node and Component.   

The conceptual model detailed in Fig. 2 allows an understanding of the modeling relations among the 

concepts involved in routing situations. At this point, it is important to understand that the routing process 

definition does not allow universal routing policies at the scenario level. Instead, routing policies must be 

defined at the node level according to the scenario structure. 

2.2. DEVS Modeling Complexity 

Models represent simplifications of a system. Therefore, many models will exist for any particular 

complex system [32]. For the modeler, the challenge to be solved is the process of exploring a family of 

hierarchical models and selecting a particular composition from which a fit-for-purpose discrete-event 

simulation model can be automatically synthesized and executed. For example, in [33] the authors define 

performance metrics used to guide the modeler to select the most practical model of a real-world system 

from among a potentially large set. 

In this context, assuming that any model can be considered as a set of interconnected components, the 

overall complexity of a model can be studied as a combination of three elements: the number of 

components, the pattern of the connections (which components are related), and the nature of the 

connections (the complexity of the calculations determining the relationships) [34]. Given that the 

structure of a formalism provides a basis for measuring the complexity of objects in that class [35], the 

modeling complexity of DEVS simulation models can be studied by analyzing DEVS complexity itself. 



 

DEVS models are defined using two abstraction levels: behavior and structure. Then, DEVS modeling 

complexity should be analyzed using a holistic approach that combines both perspectives as follows: 

• the modeling effort required for defining the behavior, and 

• the structural complexity defined over the behavioral descriptions. 

Of course, both perspectives are related to modeler skills. The modeling effort (or behavioral modeling 

effort) is used as a measure for the complexity of behavioral descriptions. If the modeler does not know 

the problem domain, the modeling task will be hard. As consequence, behavioral descriptions will be 

complex. However, if the modeler is a domain expert, the model design will be easy to understand. 

Domain experts usually provide an objective view of complex behaviors as a set of simple behaviors. 

Then, models are structured as a set of behavioral descriptions. Such separation of concerns influences the 

structural complexity. Hence, even when structural complexity can be analyzed from an isolated point of 

view in terms of the model’s composition, the structural complexity will always depend on the modeling 

effort. 

Following the definition presented in Section 2.1, our proposal is structuring the routing problem model as 

a graph. Over this representation, graph theory measures can be used to measure the structural complexity 

of the models. Therefore, at this stage of research, we leave aside the structural complexity and only focus 

our attention on studying the modeling effort. Our aim is to study the modeling effort attached to distinct 

simulation models of routing problems to compare DEVS and RDEVS solutions. 

Design Metrics for Studying DEVS Modeling Effort 

Given the need to measure the modeling effort in routing problem solutions, two types of measures are 

taken: scenario metrics and simulation model metrics. The scenario metrics refer to properties related to 

the routing scenario to be modeled. In this paper, we only use the number of nodes to be modeled (defined 

as N). On the other hand, the simulation model metrics refer to the properties of the DEVS models 

designed by the modeler for solving the scenario. It is important to denote that with aims to model the 

behavioral modeling effort, we employ metrics attached to the simulation model structure. As stated in the 

previous section, DEVS structure refers to the definition of a model while DEVS behavior refers to the 

pairs of input/output time-indexed trajectories generated by a structure via a simulator. Due to the 

structure of DEVS, we use three properties: number of simulation models (defined as Q), number of 

couplings (defined as K), and number of ports (defined as W). Over these metrics, we define two modeling 

relations (along with feasible indicators) to value the modeling effort as a combination of both: Q/N and 

W/K. From this perspective, ports and couplings are related to the DEVS structure. So, we employ these 

measures to evaluate the modeling effort considering that the pairs of input/output time-indexed 

trajectories will be the same in all models compared by the modeling relations Q/N and W/K. These ratios 



 

are defined to detect the monolithic level of DEVS configurations and the effectivity of dependencies 

designed as ports allocated for each coupling. We will test these metrics across our proposal, but deeper 

analyses will be tested in future research using DEVS models obtained from the literature. 

The number of simulation models (Q) measures the modeler effort when building a simulation model that 

imitates the behavior of a component involved in a routing process. As Section 2.2 details, domain experts 

usually provide an objective view of complex behaviors as a set of simple behaviors. Then, a simulation 

model designed following an appropriate separation of concerns will not be based on monolithic 

configurations. A monolithic configuration is given when each node is defined as a behavioral simulation 

model. This means that the number of nodes (N) and the number of simulation models (Q) are equally 

valued for the routing problem under analysis. As the number of simulation models increases over the 

same number of nodes, the monolithic configuration fades out. Then, the number of simulation models per 

node (i.e. the Q/N relation) in monolithic configurations is 1. With an appropriate separation of concerns, 

a good modeler will try to improve the Q/N relation to increasing the average number of models attached 

to each node. Hence, when studying the closeness to monolithic configurations, the threshold of the Q/N 

relation can be defined as 1. 

Even when the Q/N relation can be used to study the modeling effort, it should be analyzed along with the 

number of couplings and the number of ports to improve the interpretation of the modeling solution. The 

number of couplings (K) measures the modeler effort when building a simulation model that refers to a 

component that interacts with other components involved in a routing process. When components interact, 

the simulation models that represent them are connected using a set of couplings. Intuitively, if the 

simulation model contains a lot of couplings the modeling effort increases because the modeler needs to 

consider all possible dependencies among components. In the same direction, if the simulation model 

contains just a few couplings the modeling task is easier because dependencies among components are 

restricted into a small set of elements. When simulation models are designed following an appropriate 

separation of concerns, the couplings depict either structural or behavioral dependencies among 

components. Such structural and behavioral dependencies can be interpreted as a UML aggregation or 

composition [31], respectively, where the model of one class (parent) owns the model of another class 

(child). Aggregation implies a relationship where the child can exist independently of the parent (i.e. 

structural dependency). Composition implies a relationship where the child cannot exist independently of 

the parent (i.e. behavioral dependency).  

Either with structural or behavioral dependencies, the number of couplings cannot be considered as an 

isolated metric for measuring modeling effort. The number of ports2 (W) provides a feasible measure that 

 
2 Considering that i) all ports have at least one coupling, ii) our approach is focused on Classic DEVS, and iii) the notion of bag 

(i.e., a collection of simultaneous external events generated by internal and confluent transitions) on one port is not admitted. 



 

can be combined with the number of couplings to estimate the modeling effort. In DEVS models, a 

coupling is defined as a two-port connection that relates two different models. Then, ideally, the number 

of ports allocated for each coupling (i.e. the W/K relation) is at most 2. This is because a coupling is 

defined as a pair of ports. When building a routing problem solution, a good modeler will try to improve 

the W/K relation to decrease the average number of ports allocated for each coupling. This is, instead of 

defining a port for each coupling, the modeler will try to reuse ports for several couplings. Hence, the 

threshold of the W/K relation can be defined as 2. 

Tables 1 and 2 introduce both metrics in terms of their definition, minimum and maximum values, and 

values comparison. 

 

Table 1 Definition of the metric “Q/N”. 

 

Q/N PROPERTY DESCRIPTION 

Definition 
Average number of models attached to each node where Q is the number of models and 
N is the number of nodes. 

Minimum value 
A value of Q/N = 1 indicates a monolithic configuration (i.e., each node is represented by a 
model). 

Maximum value 
A value of Q/N > 1 indicates that the number of models is higher than the number of 
nodes. Hence, a model composition is used to represent each node. 

Comparison 
between values 

Given two different measures m1 and m2, the closest value to 1 will refer to a more 
monolithic configuration than the other one. A value far from 1 is desirable since it 
indicates that the modeler has a good modeling approach (i.e., it has performed an 
accurate separation of concerns). 

 
 

Table 2 Definition of the metric “W/K”. 

 

W/K PROPERTY DESCRIPTION 

Definition 
Average number of ports allocated for each coupling where W is the number of ports and 
K is the number of couplings. 

Minimum value 
A value of W/K < 2 indicates that there are ports that are used to address more than one 
coupling. 

Maximum value 
A value of W/K = 2 indicates that each pair of ports is used to address one coupling (i.e., 
ports are designed for specific couplings). 

Comparison 
between values 

Given two different measures m1 and m2, the closest value to 2 will refer to a highly 
structure route solution than the other one. A value far from 2 is desirable since it indicates 
that the modeler has improved the routes definition (i.e., it has performed an accurate 
separation of concerns). 

 

To illustrate the use of these metrics, Fig. 3 and 4 depict two alternative models that solve, respectively, 

scenarios #1 (Fig. 1a) and #2 (Fig. 1b) presented in Section 2.1. 

Scenario #1 includes three nodes (that is, N=3). In such a scenario, the component C1 has two behavioral 

responsibilities: executing its own operational behavior and distributing its output events between C2 and 

C3. Solution #1 (Fig. 3a) structures the component C1 as a single simulation model (monolithic 

configuration) that performs both behaviors (that is, QC1=1). Here, the number of couplings is K=5 while 

the number of ports is W=10. Specifically, the couplings defined in modelScenario1 depict an 



 

aggregation 3  among modelC1, modelC2, and modelC3 for modeling the structural interactions of 

components C1, C2, and C3. The final value of Q for solution #1 is QSOLUTION1=4. Meanwhile, in solution 

#2 (Fig. 3b) the behaviors of component C1 are divided into two internal simulation models: operation, 

and distribution (then, QC1=3). The couplings among such internal models depict a composition4 among 

operation, distribution, and modelC1 for modeling the behavior required in component C1. Moreover, 

solution #2 employs 9 couplings (K=9) and 15 ports (W=15). The final value of Q is QSOLUTION2=6. 

 

 
 

(a) Solution #1: Model C1 as a monolithic 

behavioral model. 
(b) Solution #2: Model C1 as a set of behavioral simulation models. 

 

Fig. 3 Possible solutions for building a DEVS simulation model of scenario #1. 

 

 
 

(a) Solution #1: Model C7 as a monolithic 

behavioral model. 
(b) Solution #2: Model C7 as a set of behavioral simulation models. 

 

Fig. 4 Possible solutions for building a DEVS simulation model of scenario #2. 

 

From a different point of view of routing processes, the component C7 of scenario #2 executes different 

behavior according to the component that sends the input event (C4, C5, and C6). Such a scenario 

includes four nodes (that is, N=4). In this case, the simulation model defined as solution #1 (Fig. 4a) 

 
3 Models modelC1, modelC2, and modelC3 can be used outside the model modelScenario1 because each one of them represents a 

Component (Fig. 2). 
4 Models operation and distribution are not able to be used outside model modelC1 because each one of them represents a 

Behavior included in a Component (Fig. 2). 



 

employs a single model (monolithic configuration) to represent all behaviors of component C7 (that is, 

QC7=1). The number of couplings included in this solution is 7 (K=7), while the number of ports is 14 

(W=14). The final number of models is QSOLUTION1=5. Alternatively, solution #2 (Fig. 4b) splits such 

behaviors into a set of behavioral models (called operationP1, operationP2, and operationP3) that 

individually represent each one of the behaviors required in component C7 (then, QC7=4). In this solution, 

the number of couplings is 13 (K=13), and the number of ports is 20 (W=20). The overall number of 

models included in the solution is QSOLUTION2=8. 

Analyzing the alternative model solutions proposed for both scenarios according to the modeling effort 

metrics, the measures are:  

• For scenario #1: The modeling effort in solution #1 (Fig. 3a) is characterized by Q/N=1.33 (Q=4 

and N=3) and W/K=2 (W=10 and K=5). Instead, the modeling effort in solution #2 (Fig. 3b) 

improves both measures as Q/N=2 (Q=6 and N=3) and W/K=1.66 (W=15 and K=9). 

• For scenario #2: The modeling effort in solution #1 (Fig. 4a) is reduced to Q/N=1.25 (Q=5 and 

N=4) and W/K=2 (W=14 and K=7). Again, solution #2 (Fig. 4b) improves the measures as 

Q/N=2 (Q=8 and N=4) and W/K=1.53 (W=20 and K=13). 

Table 3 summarizes the criteria adopted for measuring the modeling effort in routing problems using the 

relations Q/N and W/K. Moreover, Fig. 5 depicts the same information as a chart. 

 

Table 3 Valuation of the modeling effort to solve routing problems. 

 

 Q/N W/K MODELING EFFORT 

case #HIGH ≈ 1 ≈ 2 ++ 

case #MEDIUM > 1 ≈ 2 + 

case #REGULAR ≈ 1 < 2 - 

case #LOW > 1 < 2 - - 

 
 

 
 

Fig. 5 Chart representation of Table 3. 



 

According to such valuation, a growing value in the W/K relation (that is, a value closer to 2) increases the 

modeling effort. If the number of ports allocated for each coupling is closer to 2, the modeler is trying to 

solve the routing process using pre-wired connections. Independently from the monolithic configuration, 

the models included in the final simulation will be handling routing connections as part of their behaviors.  

Of course, the modeling effort will be higher if monolithic configurations are employed because a single 

simulation model will be in charge of handling all behaviors. Therefore, the modeling effort in case 

#HIGH is higher than in case #MEDIUM. 

Contrary, if the W/K relation is lower than 2, the modeler is trying to improve its solution by leaving the 

routing responsibility into new components. This reduces the modeling effort. Now, Q/N relation plays an 

important role. A good modeler will try to improve its design with a proper separation of concerns that not 

only provides simpler simulation models but, also, improves their reusability. The benefits of reuse should 

accrue from the reduced time and cost for model development [36]. Therefore, with a Q/N relation closer 

to 1, the modeling effort increases due to the monolithic configuration (case #REGULAR). As the Q/N 

increases, the modeling effort decreases due to the nodes are modeled as a set of behaviors (case #LOW). 

Hence, considering the modeling effort as a measure for the complexity of behavioral descriptions, the 

valuation proposed in Table 3 defines four cases with aims to compare such an effort in terms of Q/N and 

W/K. Then, both relations can be interpreted as design metrics. It is important to remember that in this 

case, the modeling effort does not consider structural complexity measures (that is, metrics related to the 

hierarchical structure). Therefore, an accurate application of these measures must ensure the following: 

• The scenario to be modeled is a routing process situation composed of several components 

explicitly connected through output/input connections. 

• The modelers employ similar levels of abstraction for building the simulation models that depict 

the routing problem. 

• All the elements included in the design (i.e., the models, couplings, and ports) have been used to 

accomplish the simulation purpose. 

• The routing policy attached to each node is defined at design time and cannot be changed during 

the simulation execution (its definition is given by the description of the routing scenario). 

2.3. DEVS Design Patterns for Routing Process Situations 

When DEVS is applied for solving routing scenarios, the overall model has two different goals: i) a 

primary goal derived from the real world or imaginary system that composes the scenario, and ii) a routing 

process goal that helps during the resolution of the primary goal. During the design phase, the modeler 

must design a DEVS simulation model that achieves both goals. Therefore, the modeler always builds a 

design that consumes routing information (either by an implicit or explicit specification). 



 

In an implicit solution, the models are designed considering the events flow as pre-wired connections. 

That is, for each possible interaction among components that defines an alternative flow, the model 

includes a coupling (among specific ports) that is used when the interaction is active. Such an implicit 

solution is the one used in the model solutions detailed in Fig. 3 and 4. For example, the connections 

among modelC1, modelC2, and modelC3 (Fig. 3) are defined using two output ports in the modelC1. Each 

output port of the modelC1 is specifically linked to the input port of one possible destination. Such 

destinations are defined according to the routing behavior detailed in component C1. Then, each 

destination is attached to an output port of the source model by a specific coupling. Such couplings allow 

sending direct events from modelC1 to modelC2 and modelC3 using pre-wired connections. The same 

implicit strategy is used in Fig. 4. However, in these cases, the modelC7 includes three input ports to 

distinguish the events that come from modelC4, modelC5, and modelC6. Again, the couplings detailed 

over these ports can be seen as pre-wired connections. Examples are presented in [37, 38, 39, 40, 41]. 

The use of implicit solutions for modeling routing processes can be studied using the UML class diagram 

depicted in Fig. 2. In an implicit routing, even when a Node Materializes a Component through a Routing 

Policy, the Routing Policy is also applied in the Edge definition. A Node (node #1) decides the output port 

to be used for sending an event to another Node (node #2) using its Routing Policy. However, the Routing 

Scenario needs to include an Edge that links properly node #1 and node #2. Therefore, the edges need to 

be defined complying the routing policies required in all nodes. Fig. 6 depicts such consideration by 

including the Complies relationship between the concepts Edge and Routing Policy.  

 

 
 

Fig. 6 UML class diagram of the routing problem domain with implicit routing solutions. 

 

Even when implicit solutions are widely used for routing problems, such solutions do not follow the low 

coupling5 guide commonly applied in modular designs. An implicit solution for routing processes in 

 
5 In software engineering, the coupling is the strength of the relationships between modules [42]. 



 

DEVS implies that each one of the models that represent a Node will be as specific as its Routing Policy. 

Then, the modeling effort increases because the modeler needs to study the Routing Policy to build its 

design. Moreover, the simulation model that defines the Routing Scenario will be also as specific as the 

routing policies used in the set of nodes that compose it. Hence, a complex Routing Policy leads to highly 

linked specific models that are not completely independent of each other. 

Contrary to an implicit strategy, explicit routing solutions are also encountered in the literature. Such 

solutions commonly involve a set of handlers that manages the routing functionality. For example, Fig. 7 

presents an explicit strategy as an alternative solution for the model proposed in Fig. 4b (that is, 

modelScenario2). According to this solution, the model modelC7 receives all the events produced by 

models modelC4, modelC5, and modelC6 using the same input port. Such an input port is designed as a 

unique entrance to the model that implements component C7 (that is, modelC7). Then, the model modelC7 

uses a new internal model (called inputHR) to distribute the events among the available behaviors (that is, 

operationP1, operationP2, and operationP3). Examples that use the explicit routing strategy for solving 

routing problems are detailed in [1, 15, 41, 43]. 

 

 
 

Fig. 7 Explicit solution for modeling the routing process required in scenario #2. 

 

When studying the use of explicit solutions in terms of the UML class diagram depicted in Fig. 2, a new 

concept Handler must be added in the domain to reflect the modeling strategy (Fig. 8). Now, a Node uses 

a Handler with aims to apply its Routing Policy according to the Component description. Such Handler 

Manages the Input and Output of the related Node to restrict the incoming/outgoing events to the 

Component in which the Routing Policy is applied. Therefore, the explicit solutions isolate the Routing 

Policy in a specific part of the Node (i.e. the Handler) giving a complete separation of concerns between 

the routing responsibility and the Behaviors included in the Component. 

An explicit solution for routing processes in DEVS implies that each one of the handlers included in the 

nodes will be as specific as the Routing Policy attached to its definition. Hence, a complex Routing Policy 

leads to specific handlers but, still, it is independent of the behavioral modeling (related to the 

Component). This particularity gives low coupling among models. However, the effort involved in the 

design of explicit solutions is higher than in the equivalent implicit solution because the modeler needs to 



 

design a larger number of models per node. That is the reason why implicit solutions are more common 

than explicit solutions. 

 

 
 

Fig. 8 UML class diagram of the routing problem domain with explicit routing solutions. 

 

Either with an implicit or explicit solution, the modeler always employs external information to structure 

the simulation model. Such external information can be interpreted as the routing path to be followed by 

events. Hence, both solutions can be studied as design patterns for routing problems. A design pattern is 

the re-usable form of a solution to a design problem [17]. Therefore, the implicit and explicit solutions 

detailed are design patterns over the DEVS formalism that help to build simulation models for routing 

processes by following a general strategy based on a pattern-oriented modeling approach for designing 

and developing models of complex systems [44]. Hence, the design metrics defined in Section 2.2 can be 

used to analyze their modeling effort. 

3) The Routed DEVS Formalism 

The RDEVS formalism is an extension of DEVS conceptually defined as a subclass of DEVS that 

provides a design structure that reduces the modeling effort of routing processes over discrete event 

models [28]. The design patterns detailed in Section 2.3 as implicit and explicit solutions leave the routing 

modeling decision to the modeler. That is, the modeler that builds the design specifies the routing policy 

following some modeling strategy. When implicit solutions are used, the routing information is hidden in 

the couplings. When explicit solutions are used, the routing information is hidden in the handler 



 

definition. In both cases, for modelers who have not been involved in the design, a full understanding of 

the final simulation model will be tricky without adding any external data related to the couplings 

foundations.  

Instead, the RDEVS models allow defining the routing information explicitly without requiring any 

behavioral description attached to it. Then, the information related to the routing policy is detailed by the 

modeler as part of the node definition to authenticate senders and receivers before executing the behavior 

of the component. The execution of the routing process is built-in RDEVS models. Then, routing models 

provide an appropriate separation of concerns in terms of the routing process description (i.e., the structure 

and routing paths) and the behavior of the components. Hence, modelers who have not been involved in 

the design will only have to understand the behavior of the components.  

3.1. The RDEVS Models 

The RDEVS formalism defines three types of models: essential, routing, and network. Each RDEVS 

model depicts an abstraction level of some component defined in Fig. 2 as follows: 

• A network model structures the routing process definition (i.e. the Routing Scenario concept). 

Each network model is composed of a set of routing models that represents the entities used to 

describe routing interactions among components. 

• A routing model represents an entity involved in the routing process (i.e., the Node concept). Each 

routing model is defined as a pair { routing information, essential model } that take care of 

verifying the routing policy over the incoming message and, then, pass on the operative content to 

the essential model for processing. 

• An essential model refers to a module used to describe a routing entity (i.e. the Component 

concept). Each essential model is designed to exhibit the behavior of a domain-specific 

component. 

Hence, the core of the RDEVS approach is using the main components of the routing problem domain to 

structure the simulation model definition (Fig. 9). RDEVS models embed the definition of the 

Components into the Nodes specification that composes the description of the Routing Scenario. By 

embedding the components into the nodes, the formalism improves the modeling task in two ways: 

i) The design of the behavioral description is only required for the domain-specific components: The 

modeler builds simulation models for representing well-known elements. There is no need to be 

worried about modeling or implementing routing solutions. 

ii) The routing policy is isolated from the behavioral description allowing the reuse of simulation 

models in several scenarios: The modeler can use the designed set of simulation models without 



 

changing their specification with aims to depict different routing processes over the same set of 

components (only needs to change the routing policy configuration). 

The following subsections introduce the formal definition of the RDEVS models using set-theoretic 

notation. 
 

 
 

Fig. 9 UML class diagram of the routing problem domain with RDEVS models. 

RDEVS Essential Model (Component) 

The RDEVS Essential Model specifies a discrete-event simulation model that exhibits the behavior of a 

Component to be used as part of a Routing Scenario (that is, a routing process component). The same 

Essential Model can be used to define multiple nodes with different Routing Policies over a defined 

Routing Scenario. 

An Essential Model is equivalent to a DEVS atomic model [1]. Formally, it is defined by the structure 

 

M = < X, S, Y, δint, δext, λ, τ > 
 

where 

 X ≡ set of input events, 

 S ≡ set of sequential states, 

 Y ≡ set of output events, 

 δint: S → S ≡ internal transition function, 

 δext: Q  X → S ≡ external transition function, where  



 

  Q = { (s,e) | s Є S, 0 ≤ e ≤ τ(s) } ≡ total state set, 

  e ≡ time elapsed since last transition, 

 λ: S → Y ∪ ø ≡ output function, 

τ: S → Ro,∞
+  ≡ time advance function. 

The Essential Model definitions specify the set of available components that will be used for the M&S of 

the routing process. To define such essential models, the modeler only needs to know the component 

description (obtained from the domain specification). It does not need to take care of the routing context 

where the component will be used. Therefore, the modeler could be a domain expert. 

RDEVS Routing Model (Node) 

The RDEVS Routing Model (Routing Model) defines a discrete-event simulation model that takes action 

inside the routing process (i.e., a routing process node). The Routing Model definition employs a routing 

process component as an operational description of its behavior. Hence, an Essential Model is embedded 

in the definition of the Routing Model. Moreover, the definition also includes a set of elements used to 

describe the Routing Policy. Such a policy involves an identifier used to find the Node inside the Routing 

Scenario. By using this identifier, the model decides whatever to accept or deny input events and how to 

route its own output events into other models. The first test is performed when executing the external 

transition function. The routing decision is taken when executing the output function. 

As discussed above, several Routing Models can be defined by combining the same Essential Model with 

different Routing Policy. The inverse is also true. The same Routing Policy can be used in several Routing 

Models with different Essential Model. Then, the modeler can design alternative Routing Scenarios using 

the same set of Components in distinct Nodes. 

Formally, the Routing Model is defined by the structure 

 

R = < 𝜔, E, M > 

 

where 

 ω = ( u, W, δr ) ≡ routing policy, where 

  u Є N0 ≡ model identifier,  

W = { w1, w2,…, wp | w1, w2,…, wp Є N0 } ≡ set of identifiers that restricts the nodes from which 

input events will be accepted, 

  δr: SM → TOUT ≡ routing function used to direct the output events, where SM is the state of M and  

TOUT = { t1, t2,…, tk | t1, t2,…, tk Є N0 } ≡ set of identifiers that restricts the nodes towards 

which output events will be sent, 

 E = < XE, SE, YE, δint,E, δext,E, λE, τE > ≡ RDEVS essential model embedded in R, 



 

 M = <XM, SM, YM, δint,M, δext,M, λM, τM> ≡ DEVS atomic model that describes the behavior of the node 

to be executed during the routing process simulation, where 

XM = { ( x, h, TIN ) | x Є XE, h Є N0, TIN = { t1, t2,…, tk | t1, t2,…, tk Є N0 } } ≡ set of input events 

identified inside the routing process, with 

   x ≡ input event defined in E, 

   h ≡ sender identifier, 

   TIN ≡ set of identifiers that represents enabled target models, 

  SM = SE ≡ set of sequential states, 

YM = { ( y, u, TOUT ) | y Є YE, u Є N0, TOUT = { t1, t2,…, tk | t1, t2,…, tk Є N0 } } ≡ set of output events 

identified inside the routing process, with 

   y ≡ output event generated by E, 

   u ≡ sender identifier (that is, the model identifier), 

   TOUT ≡ set of identifiers that represents enabled target models, 

  δint,M: SM → SM = δint,E ≡ internal transition function, 

δext,M: QM  XM → SM ≡ external transition function that only accepts input events that satisfy one 

of the following statements: i) The event has been sent to R from some allowed model (Clause #1): 

This clause is activated when u belongs to TIN (i.e. the set of identifiers that represents the enabled 

target models for the incoming event) and the source identifier h (i.e. the sender of the incoming 

event) is included in W. ii) The event comes from an external source (Clause #2): This clause is 

activated when h is zero (that is, the sender identifier of the incoming event is fixed as 0) and u 

belongs to TIN (i.e. the set of identifiers that represents the enabled target models for the incoming 

event). iii) The model configuration constraints it to accept all input events (Clause #3): This 

clause is activated when the model identifier u is zero and W is configured as an empty set (i.e. 

there is no restriction related to the achievable senders). Under this clause, the model will exhibit 

similar behavior to a DEVS atomic model. Then, the external function is defined as 

 

δext,M(s,e,x') = {

δext,E(s,e_c+e,x)            if (u Є TIN ˄ h Є W) ˅ (h = 0 ˄ u Є TIN )˅ (u = 0 ˄ W = ø)

                                              with x'=( x ,h ,T ) and setting e_c=0 after the execution 

s                                                                                                                              otherwise 

                                    updating the elapsed time accumulated value as e_c=e_c+e

 

 

  with 

   QM = { (s,e) | s Є SM, 0 ≤ e ≤ τM(s) } ≡ total state set, 

   e ≡ time elapsed since last transition in M, 

   e_c ≡ time elapsed since last transition in E, 



 

  λM: SM → YM ∪ ø ≡ output function that produces events with routing information, defined as 

 

λM(s) = ( λE(s), u, δr(s) ) 

 

  τM: SM → Ro,∞
+  ≡ time advance function. 

In a Routing Model, an event is identified by the sender information (i.e. the model that generates the 

event as part of its output function). Although natural numbers are used to define the identifiers, such 

elements can be defined using other types of individualization. 

As defined above, the simulation functions of M embed the functions of E to allow the routing process 

only when events are accepted inside the Node. Such embedding can be understood as a new type of 

relationship among DEVS models. Besides the structural and behavioral dependencies, the RDEVS 

formalism includes an embedding dependency in which the model of one class "uses" the model of 

another class. Therefore, by using this new type of dependency among models, the formalism details the 

functions of the Routing Model using the Essential Model definition. For example, the external transition 

function is designed as an if-else function to accept only the set of input events that must be processed 

inside the Node. That is, if an input event fulfills some of the defined clauses, the Routing Model executes 

the external transition function of the Essential Model to exhibit the behavior of the Component embedded 

in the Node. Otherwise, the model “rejects” the incoming event staying in the same state that was before it 

arrives. As opposed, the internal transitions of the Routing Model are governed by the Essential Model. 

Given that the Node must exhibit the same behavior as the Component, the internal transitions of both 

models should be the same (that is why the internal transition function of M is equivalent to the one 

defined in E). Then, the internal transitions of the Essential Model will take place in the Routing Model. 

Moreover, given that before executing an internal transition the model needs to produce an output event, 

the output function of M employs the output function of E surrounded with the routing data. Therefore, the 

events sent by the Routing Model include the events produced by E along with the model identifier 

(sender) and the set of enabled destinations obtained from the routing function. 

The Routing Model definition follows the statement detailed in Section 2.2 as “the routing policy attached 

to each node is defined at design time and cannot be changed during the simulation execution”. Hence, the 

ω definition cannot be dynamic itself. Its values are fixed when the simulation model is designed by 

following the routing scenario description. 

RDEVS Network Model (Routing Scenario) 

The RDEVS Network Model (Network Model) describes a complex discrete-event simulation model that 

has a primary goal that includes the resolution of a routing problem (i.e. a routing process scenario). To 

build a Routing Scenario, the modeler needs to define a set of Nodes. Then, the definition of the Network 



 

Model includes a set of Routing Models and the couplings among them. Such couplings are detailed as all-

to-all connections to leave the routing task to the Nodes. The Network Model specification also involves 

two special translation functions used to link several models. These functions allow matching events from 

different Routing Scenarios. Then, the design of the Network Model is prepared to interact with other 

Network Models or, simply, with DEVS models. The combination of several types of simulation models 

depends on the simulation goal. 

Formally, the Network Model is defined by the structure 

 

N = < X, Y, D, { Rd }, { Id }, { Zi,d }, Tin, Tout, Select > 

 

where 

 X ≡ set of input events, 

 Y ≡ set of output events, 

D ≡ set of identifiers that represent the nodes to be used as part of the routing scenario (i.e. references 

to Routing Models), where d Є N0, ∀d Є D, 

For each d Є D, Rd is a Routing Model, defined as 

 

Rd=< ωd, Ed, Md > 

 

 where ud = d, 

For each d Є D ∪ { N }, Id is the set of influences over d defined as Id = { i / i Є D ˄ i ≠ d } ∪ { N } to 

maintain the all-to-all couplings,  

For each i Є Id, Zi,d is a translation function between events of i and events of d, where 

 Zi,d = Tin        if   i = N, 

 Zi,d = Tout      if   d = N, 

 Zi,d: YM,i → XM,d  if   i ≠ N ˄ d ≠ N, 

Tin: X → { ( x, h, T ) | x Є X, h Є N0, T = { t1, t2,…, tk | t1, t2,…, tk Є N0 } } ≡ input translation function 

that takes an external input event and returns an input event identified inside the routing scenario, 

where 

 x ≡ input event defined in N, 

 h = 0 ≡ sender identifier where zero indicates that the event comes from an external source, 

 T ≡ set of enabled destinations (identifiers) that must process the input event, 

Tout: { ( y, h, T ) | y Є Y, h Є N0, T = { ( t1, t2,…, tk ) | t1, t2,…, tk Є N0 } } → Y ≡ output translation 

function that takes an output event identified inside the routing scenario and returns an external output 

event, where 



 

 y ≡ output event allowed in N, 

 h ≡ sender identifier, 

T = ø ≡ set of enabled destinations (empty set implies that events go to an external destination), 

Select: 2D → D ≡ function for tie-breaking between simultaneous internal transitions. 

Following the formal definition, the Network Model only comprehends the routing process scenario 

modeled inside of it. That is why the events that come from external models are not treated as identified 

events. All the external input events that arrive at the Network Model are translated into events with 

identification inside the routing scenario by using the input translation function. In such cases, given that 

the sender identifier is not defined as part of the scenario, the input translation function fix h to zero. Any 

Routing Model included in the Network Model that receives an event with h=0 should process it according 

to Clause #2. That is, the Routing Model verifies that its own identifier is included in TIN prior accept the 

incoming event. A similar setting strategy is used for output events. Conceptually, the output events of the 

Network Model are defined as identified events with external destinations. However, given that the routing 

process only takes place inside the Network Model, external identifications are not allowed. Therefore, 

external destinations are detailed setting TOUT as an empty set (giving “everywhere” as destination). 

Moreover, all the events that leave the Network Model (classified as events with identification inside the 

routing process) must be transformed into DEVS regular events to keep the Routing Scenario isolated 

from the other simulation models. Such a transformation is performed by executing the output translation 

function. 

3.2. Closure Under Coupling 

Closure under coupling justifies hierarchical construction. A system formalism is closed under coupling if 

the result of any network of systems specified in the formalism is itself a system in the formalism [1]. 

However, it also assures that the class under consideration is well-defined and enables checking for the 

correct functioning of feedback coupled models [45]. 

To prove that the RDEVS formalism is closed under coupling, two new models are obtained: i) the 

Routing Model that is behavioral equivalent to the Network Model, and ii) the Essential Model that is 

behavioral equivalent to the Routing Model. Appendix A summarizes both demonstrations. The equivalent 

models obtained in such demonstrations can be used to justify the hierarchical composition because they 

ensure that the Network Model and Routing Model can be used to structure hierarchically the Routing 

Model and Essential Model, respectively. By transitivity, a dynamic system specified with a Network 

Model can be reduced to a behavioral equivalent Routing Model and, then, the Routing Model can be 

transformed into the behavioral equivalent Essential Model. Hence, a Network Model can be reduced to an 

equivalent Essential Model. Such an Essential Model can be used in the new Routing Model (following 



 

the Routing Model definition). Now, a Routing Scenario (the Network Model) can be used to structure new 

Nodes (the Routing Models). Therefore, the hierarchical construction stays within the formalism. 

Although equivalent models are not commonly used for closure under coupling demonstrations, such a 

strategy for RDEVS allows proving that any RDEVS model can be reduced to a DEVS atomic model 

(because the Essential Model is defined as a DEVS atomic model). Then, the RDEVS models can be 

combined with DEVS models develop larger simulation structures. Moreover, given that RDEVS models 

are compatible with DEVS models, the RDEVS models can be executed using DEVS simulators. 

3.3. About the RDEVS Structure 

The RDEVS formalism is designed for leveling out the modeling effort of routing problems providing an 

easier modeling solution that employs a set of simulation models that are defined in terms of the main 

elements involved in routing scenarios. In this context, RDEVS models aim to isolate a routing scenario 

inside the Network Model. Such a Network Model can be defined to interact with other models. These 

models can be other routing scenarios (with their own set of nodes and routing policies) or, simply, other 

DEVS models required as part of the problem. Following this approach, the identifiers used in the Routing 

Models that compose the Network Model are unique inside the network definition. However, their 

definition is not valid for the overall simulation model. That is why the incoming events of the Network 

Model are set with zero as the sender identifier. Zero indicates that the event is coming from outside the 

network and, then, the Network Model must decide which node will be in charge of its processing 

(employs the input translation function). In the same direction, the outgoing events of the Network Model 

use an empty target list to indicate that the event is going to be sent by all the outputs detailed in the 

model. Then, these events are sent “everywhere”. 

A deeper analysis of RDEVS structure reflects that, even when Routing Models are defined using some 

kind of external information (that is, the identifiers of available senders and possible destinations), the 

same information was already used when DEVS solutions were applied. When couplings are detailed (in 

implicit DEVS solutions) or handlers are defined (in explicit DEVS solutions), the modeler is using 

external information to get the final design (such as scenario context). In RDEVS solutions, such external 

information is captured in a single component of the Routing Model: the ω definition. This routing policy 

is defined as a static component (in the same way that couplings and handlers). As in DEVS solutions, 

such a component should be defined in a way that covers all routing paths required over the scenario. 

Given that routing paths are defined at design time, there is no way to assess the modeling strategy really 

fulfills the routing paths required over the scenario. 

The static perspective at the routing level is the main difference between RDEVS and Dynamic Structure 

DEVS (DS-DEVS) [21]. The routing problems studied in this paper employ routing paths defined at 



 

design time in terms of the behavior of the components. That is, there is no universal routing policy that 

acts as a global structure of the simulation model. Moreover, the routing policies definition does not 

change during the simulation execution and, as consequence, they can be modeled as part of the model’s 

design. This is the approach used in RDEVS. Instead, in DS-DEVS the routing is encapsulated in the 

model state. Therefore, it changes at execution time. This behavior is useful when models need to adapt 

their structure at simulation time by following some specific strategy. However, such adaptability requires 

defining the simulation models in terms of routing elements (not in terms of the behavior of the 

components). Even when the routing problems analyzed with RDEVS could be defined with DS-DEVS, 

the modeling effort will increase without any gain. 

Regarding the codification of RDEVS models in general-purpose programming languages, the 

conceptualizations provided in previous sections can be used as a basis to design object-oriented 

implementations. Given that DEVS is based on the mathematical theory of systems and works with 

object-orientation and other computational paradigms [1], the conceptual model depicted in Fig. 9 can be 

translated to an implementation deployment in, for example, Java or C++ over existing M&S software 

tools that support the execution of a DEVS abstract simulator. Then, runnable RDEVS models can be 

implemented following the abstraction of routing processes. Such an implementation is outside the scope 

of this paper. 

4) Benefits of RDEVS Formalism over DEVS Design Patterns for Solving Routing Problems 

The success of the modeling task always depends on the modeler’s ability to get an appropriate level of 

abstraction in its design. Such a level of abstraction must ensure an adequate number of models, 

couplings, and ports to improve the model’s reusability. Moreover, good modeling enables an appropriate 

separation of concerns by giving domain experts the possibility to contribute during the design of the 

simulation model. This separation of concerns improves the model’s modifiability because it leads to 

modular designs with low coupling6 and high cohesion7 [47, 48, 49]. Moreover, it also enhances the 

model’s maintainability because the separation of concerns reduces the number of (different) models to 

be developed to get the desired simulation model. 

To get appropriate modeling for routing problems, the RDEVS formalism design maintains all these 

desired properties as part of the model’s definition as follows:  

• Level of abstraction and separation of concerns: Each RDEVS model structures a routing process 

element defined as part of the core components required for modeling a routing problem. By 

 
6 The low coupling is desirable because i) fewer interconnections among modules reduce the chance that changes in one module 

cause problems in other modules (i.e. enhances reusability), and ii) fewer interconnections among modules reduce the modeler 

time in understanding the details of other modules [48]. 
7 Cohesion is an important attribute corresponding to the quality of the abstraction captured by the module under consideration. 

Good abstractions typically exhibit high cohesion [47]. 



 

identifying such elements, the formalism provides an appropriate separation of concerns using the 

model’s goals: i) the Essential Model is designed with aims to define the behavior of a component 

that will be used several times as part of the routing scenario, ii) the Routing Model is structured 

with aims to define a node that interacts with other nodes to perform the routing process, and iii) 

the Network Model is specified with aims to define the structure of all possible routes (that is, all 

possible interactions among nodes) as part of the routing scenario definition. These goals allow 

modelers to easily recognize each RDEVS model as a useful and unique element to be used in the 

routing problem definition. Moreover, it increases the abstraction level by mapping directly each 

simulation model into a routing element. 

• Reusability, modifiability, and maintainability: By following the separation of concerns, the 

relationships among RDEVS models allow building structural dependencies that reinforce their 

reusability, modifiability, and maintainability. A specific Essential Model definition describes an 

elemental behavior that can be reused in several nodes (or even as part of DEVS coupled models). 

Moreover, the same Network Model definition can be used to model multiple routing scenarios by 

only changing the routing policy used in each node. Then, the routing structure is highly 

modifiable. Finally, given that each simulation model proposed as part of the RDEVS formalism 

has its own goal, the model maintainability increases as a consequence of the separation of 

concerns.  

• Low coupling and high cohesion: Given that connections among models are defined in terms of 

their structure (not their behavior), the chances that the changes in one model cause problems in 

other models are really low. Furthermore, the model’s understanding is really easy because, per its 

own definition, each model must be designed to represent a specific routing process element.  

Then, the RDEVS formalism provides a feasible solution to modelers to easily build routing processes 

models. The modeler only uses the RDEVS models as predefined simulation modules that require the 

specification of the behavior (Essential Model), the routing policy (Routing Model), and the interactions 

among components (Network Model).  

In the following subsections, a generic 3 tier architecture for web applications is used as a case study for 

modeling a routing problem. The case of the 3-tier architecture has been already studied in [16] to show 

how discrete-event M&S can be used as support for quality estimation in the early stages of development. 

In that case, by considering the simulation of software architectures as a routing problem, the RDEVS 

simulation models were obtained automatically from the software architecture design. Here, we use the 

same architecture as a routing problem situation to be modeled following two different approaches: DEVS 

implicit routing solution and the RDEVS formalism. Both solutions are analyzed in terms of the design 

metrics detailed in Section 2.2. 



 

4.1. 3 Tier Software Architectures 

The architecture of a system defines that system in terms of computational components and interactions 

among those components [50]. Most web applications use the 3 tier architecture style (Fig. 10) to arrange 

its components and the set of connections among them. This style defines three tiers presentation logic, 

business logic, and data handling composed of predefined functional components named user interface 

component (UIC), processing component (PC), and data access component (DAC). A functional 

component is an element that refers to a specific and well-known functional responsibility. As part of the 

architectural design, the functional components are related by architectural connections. The stateless 

component element defines a synchronization constraint over the functional components and cannot be 

seen as a functional component itself. Finally, the storage offering and load balancer represent external 

components linked to the architecture. Such components are used for specific purposes. The behavior of 

these components is well-known by the architects and, therefore, does not affect the architecture 

evaluation.  

 

 
 

Fig. 10 Generic 3 tier architecture proposed in [51]. 

 

The 3 tier architectural style allows to scale stateless presentation and compute-intensive processing 

independently of the data handler (which is harder to scale and often managed by the cloud provider). 

That is, the style defined in Fig. 10 is a conceptual idea of how the functional components of web 

architectures should be structured. Architectural designs are obtained when several replicas are defined for 

each one of the functional components attached to the tiers. Therefore, the 3 tier architectural style defines 

a routing problem when specific designs are defined. The architectural evaluation of such designs can be 

performed with discrete event simulation. Fig. 11 shows how each part of the architecture design can be 

mapped into the routing problem domain. 

With aims to evaluate the modeling effort in routing problems employing DEVS and RDEVS formalisms, 

Fig. 12 presents two architectural designs. Each design is considered a routing scenario. Fig. 12(a) shows 

a scenario composed of 3 replicas of the user interface component, 4 replicas of the processing 

component, and 2 replicas of the data access component. Meanwhile, Fig. 12(b) employs 5 replicas of the 



 

user interface component, 2 replicas of the processing component, and 3 replicas of the data access 

component. 

 

 
 

Fig. 11 Mapping web architectures into the routing problem domain. 

 

To build discrete event simulation models that provide a feasible solution for both scenarios, each 

architectural component of the 3 tier architecture should be mapped into an independent simulation model. 

Such individual models should be able to simulate the behavioral description of the architectural 

component to fulfill the simulation goal (that is, the architectural evaluation) but also the event redirection 

actions related to the routing process (that is, the routing of user requests). 
 

 
 
(a) Web Architecture #1: 3 UIC + 4 PC + 2 DAC (b) Web Architecture #2: 5 UIC + 2 PC + 3 DAC 

 

Fig. 12 Web architectures scenarios under evaluation. 



 

4.2. Modeling Effort 

Building the Simulation Models using a DEVS Implicit Routing Solution 

Table 4 summarizes the set of simulation models required for modeling the web architectures depicted in 

Fig. 12 by following the implicit modeling strategy described in Section 2.3. Appendix B illustrates the 

overall DEVS representation for the scenarios detailed in Fig. 12(a) and 12(b) using the elements defined 

in Table 4. 

To keep the proposal analysis, all DEVS models are seen as single simulation models (even when they 

could be modeled as coupled models). Therefore, the input ports of the model proposed for each 

component are as specific as the set of nodes from which is receiving its inputs. Moreover, the output 

ports of the model proposed for each component are as specific as the routing paths where the node is 

delivering its outputs. Hence, although the behavior of the architectural components used in both scenarios 

is the same, the simulation models designed for each case should be different to get an appropriate set of 

routing actions. 

 

Table 4 Basic simulation models required for modeling the web architectures scenarios using DEVS. 

 

WEB 
ARCHITECTURE 

ARCHITECTURAL 
COMPONENT 

DEVS MODEL 
REPRESENTATION 

DESCRIPTION 

Web 
Architecture #1 

- Fig. 12(a) - 

UIC 

 

The model is designed as a DEVS model with 1 input 
port for receiving the user requests and 4 output ports 
for redirecting the requests (already processed) to a 

specific instance of the PC component. 

PC 

 

The model is designed as a DEVS model with 3 input 
ports for receiving the requests (processed by some 

UIC component) and 2 output ports for redirecting the 
requests (already processed by itself) to a specific 

instance of the DAC component. 

DAC 

 

The model is designed as a DEVS model with 4 input 
ports for receiving the requests (processed by some 

PC component) and 1 output port for sending the final 
resolutions of the initial user requests. 

Web 
Architecture #2 

- Fig. 12(b) - 

UIC 

 

The model is designed as a DEVS model with 1 input 
port for receiving the user requests and 2 output ports 
for redirecting the requests (already processed) to a 

specific instance of the PC component. 

PC 

 

The model is designed as a DEVS model with 5 input 
ports for receiving the requests (processed by some 

UIC component) and 3 output ports for redirecting the 
requests (already processed by itself) to a specific 

instance of the DAC component. 

DAC 

 

The model is designed as a DEVS model with 2 input 
ports for receiving the requests (processed by some 

PC component) and 1 output port for sending the final 
solutions of the initial user requests. 

 



 

When the modeling effort is analyzed in DEVS implicit routing solutions, the number of simulation 

models Q depends explicitly on the number of nodes to be modeled N. In this case, an extra simulation 

model is added to depict the scenario itself. Then, Q is defined as: 

 

QDEVS = N + 1 

 

Now, the Q/N relation for DEVS implicit solutions is defined as: 

 

Q/NDEVS = QDEVS / N = (N + 1) / N 

 

Hence, as the definition exhibits, the final value of the Q/N relation in implicit solutions will always be 

near 1. 

Following the case study, the routing scenarios depicted in Fig. 12 as 3 tiers architectures have Q/NDEVS,WA1 

= 1.11 for Web Architecture #1 (with QDEVS,WA1 = 10 and NWA1 = 9), and Q/NDEVS,WA2 = 1.1 for Web 

Architecture #2 (with QDEVS,WA2 = 11 and NWA2 = 10). 

On the other hand, the number of couplings K defined in DEVS implicit solutions can be defined as  

 

K DEVS = number of EIC + number of IC + number of EOC 

 

where the number of EIC, number of IC, and number of EOC refer to the number of external input 

coupling, internal couplings, and external output couplings, respectively. However, we only consider 

internal couplings to capture the design of routing interactions. 

Therefore, with KDEVS = number of IC, the W/K relations for the case study are the same for both 

architectures: W/KDEVS,WA1 = W/KDEVS,WA2 = 2 (with WDEVS,WA1=40 and KDEVS,WA1=20 for Web Architecture 

#1, and WDEVS,WA2=32 and KDEVS,WA2=16 for Web Architecture #2). Such value is the one expected for “pre-

wired” simulation models (as the one used in DEVS implicit solutions). 

Building the Simulation Models using RDEVS Formalism 

Table 5 summarizes the set of simulation models required for modeling the web architectures depicted in 

Fig. 12 with RDEVS. In all cases, the model refers to the Essential Model that models the behavior of the 

architectural component.  

Given that RDEVS employs separation of concerns between components and nodes, both scenarios use 

the same set of simulation models. Complementarily, as in the previous section, Appendix B illustrates the 

overall RDEVS representation for both scenarios using the set of simulation models defined as elements in 

Table 5. 

 



 

Table 5 Basic simulation models required for modeling the web architectures scenarios using RDEVS. 

 

WEB 
ARCHITECTURE 

ARCHITECTURAL 
COMPONENT 

RDEVS MODEL 
REPRESENTATION 

DESCRIPTION 

Web 
Architecture #1 

- Fig. 12(a) - 
 

and 

 
Web 

Architecture #2 
- Fig. 12(b) - 

 
 

UIC 

 

The model is designed as an Essential Model with 1 
input port for receiving the user requests and 1 output 
port for sending the requests (already processed) to 

some PC component. 

PC 

 

The model is designed as an Essential Model with 1 
input port for receiving the requests (processed by 

some UIC component) and 1 output port for sending 
the requests (already processed by itself) to some 

DAC component. 

DAC 

 

The model is designed as an Essential Model with 1 
input port for receiving the requests (processed by 
some PC component) and 1 output port for sending 

the final solutions of the initial user requests. 

 

In RDEVS solutions, each component is defined as an Essential Model. Then, for each Essential Model 

the modeler defines a set of Routing Models that improves the behavioral description by adding some 

specific routing policy. Therefore, in RDEVS solutions the number of simulation models Q depends on the 

influences among the Essential Models and Routing Models. If all Routing Models are defined over a 

single Essential Model (i.e. all Nodes employ the same Component), the value of Q will be Q = N+1. 

Meanwhile, if each Routing Model is attached to some specific Essential Model (i.e. each Node refers to a 

different Component), the value of Q will be Q = 2N. Over such boundaries, an extra simulation model 

must be added to depict the scenario itself (that is, a Network Model). Therefore, in RDEVS solutions the 

number of simulation models Q is defined as: 

 

N + 2 ≤ QRDEVS ≤ 2N + 1 

 

To employ a similar approach to the one used for measuring DEVS implicit solutions, the number of 

couplings K is again defined as KRDEVS = number of IC. However, the number of IC in RDEVS solutions is 

fixed as the set of all-to-all couplings required to develop a Network Model. Then, it is defined as 

 

KRDEVS = number of ICRDEVS = N*(N-1) 

 

Following the case study, the measures obtained for RDEVS solutions are: 

• For Web Architecture #1: Considering 3 Essential Models, 3 Routing Models for the UIC 

component, 4 Routing Models for the PC component, 2 Routing Models for the DAC component, 

and 1 Network Model, the number of models is QRDEVS,WA1 = 13. Given that NWA1 = 9, the Q/N 

relation is Q/NRDEVS,WA1 = 1.44. Moreover, the W/K relation is W/KRDEVS,WA1 = 0.1805 (with 

WRDEVS,WA1 = 13 and KRDEVS,WA1 = 72). 



 

• For Web Architecture #2: Following the approach detailed for Web Architecture #1, the number of 

models is QRDEVS,WA2 = 14. Then, the Q/N relation is Q/NRDEVS,WA2 = 1.4 (with NWA2 = 10). On the 

other hand, the W/K relation is W/KRDEVS,WA2 = 0.1333 (with WRDEVS,WA2 = 12 and KRDEVS,WA2 = 90). 

4.3. Discussion 

Table 6 summarizes the modeling effort for each routing scenario proposed in terms of the 3 tier 

architecture design. These values are obtained from the analysis performed in Section 4.2. The cases 

identified on the right side of the table refer to the valuation presented in Table 3. 

 

Table 6 Comparison between the modeling effort of DEVS and RDEVS solutions for the routing 

scenarios exemplified as 3 tier architectures. 

 

ROUTING SCENARIO SOLUTION Q/N W/K MODELING EFFORT 

Web Architecture #1 
DEVS 1.11 2 ++ case #HIGH 

RDEVS 1.44 0.1805 -- case #LOW 

Web Architecture #2 
DEVS 1.1 2 ++ case #HIGH 

RDEVS 1.4 0.1333 -- case #LOW 

 

Given that DEVS solutions employ fewer models than the RDEVS solution (because such solutions do not 

apply an appropriate separation of concerns), the RDEVS formalism shows an improvement of the Q/N 

relation. As Section 2.2 details, the use of an appropriate separation of concerns during the modeling task 

reduces the modeling effort. Moreover, when the W/K relation is considered along with the Q/N relation, 

the difference between DEVS and RDEVS modeling efforts for routing problems increases. 

Even when the values are detailed for the case study, the modeling effort classification will remain the 

same when DEVS and RDEVS solutions were applied for modeling routing problems. DEVS solutions 

will always require modeling the component behavior along with the routing behavior. Instead, RDEVS 

solutions only require modeling the behavior of the components. Modeling only the component behaviors 

has two benefits for the modeler: 

i) Once the components are designed, they can be used to define any number of nodes: Building 

Routing Model instances does not involve an extra modeling effort for the modeler. Given that the 

Essential Model design is used as a behavioral description of Routing Model instances, new 

Routing Model instances can be created by setting new routing policies over existent behaviors. 

The Routing Model instantiation only involves setting a routing policy over a predefined Essential 

Model. Then, such instantiation can be seen as a parametrization activity (not as a design task). 

For example, independently of the routing scenario, the number of components to be modeled in a 

3 tier software architecture is 4. In the RDEVS solution for the case study, such models are 



 

Essential Model instances that depict the behavior of architectural components (Table 5). Instead, 

in DEVS solutions components are modeled along with nodes with aims to manage architectural 

functionality and routing as part of the models (e.g. the models detailed in Table 4). Therefore, the 

RDEVS models improve reusability and reduce the modeling effort. 

ii) New routing scenarios can be defined using the same set of nodes with different routing policies: 

Since Routing Model instances are attached to routing policies and the Network Model instance 

links several Routing Models, new scenarios can be defined by changing the routing policies 

definition. For example, if the web architecture scenario changes, the RDEVS solution detailed for 

the case study can be easily re-structured by adding/removing routing policies of specific Routing 

Model instances. Instead, an alternative web scenario in the DEVS solution will require not only 

the development of new models to add/remove nodes but also the modification of the existing 

ones. From this perspective, even when both solutions will require changes in the simulation 

models, the RDEVS solutions are more flexible and adaptable than the DEVS solution. 

The improvement of the modeling effort in RDEVS is given by the modeling independence defined over 

Components and Nodes. Such modeling independence is reflected in the modeling levels attached to each 

formalism. In DEVS, the atomic DEVS defines the system behavior while the coupled DEVS defines the 

system structure. In RDEVS, the essential RDEVS defines the system domain behavior, the routing 

RDEVS defines the system routing behavior, and the network RDEVS defines the system structure. Then, 

by introducing a new modeling level (i.e., the system routing behavior), the RDEVS models provide an 

improvement in the modeling effort when routing processes are defined over discrete-event models. Even 

when RDEVS uses more models, the primitives of conceptual modeling that act as a foundation for the 

modeling levels allows reusing the models by embedding domain functionality in the routing process 

definition. This fact is captured in the Q/N and W/K measures where the routing path definitions are 

transferred from DEVS explicit “pre-wired” connections to all-inclusive RDEVS simulation models. Such 

simulation models employ routing policies in the Nodes intending to define the overall Routing Scenario. 

Instead, DEVS models are strictly attached to the structure of the Routing Scenario. Hence, the RDEVS 

formalism reduces the modeling effort in routing simulation models by providing reusable solutions. The 

modeler only has to focus its modeling skills on the domain components without worrying about modeling 

the routing process. 

To complete the analysis of modeling complexity, measures related to the structural complexity (Section 

2.2) should be obtained. These measures cannot be obtained at design time. Measures such as costs of 

hierarchical structure, events encapsulation, and model’s embedding should be taken at execution time. 

These analyses will be carried out as future work. Moreover, the next steps will include the study of the 

performance and simulation times. However, in our experience, the simulation execution times for 



 

RDEVS models are not directly affected by the embedding of routing functionality. For example, when 

explicit routing solutions are built over DEVS models, the extra simulation model included for each Node 

(i.e., the Handler) needs to be added to the DEVS simulator hierarchy. Therefore, its introduction to 

handling the incoming and outgoing events requires the execution of transition functions and the 

propagation of input and output events. This feature affects the simulation times. In RDEVS-based 

solutions, such a feature is replaced with predefined behaviors for accepting incoming events and routing 

outgoing events. However, a deeper analysis will be conducted with the aim to provide suitable measures 

related to performance and simulation times. 

4.4. Using RDEVS for the M&S of Real-life Scenarios 

Regarding the use of DEVS and RDEVS to model real software architectures, in this section, we briefly 

explain how we have applied such modeling in two case studies. These cases were obtained from Amazon 

Web Services8. 

The first real case study analyzed is the Deals Engine Architecture of the Expedia Group Global9. Fig. 13 

presents a representation of the architectural design. Following this representation, the architecture 

employs 7 components named queue, elastic load balancer, loader, cache, mem. cache, web, and elastic 

search. Over this set of components, a total of 15 nodes are defined. Some of these nodes share the same 

component. For example, 5 nodes share the architecture component named elastic search.  
 

 
 

Fig. 13 Architecture representation of AWS Expedia Group. 

 

The second case study is depicted in Fig. 14. This case refers to the Multi-Region Resiliency of Netflix 

implemented with Amazon Route 5310. The architecture uses 4 components (flow logs, ec2, watchdog, and 

stream) that structure 8 nodes. 

 
8 URL: https://aws.amazon.com/solutions/case-studies. 
9 AWS Expedia Case Study. Available at https://aws.amazon.com/solutions/case-studies/expedia/ (accessed 10th June 2021). 
10 Available at: https://aws.amazon.com/solutions/case-studies/netflix/ (accessed 10th June 2021). 

https://aws.amazon.com/solutions/case-studies
https://aws.amazon.com/solutions/case-studies/expedia/
https://aws.amazon.com/solutions/case-studies/netflix/


 

 
 

Fig. 14 Architecture representation of AWS Netflix Case Study. 

 

Following the guidelines detailed in the previous section to define a simulation model for such a routing 

process situation, Table 7 shows the measures obtained for the modeling effort required when DEVS and 

RDEVS-based solutions are used to solve both cases. As in the 3-tier architecture case, it is important to 

denote that both DEVS and RDEVS strategies use the same model to describe component’s behavior. 

Hence, as we have argued at the beginning, we use structure metrics (such as, the number of ports and 

couplings) along with the number of models and nodes to get modeling effort measures that allows us to 

compare situations where more complex models are used to define the same system. 

 

Table 7 Modeling effort measures for AWS Case Studies. 

 

ROUTING SCENARIO SOLUTION Q/N W/K MODELING EFFORT 

AWS Expedia Group 
DEVS 1.0666 2 ++ case #HIGH 

RDEVS 1.533 0.1142 -- case #LOW 

AWS Netflix Case 
Study 

DEVS 1.125 2 ++ case #MEDIUM 

RDEVS 1.625 0.1964 -- case #LOW 

 

For the DEVS-based solution of the first case, with a set of 7 components and 15 nodes, the value of N is 

15, and the value of Q is 16 (i.e., N + 1 as defined in Section 4.2). Then, the value of Q/N is 1.0666. For 

the second case, with 4 components and 8 nodes, values are N = 8 and Q = 9 (again, N+1). Here, the value 

of Q/N is 1.125. As discussed in Section 4.2, due to the “pre-wired” solution, the value of W/K is 2 for 

both cases.  

On the other hand, for RDEVS-based solutions, measures are improved following the metrics defined in 

Section 4.2. In both cases, the number of simulation models Q is defined as 1 + N + number of 

components. Moreover, the number of couplings K is calculated as N*(N-1). Finally, the number of ports 

W is obtained as 2N – (number of external inputs + number of external outputs). Hence, for the first case 



 

with N=15, Q=23, W=24, and K = 210, the ratios are Q/N=1.533 and W/K is 0.1142. For the second case, 

with N=8, Q=13, W=11, and K = 56, the ratios are Q/N=1.625 and W/K is 0.1964.  

As in the generic 3-tier architecture case, the RDEVS solution improves the modeling effort for routing 

processes when, for example, the simulation model refers to software architectures. Due to the reuse of 

components in several nodes and the multiplied coupling definitions, the measures obtained in RDEVS-

based solutions refer both to cases #LOW, while in DEVS-based solutions are #HIGH and #MEDIUM. 

5) Conclusions and Future Work 

Research and practice in systems modeling need approaches and tools that decrease the modeling effort 

due to the increasing (structural and behavioral) complexity of systems of systems. In this paper, we have 

presented the RDEVS formalism as a new DEVS extension that improves the design of discrete-event 

models that attempt to solve routing scenarios. RDEVS models are defined to manage the events flow 

using routing policies. Therefore, it structures the routing task through the use of routing policies executed 

at runtime as part of the simulation process.  

We analyze our contribution from a conceptual modeling perspective to show how the core of RDEVS 

models is traced from the set of elements that compose a routing process definition. Moreover, we define 

and employ a set of metrics to estimate the modeling effort when RDEVS-based solutions are used instead 

of DEVS-based solutions. As future work, these metrics will be applied to evaluate the modeling effort in 

new scenarios (besides routing situations) obtained from the DEVS literature. This study will allow 

evaluating the need for new metrics to improve the modeling effort approach. Here, such modeling effort 

is valued in terms of the behavioral description designed for building the simulation model solution. This 

behavioral description is not seen as the traditional DEVS behavior model. Instead, it is focused on the 

modeling of an appropriate separation of concerns. By solving the routing process “inside” the structure of 

the simulation model, the RDEVS modeling task is less complex than its DEVS equivalent. That is, the 

modeling effort is reduced when RDEVS solutions are applied for routing scenarios. Therefore, the 

modeler can spend more time improving the achievement of the primary goal of the simulation model 

without worry about the routing process modeling (neither implicitly nor explicitly). Hence, the RDEVS 

formalism levels out the complexity of routing problem specifications to reduce the modeling effort. The 

use of RDEVS instead of DEVS is justified by the reduction of the modeling effort. 

Even when RDEVS is an extension of DEVS, RDEVS models can be combined with DEVS models 

(atomic or coupled) to build powerful simulation models that exploit the benefits of each formalism 

according to the properties of the problem. Given that the core of RDEVS is DEVS, RDEVS models can 

be executed using DEVS simulators. That is, the routing functionality of RDEVS models is encapsulated 

in the execution of the Routing model. The DEVS atomic model that describes the behavior of the node to 



 

be executed during the routing process simulation (i.e., the model identified as M in the Routing model 

definition) can be executed with any DEVS abstract simulator. Even when routing policies are hidden 

inside the definition of the models, their execution is embedded in the usual behavior of any DEVS model. 

Then, RDEVS and DEVS models are fully compatible during simulation execution (e.g. see [16]). 

However, new simulation algorithms could be designed to improve the simulation process according to 

the routing policies. 

The RDEVS formalism provides complete and sound structural semantics for modeling routing processes 

over discrete-event models. Reusability and flexibility along with designs with low coupling and high 

cohesion are the main benefits of the formalism. By embedding the routing functionality into the models, 

it reduces the modeling effort required for building M&S solutions related to routing problems. So far, we 

have been used the final model specification for getting RDEVS implementations. The study on how the 

simulation scenario description can be used as a vehicle to get RDEVS implementations is part of our 

future work. Therefore, the next steps are oriented to developing M&S software tools that facilitate the 

implementation of RDEVS models taking advantage of the modeling levels proposed in the formalism. 

Regarding the existing M&S software tools, we will study how RDEVS models can be introduced in these 

tools (e.g. as new software modules or libraries) to provide suitable implementations for M&S of general 

routing processes. 
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Appendix A: RDEVS Closure Under Coupling  

A.1. RDEVS Network Model to RDEVS Routing Model 

The Network Model 

 

N = < X, Y, D, { Rd }, { Id }, { Zi,d }, Tin, Tout, Select > 

 

where each d Є D refers to a Routing Model defined as Rd that is structured as 

 

Rd= < ωd, Ed, Md > 

 

defines an equivalent Routing Model  

 

R = < 𝜔, E, M > 

 

in which: 

• ω = ( u, W, δr ) = ( 0, ø, δr ) | δr: SM → TOUT ˄ TOUT = ø ≡ routing policy to be used in R. The 

equivalent model uses zero value as its identifier and an empty set of entities to represent the 

models from which input events are allowed. These settings enable Clause #3 of the external 

transition function detailed in the Routing Model definition. Then, R processes all input events 

that arrive. Moreover, by setting the routing function into an empty set value for any possible 

combination of TOUT, all the output events of R will be sent everywhere (therefore, their 

processing depends on the receptor model configuration). Both behaviors are equivalent to the one 

expected of N since all input events that arrive at the Network Model are received but, also, all the 

output events created are sent.  

• E = < XE, SE, YE, δint,E, δext,E, λE, τE > ≡ essential model embedded in R in which: 

o XE = X ≡ set of input events of E. As R is detailed as an equivalent model of N and, the 

Routing Model uses the inputs of E as part of its own inputs definition, the inputs of E are 

defined as equals to the inputs of N. 

o SE = iЄDQi | Qi = { ( si, ei ) | si Є SM,i, 0 ≤ ei ≤ τM,i(si), ∀i Є D ≡ set of sequential states of E 

detailed as the product of the Qi sets defined for each model that compose N (these are the 

Routing Models). Each Qi is defined as an ordered pair that contains the state and the 

elapsed time of the Ri model. 

o YE = Y ≡ set of output events of E. As in the case of input events, the output events of E 

are defined as equals to the output events of N. 

o δint,E(s) = s’ ≡ internal transition function of E that modifies the state s = (…,( sj, ej ),…) to 

s’ = (…,( s’j, e’j ),…) where { s, s’} Є SE. Since the state of E is defined as a state 



 

combination of the models included in N, an internal transition of E may involve 

simultaneous internal transitions of multiple components. Then, considering that the 

imminent components (that is, the ones that must adjust its state) are collected according 

to the time value σ in a set structured as 

 

   IMM(s) = { i Є D | σi = τE,i(s) } 

   

one model i* must be selected to execute its internal transition. The N tie-breaking 

function can be used to get the i* model. So, the imminent internal transition to be 

executed belongs to the Ri* model where i* = Select(IMM(s)). However, as a consequence 

of this transition, all external transitions of the components influenced by Ri* must be 

executed. So, the final state transformation from s = (…,( sj, ej ),…) to s’ = (…,( s’j, e’j 

),…) is defined by  

 

 s'j= {

δint.M,j(sj)                                                                                  if j=i*

δext,M,j(sj,ej+τE(s),xj)              if i*∈ Ij ˄ xj≠ø with xj=Zi*,j(λM,i*(si*))

sj                                                                                          otherwise

 

e'j= {
0                   if ( j=i* ) ˅ ( i*∈Ij ˄ xj≠ø )

ej+ τE(s)                                 otherwise.
 

 

o δext,E(s, e, x) = s’ ≡ external transition function of E that modifies the set of state pairs that 

refers to the Ri models linked to the inputs of N. Given that the state of E is defined as SE, 

the states { s, s’} Є SE where s = (…,(si, ei),…) and s’ = (…,(s’i, e’i),…). Considering that 

components are collected in a set C = { i Є D | N Є Ii ˄ xi ≠ ø }, then 

 

si
*= δext,M,i(si,ei+e,xi)                     with xi= ZN,i(x), ∀ i ∈ C  

 

so the state transformation is defined as 

 

(si
' ,ei

') = {
(si

*,0)         if ( N ∈ Ii ˄ xi ≠ ø )

(sd, ed+e)                 otherwise.
 

 

o λE(s): SE → YE ∪ ø ≡ output function of E that generates an output event if and only if the 

model that is going to execute its internal transition (that is, i* model) is linked to the 

outputs of N. The function is defined as 

 

 λE(s) = {
Zi*,N (λM,i*(si*))       if N∈Ii*

ø                           otherwise.
  



 

o τE: SE → Ro,∞
+  ≡ time advance function of E that select the most imminent event time of all 

the components (that is, the routing models) included in N (i.e. finding the smallest 

remaining time σ until the internal transition of all the simulation models included in N). 

The function is defined as τE(s) = min { σi = σM,i(si) – ei | i Є D } 

• M = < XM, SM, YM, δint,M, δext,M, λM, τM > ≡ DEVS atomic model that specifies the routing process of 

R. Given that the description of M is defined in the routing model definition and, considering that 

its specification uses some of the components defined in E, no considerations are required to get 

the equivalent model of N. 

A.2. RDEVS Routing Model to RDEVS Essential Model 

The Routing Model specification includes two DEVS models defined as E and M. To define an Essential 

Model that acts as an equivalent model of a Routing Model description, it is important to understand the 

difference between both models. While E determines the Component to be used as part of the Node (that 

is, the Essential Model that describes the behavior of the Routing Model), M defines the executable 

simulation model over which the routing process takes place. Then, the equivalence proof tries to find a 

Component with the same behavior that a Node. Moreover, it can use the Node description as part of the 

Component specification since both models belong to the same type (DEVS atomic model). 

Then, the Routing Model described by the structure 

 

R = < ωR, ER, MR > 

 

with MR = < XM,R, SM,R, YM,R, δint,M,R, δext,M,R, λM,R, τM,R >, can be described as an equivalent Essential Model 

structured as 

 

M = <X, S, Y, δint, δext, λ, τ> 

 

in which X = XM,R, S = SM,R, Y = YM,R, δint = δint,M,R, δext = δext.M,R, λ = λM,R and τ = τM,R. Following this 

equivalence, each component of MR (that is, the executable model of the routing model description) is 

directly mapped to a new model that defines an Essential Model that maintains the desired behavior of the 

Routing Model. 

  



 

Appendix B: Representation of Web Architectures as Discrete-Event Simulation Models  

B.1. DEVS Representation 

Fig. B1 and B2 show the representation of the web-based architectures depicted in Fig. 12 as DEVS 

models. Each box included in the figures refer to a DEVS model detailed in Table 4. In Fig. B1, we use 

the models defined in the first row of Table 5 (i.e., the ones designed for Fig. 12(a)). Instead, in Fig. B2, 

we use the models defined in the second row of the table (i.e., the DEVS models detailed for the 

architecture depicted in Fig. 12(b)). 

 

 
 

Fig. B1 Mapping the Web Architecture #1 into DEVS models detailed in Table 4. 

 

 
 

Fig. B2 Mapping the Web Architecture #2 into DEVS models detailed in Table 4. 

B.2. RDEVS Representation 

Fig. B3 and B4 show the representation of the web-based architectures depicted in Fig. 12 as RDEVS 

models. Each box included in the figures refer to a RDEVS model detailed in Table 5. In both cases, the 

same set of models is used. 



 

 
 

Fig. B3 Mapping the Web Architecture #1 into RDEVS models detailed in Table 5. 

 

 
 

Fig. B4 Mapping the Web Architecture #2 into RDEVS models detailed in Table 5. 
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