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Cristian Boninic, Dino Oteroa

aVehicle Research, Development, and Innovation Center, Universidad Tecnológica
Nacional Facultad Regional General Pacheco, Av. Hipólito Yrigoyen

288, B1617, General Pacheco, Argentina
bSignal and Image Processing Center, Universidad Tecnológica Nacional Facultad

Regional Buenos Aires, Av. Medrano 951, C1179, Buenos Aires, Argentina
cResearch, Development, and Innovation in Electric Energy Center, Universidad
Tecnológica Nacional Facultad Regional General Pacheco, Av. Hipólito Yrigoyen

288, B1617, General Pacheco, Argentina

Abstract

A survey campaign was carried out on the dynamics of blood glucose mea-
sured through interstitial sensors of relative recent diffusion in the market.
These sensors generated time series that were labeled according to medical
diagnosis in diabetics and non-diabetics, and that constituted the data core
of the classification models. Based on the calculation of the distribution of
ordinal patterns of the time series, the corresponding points in the entropy-
complexity causal plane were located. Moreover, the transition matrices of
these ordinal patterns (OPTMs) were calculated in order to find the proxim-
ity using the Manhattan distance of every OPTM with respect to the mean of
each group, associating the corresponding signal to each class. On the other
hand, the Frobenius norm of every OPTM and the norm of its stationary
vector were computed given different values for the considered classes. The
effect of repeated values in a signal was also analyzed. Notable differences
were obtained in the properties of the OPTMs of each class. In another sense,
it is shown that diabetes is a disease that reduces the entropy of the temporal
evolution of blood glucose in well-defined time periods, and presents values
of complexity significantly higher than those obtained in subjects without
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diabetes. The selected alternatives coincide in detecting patients positively
diagnosed with type II diabetes mellitus. The calculations on the OPTMs
show the correlation among patterns of the signals. At the same time, in the
entropy-complexity plane, the considered groups were located in well-defined
regions showing the differentiating power of these information measures, and
indicating variations in the dynamics of the biological system when diabetes
is present. With the four mathematical tools selected and the dynamical
characterization given by the causal plane, it was possible to define an index
that clearly differentiates the classes under study.

Keywords: glucose, ordinal patterns, entropy-complexity plane, transition
matrices, tied data

1. Introduction1

The fluctuations of glucose in the blood are governed by numerous factors2

and feedback loops that normally keep a relatively low level that is limited3

regardless of large variations imposed during the day [9]. Studies in animal4

species were laying the foundations for the oscillation of the Glucose-Insulin-5

Glucagon triad. Goodner [15] studied the behavior of this triad in the monkey6

species Macaca mulatta fasting overnight and discovered regular oscillations7

with periods of 9 minutes on average. Another antecedent can be found in8

the year 2011 when Jin Shi informed us about stable and regular oscillatory9

glucose uptake through the use of micro biosensors based on nanomaterials10

in the cells of the pancreas [27]. From another point of view, the values11

of glucose in the blood can be characterized as a dynamic system -chaotic12

deterministic- [4]. Thus, it is able to reconstruct its attractor and present13

at least one positive Lyapunov exponent.14

Among well-known standard tests to detect Type II Mellitus Diabetes15

(DMT2), it can be mentioned the Oral Glucose Tolerance Test (OGTT) [11]16

and the Intravenous Glucose Tolerance Test (IVGTT) [23]. These tools are17

related to models based on glucose and insulin, which were proposed by18

Bergman [6] and Akerman [1], respectively. On the other hand, there exists19

a linear relationship between the daily glucose average and the glycosylated20

hemoglobin (HbA1c) [28], which can be used to make a diagnosis and to21

assess the evolution of the patient. By means of the value of the HbA1c, a22

case of study can be identified in the following classes: without DMT2, with23

DMT2, and with prediabetes. Data science and machine learning techniques,24
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such as neural networks, have been extensively applied in the classification of25

this disease. For instance, k nearest neighbors [12], logistic regression [31],26

decision trees [24], support vector machine [19], random forest [5, 13], and27

convolutional neural networks [16].28

The aim of this work is to detect individuals with DMT2, using four math-29

ematical tools to analyze the evolution of glucose measured with interstitial30

sensors. With the measurements of these sensors, a pilot signal database was31

constructed labeling samples with the disease under study medically diag-32

nosed as positive (P), and subjects who do not suffer from diabetes labeled33

negative (N). With these signals, it is possible to introduce the ordinal pat-34

terns (OPs) method for the analysis of a time series structure, as those that35

want to quantify the characteristics of a set of data points by characteriz-36

ing the sequenced distribution of a subset of values of the same signal or37

time series [2]. The cornerstone of this method lies in the study of the rela-38

tive position of the measured data in many subsegments of fixed-length, and39

then collect all the information. In this way, they differ from the traditional40

methods of nonlinear time series analysis which, in general terms, compute41

parameters in the reconstructed phase space [8] or those obtained based on42

symbolic dynamics. The seminal work of Bandt and Pompe [3] opened the43

road to several types of research which have focused on the investigation of44

measured signals in complex biological systems, economy, and in a variety of45

applications (cf. [2, 29, 25, 18, 22], among many others). The wide diversity of46

applications of the OP method is based on the fact that it is not necessary to47

assume any characteristics of the system that produces the time series (tech-48

nically it is said to be domain agnostic [10]). Once the OP were obtained,49

the next step was the computation of the transition probabilities between50

these patterns. These probabilities were approximated by the relative fre-51

quency of transition between neighboring points of every signal sub-segment52

defined by the embedding dimension and then, used to construct the OPTM53

for every signal. The informational measures implemented consisted of the54

normalized permutation entropy H [3], and the statistical complexity C [21],55

used to define the so-called H × C plane. This approach was incorporated56

to give support from the system dynamics framework for the detection of P57

records.58

The selected mathematical tools can be split into two branches: the Man-59

hattan distance from each OPTM corresponding to the individual signal to60

mean values of each class, and the matrix metrics taken on the own OPTM61

(the Frobenius norm and the stationary vector norm). In the first case, it62
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is possible to quantify the intensity of the transitions relative to a reference63

state -the mean state of each class-, and in the second case, the intensity64

of the transitions within signals can be pondered. The norm of a matrix65

indicates its ability to modify the norm of a vector that is multiplied by it.66

The Frobenius norm is an intermediate value among other norms that can be67

chosen, such as the infinity norm or the 2-norm. Besides, inducing an inner68

product between matrices allows quantifying the distance between them or69

the operators associated with them. In the present work, the norms of the70

stationary vector of the OPTMs were used to group the sensor records ac-71

cording to their numerical similarity in two suitably differentiated sets, and72

then associate them with the corresponding classes under analysis. This way73

of analysis contributed to explaining the results following the metrics of the74

OPTM associated with the intensity of the OP transitions.75

These four tools have given coincident results, which make it possible to76

positively detect subjects suffering from DMT2, differentiating them from77

those who do not suffer from the disease.78

This work is structured as follows: motivation and aims are contained in79

this introduction. A succinct approximation of the ordinal pattern is pre-80

sented in Section 2. In Section 3, the entropy-complexity plane is described.81

The presentation of the concept of the ordinal pattern transition matrices is82

developed in Section 4. In Section 5, a very concise revision of the matrix83

tools applied in this work is presented. Section 6 is devoted to the introduc-84

tion of the methodologies applied in the proposed approach to the treatment85

of tied data. The description of the blood glucose and thresholds for classifi-86

cation classes are contained in Section 7. The results of this pilot research are87

presented in Section 8. Finally, the closure of the work is done by discussion88

and conclusions developed in Section 9.89

2. Ordinal Patterns90

Bandt and Pompe [3] proposed a well-known methodology to describe the
ordinal dynamic of the elements in a time series. This approach requires two
parameters: the embedding dimension D > 1 and the embedding time delay
τ ≥ 1. Then, for a given time series X(t) of length T , T −D+1 overlapping
partitions of length D are defined as:

s(t) = {X(t− τ(D − 1)), X(t− τ(D − 2)), . . . , X(t− τ), X(t)}, (1)
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where t = D,D + 1, . . . , T . It is necessary that T ≫ D!. Let π be one of91

the D! permutations of the elements 1, . . . , D. It is said that s(t) is of type92

π if s(t)π(i) < s(t)π(i+1) for all i = 1, . . . , D− 1. Thus, for each partition, the93

assigned ordinal pattern is given by its permutation type π(1)π(2) · · · π(D).94

3. Entropy-Complexity Plane95

The permutation probability of a T -length time series is defined as P =
{p1, p2, . . . , pD!} where, for j = 1, 2, . . . , D!, the probability of the permuta-
tion πj of D! elements is given by:

pj(πj) =
#{s(t) of type πj}

T −D + 1
. (2)

The well-known Shannon entropy is defined as:

S[P] = −
D!∑
j=1

pj ln(pj), (3)

whose normalized version is H[P] = S[P]/ ln(D!). This entropy is also96

named permutation entropy.97

Let Pe = {1/D!, . . . , 1/D!} be the equiprobable distribution. In [21], the
authors defined a way to measure the complexity of a system using the Jensen
divergence D as an assessment of disequilibrium. Precisely, the complexity
of the time series can be calculated by:

C[P] = Q0D [P,Pe]H[P], (4)

where

D [P,Pe] = S

[
P + Pe

2

]
− 1

2
S[P]− 1

2
ln(D!), (5)

with normalization constant given by:

Q0 = −2

[
D! + 1

D!
ln(D! + 1)− 2 ln(2D!) + ln(D!)

]−1

. (6)

In order to study the evolution of the complexity over time, the relation98

between C versus the time t can be represented. This context is equivalent99

to the analysis of the curve defined by C versus H, due to the second ther-100

modynamic law that establishes a monotonous increase of the entropy as a101
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function of time. Then, the causal plane H × C is formed by the horizontal102

axis that represents the normalized entropy, and by the vertical axis that103

represents the complexity. It is known that for a given entropy, there ex-104

ist several ways to measure the statistical complexity, all of them ranging105

between two bound curves denoted by Cmin and Cmax [20]. In [21], the au-106

thors proposed an algorithm to compute both curves based on the geometric107

concept of simplices.108

4. Ordinal Pattern Transition Matrices109

Starting from the calculation of the OP for signal analysis or time se-110

ries, two possible methodologies are available. One way is to compute the111

frequency of the appearance along the signal, and an alternative way is a112

method of transitional nature, which is precisely the calculation of the fre-113

quency of passage from an OP to the next OP present in the data sequence.114

In this second sense, each OP transition contains information on the short-115

range temporal structure of the adjacent observations and their linkage with116

the following segments [2], whose lengths are determined by the embedding117

dimension. Thus, studying how one OP is followed by the next one in a118

given data series reveals structural characteristics of the geometrical shape119

representing the data. Every OP can be labeled by an ordering number, gen-120

erating a sequence of the form 1, 2, . . . , D!. Then, the transition frequencies121

between OP can be arranged in a matrix format, so that the references to122

columns and rows represent each OP label respectively, in such a way that123

constitutes a probability matrix M = (Mij)1≤i,j≤D!, where Mij ≥ 0 is the124

transition probability between patterns i and j, that satisfies
∑D!

i=1Mij = 1,125

for each j = 1, 2, . . . , D!. This determines a column probability matrix, with126

all the appertaining properties of such mathematical entity [26].127

5. Matrix Tools128

This section is devoted to a collection of some well-known concepts and129

properties related to matrices that will be helpful in the description of the130

methodology proposed in this work.131
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Matrix Distance. Given M,N ∈ Rn×n, the Manhattan distance between M
and N is defined by:

dist(M,N) =
n∑
i,j

|Mij −Nij|. (7)

Notice that this is the Minkowski distance of order 1.132

Frobenius norm. Given M ∈ Rn×n, its Frobenius norm [17] is defined by:

∥M∥F =
√
tr(MM t) =

√
tr(M tM), (8)

where M t denotes the transpose matrix of M and tr the trace of a matrix in133

the classical sense.134

In the case of stochastic matrices, the Frobenius norm can be used as135

an index of the degree of randomness of the matrix. In this sense, consider136

a stochastic matrix M =
(
C1 C2 · · · Cn

)
∈ Rn×n, where Cj is the jth-137

column ofM . Then, its transpose isM t =


C1

C2
...
Cn

 ∈ Rn×n. Thus, (M tM)ij =138

Ci · Cj for i, j = 1, 2, . . . , n.139

Suppose M is a stochastic matrix that characterizes a deterministic pro-140

cess. It means that each column of M , equivalent each row of M t, is a vector141

belonging to the canonical basis of Rn, E = {e1, e2, . . . , en}. It is straightfor-142

ward that (M tM)ii = Ci · Ci = 1. Then,
√

tr(M tM) =
√∑n

i=1(M
tM)ii =143 √

n, which is the maximum value of the Frobenius norm.144

On the other hand, given M a stochastic matrix that characterizes a145

random process, each column is of the form (1/n, 1/n, . . . , 1/n). In this case,146

(M tM)ii = Ci · Ci =
∑n

i=1 1/n
2 = 1/n. Hence, the minimum value of the147

Frobenius norm is
√
tr(M tM) =

√∑n
i=1(M

tM)ii =
√
1 = 1.148

Stationary vector. Given a right stochastic matrix M of order n (i.e. each149

row sums 1), it is irreducible if and only if (I + M)n−1 has all positive en-150

tries [30, Appendix A], where I is the identity matrix of order n. In this151

case, the Perron-Frobenius theorem [26, Section 1.1] states that there exists152

a unique unitary vector v ∈ R1×n such that vM = v. This left-eigenvector153

of eigenvalue 1 is referred to as the stationary vector of M .154
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6. Tied Data155

A natural question is how to deal with the case in which the time series156

presents repeated values, named tied data. The following three different157

methodologies are considered in the treatment of tied data throughout this158

work.159

Omission. In this alternative, tied data are simply eliminated. For instance,160

consider the time series X = {5, 4, 7, 7, 2, 5}. With D = 3, the partitions are:161

s(1) = {5, 4, 7}, s(2) = {4, 7, 7}, s(3) = {7, 7, 2}, and s(4) = {7, 2, 5}. Since162

s(2) and s(3) have tied data, only the first and last partitions are considered.163

Thus, the ordinal patterns associated with X are 213 and 312.164

Sequential order. Suppose that s(t) is a partition that presents the tied data165

s(t)h = s(t)k, with h < k. Then, it is defined π(k) = π(h)+1. Table 1 shows166

the associated patterns of tied data when D = 3 and τ = 1.167

Table 1: Ordinal pattern assignment when tied data are treated using sequential order in
case D = 3.

Partition Ordinal Pattern

{b, a, a} with a > b 123
{a, a, b} with a < b 123
{a, b, a} with a > b 213
{b, a, a} with a < b 231
{a, a, b} with a > b 312
{a, b, a} with a < b 132

{a, a, a} 123

Assignation of weights. In [7] it was proved that, after a linear transformation168

of the time series 3-length partitions, the regions of the ordinal patterns are169

well-defined by three lines where tied data are located. Then, tied data lay170

on the boundary of two neighbor ordinal patterns. Table 2 shows the ordinal171

pattern weights for each tied data.172

It is worth noticing that the OPTM depends on the selected treatment173

of tied data. From now on the following notation will be used: MO is the174

OPTM computed by the omission of tied data, MS is the OPTM computed175

using the sequential order for tied data, and MW is the OPTM computed by176

weighted tied data.177
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Table 2: Weights assigned to ordinal pattern for tied data in case D = 3, where empty
places indicate null weights.

Ordinal patterns

Tied data type 123 132 213 231 312 321

(b, a, a) with a > b 0.5 0.5
(a, a, b) with a < b 0.5 0.5
(a, b, a) with a > b 0.5 0.5
(b, a, a) with a < b 0.5 0.5
(a, a, b) with a > b 0.5 0.5
(a, b, a) with a < b 0.5 0.5

(a, a, a)

7. Classification of Blood Glucose Evolution Signals178

As mentioned before, the purpose of the present work is to establish a179

technique able to identify patients suffering from diabetes. The definition180

of the proposed classification model is based on the time series of the blood181

glucose evolution. The sensor provided by ™FreeStyle Libre (https://www.182

freestyle.abbott/), is applied to the back of the arm, and automatically183

takes glucose readings every 15 minutes that can be scanned by an app184

that reads the information. The experiment consists of eight cases of study,185

divided into two groups of four volunteers each. One group is formed by186

people who have neither presented symptoms nor have been diagnosed with187

DMT2, and another group is integrated by patients who have been diagnosed188

with this disease for at least five years. The age and sex of these people are189

indicated in Table 3. The positive state Pi is defined when the diagnostic190

in case i indicates DMT2, being negative state Ni otherwise. The signals191

obtained by glucose in the blood are shown in Figure 1.192

The OPs of these time series are computed using embedding dimension193

D = 3 and embedding time delay τ = 1. In this case, the OPTM for each194

time series is of order 6.195

Four methods are proposed to distinguish persons with and without dia-196

betes based on the glucose time series G:197

1. Location of points obtained from G in the Entropy-Complexity plane,198

computing the minimum distance to the centroids cP = (0.7901, 0.1619)199

of positive cases, and cN = (0.9060, 0.0816) of negative cases.200
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Table 3: General characteristics of the cases of study in the preliminary database.

Case Sex Age

N1 Male 39
N2 Female 43
N3 Male 27
N4 Female 48

P1 Male 33
P2 Male 33
P3 Male 59
P4 Male 61
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Figure 1: Time series of glucose in the blood for the cases of study: Negative (first row)
and Positive (second row).
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2. Manhattan distance between the OPTM of G and the average OPTM201

µP of positive cases, and µN of negative cases.202

3. Frobenius norm of OPTM of G, that ranges from 1 to
√
6 ∼= 2.4495.203

4. Norm of the stationary vector of the OPTM of G.204

Three classes are defined: N (negative case), P (positive case), and D205

(doubtful case). In a doubtful case, a prediabetes diagnosis could be possible,206

and medical advice is required. The class labeled by D is defined in terms207

of thresholds that are selected from the behavior observed by the reference208

cases. Given a glucose time series G, the proposed methodology assigns a209

vector of labels ℓ in L10, where L = {N,P,D}, in the following way.210

1. Let HCG = (HG, CG) ∈ H × C the corresponding point to G. For d
denoting the euclidean distance and Γ the set of all G under study,
let S1 = {(d(HCG, cN), d(HCG, cP )) : G ∈ Γ}. Consider S1

min =
{min(a, b) : (a, b) ∈ S1} and S1

max = {max(a, b) : (a, b) ∈ S1}. Then,
the threshold η is fixed such that max(S1

min) ≤ η ≤ min(S1
max). In the

present work, η = 0.06 (see Table 5). Thus,

ℓ1 =


N if d(HCG, cN) < min{d(HCG, cP ), η},
P if d(HCG, cP ) < min{d(HCG, cN), η},
D otherwise.

(9)

2. Let MT be the OPTM of G, and µT
P and µT

N be the average OPTMs
of positive and negative cases, respectively, for the tied data treatment
T ∈ {O, S,W}. Then, for i = 2, 3, 4 and a threshold ηT ,

ℓi =


N if dist(MT , µT

N) < min{dist(MT , µT
P ), η

T},
P if dist(MT , µT

P ) < min{dist(MT , µT
N), η

T},
D otherwise,

(10)

where ηO = 0.9, ηS = ηW = 1. The criterion for threshold selection is211

similar to the previous case. Let S2 = {
(
dist(MT , µT

N), dist(M
T , µT

P )
)
:212

for all MT under study}. Consider S2
min = {min(a, b) : (a, b) ∈ S2}213

and S2
max = {max(a, b) : (a, b) ∈ S2}. Then, the threshold ηT must214

verify max(S2
min) ≤ η ≤ min(S2

max). The values used in the present215

work were obtained based on Table 6.216
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3. Let MT be the OPTM of G for the tied data treatment T ∈ {O, S,W}.
Then,

ℓ5 =


N if ∥MO∥F ≤ 1.84,

P if ∥MO∥F > 1.85,

D otherwise,

(11)

ℓ6 =


N if ∥MS∥F ≤ 1.87,

P if ∥MS∥F > 1.89,

D otherwise,

(12)

ℓ7 =


N if ∥MW∥F ≤ 1.63,

P if ∥MW∥F > 1.64,

D otherwise,

(13)

4. Let vT be the stationary vector of the OPTM MT of G for the tied data
treatment T ∈ {O, S,W}. Then,

ℓ8 =


N if ∥vO∥ ≤ 0.52,

P if ∥vO∥ > 0.53,

D otherwise,

(14)

ℓ9 =


N if ∥vS∥ ≤ 0.49,

P if ∥vS∥ > 0.50,

D otherwise,

(15)

ℓ10 =


N if ∥vW∥ ≤ 0.48,

P if ∥vW∥ > 0.50,

D otherwise,

(16)

Analogous to the threshold selection procedure, the limits in the last two217

cases described above, were obtained from Figure 3 in such a way both classes218

were properly separated.219

In this preliminary stage of the work, the size of the data set used to define220

the models is small. However, the difference between the mean of the groups221

P and N is significant as can be shown using ANOVA (ANalysis Of VAriance).222

This statistical test can be applied under three hypotheses: independence of223

the data that is satisfied since the glucose is measured in different people, an224
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approximately normal distribution of the residuals verified by the Shapiro-225

Wilk test, and homoscedasticity or homogeneity of the variances proved by226

the Levene’s test.227

8. Results228

The p-values of normality and homogeneity tests, shown in Table 4 are229

larger than 0.05, except for the Manhattan distance to µS
P . Thus, the null230

hypothesis is not rejected, in other words, the assumptions of ANOVA test231

are satisfied. The same table contains the p-values of the ANOVA test.232

It can be noticed that there is significant statistical evidence to reject the233

null hypothesis of ANOVA test saying that the means of both groups under234

the variables used to define the classifiers are considerably different. The235

confidence level of significance in all the statistical tests is 95%.236

Table 4: p-values of statistical tests.

Variables Shapiro-Wilk Levene ANOVA

Distance to centroids
cN 0.1179 0.1568 7.39× 10−4

cP 0.7647 0.5801 1.69× 10−4

Distance to OPTM

O
N 0.3262 0.2471 5.78× 10−5

P 0.7157 0.6897 3.13× 10−6

S
N 0.5580 0.3927 3.90× 10−5

P 0.0243 0.7342 3.07× 10−5

W
N 0.6513 0.3827 1.43× 10−5

P 0.4917 0.0706 2.04× 10−5

Frobenius norm of OPTM

O 0.8087 0.2798 5.49× 10−2

S 0.8778 0.6941 4.62× 10−2

W 0.3160 0.8434 2.08× 10−2

Norm of stationary vector

O 0.2456 0.2682 1.82× 10−3

S 0.5055 0.2448 2.92× 10−3

W 0.0730 0.1952 2.94× 10−3

13



Figure 2 shows the locations of the points in the H × C plane, for the237

considered glucose times series. It can be appreciated that all the points238

correctly lay in the region defined by the curves Cmin and Cmax, for de-239

tails about the computation of these limit curves see [21]. The glucose time240

series corresponding to negative cases are located in the bottom right cor-241

ner. Meanwhile, for the positive cases, entropy decreases, and complexity242

increases. This behavior is observed in other disease processes reported in243

the literature (cf. [14].) The use of the causal plane has resulted in a grouping244

of the cases labeled as N and P that are in areas of this plane adequately245

differentiated as shown in Figure 2, so that a centroid can be established for246

each of the regions formed in order to associate the cases to distinguish them247

according to their proximity to these centroids. This last fact can be also248

seen in Table 5. All the N cases have a distance between 0.28% and 11.76%,249

from the centroid of the cases labeled as negative of the respective centroid250

of those labeled as P, which indicates that they would be closer to the N or251

non-diabetic cases. The opposite occurs with the values of the H × C plane252

corresponding to the measurements labeled P, which are between 0.35% and253

29.19% closer to the centroid of the cases labeled as P than the remaining254

class.255

Table 5: Distances to centroids in the H × C plane.

Case cN cP

N1 0.0075 0.1335
N2 0.0188 0.1598
N3 0.0112 0.1299
N4 0.0004 0.1409

P1 0.1128 0.0284
P2 0.1113 0.0298
P3 0.1411 0.0005
P4 0.1990 0.0581

Table 6 exhibits the Manhattan distances between every case of study and256

the average OPTM of each group, considering the three tied data treatments257

introduced in Section 6. It is worth noting that in all the cases under analysis,258

the distance is considerably smaller for the average matrix corresponding to259

the group of belongingness, independent of how tied data is dealt with.260
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Figure 2: Location of glucose time series in the H × C plane together with the centroids
of each group (asterisks).

Table 6: Manhattan distances to mean transition matrices for the three tied data treat-
ment.

Case µO
N µO

P µS
N µS

P µW
N µW

P

N1 0.6221 1.9196 0.4294 1.6634 0.6097 1.8255
N2 0.5674 1.7989 0.4882 1.4966 0.5367 1.7838
N3 0.5794 1.7793 0.4806 1.4470 0.5574 1.7488
N4 0.2909 1.7407 0.2964 1.5386 0.3902 1.7349

P1 1.9708 0.6683 1.5459 0.3513 1.7810 0.4735
P2 1.6215 0.6620 1.2970 0.3807 1.5532 0.6708
P3 1.7265 0.4728 1.5886 0.3526 1.9683 0.5034
P4 2.1053 0.7542 1.7567 0.7038 1.8499 0.8784

15



The Frobenius norms of the OPTMs together with the norms of the as-261

sociated stationary vectors for the eight cases under study are shown in Fig-262

ure 3. Both groups are well-separated in all tied data treatments when the263

norm of the stationary vector of the OPTM is considered. This separation264

is more evident when weight is assigned to tied data. When the Frobenius265

norm of the OPTM is used, it can be noticed that there exists an overlap-266

ping in both groups. It can be observed that the norm of the stationary267

vector obtained from the dynamic evolution of glucose is a good indicator of268

diabetic disease.269
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Figure 3: Frobenius norms of the OPTMs (left) and norms of the associated stationary
vector (right), for the following tied data treatments: omission (top), sequential order
(middle), and assigned weights (bottom).

All the label vector ℓ entries are N for the declared negative cases, except270

for N3 for which ℓ7 = D. On the other hand, a similar behavior holds for the271

cases with a positive diagnosis, for which the components of ℓ are P other272

than ℓ2 = D for P4.273
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Finally, the methodology presented in this work is validated in two ways.274

On one hand, six glucose time series obtained by the same type of sensor are275

classified: (i) X corresponds to a female person 43 years old with no evidence276

of any wealth problem; (ii) Y corresponds to a male subject 49 years old with277

diagnostic diabetes that is controlled, both with diet and physical activity.278

(iii) Z shows the glucose values of a male person 59 years old obese for a279

long period of time; (iv) W belongs to the same male individual Z but after280

a period under a strict diet and physical activity practice. (v) V corresponds281

to a male person 59 years old with diagnosed hypertension without any hint282

about his diabetic state. (vi) U corresponds to a male subject 61 years old283

with diagnostic diabetes. The results are presented in Table 7. The first row284

of this Table exhibits the case of a young woman with no diabetes diagnosis,285

as can see all the components of the vector L10 result in a classification in286

the N class, in such a way that agrees with the clinical evidence. The last287

row or the same table, that corresponds to a diabetic patient, shows all the288

components of the L10 vector classifying in the group of P, except for the289

ℓ2 which results in doubtful. Cases X and U , corresponding to the top and290

bottom row of Table 7, represent the classification most clearly differentiated291

in new samples, evidencing that this preliminary study works fine. The cases292

Z and W under strict control and physical exercise show that the diabetic293

condition becomes improved since the components of the L10 vector reflect294

this change. Explicitly, ℓ3 and ℓ7 changes from P to N, ℓ5 and ℓ10 changes295

from P to D, ℓ6 turns on from D to N, and the rest of the components remain296

unchanged.297

Table 7: Results of the proposed methodology applied to new observations.

Case ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9 ℓ10

X N N N N N N N N N N
Y N P P P P N D P P P
Z N D P D P D P P P P
W N D N D D N N P P D
V N D N N N N N D N D
U P D P P P P P P P P

Finally, an index ν to quantify the possibility of DMT2 risk was con-
structed as follows: in the first place is the stage of the selection for the ℓ best
components. To accomplish this selection was picked ℓ1 because it reflects
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the dynamic behavior originating the signal, then ℓ3 using the sequential tied
treatment of the data, due to the minimum values of the Manhattan distance
to the means of each class (see the center columns in Table 6). The combi-
nation of Frobenius norm and weighted tied approach was used to select ℓ7
using the results shown in Figure 3, bottom left, and finally to the choice of
ℓ10, the best tied data treatment for the computation of the stationary vector
was selected from the results in Figure 3 bottom right. Then, for the con-
struction of the index is necessary to quantify the states indicated in Table 7.
The criterium adopted is based on the assigning function A : {N,D, P} → R

defined by A(N) = 0, A(D) = 0.25, and A(P ) = 0.50. Under these consid-
erations, the index is mathematically formulated by computing the euclidean
norm of the vector vA = (A(ℓ1),A(ℓ3),A(ℓ7),A(ℓ10)). In other words,

ν = ∥vA∥2 =
√

[A(ℓ1)]2 + [A(ℓ3)]2 + [A(ℓ7)]2 + [A(ℓ10)]2. (17)

It is worth noticing that ν ranges from 0 (negative case detected by the four298

classifiers) to 1 (positive case detected by the four classifiers). Moreover,299

when the four classifiers detect a doubtful case, ν = 0.50.300

The results of the indices obtained when the proposal is applied to the301

new observations are presented in Table 8.302

Table 8: Index proposed to classify new observations.

Case A(ℓ1) A(ℓ3) A(ℓ7) A(ℓ10) ν

X 0 0 0 0 0
Y 0 0.50 0.25 0.25 0.61
Z 0 0.50 0.50 0.50 0.87
W 0 0 0 0.25 0.25
V 0 0 0 0.25 0.25
U 0.50 0.50 0.50 0.50 1.00

9. Discussion and Conclusions303

The present pilot study has fulfilled its fundamental aim, which is to304

show the possibility of detecting people suffering from DMT2 in terms of305

interstitial blood glucose records by means of the original use of dynamical306

systems and information theory tools. The advantage of having a database307
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of our own, although small in size, provided the traceability of the records308

as well as the quality of the data. In addition, it was accompanied by the309

corresponding medical diagnosis.310

Ordinal pattern distributions were calculated, using the Bandt and Pompe311

approach, and then used to find the corresponding coordinates in the entropy-312

complexity plane for each record. This allowed the discrimination of the pres-313

ence or absence of DMT2 since two well-differentiated groups in this plane314

were formed. The essential differences that can be seen in Figure 1, are that315

in subjects with DMT2, the mechanism of blood glucose regulation after food316

intake is characterized by oscillations of greater amplitude compared with the317

cases of subjects without DMT2. Since entropy and complexity are two vari-318

ables considered from a global point of view of the signal, the probabilities319

of transitions between ordinal patterns of the signals were also calculated.320

This was done to study a possible improvement in the characterization of the321

dynamic change that occurs in the stabilization of blood glucose in subjects322

without DMT2. The use of matrix metrics applied to the OPTMs provides323

different features of these matrices. Thus, the Frobenius norm was used to324

individually evaluate the intensity of the transitions for each time series ob-325

tained from the interstitial sensor measurements. On the other hand, the326

signals were characterized by calculating the distance between the different327

OPTMs and their mean values with respect to each class of interest. In this328

sense, the aim was to evaluate the intensity of the probabilities of the tran-329

sitions of the different time series that constitute the database with respect330

to a reference value.331

Finally, the norms of the stationarity vectors of the OPTMs were calcu-332

lated in order to quantify the way in which the OPTMs characterize the time333

series.334

In all cases, both between and within measures from OPTMs have shown335

to be a channel of differentiation between records from subjects with or with-336

out DMT2. The metrics calculated from the OPTMs were sufficiently dif-337

ferent to provide strong differentiation thresholds. This fact motivated the338

definition of a unique value to characterize the records. Then, the introduc-339

tion of the index ν in the classification of the new subjects results in a clear340

classification, in such a way that people without DMT2 have ν = 0, the341

subjects suffering from the disease have an index near to 1, and the doubtful342

cases have an index rounded 0.5. Following the values in Table 8, the subject343

X has a null index agreeing with the absence of DMT2. In the other extreme,344

subject U with DMT2 has a unitary index. Meanwhile, for subject Z, who is345
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diagnosticated with DMT2, and subject W , who is the same subject after a346

medium period of food control and physical exercise, the values of ν present347

a possible improvement of the disease under consideration. Subject Y is a348

patient with DMT2 for which ν = 0.61, a value very far from the nondiabetic349

cases. Finally, ν = 0.25 corresponds to subject V who has a hypertensive350

diagnosis but not DMT2. In this sense, the possibility of having an index is351

particularly useful in medical practice since professionals usually work with352

this type of indicator.353

A fact that is well-known in the literature is that in the use of ordinal354

patterns, the treatment of repeated data is not indistinct. In the present355

work, the results clearly showed the effect that various approaches produce356

on the subsequent classification.357

Regarding the selected components of the ℓ vector, the simplicity and358

computational efficiency of all the calculations necessary to obtain it can be359

highlighted.360

As expected in pilot studies, the present work establishes a possible361

methodology to assist in the analysis of a large survey. For the posterior362

data analysis, any of the conceptual tools from the dynamical systems and363

mathematics applied in this work were exhibited as a potential way to use.364

Specifically, the proposal of this work is the construction of macroscopic365

variables, based on blood glucose measurement, that reflects the microscopic366

processes occurring in the human organism. This is a treatment similar to the367

thermodynamic formulation of kinetic theory and statistical mechanics. In368

physics, the Clausius-Clapeyron equation and the Gibbs equation for chem-369

ical reactions are good examples of information that can be extracted from370

macroscopic formalisms. In the treatment presented, the application of med-371

ical recovery standards is immediately detected by the proposed algorithms.372

As a conceptual summary, this preliminary research shows a macroscale anal-373

ysis, so that in the future it would be possible to derive useful information374

about the dynamics of the system.375
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