

ESPECIALIZACIÓN DISEÑO DE RECIPIENTES CONTENEDORES DE PRESIÓN

TITULO

VERIFICACION DE LA INTEGRIDAD ESTRUCTURAL DE LA UNION DEL CUERNO DE LA CUNA Y EL CUERPO CILINDRICO DE UN RECIPIENTE DE GAS LICUADO CODIGO ASME SECCION VIII DIVISION 1

<u>AUTOR</u>

FRONCIANI DAMIAN LEONARDO

INDICE

- 1.- Objetivo
- 2.- Introducción
- 3.- Datos generales necesarios para el cálculo
 - Dimensiones
 - Estados de Carga
 - Tensiones Admisibles
 - Otros necesarios que entienda incorporar
- 4.- Procedimiento de cálculo y resultados Método de Zick
- 5.- Procedimiento de cálculo y resultados Método de Ong
 - Cuna Elástica
 - Cuna Rígida
- 6.- Procedimiento de cálculo y resultados Método de Elementos Finitos
 - Cuna Elástica
 - Cuna Rígida
- 7.- Comparación de resultados de los tres procedimientos
- 8.- Procedimiento de Soldadura
- 9.- Evaluación de una fisura
- 10.- Conclusiones finales
- 11.- Figuras
- 12.- Anexos
- 13.- Referencias

Observaciones	Revisión	Fecha	Nota
Para aprobación	В	20/02/2022	

1.- Objetivo

El trabajo consiste en calcular la tensión circunferencial en los cuernos de la cuna sobre el cuerpo cilíndrico aplicando el método clásico de Zick y compararlo con la propuesta del investigador L.S. Ong considerando para el estudio las cargas de peso propio y peso del producto o presión hidrostática.

El objetivo del trabajo es comparar estos dos procedimientos para verificar el tema del sub-dimensionamiento que tiene el método clásico de Zick en ese tipo de tensión salvo que incrementemos la placa de desgaste o aumentemos el ángulo de contacto. El estudio se amplía utilizando "Técnicas de Evaluación Avanzada" a través del Método de Elementos Finitos.

Los principales resultados del estado tensional obtenido por la Simulación Computacional, que se produce en la unión del recipiente con los extremos de las cunas (cuernos), se comparan con los obtenidos con la propuesta desarrollada por el Investigador y el método de Zick.

2.- Introducción

Se han detectado fallas estructurales en los recipientes horizontales contenedores de presión, en la zona ubicada en los extremos de los cuernos de las cunas, después de la placa de desgaste, sobre las paredes del recipiente.

Esta situación de falla ha sido detectada en equipos nuevos, producida durante la prueba de presión, como en aquellos que se encuentran en servicio, en donde el grado de degradación o disminución de espesores por corrosión, han debilitado dicha zona.

En este trabajo se presentan los principales resultados del estado tensional obtenido a través del planteo de un Modelo Computacional por Elementos Finitos, comparados con los obtenidos con otros métodos de aplicación ingenieril.

La falla mencionada, consecuencia de la discontinuidad estructural entre el apoyo y recipiente, se presenta con mayor posibilidad en aquellos equipos con más de dos metros de diámetro. En la Figura 1 se presenta una fotografía de un recipiente horizontal típico, y en la Figura 2, un esquema general, indicando la ubicación de la falla.

Figura 1. Recipiente Contenedor de Presión Horizontal

Figura 2. Recipiente horizontal, Identificación de la zona de falla

En la etapa de diseño, las tensiones generadas en dicha unión, los cuernos de la cuna y sobre el recipiente, son determinadas a partir del método de Zick (1951).

A partir de la detección de este tipo de falla, investigaciones se han dedicado a encontrar, a través de resultados experimentales, la causa estructural que conlleva a dicha situación.

Uno de los primeros estudios fue realizado por L.S.Ong, en donde desarrollando un procedimiento analítico, considerando las diferentes variables geométricas y dimensionales que intervienen en el diseño del componente, determinó que las tensiones circunferenciales calculadas por el Método de Zick y que se desarrollan en los bordes de las cunas, son subestimadas dependiendo que el sistema de soportación, sea flexible ó rígido. Es decir que las tensiones circunferenciales obtenidas por el método de Zick en los bordes de la cuna, conducen a valores menores que los reales, lo cual invalidaría la metodología utilizada.

Es decir, que el resultado del estado tensional obtenido durante el diseño debe incrementarse en un factor a determinar, disminuyendo el margen de seguridad del equipo con la probabilidad de plastificación.

A partir de los resultados obtenidos y considerando las consecuencias que ocasiona esta falla, se requiere de la verificación del componente utilizando estudios más rigurosos.

El objetivo principal de este trabajo consiste en la realización de un análisis representativo y detallado, ampliando el estudio realizado por dicho investigador, utilizando "Técnicas de Evaluación Avanzada" a través del Método de Elementos Finitos.

Los principales resultados del estado tensional obtenido por la Simulación Computacional, que se produce en la unión del recipiente con los extremos de las cunas (cuernos), se comparan con los obtenidos con el Método desarrollado por el Investigador y el de Zick.

3.- Datos generales necesarios para el cálculo

- Dimensiones
 - \emptyset ext Diámetro exterior del equipo = 342,58 cm
 - Ø int Diámetro interior del equipo = 337,5 cm
 - ts Espesor envuelta = 2,54 cm
 - th Espesor cabezales = 1,58 cm
 - $Rm Radio medio = (\emptyset int/2) + (ts/2) = 171 cm$
 - LT Longitud entre tangentes = 2.346 cm
 - a Distancia entre la línea de tangencia y el centro de la cuna = 330 cm
 - b Ancho de las cartelas de la cuna = 38 cm
 - b1 Ancho de la placa de desgaste = 70 cm
 - c Distancia entre cunas = 1.686 cm
 - Φ Angulo de contacto entre la cuna y el recipiente = 145,6°
 - H Altura del cabezal = Ø ext / 2 = 171,3 cm
 - B Altura entre la placa base y el centro del recipiente = 205 cm
- Estados de Carga, se adopta para el análisis el peso propio del recipiente (sin considerar el peso de las cunas), peso del líquido interior con densidad relativa correspondiente al agua, a partir de una distribución hidrostática. Con estos datos, calculamos la fuerza de reacción en la cuna denominada Q.

Q - Reacción de vínculo en la cuna = 146.951,4 Kgf

- Tensiones Admisibles
 - Material envolvente y cabezales : SA 516 Gr. 70 Sy = 38.000 psi = 262 MPa (N/mm²) (tensión de fluencia) Sr = 70.000 psi = 482,632 MPa (N/mm²) (tensión de rotura) Sm (tensión admisible) el menor valor de [(2/3) Sy ; (1/3,5) Sr] (2/3) Sy = (2/3) 38.000 psi = 25.333,3 psi = 1.781,1 Kg/cm² (1/3,5) Sr = (1/3,5) 70.000 psi = 20.000 psi = 1.406 Kg/cm² Adoptamos Sm = 1.406 Kg/cm² = 20.000 psi (tensión admisible)
- Recipiente de Almacenamiento de GLP Capacidad = 227 m³

LLT N Facultad Regional Haedo	Fecha ·	febrero	20 2022	Hoia 1 de	1
	Techa.		20, 2022	noja i de	
Recipientes Contenedores de Presión	Realizó :	Damián	Fronciani	Documento N⁰	REC-LPG-001
Método de Zick	Equipo :	Recipiente	Gas Licuado	Rev.	: 0
Titulo : Verificación de la Integridad	Estructural de	la unión del	cuerno de la c	cuna y el cuerpo	o cilindrico
4 Procedimiento de cálculo y resultados	s – Método de	<u>Zick</u>			
<u>Materiales</u>					
Material envolvente y cabezales : SA - 5 S m = Tensión adm.del SA - 516 Gr 70 (D ext = Diámetro exterior del equipo =	16 Gr. 70 ② T dis =	1406 342,58	Kgf / cm^2 = cm =	19976 134,87	psi pulg
1) <u>Envolvente</u>					
ts = Espesor envuelta adoptado =	2,540 0	cm			
D i = Diámetro interior de la envolvente =	D ext - 2 * ta	=	337,5	cm	
R = Radio medio =				171,0	cm
L = Longitud entre tangentes =				2346,0	cm
2) <u>Cabezales</u>					
Tipo : Semiesférico					
th = Espesor adoptado = 1,580	cm				
D i = Diámetro interior del cabezal = D ex	⟨t - 2 * ta =		339,4	cm	
3) <u>Calculo de peso equipo nuevo y va</u>	<u>icio</u>				
Elemento				Peso	
Cabezal izquierdo Envolvente Cabezal derecho Accesorios, soldaduras, etc.				2265 55467 2265 3553,2	
Peso total eq	uipo nuevo, va	acio sin, cun	las	63551,09	Kgf
4) Peso equipo nuevo y lleno de agua	<u>l.</u>				
Volumen y peso de agua					
V 1 = Volumen cabezales (2) =	,2618 * Di^3 =		20,474	m^3	
V 2 = Volumen cilindro = Pi/4 * D i^2 * V t = V 1 + V 2 = 230,352 W a = Peso de agua = 230351.7	L t = m^3 Kaf		209,877	m^3	
Peso del equipo nuevo sin cunas y lleno	de agua		293903	Kgf	

Г	U.T.N Facultad Regional Haedo	Fecha ·	febrero	20, 2022	Hoia 4 de	4
-				F actoriani		
-	Recipientes Contenedores de Presion	Realizo :	Damian	Fronciani	Documento Nº	REC-LPG-001
	Método de Zick	Equipo :	Recipiente	Gas Licuado	Rev. :	0
	Titulo : Verificación de la Integridad	Estructural de	e la unión del	cuerno de la c	cuna y el cuerpo	cilindrico
551 552	2 - El ángulo de contacto mínimo Tita 1	≥ Tita + 12°				
553 554 555	Tita = 145,6	•]	No cumple c	on la condició	n anterior, por la	<u>o tanto</u>
556	Tita 1 = 151,4	°	en el cálculo	de la tensión	circunferencial	<u>S4</u>
557 558 559	Considerando unicamente la envolvente	:				
560	b = Ancho de las cartelas de la cuna =				38,0	cm
561	t1 = Espesor envolvente =				2,540	cm
562	t2 = Espesor de la placa de desgaste =				0,000	cm
563	t = t1 + t2 =				2,540	cm
564	t^2 = t1^2 + t2^2 =				6,452	cm^2
565						
566	La tensión circunferencial sobre el recipi	iente, en el bo	orde de los cu	ernos de la cu	ina, es la siguiei	nte:
567						
568	S 4 adm.= Tensión admisible = 1.5 * ten	sión admisible	e del material	=	2109	Kgf/cm^2
569	01.4				4007	1/
570 571	5 4 =				-1367	Kgf/cm^2
572	$S/adm = 2100 \text{ Kaf/cm}^2 >$	S /c =	-1367	Kaf/cm^2	Verifica	
573		0 +0 -	-1007		Verniea	
574						
575						
576						
577						
578						
579						
580						
581						
582						
583						
584						
585						
586						
587						
588						
589						
590						
591						
592						
593						
594						
595						
590 507						
598						
599						
600						
601						
602						
603						
604						
605						

[U.T.N Facultad Regional Haedo	Fecha ·	febrero 20. 2022	Hoia 2 de	e 6
	Recipientes Contenedoros do Prosión	Realizó	Damián Erongiani		
	Metodologia propuesta por L.S.Ong	Equipo :	Recipiente Gas Licuado	Rev.	: 0
	Titulo : Verificación de la Integridad	Estructural de	la unión del cuerno de la c	cuna y el cuerpo	o cilindrico
276 277	Ks Factor de reducción debido a la exter	nsión de la plac	ca de desgaste a partir de	la relación en o	gráficos
278					-
280		función de	$\alpha_{s} = \alpha_{b}^{1/3} \left(\frac{t_{r}}{t_{r}} \right)$		
281 282			$s = \left(t \right)$		
283 284	La placa de desgaste actúa como un refi	uerzo local par	a disminuir la tensión desa	arrollada en el o	cuerno de la
285	cuna.				
286 287					
288 289	1) <u>Equipo nuevo y lleno de agua.</u>				
290	Se consideran cargas correspondientes	a equipo nuevo	o y lleno de agua		
291	Q = Carga en una cuna			146951,4	Kgf
293 294	r = Radio =			171,0	cm
295 296	t = Espesor de la envolvente =			2 540	cm
297				2,010	
298 299	tr = Espesor de la placa de desgaste =			2,000	cm
300 301	a = Distancia entre la línea de tangenc	ia y el centro c	le la cuna =	330,0	cm
302	b = Ancho de la placa de desgaste =			70,8	cm
303 304	c = Valor adoptado = LT - 2a =			1686,0	cm
305 306	26 = angulo de contacto = Tita			145 6	arados
307				,.	9.4400
308 309	$\alpha = \frac{a}{t}$				
310	$u_a = \frac{1}{r}\sqrt{r}$				
311					
313 314	$\underline{\alpha a = 0.235}$				
315					
316 317					
318					
319 320					
321					
322 323					
324					
325 326					
327					
328 329					
330					

	U.T.N Facultad Regional Haedo	Fecha :	febrero 20, 2022	2 Hoja 6 de 6								
	Recipientes Contenedores de Presión	Realizó :	Damián Fronciani	Documento N ^o REC-LPG-00)1							
	Metodología propuesta por L.S.Ong	Equipo :	Recipiente Gas Licuado	Rev. : 0								
	Titulo : Verificación de la Integridad	Estructural de	la unión del cuerno de la c	una y el cuerpo cilindrico								
551 552	3) <u>Cuna Rígida</u>											
553 554	Asumiendo que el soporte es rígido, obte	enemos como	αs = 0 y ks = 1									
555 556	Determinamos la tensión circunferencial	máxima en el	cuerno de la cuna y sobre	el recipiente para una								
557 558	condición de cuna rígida											
559 560	O f											
561 562	$\boldsymbol{\sigma}_{c} = K_{a}K_{b}K_{c}K_{s}\frac{Q}{t^{2}}\sqrt{\frac{t}{r}}$											
563												
565	σ c = 2642,9 <u>Kgf</u> > S4adm =	2109	Kgf/cm^2 No Verifica									
566 567	cm²											
568 569												
570 571												
572												
573 574												
575 576												
577												
578 579												
580												
581												
582 583												
584												
585 586												
587												
588												
589												
590 591												
592												
593												
594 595												
596												
597												
598												
599 600												
601												
602												
603												
604 605												
000												

Г

6.- Procedimiento de cálculo y resultados - Método de Elementos Finitos

<u>Cuna Elástica</u>

En un recipiente horizontal cilíndrico, la tensión circunferencial máxima ocurre en los cuernos de la cuna, simplemente debido a la discontinuidad estructural entre el cuerpo cilíndrico y el soporte.

Debido a la simetría geométrica y de cargas se modela ¼ del recipiente, el cual quedó conformado por aproximadamente 39.805 elementos.

En el plano de corte XY, en la mitad del equipo transversal al mismo, decimos que todos los nodos que están en ese plano van a tener condición de borde de simetría con respecto al plano XY. Entonces seleccionamos geometrías y el programa lo traslada a todos los nodos que están en esa geometría. Las condiciones de bordes a imponer son Uz = 0, es decir que todos los corrimientos en Z tienen que ser cero que son los corrimientos normales al plano. La otra condición de borde a imponer en esta condición de borde de simetría es restringir los giros en X e Y, es decir $\theta x = \theta y = 0$ que son los giros complementarios.

En el plano YZ, decimos que todos los nodos que están en ese plano van a tener condición de borde de simetría con respecto al plano YZ. Entonces seleccionamos geometrías y el programa lo traslada a todos los nodos que están en esa geometría. Las condiciones de bordes a imponer son Ux = 0, es decir que todos los corrimientos en X tienen que ser cero que son los corrimientos normales al plano. La otra condición de borde a imponer en esta condición de borde de simetría es restringir los giros en Y e Z, es decir θ y = θ z = 0 que son los giros complementarios.

En lo que respecta a las condiciones de bordes de simetría impuestas a la cartela intermedia son Ux = 0, es decir que todos los corrimientos en X tienen que ser cero que son los corrimientos normales al plano. La otra condición de borde a imponer en esta condición de borde de simetría es restringir los giros en Y e Z, es decir $\theta y = \theta z = 0$ que son los giros complementarios.

La condición de borde estructural general de la cuna, que corresponde a un empotramiento de la misma, es decir Ux = Uy = Uz = $\theta x = \theta y = \theta z = 0$ en el cual restringimos los seis grados de libertad.

Luego aplicamos las cargas que vamos a utilizar para nuestro análisis, que son el peso propio del equipo y la fuerza debido a la presión hidrostática del recipiente lleno de agua.

En el programa insertamos la función Face Meshing y lo aplicamos a todo el modelo con elementos cuadriláteros en donde visualizamos que se ordena el mallado en el momento que lo actualizamos.

A continuación se observan para las dos condiciones de soportación del equipo, las tensiones circunferenciales responsables de generar fallas estructurales en los recipientes horizontales contenedores de presión, en la zona ubicada en los extremos de los cuernos de las cunas, después de la placa de desgaste, sobre las paredes del recipiente.

Se densificó la zona cercana a la cuna con la finalidad de obtener resultados más detallados, dado que allí se producen grandes gradientes de tensión por los efectos de flexión, es decir como el objeto de nuestro estudio es la tensión circunferencial en los cuernos de la cuna sobre el recipiente, aplicamos un refinamiento en la zona de unión entre la cartela exterior o mayor y la placa de desgaste para analizar la zona en donde se produce la flexión producto de la cuña ejercida por la cuna en la envolvente incrementada por la discontinuidad estructural entre el cuerpo cilíndrico y el soporte. Asegurando la función convergencia de la malla con un margen de diferencia de 5% entre dos corridas sucesivas, aplicamos la operación de mallado con elementos cuadriláteros con un tamaño de 50 mm con un total de 39.468 nodos y 39.805 elementos.

Cuando aplicamos la función convergencia en la zona de refinamiento de la malla, pasamos de 39.468 nodos y 39.805 elementos a 40.802 nodos y 41.074 elementos cambiando un 3,4885%.

Analizando las tensiones circunferenciales sobre el recipiente, obtenemos las tensiones normales en una terna circunferencial, siendo la solicitación de compresión arrojada en la zona exterior de la envolvente (bottom), en la zona ubicada en los extremos de los cuernos de las cunas, sobre el recipiente después de la placa de desgaste que es el objeto de nuestro estudio de magnitud – 206,7 MPa equivalente a - 2.107,75 Kg/cm² (< S4 adm = 2.109 Kg/cm² Verifica).

<u>Cuna Rígida</u>

El apoyo del recipiente, se simuló apoyado en una cuna infinitamente rígida, es la que llamamos hipotéticamente una cuna con una rigidez muy alta o sea como si estuviese empotrada no toda la cuna sino las líneas donde están las cartelas y el alma de la cuna en contacto con la placa de desgaste.

Los nodos comprendidos en el área que abarca el apoyo de la cuna fueron restringidos en sus desplazamientos y giros.

Condición de borde circunferencial : Se restringen los desplazamientos en "X" con sus correspondientes giros complementarios.

Condición de borde radial : Se restringen los desplazamientos en "Y" con sus correspondientes giros complementarios.

Condición de borde longitudinal : Se restringen los desplazamientos en "Z" con sus correspondientes giros complementarios.

Se densificó la zona cercana a la cuna con la finalidad de obtener resultados más detallados, dado que allí se producen grandes gradientes de tensión por los efectos de flexión.

Aplicando un refinamiento en la zona de unión entre la cartela exterior o mayor y la placa de desgaste.

Asegurando la función convergencia de la malla con un margen de diferencia de 7% entre dos corridas sucesivas, aplicamos la operación de mallado con elementos triangulares con un tamaño de 60 mm, y obtenemos las tensiones normales en una terna circunferencial, en la zona exterior de la envolvente (bottom), en la zona ubicada en los extremos de los cuernos de las cunas, después de la placa de desgaste que es el objeto de nuestro estudio, siendo la solicitación de compresión arrojada de magnitud - 278,21 MPa equivalente a - 2.836,95 Kg/cm² (> S4 adm = 2.109 Kg/cm² No Verifica) con un total de 28.361 nodos y 55.033 elementos.

Cuando aplicamos la función convergencia en la zona de refinamiento de la malla, pasamos de 28.361 nodos y 55.033 elementos a 29.287 nodos y 56.888 elementos cambiando un 6,6532%.

7.- Comparación de resultados de los tres procedimientos

<u>Cuna Elástica</u>

Con el objeto de verificar la Integridad Estructural de la unión del cuerno de la cuna y el cuerpo cilíndrico de un recipiente de Gas Licuado, evaluamos la tensión circunferencial de compresión en los cuernos de la cuna sobre la envolvente.

Aplicando el método clásico de Zick, de acuerdo a la fuerza de reacción en la cuna Q y a las dimensiones geométricas de Equipo, obtenemos una tensión de compresión de - 1.367 Kg/cm². Debemos aclarar que no tuvimos en cuenta para el cálculo del esfuerzo el aporte de la placa de desgaste, debido a que la geometría de la misma no cumple con la condición impuesta de ángulo mínimo de contacto Tita $1 \ge$ Tita + 12°, utilizando el criterio de ASME VIII Div 2.

Para la condición de cuna flexible, aplicando la ecuación paramétrica de Ong la tensión arrojada es – 2.074,7 Kg/cm², superando al método de Zick en un orden del 51,77 %.

El Resultado obtenido con el Método de Elementos Finitos de magnitud – 2.107,75 Kg/cm² predice el valor encontrado por Ong superando al mismo en un orden del 1,59 %.

Cuna Rígida

Aplicando la ecuación paramétrica de Ong para la condición de cuna rígida, calculamos una tensión de – 2.642,94 Kg/cm², mientras que con la herramienta denominada Técnica de Evaluación Avanzada o Método de Elementos Finitos en la cual se simuló el recipiente apoyado en una cuna rígida en la que todos los nodos comprendidos en el área que abarca el apoyo de la cuna fueron restringidos en sus desplazamientos y giros, obtuvimos una tensión de - 2.836,95 Kg/cm². Es decir, notamos una diferencia del orden del 7,34 %, y entendemos que ese desvío se debe a que modificando el grado de rigidez, se modifica el estado tensional del recipiente en el borde con el extremo de la cuna consecuencia de su mayor rigidez.

Para está condición, si comparamos la ecuación de Ong con el Método de Zick, superaríamos a este último en un orden del 93,33 %.

Se adjunta Cuadro Comparativo de Tensiones para las diferentes condiciones de soporte del recipiente.

Cuadro Comparativo de Tensiones							
	Tensión Circu	Inferencial S4					
Método de Zick	- 1.367	Kg/cm ²					
	Condición de Sop	orte del Recipiente					
	Cuna Elástica	Cuna Rígida					
Ecuación Paramétrica Ong	- 2.074,7 Kg/cm ²	- 2.642,9 Kg/cm ²					
% Incremento Zick / Ong	51,77%	93,33%					
Método de Elementos Finitos	- 2.107,75 Kg/cm ²	- 2.836,95 Kg/cm ²					
% Incremento Ong / FEA	1,59%	7,34%					
S 4 adm = 1,5 S m	2.109	۲g/cm ²					
Verifica/No Verifica	Verifica	No Verifica					

8.- Procedimiento de Soldadura

El método recomendado para las soldaduras de las virolas de este recipiente es el SAW debido a las dimensiones y espesores del mismo, ya que permite la automatización del proceso en la mayor parte de los cordones requeridos, logrando así una soldadura de mayor calidad y uniformidad siendo esto un punto clave en los recipientes a presión. Este sistema se utilizará para las soldaduras radiales y longitudinales del cuerpo, el resto de los cordones tanto en cabezales como en las aberturas y refuerzos serán realizadas mediante SMAW debido a la flexibilidad que brinda este proceso.

A continuación se realiza la selección de los materiales de aporte en el caso de las soldaduras realizadas por método SAW.

El acero SA-516 GR70 admite según la AWS A5.17 para el método de soldadura SAW un material de aporte de la serie: EM12K. Para este proceso se utiliza un fundente F7A2-EM12K, especialmente formulado para el material de aporte seleccionado y el material base.

Para la fabricación de la estructura de las cunas soportes, se adoptó el proceso GTAW para la construcción de la pasada de raíz utilizando el consumible ER70S-3. Mientras que para las pasadas de relleno y terminación adoptamos el proceso SMAW aportando el electrodo básico E7018, el cual está especialmente formulado para este tipo de acero, logrando un bajo contenido de hidrogeno en el cordón, obteniendo excelentes propiedades de resistencia que la igualan a la de la placa, como así también una buena tenacidad a bajas temperaturas. Para la soldadura de raíz se utilizará un electrodo de 2,5 mm de diámetro para tener mejor acceso en el bisel y lograr una buena penetración. Luego en la soldadura de relleno y terminación se utilizarán electrodos de 3,25 mm y 4 mm respectivamente, de manera de maximizar el aporte en los cordones. Por lo tanto se conforma un Procedimiento de Soldadura combinado con Procesos GTAW/SMAW.

A continuación en el Detalle A, observamos las dimensiones y el detalle del bisel de la soldadura del cuerpo cilíndrico con el cabezal semiesférico.

Mientras que en el Detalle B, se indican las soldaduras a tope longitudinales y circunferenciales del cuerpo de presión con preparación del bisel en "X" con el fin de maximizar la penetración y disminuir las tensiones durante el proceso de soldadura y asimétrica para facilitar la soldadura en posición horizontal – vertical.

Finalmente dentro de las costuras más comprometidas visualizamos en el Detalle C las costuras de unión del cabezal semiesférico con diseño del bisel en "V", con el fin de obtener un cómodo acceso del electrodo, de manera de asegurar una buena fusión en los bordes y penetración completa.

WPS 508

Evaluación de la Soldabilidad del acero SA-516 GR70

Carbono Equivalente :

Fórmula IIW: en % de peso :

CE = C + (Mn + Si) + (Cr + Mo + V) + (Ni + Cu)6 5 15

Reemplazando valores, obtenemos un Carbono Equivalente CE = 0,547 %

Como el CE = 0,547 % < 0,55 %, esto implica que es un acero de buena soldabilidad

Fórmula de Ito y Bessyo : en % de peso

 $Pcm = C + \frac{Si}{30} + \frac{Mn}{20} + \frac{Cu}{20} + \frac{Ni}{60} + \frac{Cr}{20} + \frac{Mo}{15} + \frac{V}{10} + 5 B$

Reemplazando valores, obtenemos un Carbono Equivalente Pcm = 0,353 %

Métodos predictivos para establecer la temperatura de precalentamiento

Método de Seferian

CT equivalente total del Carbono, suma del equivalente Químico (Cq) y el equivalente en Carbono del espesor (Ce), que depende a su vez del propio espesor y de la templabilidad del acero.

CT[%] = Cq + Ce = Cq (1+0,005e)donde : e = espesor [mm] $Cq[\%] = C + \frac{Mn + Cr}{9} + \frac{Ni}{18} + \frac{7Mo}{90}$ e = 25,4 mm para ASTM A516 Gr 70 $Cq \% = 0,413 \ \%$ CT = 0,465 \%

Propone la siguiente expresión para el cálculo de la temperatura de precalentamiento

Tp[°C] = 350
$$\sqrt{CT - 0.25}$$

Tp = 162.3 °C

Seferian, también determina gráficamente la temperatura de precalentamiento, según la figura.

Obtenemos la Mínima Temperatura de Precalentamiento y Entre Pasadas de T = 160 °C

Tratamiento térmico

De acuerdo al apartado UW-2 del Código para todo tipo de acero al carbono P-No. 1 con espesores superiores a 16 mm se requiere un tratamiento térmico post soldadura. De acuerdo a esto y en función de lo recomendado por la tabla UCS-56 del Código se define un tratamiento térmico necesario de post soldadura de 595°C durante al menos 1 hora para las soldaduras en el cuerpo del recipiente y 595°C durante 45 minutos mínimo para los cabezales.

			ESPECIFICACION DE PROCEDIMIENTO DE SOLDADURA (EPS) (ASME IX / OW-483)									
	Ń		EPS N° I	EPS 504		Rev: 0	22/02/202	Re 2 An	alizado po	or: From	iciani Da	mián
						reena.	22/02/202	2 др	iooado po	n. Asta	Lauarac	
	Proceso de Soldadura: SAW Tipo: AUTOMÁTICA											
JUNTA (QW-402) 3 ± 0.5												
Diseño d	e Junta:	Filete										
Respaldo: SI: No: X												
Material de Respaldo: N/A												
Metal: N/A												
Metal no fundible: N/A												
Material	no metá	lico: N	J/A		Otro:	N/A						
METAL	BASE (OW-40	3)		01101	1011						
P-N°. 1	Grupo	N°. 2	a P-N	1°. 1 G	rupo Nº	2. 2	Especific	aciór	n: ASTN	1 SA 51	6- Gr. 70	70
D					T	5/022	a Especii	1cac1	on: AS	1 M SA	,	/0
Kango de	espesor	es:	Fulk or '		Tope:	5/8″ a	1" as de 0.17	,	Filete: 5	/10″al Sodo-		
Kango de	Diameti	ros de 1	uberia:		1 ope:	iviayo	tes de $2\frac{1}{2}$		rilete: 1	ouos		
METAL	DE APO	ORTE (OW-404)								
		(1°		2°		3°		0	tras
]	Especific	cación (SFA). N°	: AWS	S 5.17		AWS 5.17	·	AWS 5.17		AW	S 5.17
	Clasific	cación A	AWS. N°	: EM	[12K		EM12K		EM12K		EM	[12K
			F- N°	?:	3		3		4			4
			A- N ^c	':	5		5		5			5
Diái	netro del	l Metal	de aporte	2,5	2,5 mm		2,5 <i>mm</i>		4 <i>m</i>	т	4	тт
		1	Fundente	: F7A2-E	EM12K	F	7A2-EM12	K	F7A2-EI	M12K	F7A2-1	EM12K
											,	
POSICIÓN	(QW-405	5)		PRE	CALENT	AMIEN	ГО (QW-406	5) (0.00	TRATAN	1IENTO	TERMICC	QW-407)
Posicion	de la jun	ta a Toj	pe: Todos	s Temp. n	un. de pr	recalent	amiento: $1(0.90)$	50 °C	Rango d	e Temp	.: Ver N	ota
Avance de	el cordon	Sup. X	Inf	Dreaslaw	nax. Enu	re pase	S: 100 °C	No	Rango d	e Tiemp	00:	
Posicion o	le la junta	a a filete	e: Todos	Precalen		manten			ÉCTDIC		1400	
GAS DE	PROTE		N (QW-4	105)				SEL		AS(Q)	v-409)	
			omposici	On Elui	Corr	nente: A	AC: DO	$\therefore X$	Polaria	ad: (+	·) (D)	20.20
Dalaardá	Ga	as .	Mezcia	Flujo	Amp	os (Ran	go): 90-20	00 		Volts	(Rango)	20-30
De arrasti	e				I ipo	y tamai lo de tru	10 de electro	do m	e Tungster atal an Gl	10: P	N/A N/A	
De respal	do				Rang	o de ua	elocidad de	e alim	entación d	tel alam	bre: N	/A
TECNIC	A (OW-	-410)		1	Tun	50 40 1	lio orada at	, ann	<u>entae</u> ion (aer ururn		
Oscilante	o de Va	ivén:	Indiferer	ite				Mé	todo de re	spaldo	posterior	: N/A
Limpieza	inicial y	v entre p	ases: Li	mpiar con	cepillo d	de acer	o de alta ve	locida	ad	1 1	L	
Oscilació	n: Máxi	imo tres	s veces el	diámetro	del elect	rodo.						
		Ν	/letal de a	porte		Corrie	nte					
Pasada	Proceso	Clasifi	icación	Diámetro	Polarida	ad Am	p. (Rango)	Volt	t. (Rango)	Vel. de	avance.	Otros
1°	SAW	EM1	2K	2,5 mm	DC(+)		250-500		20-30	30-40	cm/min	
2°	SAW	EM	12K	2,5 mm	DC(+) 2	250-500		20-30	30-40	cm/min	
3° SAW EM12K 4 mm DC(+) 400-800 20-30 30-40 cm/min												
Otras	SAW	EM	12K	4 <i>mm</i>	DC(+) 4	00-800		20-30	30-40	cm/min	
Notas:			·									
Tr	atamient	to Térm	ico: Cale	ntamiento	libre has	sta 450°	C. Continu	ıar ca	lentamien	to a 200	°C/Hr. h	asta
730°C. N	lantener	a 730°C	C por dos	horas. Enf	friar a 26	50°C/H	. hasta 450	°C. C	Continuar	con enfr	iamiento	libre
hasta la t	emperati	ura amb	oiente. Ca	lentar hast	a 2 ½" la	aterales	a la junta.					

	J	ESPECIFICACION DE PROCEDIMIENTO DE SOLDADURA (EPS) (ASME IX / QW-483)											
	K		EPS N°	EPS 505	R Fecha:	ev: 0 22/02/2022	Realizado por: Fronciani Damián/2022Aprobado por: Asta Eduardo			amián .o			
-													
	O. 11 1 10 0		Proceso d	le soldadura	I: SM	IAW	Tipo: MANU	AL					
JUNTA (QW-402)						3 ± 0.5					
Diseño de	e junta:	Filete		NT N7						_			
Respaldo	: :	SI:	27/1	No: <u>X</u>						5			
Materia	al de resp	aldo:	N/A						\neg				
Meta	1: N/A	111.1											
Meta	l no func	11ble:	N/A			T / A		50° ±5°	~				
Mate	rial no m		$\frac{102}{102}$		Otro: N	//A							
P-N°. 1Grupo N° 1 o 2a P-N°. 1Grupo N°. 1 o 2Especificación:ASTM SA 516-Gr. 70 a Especificación:Rango de espesores:Tope:5/8" a 1"Filete:5/8" a 1 1/2"Rango de diámetros de tubería:Tope:Mayores de 2 ½"Filete:Todos													
Otros:													
METAL DE APORTE (QW-404)													
	E	• ,	(CEA) N			2°	30	5 1	Ot	ras			
	Clasific	cación	(SFA). N	1°: AW	5 5.1 018	E7018	E7018	5.1	E7	018			
	Clasific	acion	F-N	го. <u>Г</u> 7	3	3	4			4			
			A- N	lo.	5	5	5			5			
Diái	netro del	l Meta	al de aport	te: 2,5	mm	3,25 mm	4 mm	ı	4 n	nm			
			1			,							
POSICIÓN	(QW-405	5)		PREC	CALENTAM	IENTO (QW-406)	TRATAM	1IENTO T	ΓÉRMICO	(QW-407)			
Posición o	le la junta	a a top	e: Todos	Temp. mi	n. de preca	lentamiento: 16	0 °C Rango d	e temp.	N/A				
Avance de	el cordón	Sup.	X Inf.	Temp. ma	x. Entre pa	ases: 160 °C	Rango d	e tiemp	o:_N/A_				
Posición o	le la junta	a a file	te: Todos	Precalenta	miento mai	ntenido: Si: No:	X						
GAS DE	PROTE	CCIĆ)N (OW-4	408)	CARA	CTERÍSTICA	SELÉCTRIC	AS (OV	V-409)				
			Composi	ción	Corrier	nte: AC: DC	C: X Polarid	ad:	(+)				
	Ga	as	Mezcla	Flujo	Amps	(Rango): 90-20	00	Volts	(Rango):	20-30			
Del cordó	n				Tipo y	tamaño de elect	rodo de Tungst	teno: N	I/A				
De arrastr	e				Modo	de transferencia	de metal en Gl	MAW:	N/A				
De respalo	lo				Rango	de velocidad de	alimentación o	lel alam	bre: N/	A			
TECNIC Oscilante	CA (QW- o de Va inicial v	410) ivén:	Indifere	ente impiar con	cepillo de a	acero de alta vel	Método de re ocidad	espaldo	posterior:	N/A			
Oscilació	n: Máxi	imo tr	es veces e	el diámetro	del electro	do.							
			Metal de	aporte	C	orriente							
Pasada	Proceso	Clasi	ficación	Diámetro	Polaridad	Amp. (Rango)	Volt. (Rango)	Vel. de	avance.	Otros			
1°	SMAW	E	7018	2,5 mm	DC(+)	90-100	20-30	12-16	cm/min				
2°	2° SMAW E7018 3,25 mm DC(+)				90-100	20-30	12-16	cm/min					
3°	SMAW	E	7018	4 <i>mm</i>	DC(+)	140-200	20-30	12-16	cm/min				
Otras	SMAW	E	7018	4 <i>mm</i>	DC(+)	140-200	20-30	12-16	cm/min				
Notas:													

V	E	ESPECIFICACION DE PROCEDIMIENTO DE SOLDADURA (EPS) (ASME IX / QW-483)										
木	EPS N°	EPS 507	Re Fe	ev: 0 echa: 22/02/2022	Realizado po Aprobado po	or: From or: Asta	iciani Da Eduardo	mián				
		1 0 11 1	C A	117	T ' () A I IT							
	Proceso(s)	de Soldad	ura: SA	W	11po(s): AU1	OMAT	ICA					
JUNIA(QW-402)) T D' 1	66 3 799				REPEL	AR SOLD.					
Diseno de Junta: A	Tope Bisel er	1 V			60	1						
Respaldo:	SI:	No: X		15.8	5	17		EXT.				
Material de Respa	ldo: N/A			10,0		XIIII	<u>[</u> <u>x</u>]]]]]					
Metal: N/A							HHHK	25,4				
Metal no fundible:	N/A			1	2	- Mill	4 8					
Material no metálico: N/A Otro: N/A N.												
METAL BASE (Q	W-403)	10 1 0	10		·/ • • • • • •							
P-N°. 1 Grupo N°. 2 a P-N°. 1 Grupo N°. 2 Especificación: ASTM SA516-70												
D 1			Т	a Especifi	cacion: AS	I M SA3	10-70					
Rango de espesores	S:		Tope: 5/	8" a 1" Inverse de 2 1/"	Filete: 5	716° a 1 Todos						
Ango de Diametro	os de Tuberia:		Tope: M	layores de 2 72	Fliete:	odos						
METAL DE APOI	2TF (OW-404)										
METAL DE AI OI	XIE (Q 11 - 404	, 1	0	2°	39	,	Ot	tras				
Especifica	: AWS	\$ 5.17	AWS 5.17	AWS	5.17	AWS	\$ 5.17					
Clasifica	EM	12K	EM12K	EM1	2K	EM	12K					
	F- N ^o	·:	3	3	4			4				
	$A-N^{\circ}$:	5	5	5			5				
Diámetro del	Metal de aporte	2,5	mm	2,5 mm	4 <i>m</i>	т	4 1	mm				
	Fundente	e: F7A2-E	EM12K	F7A2-EM12	K F7A2-E	M12K	F7A2-E	EM12K				
POSICIÓN (QW-405)		PREG	CALENTAN	IENTO (QW-406)) TRATAN	AIENTO 7	TÉRMICO	(QW-407)				
Posición de la junta	a a Tope: Todo	s Temp. m	iín. de preca	alentamiento: 16	0 °C Rango d	le Temp	.: Ver N	ota				
Avance del cordón	Sup. X Inf.	Temp. n	náx. Entre j	pases: 160 °C	Rango d	le Tiemp	00:					
Posición de la junta	a filete: Todos	Precalent	tamiento ma	antenido: Si: X N	lo:							
GAS DE PROTEC	CCION (QW-	405)	CARA	CTERÍSTICA	SELECTRIC	CAS (QV	V-409)					
	Composic	ión	Corrier	nte: AC: DC	: X Polarid	ad: (+	·)					
Gas	s Mezcla	Flujo	Amps ((Rango): 90-20	0	Volts	(Rango):	20-30				
Del cordón			Tipo y t	amaño de electro	do de Tungster	10: N	J/A					
De arrastre			Modo (de transferencia	de metal en G	MAW: del alom	N/A bra: N	/ ^				
TECNICA (OW-	10)		Kaligo	de velocidad de	annientaeion		UIC. IN	A .				
Oscilante o de Vaix	vén: Indiferen	ite			Método de re	esnaldo	nosterior	N/A				
Limpieza inicial v	entre pases: L	impiar con	cenillo de :	acero de alta vel	ocidad	sparao	posterior	1.111				
Oscilación: Máxir	no tres veces e	l diámetro o	lel electroc	10								
	Metal de a	norte	C	orriente								
Pasada Proceso	Clasificación	Diámetro	Polaridad	Amp. (Rango)	Volt. (Rango)	Vel. de	avance.	Otros				
1° SAW	EM12K	2.5 mm	DC(+)	250-500	20-30	30-40	cm/min	0 100				
2° SAW	EM12K	2,5 mm	DC(+)	250-500	20-30	30-40	cm/min					
3° SAW	EM12K	4 <i>mm</i>	DC(+)	400-800	20-30	30-40	cm/min					
Otras SAW	EM12K	4 <i>mm</i>	DC(+)	400-800	20-30	30-40	cm/min					
Notas:	I	ļ					I					
Tratamiento	Térmico: Cale	ntamiento	libre hasta	450°C. Continua	ar calentamier	to a 200	°C/Hr. ha	asta				
730°C. Mantener a	730°C por dos	horas. Enf	riar a 260°	C/Hr. hasta 450°	°C. Continuar	con enfr	iamiento	libre				
hasta la temperatur	ra ambiente. Ca	alentar hast	a 2 ½" late	rales a la junta.								

	J		ESPECIFICACION DE PROCEDIMIENTO DE SOLDADURA (EPS) (ASME IX / QW-483)										
	K	EPS	N° EPS 508	R Fecha:	ev: 0 22/02/2022	Realizado Aprobado	por: Fronciani D por: Asta Eduaro	amián do					
		Proces	o de soldadu	ra: SN	IAW	Tipo: MANU	AL						
JUNTA (QW-402)				-							
Diseño de	e junta:	A Tope Bise	l en "V"			60°(±0	,5) <u>(5)</u>						
Respaldo	: 5	SI:	No: 2	<u> </u>	FYT	7	7 -						
Materia	al de resp	aldo: N/A					X- <u>-</u>						
Meta	l: N/A					//// k		- //					
Meta	l no fund	lible: N/A											
Mate	rial no m	netálico: N/	4	Otro: N	J/A INT. 2	2(+1/-0,5)	Ť	1					
METAL	BASE (QW-403)											
P-N°. 1Grupo N°. 2a P-N°. 1Grupo N°. 2Especificación:ASTM SA 516-Gr. 70a Especificación:ASTM SA 516-Gr. 70a Especificación:ASTM SA 516-Gr. 70Rango de espesores:Tope:5/8" a 1"Filete:5/8" a 1"Rango de diámetros de tubería:Tope:Mayores de 2 ½"Filete:Todos													
Otros:													
METAL	DE APO	ORTE (QW-	404)	10	20			,					
	г · с	·/ (CEA)			2°	30	$\frac{0}{51}$	tras					
	Clasific	ación (SFA)		VS 5.1 7018	AWS 3.1 E7018	AWS E7018	5.1 AV	NS 3.1 7018					
	Clasific	acioli Aws. F	Nº.	3	3	4		4					
		A	Nº.	5	5 5			5					
Diá	netro del	Metal de ap	orte: 2	.5 mm	3.25 mm	4 mn	<i>i</i> 4	<u> </u>					
		r)	-) - · ·								
POSICIÓN	(QW-405	j)	PRE	ECALENTAM	IIENTO (QW-406)	TRATAN	/IENTO TÉRMICO	(QW-407)					
Posición o	le la junta	a tope: Todo	s Temp. n	nin. de preca	lentamiento: 16	0 °C Rango d	le temp.: Ver No	ota					
Avance d	el cordón	Sup. X Inf.	Temp. n	nax. Entre pa	ases: 160 °C	Rango d	le tiempo:						
Posición o	le la iunta	a filete: Tod	Precalent	tamiento ma	ntenido: Si:X No	:	-						
GAS DE	PROTE	CCIÓN (OV	V-408)	CARA	CTERÍSTICA	SELÉCTRIC	CAS (OW-409)						
		Compo	sición	Corrie	nte: AC: DC	C: X Polaric	lad: (+)						
	Ga	is Mezc	a Flujo	o Amps	(Rango): 90-20	00	Volts (Rango)	: 20-30					
Del cordó	n			Tipo y	tamaño de elect	rodo de Tungs	teno: N/A						
De arrastr	e			Modo	de transferencia	de metal en G	MAW: N/A						
De respalo	lo			Rango	de velocidad de	alimentación	del alambre: N	/A					
TECNIC	CA (QW-	410)											
Oscilante	o de Va	ivén: Indif	erente			Método de re	espaldo posterior	: N/A					
Limpieza	inicial y	entre pases:	Limpiar con	n cepillo de	acero de alta vel	ocidad							
Oscilació	n: Máxi	imo tres vece	s el diámetro	o del electro	do.	1							
	1	Metal	le aporte	C	orriente		1						
Pasada	Proceso	Clasificació	n Diámetro	Polaridad	Amp. (Rango)	Volt. (Rango)	Vel. de avance.	Otros					
1°	SMAW	E7018	2,5 mm	DC(+)	90-100	20-30	12-16 cm/min						
2°	2° SMAW E7018 3,25 mm DC(+)				90-100	20-30	12-16 cm/min						
5° Otroa	SMAW	E/018 E7019	4 mm	DC(+)	140-200	20-30	12-16 cm/min						
Notas	SIVIAW	E/018	4 <i>mm</i>	DC(+)	140-200	20-30	12-10 cm/min						
Tiotas.	atamient	o Térmico:	Calentamien	to libre has	sta 450°C Cont	inuar calentar	niento a 200°C/	Hr. hasta					
730°C. N	/antener	a 730°C por	dos horas.	Enfriar a 26	50°C/Hr. hasta 4	50°C. Continu	ar con enfriamie	ento libre					
hasta la t	emperati	ıra ambiente	Calentar ha	sta 2 ½" late	erales a la junta.								

	ESPECIFICACION DE PROCEDIMIENTO DE SOLDADURA (EPS) (ASME IX / QW-483)											
	K	EPS N	° EPS 510	Ro Fecha: 2	ev: 0 22/02/2022	Realizado Aprobado	por: Fronciani I por: Asta Eduar	Damián do				
		Proceso	de soldadura	ı: GT	AW/SMAW	Tipo: MANU	AL					
JUNTA (QW-402)										
Diseño de	e junta:	A Tope Bisel	en "V"			75°(±0	,5)					
Respaldo	: 9	SI:	No: X		EVT	7	2,0,5					
Materia	ıl de resp	aldo: N/A			7////		<u> </u>					
Meta	l: N/A					//// k		- //				
Meta	l no fund	lible: N/A					<u>7774</u> [[],					
Material no metálico: N/A Otro: N/A ^{INT.} 2(±0,5)												
METAL	BASE (QW-403)										
P-N°. 1	Grupo	N°. 1 a P	-N°. 1 G	rupo N°.	l Especifica	ación: ASTM	1 SA 105					
				_	a Especifi	icación: AST	M SA 106					
Rango de	espesor	es:		Tope: 5	5/8" a 1"	Filete: 5/8	"al"					
Rango de	diametr	os de tuberia:		Tope: 1	Mayores de $2^{1/2}$	Filete: I	odos					
METAI			0.4)									
WILIAL	DE AFC	\mathbf{V}	U4)	1°	2°	30)tras				
	Especific	ación (SFA). 1	N°: AWS	5 5.18	AWS 5.1	AWS	5.1 A	WS 5.1				
	Clasific	ación AWS. 1	N°: ER7	/0S-3	E7018	E7018	Е	7018				
		F-1	N°:	6	4	4		4				
		A-1	V°:	1	5	5		5				
Diái	netro del	Metal de apoi	te: 2,4	mm	3,25 mm	4 <i>mn</i>	<i>i</i> 4	mm				
POSICIÓN	(QW-405	()	PREC	CALENTAM	IENTO (QW-406)	TRATAN	IIENTO TÉRMICO	D (QW-407)				
Posición o	le la junta	a a tope: Todos	Temp. mi	n. de preca	lentamiento: 30	°C Rango d	e temp.: N/A					
Avance de	el cordón	Sup. X Inf.	Temp. ma	x. Entre pa	uses: 95 °C	Rango d	e tiempo: <u>N/A</u>					
Posición o	le la junta	a filete: Todos	Precalenta	miento mai	ntenido: Si:No	: <u>X</u>						
GAS DE I	PROTE	CCIÓN (QW-	-408)	CARA	CTERÍSTICA	SELÉCTRIC	CAS (QW-409)					
		Composi	ción	Corrie	nte: AC: DC	C: X Polarid	lad: (+)					
	Ga	is Mezcla	Caudal(l/m	in) Amps	(Rango): 50-20	00	Volts (Rango)	: 20-30				
Del cordó	n /	Ar. 99,99	% 13	Tipo y	tamaño de elect	rodo de Tungs	teno: EW Th 2 I	Diám. 2,4				
De arrastr	e			Modo	de transferencia	de metal en G	MAW: N/A					
De respaie	10	11.0		Rango	de velocidad de	alimentacion o	del alambre: N	/A				
TECNIC	A(QW)	410)	4 .			M(4, 1, 1, 1,	11	NT/A				
Uscilante	o de va	iven: Indifer	impier con	anilla da i	aara da alta val	Metodo de re	espaido posterio	r: N/A				
Osoilagió	ni Máy	imo tras vacas	al diámatro	del electro	do	ocidad						
Oscilacio	11. IVIAA	Metal de	anorte	C	orriente							
Pasada	Proceso	Clasificación	Diámetro	Polaridad	Amp (Rango)	Volt (Rango)	Vel de avance	Otros				
10	GTAW	ER 708-3	2.4 mm	DC(-)	90-100	10-17	5-6 cm/min	0103				
2°	SMAW	E7018	3,25 mm	DC(+)	140-200	20-30	12-16 cm/min					
	SMAW	E7018	4 <i>mm</i>	DC(+)	140-200	20-30	12-16 cm/min					
Otras	SMAW	E7018	4 <i>mm</i>	DC(+)	140-200	20-30	12-16 cm/min	L				
Notas:												

		PLAN		TALLE DE	UNIONES	SOLDADAS	(Welding	Мар)	DOCUMEN	ITO Nº 001		FECHA: 30/01/2	022					
		OBRA: Proyect	to Integrado	r Especializad	ción Ing. Est.	Mecánica		OBRA:	-			REVISION: 0			-			
		CONTRATO N°	:-				PARTE: Reci	piente LPG Ca	pacidad : 2	27 m3 - Coi	njunto y Detalles	HOJA: 1 DE	1					
		PLANO DE RE	FERENCIA N	I°: REC-LPG-	001-2022													
DATOS	DE SOLDADURA		MATERIA	L BASE 1			MATERIAL	BASE 2			CALIFICACION PF		E SOLDADUR	A		CALIFICACION SOLI	DADORES	
COSTURA N°	TIPO DE JUNTA (a tope / filete)	DESCRIPCION	DIAMETRO (mm)	ESPECIF. MATERIAL	ESPESOR (mm)	DESCRIPCION	DIAMETRO (mm)	ESPECIF. MATERIAL	ESPESOR (mm)	NORMA	PROCEDIMIENTO N°	DIAMETROS (mm)	ESPESORES (mm)	REGISTRO N°	CERTIFICADO Nº	FECHA DE VENCIMIENTO	DIAMETROS (mm)	ESPESORES (mm)
C1	А Торе	Envolvente	-	SA 516 Gr 70	25,4	Casquete	-	SA 516 Gr 70	15,8	ASME IX	WPS 507	-	15,8 a 25,4	RPS - P1	RCS - S1	31/12/2022	12,7 a 3500	4,78 a 25,4
C2	A Tope en "X"	Envolvente	-	SA 516 Gr 70	25,4	Envolvente	-	SA 516 Gr 70	25,4	ASME IX	WPS 507	-	15,8 a 25,4	RPS - P1	RCS - S1	31/12/2022	12,7 a 3500	4,78 a 25,4
C3	A Tope en "V"	Casquete	-	SA 516 Gr 70	15,8	Casquete	-	SA 516 Gr 70	15,8	ASME IX	WPS 508	-	15,8 a 25,4	RPS - P2	RCS - S2	31/12/2022	12,7 a 3500	4,78 a 25,4
C4	Filete	Envolvente	-	SA 516 Gr 70	25,4	Placa de Desgaste	-	SA 516 Gr 70	20	ASME IX	WPS 504	-	7,9 a 25,4	RPS - P3	RCS - S2	31/12/2022	12,7 a 3500	4,78 a 25,4
C5	Filete	Alma Cuna	-	ASTM SA-36	25,4	Placa de Desgaste	-	SA 516 Gr 70	20	ASME IX	WPS 505	-	15,8 a 38,1	RPS - P4	RCS - S2	31/12/2022	12,7 a 3500	4,78 a 25,4
C6	Filete	Cartela Cuna	-	ASTM SA-36	20	Placa de Desgaste	-	SA 516 Gr 70	20	ASME IX	WPS 505	-	15,8 a 38,1	RPS - P4	RCS - S2	31/12/2022	12,7 a 3500	4,78 a 25,4
C7	Filete	Cartela Cuna	-	ASTM SA-36	20	Placa Base	-	ASTM SA-36	38	ASME IX	WPS 505	-	15,8 a 38,1	RPS - P5	RCS - S3	31/12/2022	12,7 a 3500	4,78 a 25,4
C8	Filete	Alma Cuna	-	ASTM SA-36	25,4	Placa Base	-	ASTM SA-36	38	ASME IX	WPS 505	-	15,8 a 38,1	RPS - P5	RCS - S3	31/12/2022	12,7 a 3500	4,78 a 25,4
C9	Filete	Niple Caño	508	ASTM SA-106	15,8	Envolvente	-	SA 516 Gr 70	25,4	ASME IX	WPS 505	60,3 a 610	7,9 a 15,8	RPS - P6	RCS - S3	31/12/2022	12,7 a 3500	4,78 a 25,4
C10	A Tope en "V"	Niple Caño	508	ASTM SA-106	15,8	Brida 20" WN RF	700	ASTM SA-105	15,8	ASME IX	WPS 510	60,3 a 610	7,9 a 15,8	RPS - P7	RCS - S3	31/12/2022	12,7 a 3500	4,78 a 25,4

9.- Evaluación de una fisura según BS 7910

Datos de Entrada :

Recipiente diseñado según ASME VIII Div 1 :

- Material SA 516 Gr. 70
- Diámetro interno 3.375 mm
- Espesor envuelta t = 25,4 mm
- Presión de Diseño 17,25 Kg/cm²
- Sy = 38.000 psi = 262 MPa (N/mm²) = 2.671,66 Kg/cm² (tensión de fluencia)
- Sr = 70.000 psi = 482,632 MPa (N/mm²) = 4.921,49 Kg/cm² (tensión de rotura)
- Sm (tensión admisible) el menor valor de [(2/3) Sy ; (1/3,5) Sr]
 - (2/3) Sy = (2/3) 38.000 psi = 25.333,3 psi = 1.781,1 Kg/cm²
 - (1/3,5) Sr = (1/3,5) 70.000 psi = 20.000 psi = 1.406 Kg/cm²
- -Adoptamos Sm = 1.406 Kg/cm² = 20.000 psi (tensión admisible)
- Fisura circunferencial detectada por END, superficial con profundidad, ad= 5 mm y largo, 2cd= 40mm.
- La fisura ha sido detectada en el metal de soldadura, considerar un error de detección de +10%

Evaluación requerida :

- Evaluar si la discontinuidad tipo fisura detectada es aceptable para la condición de diseño.

-Realizar una tabla de tamaños aceptables de discontinuidades para este componente para la condición de diseño.

Según el apartado UG-21 del código ASME la relación entre la Presión de Operación y la Presión de Diseño es la siguiente :

Presión Diseño = 1,1 Presión de Operación

Conociendo la Presión de Diseño, puedo determinar según la relación anterior la Presión de Operación.

Presión de Operación = Presión de Diseño / 1,1 = 17,25 Kg/cm² / 1,1

Presión de Operación = 15,681 Kg/cm²

Calculamos la tensión aplicada en la envuelta o, de acuerdo a la condición de operación :

$$\sigma = \frac{P(Ri + 0.5 t)}{t}$$

- Para la condición de presión de operación P = 17,25 Kg/cm², calculamos las tensiones de membrana circunferencial y longitudinal :

 $\sigma c = \frac{P (Ri + 0.5 t)}{t} = \frac{15,681 \text{ Kg/cm}^2 (168,75 \text{ cm} + 0.5 2,54 \text{ cm})}{2,54 \text{ cm}} = \frac{1.049,639 \text{ Kg/cm}^2}{2,54 \text{ cm}}$

Para la condición de Operación P = 15,681 Kg/cm²

Conociendo la tensión de membrana om y el nivel de tensiones residuales Qm, determinamos la tensión máxima de tracción omáx.

Figure M.16 — Internal surface flaw in cylinder oriented axially

Figure M.17 — Internal surface flaw in cylinder oriented circumferentially

De acuerdo a los datos, obtenemos las siguientes relaciones :

a/B = 5mm / 25,4 mm = 0,196

a/c = 5mm / 20 mm = 0,25

B/ri = 25,4mm / 3.375 mm = 0,0075259

a/2c = 5mm / 40 mm = 0,125

De la tabla 5, obtenemos los coeficientes Mm (d) = 1,168 y Mb (d) = 0,870 (para el punto más profundo de la falla) y Mm (s) = 0,617 y Mb (s) = 0,623 (para la superficie interna circunferencial en el cilindro).

$a/c = 1.0, B/r_i = 0.1$						a/c = 1.0, B/r = 0.2						
a/B	$M_{\rm m}({ m d})$	$M_{\rm b}({ m d})$	$M_{\rm m}({ m s})$	$M_{\rm b}({ m s})$	a/B	$M_{\rm m}({ m d})$	<i>M</i> _b (d)	$M_{\rm m}({ m s})$	$M_{\rm b}({ m s})$			
0.0	0.663	0.663	0.729	0.729	0.0	0.663	0.663	0.729	0.729			
0.2	0.667	0.574	0.681	0.623	0.2	0.667	0.582	0.681	0.623			
0.4	0.670	0.327	0.706	0.528	0.4	0.670	0.334	0.706	0.528			
0.6	0.686	0.140	0.733	0.431	0.6	0.686	0.117	0.733	0.431			
0.8	0.702	-0.105	0.764	0.332	0.8	0.702	-0.099	0.764	0.332			
$a/c = 0.5, B/r_{\rm i} = 0.1$						al	$c = 0.5, B/r_i$	= 0.2				
0.0	0.896	0.896	0.697	0.697	0.0	0.896	0.896	0.697	0.697			
0.2	0.999	0.731	0.731	0.628	0.2	1.004	0.735	0.731	0.628			
0.4	1.031	0.504	0.801	0.563	0.4	1.030	0.503	0.801	0.563			
0.6	1.121	0.306	0.889	0.502	0.6	1.124	0.305	0.889	0.502			
0.8	1.148	0.014	0.993	0.445	0.8	1.192	0.027	0.993	0.445			
	a	$c = 0.2, B/r_{\rm i}$	= 0.1		$a/c = 0.2, B/r_i = 0.2$							
0.0	1.059	1.059	0.521	0.521	0.0	1.059	1.059	0.521	0.521			
0.2	1.168	0.870	0.617	0.623	0.2	1.144	0.851	0.617	0.623			
0.4	1.375	0.736	0.835	0.591	0.4	1.318	0.698	0.835	0.591			
0.6	1.599	0.561	1.048	0.556	0.6	1.517	0.515	1.048	0.556			
0.8	1.803	0.269	1.255	0.519	0.8	1.782	0.253	1.255	0.519			
	a/	$c = 0.1, \mathrm{B/r_i}$	= 0.1	•	$a/c = 0.1, B/r_i = 0.2$							
0.0	1.103	1.103	0.384	0.384	0.0	1.103	1.103	0.384	0.384			
0.2	1.219	0.921	0.482	0.487	0.2	1.214	0.903	0.482	0.487			
0.4	1.529	0.829	0.700	0.498	0.4	1.382	0.776	0.700	0.498			
0.6	1.939	0.677	0.981	0.525	0.6	1.661	0.624	0.981	0.525			
0.8	2.411	0.479	1.363	0.570	0.8	2.031	0.386	1.363	0.570			

Table $M.5 - M_m$ and M_b for circumferential internal surface flaw in cylinder

Según la norma en cuestión, adoptamos un nivel de tensiones residuales Qm = 30 % Tensión de fluencia σ y. Por lo tanto Qm = 0,3 x 2.671,66 Kg/cm² = 801,498 Kg/cm²

Conociendo la tensión de membrana σ m y el nivel de tensiones residuales Qm, determinamos la tensión máxima de tracción σ máx.

σmáx = Mm (d) σm + Qm

σmáx = 1,168 x 1.049,639 Kg/cm² + 801,498 Kg/cm²

<u>σmáx = 2.027,47 Kg/cm² = 198,827 MPa</u>

Efectuando la siguiente relación de tensiones, tenemos :

Sr = omáx / oys = 2.027,47 Kg/cm² / 2.671,66 Kg/cm² = 0,758

Para una fisura semielíptica superficial, el factor de intensidad de tensiones aplicado K1 es :

$$K_{I} = 1.12 M_{\kappa} \sigma \sqrt{\frac{\pi a}{Q}}$$

Donde Q es el factor de forma de la fisura y Mk un factor que depende de la relación a/t, siendo t el espesor del componente o elemento de estructura, siendo σ la tensión aplicada.

Teniendo como dato lo siguiente :

Obtenemos el factor de forma Q para una fisura elíptica, cuyo valor numérico es Q = 1,05

Adoptando Mk = 1, calculamos el factor de intensidad de tensiones aplicado K1 :

$$K_{I} = 1.12 M_{\kappa} \sigma \sqrt{\frac{\pi a}{Q}}$$

K1 = 1,12 198,827 MPa
$$\sqrt{\frac{\pi 0,005 \text{ m}}{1,05}}$$

K1 = 27,236 MPa $\sqrt{\frac{\text{m}}{1,05}}$

Teniendo en consideración la relación de cargas entre la tensión de membrana más las tensiones residuales en relación a la tensión de fluencia

Sr = σmáx / σys = 2.027,47 Kg/cm² / 2.671,66 Kg/cm² = 0,758

Obtenemos el valor de la constante C = 0,3 (cuyo valor numérico depende del tipo de material).

CTOD del Material :

Según ensayos de Laboratorios realizados según la Norma BS EN ISO 15653, se determinó el valor de la fuerza impulsora para el material SA 516 Gr. 70, cuyo valor es de G = 72,59 KJ/m² para la condición de estado plano de tensión.

$$\begin{split} \delta &= K^2 / \, \sigma y \, E \quad (\text{para estado plano de tensión}) \\ \text{Siendo} &: K^2 / E = G \\ \delta &= G / \, \sigma y = \underline{72.590 \text{ Nm} \text{ mm}^2 \text{ 1m}}_{\text{m}^2 \text{ 262 N} \text{ 1000 mm}} \\ \underline{\delta &= 0,277 \text{ mm}} \end{split}$$

Conociendo el CTOD del Material, calculamos el K1c (tenacidad a la fractura del material).

$$δ1c = K1c^{2} / σy E$$

$$K1c = \sqrt{ 51c σy E}$$

$$K1c = \sqrt{ 0,277 mm 262 N/mm^{2} 205.939,65 N/mm^{2}}$$

$$K1c = 3.865,98 N mm - 3/2$$

$$K1c = 3.865,98 N mm - 3/2$$

$$I MPa \sqrt{m}$$

$$31,623 N mm - 3/2$$

$$K1c = 122,252 MPa \sqrt{m}$$

Con estos datos, procedemos a calcular Kr, mediante la siguiente relación :

Kr = K1 / K1c =
Kr = 27,236 MPa / m
122,252 MPa
$$\sqrt{m}$$

Kr = 0,222

De acuerdo a las relaciones obtenidas, construimos el diagrama FAD, en donde visualizamos que en nuestro caso en estudio, las cargas actuantes representadas en el diagrama por una coordenada, se encuentra en la zona segura o aceptable. También nos es de gran utilidad la confección de dicho diagrama, para determinar de manera fehaciente el margen de seguridad hasta alcanzar la rotura.

Luego calculamos el tamaño equivalente de fisura crítica, denominado à :

$$\bar{a} = c (K1c / \sigma y)^2$$

 $\bar{a} = 0.3 (122,252 \text{ MPa } \sqrt{m} / 262 \text{ MPa })^2$
 $\underline{\bar{a}} = 0.06531 \text{ m} = 65.31 \text{ mm}$

Utilizando los gráficos correspondientes, a partir de la relación ā/e y a su vez t/l, logramos graficar una curva profundidad de defecto (t) en función de longitud de defecto (l), que nos resultará útil para la inspección.

A partir de definir el tamaño de fisura crítico ā, que corresponde a un defecto superficial parcialmente pasante, donde vamos a tener t (profundidad máxima de fisura) y l (largo máximo de fisura), siendo e (espesor), determinamos la siguiente relación :

ā / e = 65,31 mm / 25,4 mm = 2,571

Del gráfico que se visualiza a continuación, observamos que si ascendemos con una recta y cortamos esta familia de curvas (que están graduadas en función de t/l), en cada punto de intersección vamos a obtener diferentes relaciones t/l, que corresponden en ordenadas con una relación t/e.

Los datos obtenidos del gráfico, para la relación $\frac{1}{4}$ / e = 2,571, en función de las distintas relaciones t/l, son las siguientes :

t/l = 0.01, corresponde a la relación t/e = 0.4t/l = 0.1, corresponde a la relación t/e = 0.8

Estos datos nos permiten construir las curvas profundidad de defecto en función de la longitud de defecto (t/l) para las 2 condiciones de cargas diferentes. Estas curvas nos van a permitir tener una herramienta para futuras inspecciones, de manera tal que cuando relevo el resultado t/l, ubicarla en el diagrama y corroborar que dicha

coordenada se encuentre por debajo de la curva (dentro del entorno de seguridad). De esta manera podemos evaluar cual es el margen de seguridad con respecto a la inestabilidad (sobre la recta).

10.- Conclusiones finales

A lo largo de los años, el diseño de recipientes cilíndricos soportado sobre cunas se ha basado en el análisis de diseño propuesto por Zick (1951).

En un recipiente horizontal cilíndrico, la tensión circunferencial máxima ocurre en los cuernos de la cuna, simplemente debido a la discontinuidad estructural entre el cuerpo cilíndrico y el soporte.

Los resultados obtenidos con el Método de Elementos Finitos predicen los encontrados por L. S. Ong y se diferencian en el resultado del método de Zick, dependiendo el grado de rigidez que presente la cuna, lo cual señala la necesidad de rever dicho procedimiento utilizado para el diseño.

En la zona en estudio en la cual se calcula la tensión circunferencial en los cuernos de la cuna se puede exceder el límite elástico, sin embargo no se ha alcanzado la plastificación de la sección. Por lo tanto, no se produciría ninguna falla, pero debemos tener en consideración que aunque el pico de tensión en los cuernos de la cuna no es inmediatamente perjudicial para la integridad del recipiente, tiene un efecto a largo plazo sobre la fatiga del equipo, las cuales podrían generan fisuras debido a las tensiones localizadas.

Para un recipiente que ha estado en servicio durante muchos años y sometido a ciclos de cargas fluctuantes, una evaluación del equipo será necesario para certificar su aptitud para el servicio o en algunos casos extender la vida útil. En estos casos para predecir la tensión máxima circunferencial en los cuernos de la cuna, un método confiable es la aplicación de la ecuación paramétrica propuesta por Ong.

En una situación en la que se requiere un análisis tensión circunferencial de un recipiente en la zona de los cuernos de la cuna, la teoría de Zick sería inapropiada ya que no puede proporcionar un valor de tensión pico preciso. En este caso, la ecuación paramétrica propuesta por Ong se volvería útil.

En general, la falla por la tensión mencionada anteriormente no es un problema para la mayoría de los recipientes a presión, debido a que el procedimiento de diseño estático provee un grado de conservadurismo. A pesar de eso, para recipientes más antiguos y aquellos solicitados a cargas cíclicas constantes, puede ser necesario una evaluación precisa del estado tensional al cual está siendo sometido el equipo. Debemos destacar en el estudio proporcionado por el investigador Ong que la tensión circunferencial objeto de nuestro estudio, puede reducirse drásticamente mediante un diseño adecuado de placa de desgaste en cuanto a dimensiones y extensión del ángulo de contacto o de abrace entre la envolvente y la cuna, cuya reducción de tensiones asociadas puede ser determinado a partir de las curvas paramétricas proporcionadas por el investigador.

Entendemos que los resultados obtenidos a través del Método de Elementos Finitos nos permite rever y verificar, tanto en el diseño como en aquellos equipos que se encuentran en servicio, su integridad estructural.

Si bien el procedimiento de diseño estático provee un grado de conservadurismo y teniendo en cuenta que los recipientes a presión se inspeccionan de forma periódica verificando su integridad estructural en servicio, se debe considerar el riesgo que representa para el equipo, especialmente en estos tipos de recipientes de grandes diámetros, que operan en condiciones extremas de integridad y seguridad, por lo cual un estudio estructural como el presentado permite conocer el verdadero comportamiento de dicha unión y en caso de necesidad diseñar los refuerzos adecuados para evitar una falla y sobre todo en aquellos equipos que se encuentran un tiempo prolongado en servicio, ya que la perdida de espesor por corrosión a través de los años puede precipitar la falla para un espesor reducido.

11.- Figuras

	IONES				
POS CANT & SCH SERVICI		SERIE	PROY m	m C	BSERV.
N114"80ENTRADA DE LPG	WNRF	150#	1913	C/	REFUEF
N2 1 8" 80 SALIDA DE LPG	WNRF	150#	1913	C/	REFUEF
N3 1 4" 80 RETORNO DE LPG	WNRF	150#	1913		REFUE
N5 2 3" 80 BRIDLE	WNRF	150#	1913	C/	REFUE
N6 1 2" 80 CONEX. PLACA RUPTURA	WNRF	150#	1913	C/	REFUEF
N7 1 2" 80 VENTEO	WNRF	150#	1913	C/	REFUEF
N8 1 2" 80 DRENAJE	WNRF	150#	1913	C/	REFUE
N10 1 2 80 MANOMETRO	WNRF	150 #	1913		REFUER
M1 1 20" ESP 5/8" ENTRADA DE HOMBRE	WNRF	150#	1963	C RE	BRIDA CIE
MATER					
ENVUELTA A-516 GR. 70	ACCESOF	RIOS		A-234	WPB
CABEZALES A-516 GR. 70	JUNTAS			KLINGE	RIT
BRIDAS A-105 GR. B	ESPARRA	GOS / -	TUERCAS	A-193 B7 A-194 2H	
NIPLESA-106 GR. BREFUERZOS CONEX.A-516 GR. 70					
		ŇO			
CODIGO DE DISEÑO	ASME VIII		EDICION 2	2021	
SERVICIO	TANQUE	DE ALMA	CENAMIEN	TO LPG	
PRESION DE DISEÑO	/ M3 17,25 КС	G/CM2			
TEMPERATURA DE DISEÑO	66 °C				
PESO VACIO	63,5 TN				
ESPESOR ENVUELTA	209 IN 25,4 mm)			
ESPESOR CABEZALES SEMIESFERICO	15,8 mm				
VIENTO	CIRSOC 1	02			
NIEVE	SOBRECA	US RGA 75	KG/M2		
TERMINACION EXTERIOR		IES AREN	ADAS		858 /80
NOTAS : 1– LAS BRIDAS SERAN SEGUN ANSL B 16.5 Y S	SE SOLDARA	N CON	LOS AGULI	EROS P	ARA
NOTAS : 1– LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2– LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO	SE SOLDARA ICIPALES DE CONEXI	N CON ONES ES	LOS AGUJ TAN TOMA	IEROS P. Adas de	ARA CARA I
 NOTAS : 1- LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2- LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3- EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm 	SE SOLDARA ICIPALES DE CONEXI n EN CHAPA	AN CON ONES ES AS DE RI	LOS AGUJ TAN TOMA EFUERZOS	IEROS P. Adas de	ARA CARA I
NOTAS : 1– LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2– LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3– EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm	SE SOLDARA ICIPALES DE CONEXI n EN CHAPA	AN CON ONES ES AS DE RI	LOS AGUJ TAN TOMA EFUERZOS	IEROS P. Adas de	ARA CARA I
NOTAS : 1- LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2- LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3- EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm	SE SOLDARA ICIPALES DE CONEXI n EN CHAPA	AN CON ONES ES AS DE RI	LOS AGUJ TAN TOMA EFUERZOS	ieros p. Adas de	ARA CARA I
NOTAS : 1 – LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2 – LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3 – EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm	SE SOLDARA ICIPALES DE CONEXI n EN CHAP	AN CON ONES ES AS DE RI	LOS AGUJ TAN TOMA EFUERZOS	IEROS P. Adas de	ARA CARA I
NOTAS : 1- LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2- LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3- EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm	SE SOLDARA ICIPALES DE CONEXI n EN CHAPA	N CON ONES ES AS DE RI	LOS AGUJ TAN TOMA EFUERZOS	IEROS P. Adas de	ARA CARA I
NOTAS : 1 – LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2 – LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3 – EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm	SE SOLDARA ICIPALES DE CONEXI n EN CHAPA	N CON I	LOS AGUJ TAN TOMA EFUERZOS	IEROS P. Adas de	ARA CARA I
NOTAS : 1 - LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2 - LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3 - EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm	SE SOLDARA ICIPALES DE CONEXI n EN CHAP	AN CON ONES ES AS DE RI	LOS AGUJ TAN TOMA EFUERZOS	IEROS P. Adas de	ARA CARA
NOTAS : 1 – LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2 – LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3 – EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm	SE SOLDARA ICIPALES DE CONEXI n EN CHAP	AN CON ONES ES AS DE RI	LOS AGUJ TAN TOMA EFUERZOS	IEROS P. Adas de	ARA CARA
NOTAS : 1- LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2- LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3- EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm	SE SOLDARA ICIPALES DE CONEXI n EN CHAP	AN CON ONES ES AS DE RI	LOS AGUJ TAN TOMA EFUERZOS	IEROS P. Adas de	ARA CARA
NOTAS : 1- LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2- LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3- EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm	SE SOLDARA ICIPALES DE CONEXI N EN CHAP	AN CON ONES ES AS DE RI	LOS AGUJ TAN TOMA EFUERZOS	IEROS P. Adas de	ARA CARA
NOTAS : 1 – LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2 – LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3 – EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm	SE SOLDARA ICIPALES DE CONEXI N EN CHAP	AN CON ONES ES AS DE RI	LOS AGUJ TAN TOMA EFUERZOS	IEROS P.	ARA
NOTAS : 1 – LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2 – LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3 – EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm	SE SOLDARA ICIPALES DE CONEXI N EN CHAP	2 D.F.	LOS AGUJ TAN TOMA EFUERZOS	H.S.	ARA
NOTAS : 1 – LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2 – LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3 – EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm REV. DENOMINACION TOLERANCIA : ± 8 % ; RUGOSIDAD : SIN MARCA . EN	SE SOLDARA ICIPALES DE CONEXI N EN CHAP	2 D.F. DIBUJO	LOS AGUJ TAN TOMA EFUERZOS	H.S. ADAS DE	ARA
0 DENOMINACION 2- LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3- EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm Interancia : # 5 % : Ruscisidad : SIN MARCA : EN VINTERANCIA : # 5 % : Ruscisidad : SIN MARCA : EN Universidad Tecnológica Nacior Facultad Regional Haedo	SE SOLDARA ICIPALES DE CONEXI N EN CHAPA	2 D.F. AS DE RI NGENIERIA BASK Especi Recipie	LOS AGUJ TAN TOMA EFUERZOS	H.S. ADAS DE S Diseño enedores	ARA CARA de de Presió
NOTAS : 1- LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2- LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3- EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm 3- EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm VIDERANCIA : # 5 % : RUGOSIDAD : SIN MARCA ; EN VIDERANCIA : # 5 % : RUGOSIDAD : SIN MARCA ; EN VIDERANCIA : # 5 % : RUGOSIDAD : SIN MARCA ; EN VIDERANCIA : # 5 % : RUGOSIDAD : SIN MARCA ; EN VIDERANCIA : # 5 % : RUGOSIDAD : SIN MARCA ; EN STE DOCUMENTO CONTENE INFORMACION DE PROPEDAD DE REPOL-YPF SA SU REPRODUCCION TOTAL O PARCAL ESTE DOCUMENTO CONTENE INFORMACION TOTAL O PARCAL ESTE DOCUMENTO CONTENE INFORMACION TOTAL O PARCAL	SE SOLDARA ICIPALES DE CONEXI DE N CHAPA	AN CON ONES ES AS DE RI INGENIERIA BASK Especi Recipie	LOS AGUJ TAN TOMA EFUERZOS	H.S. ADAS DE S Diseño enedores : 227 M	ARA CARA I de de Presió
NOTAS : 1- LAS BRIDAS SERAN SEGUN ANSI B 16.5 Y S BULONES A HORCAJADAS DE LOS EJES PRIN 2- LAS PROYECCIONES INDICADAS EN LA LISTA BRIDA AL CL DEL EQUIPO 3- EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm 3- EFECTUAR AGUJEROS PARA VENTEO Ø 6 mm TOLERANCUA I & S X I RUGOSIDAD I BIN MARCA - EN Universidad Tecnológica Nacion Facultad Regional Haedo ESTE DOCUMENTO CONTENE INFORMACION DE PROPEDIO DE REPOL-TIF SA SU REPRODUCCION TONL O PARCIA ESTE DOCUMENTO CONTENE INFORMACION DE PROPEDIO DE REPOL-TIF SA SU REPRODUCCION TONL O PARCIA ESTE DOCUMENTO CONTENE INFORMACION DE PROPEDIO DE REPOL-TIF SA SU REPRODUCCION TONL O PARCIA ESTE DOCUMENTO CONTENE INFORMACION DE PROPEDIO DE REPOL-TIF SA SU REPRODUCCION TONL O PARCIA ESTE DOCUMENTO CONTENE INFORMACION DE PROPEDIO DE REPOL-TIF SA SU REPRODUCCION TONL O PARCIA ESTE DOCUMENTO CONTENE INFORMACION DE PROPEDIO DE REPOL-TIF SA SU REPRODUCCION TONL O PARCIA ESTE DOCUMENTO CONTENE INFORMACION DE PROPEDIO DE REPOL-TIF SA SU REPRODUCCION TONL O PARCIA INCOL DEL DE REPOL	SE SOLDARA ICIPALES DE CONEXI N EN CHAPA N GENERAL SALVA N GENERAL SALVA N GENERAL SALVA	AN CON ONES ES AS DE RI INGENIERIA BASK Especi Recipie	LOS AGUJ TAN TOMA EFUERZOS A POR: alización – entes Contes LPG CAP.:	H.S. ADAS DE S Diseño enedores : 227 M	ARA CARA de de Presió

12.- Anexos

	Calidad del Material
	SA-105
	SA-105
	SA-516 Gr 70
ALADA	316SS
unidades)	SA-193 B7
20 unidades)	SA-194 2H
	SA-53 Gr B
g.	SA-53 Gr B
	SA-36
ng.	SA-53 Gr B
IACHO	CALIDAD COMERCIAL
and. plana)	AC. CALID. COM.
	AC. CALID. COM.

REC - IPG - 0.03 - 2022	<u>.</u>	ESCALA		PLAND NUMERD								
		1:10	F	REC-LPG-003-2022								
22 REV. 0	22		REV.	0								

		ł	223	AGI	JJ. Ø22			CORTE /	A—A	
		283	51	<u> </u>	3	(2)				
			-	_ør	<u>2"S</u>	CH.XX	S			
			√	>				Ā		
Posición	Descripción					Calid	ad del N	laterial		
1	CAÑO Øn 2" S	SCH XX	S x 963			SA-	-53 Gr	B		
	CANU Øn 21	/Z SC	H 40 x 1	19 long.		SA-	-53 Gr	R R		
	1/22 EMITIDO P	AKA CON						H.S.		
KEV. FE		CLIEN	NTE: UNI FAC : DISE	VERSIDAD T ULTAD REG	TECNOL NONAL CIPIENT	OGICA HAEDO ES CO	NACION, D DNTENED	REV. AL ORES DE	<u>SULD.</u> <u>PR</u> ESION	J.S.
		TITUL		BRAZ	O PES	SCAN	TE			
				RECIPIENTE	CONTE	ENEDC	DR DE G	AS LICUA	DO	
	IB. REV			J. ING.	ESCA	ALA		PLAND M	NUMERD	
FIRMA).L.F. H.S.				1:1	10		PEC-LPC	G-004-	2022
FECHA 31				31/1/22			REV.	0		

				$\overline{\backslash \phi}$	-				
U	.T.N. REGIONAL HA	EDO							
EQUIPO Nº RP- SERVICIO GAS CONSTRUIDO PARA UTN DISEÑADO POR DAM	-001–DF NORMA ASM LICUADO DE PETROLEO PROYECTO FINAL AN LEONARDO FRONCIANI	e viii div.	1 ED. 2	2021					
AÑO DE CONSTRUCC.	2022 SERIE DE FABRIC.	RP-	-001-DF						
TEMPERATURA DE DISEÑO PRESION DE DISEÑO	66 °C 17,25 Kg/cm2	25,4] m.m.						
CAREZALES	SA-516 Gr. 70	15,8] m.m.					NOTAS	<u>}</u>
SOBREESP DE CORROSION	1.27 m m		_					1 M/	ATERIAL
RADIOGRAFIADO	FULL							TII 2 — PA	20 304. Marras
TRATAMIENTO TERMICO	SI							Z TF	ELIEVE.
VIENTO	CIRSOC 102							3 LC)S DATO
SISMO	CIRSOC 103							4 CA	ANT.A (
CAPACIDAD 227		63500] Ka		-			5.– PA	RA UBICA
	INDUSTRIA ARGENTINA							6 UT	TLIZAR S
	DETALLE PLACA DE IDENTIFICACION						CLIEN	NTE: UN FA : DIS	VIVERSIDA CULTAD SEÑO DE
							TITUL	_ 🗌 ;	PL
									RECIPIE
					-	DIE REV			J. IN
31/1/22 EMITIDO F	PARA CONSTRUCCION	H.S.			FIRMA	U.L.F. H.S.			
REV. FECHA	DESCRIPCION	REV.	SDLD.	J.S.	FECHA	31/1/22			31/1/:

DE LA PLACA DE IDENTIFICACION: AC. INOX. . ESP. 2 mm. 5 Y _____ DEBERAN SER ESTAMPADAS EN

OS DEBERAN SER GRABADOS CON PANTOGRAmm. DE ALTURA. CONSTRUIR : 1 (UNA) PLACA IDENTIFICACION ACION EN EL EQUIPO VER PLANO REC-LPG-001-22 SOPORTE

AD TECNOLOGICA NACIONAL REGIONAL HAEDO RECIPIENTES CONTENEDORES DE PRESION

ACA DE IDENTIFICACION

ENTE CONTENEDOR DE GAS LICUADO

۱G.	ESCALA	PLAND NUMERD								
	1:1	REC-LPG-002-202						2		
/22		REV.	0							

13.- Referencias

1. Revisión del diseño de recipientes contenedores de presión. Análisis de falla en los extremos de la cuna. Su evaluación utilizando el método de elementos finitos. Héctor C. Sanzi y Mariano A. Imperiale - Grupo de Ingeniería Estructural, Universidad Tecnológica Nacional, Facultad Regional Haedo París 532 Haedo (1706) - Buenos Aires Argentina.

2. L.S.ONG(1995) : "Peak Stress and Fatigue Assessment of the Saddle Support of a Cylindrical Vessel",

Journal of Pressure Vessel Technology. Vol. 117 Pág. 305/11

3. Metodo de Zick (1951)

4. Manual de Recipientes a Presión – Eugene F. Megyesy

5. Programa de elementos finitos ANSYS 2021 R2 "Versión Student"