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ABSTRACT 

Megathyrsus maximus (Gatton panic) is a tropical grass highly valued both for its use as forage and for 
its biofuel potential. A major constraint in establishing pastures of this cultivar is the low viability and 
germination of seeds and the poor initial seedling establishment. We used non-thermal plasma (NTP, 
partially ionised gas) as a novel technology to treat seeds of this grass, aiming to improve their quality 
(i.e. germination traits). We also followed the performance of seedlings grown from NTP-treated 
seeds under field conditions by assessing seedling establishment, biomass production and forage 
quality during the first regrowth period, which is the critical period for pasture establishment. 
Two NTP treatments were performed through dielectric barrier discharges employing N2 as 
carrier gas. Non-treated seeds served as the control. Results showed that the viability of NTP-
treated seeds was, on average, 1.5-fold higher than the control, and that germination energy and 
germination percentage of treated seeds was superior to the control by 2.1-fold and 2.2-fold, 
respectively. A field experiment showed that seedling establishment parameters (dynamics of 
cumulative emergence, emergence coefficient, and weighted average emergence rate) and 
pasture early productivity (represented by shoot dry matter) were enhanced by NTP treatment 
(phenolic sheet–polyester film barrier and 3 min exposure), showing 1.4–2.6-fold higher values 
than the control, confirming the results of the laboratory assays. Although NTP markedly 
increased the shoot dry matter production of the pasture, which was related to higher tiller 
population density and greater tiller weight, it did not affect the forage quality of the plants 
grown in the field. We conclude that NTP technology is suitable to improve seed germination of 
Gatton panic, in turn leading to improvements in seedling establishment and biomass production 
under field conditions without compromising forage quality. 
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non-thermal plasma, pasture productivity, seed quality, yield components. 
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Rearing of bovine livestock ranks sixth among the main economic activities in Argentina 
because of high export earnings (INDEC 2021). Moreover, Argentinian consumption of 
beef in 2020 was ~50 kg per capita (Treboux and Terré 2021), the highest in the world. 
Since the 1990s, livestock enterprises, initially in the central-south of Argentina 
(Pampean ecoregion), were gradually displaced to the north-central part of the country 
(Chaco Seco ecoregion) as the natural grasslands of the Pampean ecoregion were 
progressively replaced by annual crops (Viglizzo et al. 2011; Cáceres 2015; Gasparri 
et al. 2015; Piquer-Rodríguez et al. 2018). The Chaco Seco ecoregion is a large plain 
with forest and xerophytic shrub, with patches of grasslands as native vegetation 
(Boletta et al. 2006; Giménez 2016). The soils are deep, silty-loam in texture and 
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generally fertile. The mean temperature ranges between 18°C 
and 24°C, and monsoon rains vary between 400 and 
1000 mm/year (Minetti et al. 1999; Olson et al. 2001; 
Hijmans et al. 2005). In general, the development of large-
scale livestock enterprises has been conducted by removing 
native vegetation through heavy machinery and leaving 
relicts of the tallest trees, followed by the sowing of high-
yielding, exotic C4 grasses (Cáceres 2015; Grau et al. 
2015; Clausen et al. 2020). Together with changes in herd 
management, this process has increased beef production 
4.5-fold (Fumagalli et al. 1997; Fumagalli and Kunst 2002; 
Ferrando et al. 2005). The grass primarily incorporated in 
this productive scheme is Megathyrsus maximus (Jacq.) 
B.K.Simon & S.W.L.Jacobs (syn. Panicum maximum Jacq.) 
(Gatton panic) (Volante et al. 2016; Clausen et al. 2020; 
Fernández et al. 2020; Gaitán et al. 2021), owing to its 
tolerance to shading (exerted by the relict trees), good 
adaptation to edaphoclimatic conditions, and higher biomass 
production than native C4 grasses (Kunst et al. 2006; 
Descheemaeker et al. 2014; Murray et al. 2016; Baldassini 
et al. 2018). Nevertheless, Gatton panic has some productivity 
issues related to low seed germination, poor seedling 
establishment and slow initial growth, which can hinder 
pasture establishment. Seeds of Gatton panic are frequently 
reported with 5–20% germination, whereas seed viability 
(as detected by tetrazolium test) can remain at 70–90%, 
suggesting that the low germination is related to seed 
dormancy (Song and Kalms 2007). 

Commercial seed production of Gatton panic is complex 
because of asynchronous flowering and premature seed 
abscission (Hopkinson and English 1985; de Oliveira and 
Humphreys 1986). Freshly harvested seeds of almost all 
cultivars usually show low germination percentages due to 
uneven maturation, seed shattering and seed dormancy 
(Harty et al. 1983). Some embryos may be too immature to 
germinate immediately after the harvest, and must undergo 
a further maturation phase to reach full maturity viability 
(Harty et al. 1983; Hopkinson and English 1985; Adkins 
et al. 2002). According to Hopkinson and English (1985), 
immaturity and dormancy are the main reasons for the low 
quality of seed and are the primary cause of quality variation. 
Dormancy is the temporary inability of viable seeds to 
germinate under the same external environmental conditions 
triggering germination when the restrictive state ends 
(Cabrera et al. 2020). Although dormancy enables the seed 
to sense the environment and germinate when environmental 
conditions are likely to support seedling establishment, it can 
be a problem for commercial production, where uniform 
seedling establishment is desired (Adkins et al. 2002). Seeds 
of most crops possess little or no dormancy, having been 
selected for rapid and uniform germination through long 
periods of domestication. By contrast, the seed dormancy 
characteristics of most species of warm-season grasses have 
not been substantially altered by plant breeders. Therefore, 
dormancy can cause uneven seedling emergence in the 

field, resulting in an irregular stand of plants, and this 
might slow pasture establishment in the presence of 
competitive weeds (Lacerda et al. 2010). Therefore, 
dormancy-breaking technologies are needed to provide 
farmers with a tool to achieve the higher germination rate 
required for field-scale conditions. 

Non-thermal plasmas (NTP) are partially ionised (quasi-
neutral) gases (Randeniya and de Groot 2015) that are 
currently being assessed for their potential to improve seed 
quality, plant growth and yield (Holubová et al. 2020). This 
novel technology can control crop pathogens and enhance 
plant resistance to fungal infections and abiotic stresses 
(Feng et al. 2018; Pérez-Pizá et al. 2018, 2019, 2021). 
When ambient air or a similar gas mixture is used as the 
plasma gas, NTP consists of highly reactive species of 
nitrogen, oxygen and hydrogen (RNS, ROS and RHS, 
respectively) (Hertwig et al. 2018). In Gatton panic, seed 
dormancy appears to be related to physical constraints 
imposed by the seed tissues enclosing the embryo (Richard 
et al. 2016; Cabrera et al. 2020), which likely derive from 
the existence of a lock-like structure fixing the lemma and 
palea together (Who et al. 1991). Breaking of seed dormancy 
is considered one of the possible biological applications of 
NTP (Šerá and Šerý 2018; Cui et al. 2019) because it 
can provoke etching and erosion of the seed coat, thereby 
attenuating the seed dormancy (Šerá et al. 2009). 

On this basis, we aimed to evaluate the effects of NTP on 
Gatton panic germination, seedling establishment, biomass 
productivity and forage quality during the early growth 
phase of the pasture under field conditions. After exposing 
seeds to different NTP treatments, seed viability, germination 
energy, and germination percentage were measured. Field 
experiments were then conducted to assess the establishment, 
biomass productivity and forage quality of plants grown from 
NTP-treated versus non-treated seeds. 

Materials and methods 

Non-thermal plasma source 

The volume dielectric barrier discharge used for seed 
treatment consisted of a needle-array power electrode and a 
ground plate electrode covered by a dielectric barrier of 
either two polyester films (100 μm thick, commercial name 
Mylar; DuPont Teijin Films, Chester, VA, USA) or an 
arrangement of a thin phenolic sheet (2.5 mm thick, 
commercial name Pertinax; Wuxi Chifeng Metal Products, 
Wuxi, Jiangsu, China) with two polyester films. The gap 
between the upper surface of the seeds and the tip of the 
needles was fixed to 6 mm during the experiments. The 
power supply was a high-voltage sinusoidal waveform 
power supply (0–35 kV) operating at 50 Hz. Nitrogen gas 
(purity >99.5%) was injected into the discharge active region 
at a measured gas flow rate of 6 NL (normal air litre)/min. 
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The experimental setup was similar to that described in 
detail in Pérez-Pizá et al. (2018). The electrical parameters 
of the discharge were monitored by using a four-channel 
oscilloscope (TDS 2004C; Tektronix, Beaverton, OR, 
USA) with a sampling rate of 1 GS (gigasamples)/s and 
an analog bandwidth of 70 MHz. The discharge voltage 
was measured by using a high-impedance voltage probe 
(Tektronix P6015A, 1000×, 3 pF, 100 MΩ). The power 
consumption in the discharge was measured by the Lissajous 
method (Pipa et al. 2012), inserting a 2 μF capacitor in 
series with the discharge. Charge–voltage characteristics 
of the discharge for the two arrangements used are 
shown in Fig. 1a, b. As expected, the measured discharge 
power (175 W) for the two-film polyester barrier 
(Fig. 1a) was significantly higher than that for the 
composite barrier (60 W) (Fig. 1b) because of the increase 
in the discharge capacitance. The temperature of the dis-
charge walls during the seed treatments was measured 
with an infrared handheld thermometer to ensure that it 
never exceeded 40°C. 

Plant material and plasma treatments 

Commercial seeds of Gatton panic were utilised for the 
experiments (mature caryopses provided by Oscar Pemán & 
Asociados, Córdoba, Argentina). NTP treatments were 
performed on these seeds following the methodology 
described in Pérez-Pizá et al. (2018). Seeds were treated 
with plasma exposures of 1 or 3 min depending on the 
dielectric barrier, constituting plasma treatments MN1 
(Mylar dielectric barrier + nitrogen as carrier gas + 1 min 
exposure) and PMN3 (Pertinax–Mylar dielectric barrier + 
nitrogen as carrier gas + 3 min exposure). Non-treated 
seeds were used as control. Half of the seeds of each 
treatment were used for the laboratory assays, with the 
other half retained for the field experiment (Fig. 1c). 

Laboratory experiments to assess seed viability 
and germination traits 

Seed viability (i.e. a measure of the ability of the embryo to 
germinate) was evaluated on four replicates of 100 seeds, 

Fig. 1. Charge–voltage characteristics of the dielectric barrier discharge for the conditions used in the 
experiments: (a) two-film polyester (Mylar) barrier, and (b) barrier of phenolic sheet (Pertinax) with two 
polyester films (Mylar). (c) Schematic representation of the application of non-thermal plasma treatments 
(MN1, Mylar barrier + nitrogen as carrier gas + 1 min exposure; PMN3, Pertinax–Mylar barrier + nitrogen 
as carrier gas + 3 min exposure) on Gatton panic seeds and their use for laboratory and field experiments. 
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according to the tetrazolium test proposed by ISTA (2019) for 
Panicum spp. Four replicates of 100 seeds were analysed for 
germination energy (the proportion of seeds that have 
produced normal seedlings 15 days after sowing, with high 
values indicating vigorous seeds) and germination percentage 
(the proportion of seeds that have produced normal seedlings) 
following the Top of Paper germination test for Panicum 
maximum proposed by ISTA (2019); seeds were placed in 
Petri dishes on top of filter paper moistened with a 0.2% 
potassium nitrate (KNO3) solution, and the dishes were 
placed in a germination cabinet under an alternating 
temperature regime (20°C for 16 h and 30°C for 8 h). 

Field experiments to assess seedling 
establishment, pasture growth, yield components 
and forage quality 

Considering the similar performance of the two NTP treat-
ments in terms of germination improvement in the laboratory 
assay, only one treatment (PMN3) was selected for the field 
experiment. The field experiment was conducted at Quimilí 
(EEA INTA Quimilí), Santiago del Estero (27°38 0S, 62°24 0W; 
137 m a.m.s.l.), in Argentina. The soil was loamy-silty, with 
little pedogenetic development, classified as Entic Haplustol 
(USDA Soil Taxonomy; Soil Survey Staff 2010), and class 
IIIec (risk of water and wind erosion, temperatures and lack of 
humidity limit its use) of the ‘Land-capability classification’ 
(Klingebiel and Montgomery 1961). 

The experimental plots were arranged in a randomised 
complete block design with four replicates. Seeds exposed 
to PMN3 and the non-treated control were sown on plots 
of 25 m2 (5 m by 5 m), with a distance between rows of 
0.2 m, a sowing depth of 1–3 mm and a sowing density 
of 13.7 kg/ha (1561 filled seeds/m2). Chemical control of 
weeds and hand-weeding were performed one month 
before sowing. After sowing, hand-weeding was performed 
to reduce competition from undesirable weeds and assist 
pasture establishment. During the experimental period, 
precipitation was recorded and effective precipitation (i.e. 
the fraction of the total precipitation that is available for 
crop use) was calculated according to Soil Conservation 
Service (1972) (Supplementary material Fig. S1). Daily 
minimum and maximum air temperatures were recorded 
and used to calculate the growing degree-days (GDD), 
employing a base temperature of 15.4°C (Berone 2016). 

Seedling establishment evaluations were performed at 15, 
17 and 22 days after sowing (DAS) (Brown and Mayer 1988; 
Ranal and de Santana 2006). At each date, the number of 
emerged seedlings per m2 (coleoptile above the soil 
surface) was evaluated in 12 transects of 0.6 m, and the 
dynamics of cumulative emergence (cumulative number of 
emerged seedlings per m2) was determined. The emergence 
coefficient (relationship between number of emerged 
seedlings and number of filled seeds) was calculated as: 

S
Emergence coefficient = k × 100 (1)

X 

where Sk is the cumulative number of seedlings per m2 at date 
k (the last date of evaluation during the emergence period), 
and X is the number of filled seeds sown per m2 (i.e. 
1561 seed/m2). The daily emergence rate (average number 
of seedlings that emerged per day during the emergence 
period) was calculated as: 

S
Daily emergence rate = k × 100 (2)

tk 

where Sk is as above, tk is the time interval (days) between the 
start of emergence and the last date of evaluation during the 
emergence period (k). The weighted average emergence rate 
(average of partial emergence speeds) was calculated as: 

kP
 
1 Si=tWeighted i average emergence rate = i = (3)
N 

where Si is the number of seedlings per m2 at date i (not the 
accumulated number but the number corresponding to the ith 
evaluation date), ti is the time interval (days) between the 
start of emergence and the ith evaluation date, N is the 
number of moments of evaluation during the emergence 
period, and k is as above. 

Pasture growth and yield components were assessed by 
determining the shoot dry matter (DM) and number of 
tillers at 193 GDD (34 DAS), 368 GDD (49 DAS), 490 GDD 
(65 DAS) and 643 GDD (83 DAS), counted from the 
beginning of emergence to the beginning of flowering. 
Samples were obtained by cutting the grass biomass at soil 
level in an area of 1 m2, with a hedge trimmer. Care was 
taken to maintain a distance of at least 0.5 m between the 
last sampled areas and the new ones. Tillers were counted 
to obtain the tiller population density (tillers/m2) and 
samples were dried at 60°C to constant weight to determine 
DM (g/m2). Tiller weight (g/tiller) was calculated by the 
ratio between total shoot DM (g) and number of tillers. 
Weed DM and senescent material DM were both quantified, 
but due to their low proportion of the total DM (weeds 
<3%, senescent material <6%), they were not considered in 
the calculations. 

Forage quality was evaluated by analysing the digestible 
DM, crude protein, neutral detergent fibre (NDF) and acid 
detergent fibre (ADF) on shoot DM samples (n = 4). Crude 
protein (nitrogen (N) content, including both true protein 
and non-protein N; total N × 6.25) was analysed by the 
micro-Kjeldahl technique (Bateman 1970). NDF (proportion 
of DM composed of hemicellulose, cellulose and lignin) and 
ADF (proportion of DM composed of cellulose and lignin) 
were determined according to Goering and Van Soest 
(1970) with an ANKOM Fiber Analyzer (Ankom Technology, 
Macedon, NY, USA). Digestible DM, defined as the portion of 
DM in a feed that is digested by animals so they can use it to 
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satisfy their nutrient requirements (Habermann et al. 2019), 
was estimated as: 

Digestible DM = 88.9 − ðADF × 0.779Þ (4) 

Statistical analyses 

Statistical analyses were performed using the software 
package InfoStat version 3.1.2 (2014; https://www.infostat. 
com.ar/). Data obtained from laboratory experiments were 
analysed by one-way analysis of variance after testing for 
the assumption of normal distribution (Shapiro–Wilk test) 
and homogeneity of variances (Levene’s test). Fisher’s least 
significant difference (l.s.d.) tests were performed for 
multiple comparisons (at P = 0.05) of groups by means. For 
field data, means were compared through a mixed model 
and Fisher’s l.s.d. tests (P = 0.05), where treatments were 
considered fixed factors and blocks were regarded as 
random ones. Linear regression was used to study the 
relationship between shoot DM and (1) digestible DM, (2) 

crude protein, (3) NDF or (4) ADF. Slope tests were done to 
compare the relationships of the NTP treatment and the 
control; when slopes and intercepts of regressions did not 
differ between groups, data were pooled, and a single 
regression was adjusted. 

Results 

Germination parameters of Gatton panic as 
affected by NTP treatments 

All assessed germination traits (seed viability, germination 
percentage and germination energy) were considerably 
enhanced by both NTP treatments (MN1 and PMN3) (Fig. 2). 
Representative seedlings grown from NTP-treated seeds and 
the non-treated control (Fig. 2a) indicate an improvement 
in seedling length (especially of the root) in response to 
NTP treatment. Seed viability (Fig. 2b) was significantly 
(P = 0.002) increased by NTP treatment, being 1.47- and 

Fig. 2. Laboratory assay evaluating germination traits of Gatton panic seeds treated with non-thermal plasma 
(MN1 and PMN3 treatments) against non-treated controls: (a) representative seedlings showing growth 
improvement in response to seed treatment with non-thermal plasma, (b) seed viability, (c) germination 
energy, and (d) germination percentage. Capped lines indicate standard error (n = 4). Treatment means with 
the same letter are not significantly different (Fisher’s l.s.d. test at P = 0.05). 
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1.46-fold higher in MN1 and PMN3 groups, respectively, than 
the control. Compared with the non-treated control, the 
germination energy of seeds increased 1.82- and 2.38-fold 
in MN1 and PMN3 groups, respectively (P = 0.007; 
Fig. 2c), and seed germination percentage increased 1.92-
and 2.53-fold (P = 0.010; Fig. 2d). 

Seedling establishment of NTP-treated Gatton 
panic seeds in the field 

Seedling emergence started at 15 DAS, following cumulative 
effective precipitation of 50 mm from 9 to 14 DAS (Fig. S1). 
Three of the pasture establishment parameters (dynamics of 
cumulative emergence, emergence coefficient, and weighted 
average emergence rate) were considerably enhanced by seed 
exposure to NTP treatment (PMN3); only the daily emergence 
rate was not affected (Table 1). The number of seedlings per 
m2 (represented by the dynamics of cumulative emergence) in 
plots planted to PMN3-treated seeds was 2.6-fold higher than 
in control plots at 15 DAS, and 1.5-fold higher at 17 and 22 
DAS (Table 1). Measurements of the number of seedlings 
per m2 finished at 22 DAS because after that, it was not 
possible to distinguish tiller origin (seeds vs buds) during 
the tillering phase. The stability observed between 17 and 
22 DAS for this parameter could be explained by the soil 
condition: lack of moisture in the topsoil (due to low 
rainfall between 14 and 22 DAS; Fig. S1), and scarce stubble 
or crop coverage. 

The emergence coefficient, which represents the 
percentage of full-seeded seeds that reached the emergence, 
was 1.5-fold higher in PMN3 treatment plots than the control 
(Table 1), indicating that NTP treatment led to a greater 
number of emerged seedlings. The speed of emergence, as 
indicated by the daily emergence rate, showed no significant 
differences between PMN3 and the control (Table 1); 
however, the daily emergence rate does not account 
for whether the emergence occurs earlier or later in the 
emergence period. To deal with this limitation, the 
weighted average emergence, which is the average of 

partial emergence speeds, was calculated. This new variable 
was considered more suitable for detecting and evaluating 
differences between PMN3 treatment and the control 
regarding the speed of emergence, because it acquires a 
greater value not only when the final number of seedlings 
is higher but also when seedlings emerge at early stages. 
Results showed that this variable was 1.8-fold higher in 
PMN3 treatment plots than in control plots, indicating that, 
besides the greater number, seedlings coming from NTP-
treated seeds emerged earlier than those from untreated 
control seeds. 

Shoot growth and yield components of NTP-
treated Gatton panic seeds in the field 

Pasture shoot growth, measured as shoot DM, was positively 
affected by plasma. Although the shoot DM harvested at 193 
and 368 GDD did not show significant differences between 
PMN3 and control plots (P > 0.07), the cuts performed at 
490 and 643 GDD showed significantly more shoot DM in 
PMN3 plots than the control (2.3 and 1.7 times, 
respectively; both P < 0.008, Fig. 3a). The results for yield 
components (tiller population density and tiller weight; 
Fig. 3b and c) revealed that this greater shoot DM in PMN3 
plots at 490 and 643 GDD was related to significantly higher 
tiller population density (both P < 0.040) and greater tiller 
weight (both P < 0.013). Yield components of PMN3 plots 
did not differ from the control at 368 GDD, in accord with 
shoot DM results (tiller population density P = 0.564, tiller 
weight P = 0.663). Data for yield components at 193 GDD 
are not available. 

Forage quality of Gatton panic as affected by 
NTP treatment 

Significant linear relationships between shoot DM production 
and forage quality parameters were found (all P < 0.05). The 
parameters of these relationships were similar in both 
treatments as indicated by the slope and intercept tests 

Table 1. Dynamics of cumulative emergence, coefficient of emergence, daily emergence rate, and weighted average emergence rate in plots of 
Gatton panic from non-thermal plasma treated seeds (PMN3) and from non-treated control seeds. 

Variable Treatments P-value 

Control PMN3 

Dynamics of cumulative emergence (no. of seedlings/m2) 15 DAS 

17 DAS 

60.0 ± 13.0b 

125.0 ± 18.0b 

153.5 ± 17.6a 

193.5 ± 13.5a 

0.0275 

0.0401 

22 DAS 135.0 ± 8.0b 205.0 ± 21.7a <0.0001 

Coefficient of emergence (%) 8.6 ± 0.5b 13.1 ± 1.4a 0.0001 

Daily emergence rate (no. of seedlings/day) 44.7 ± 26.6 61.4 ± 17.1 0.6110 

Weighted average emergence rate (no. of seedlings/day) 39.2 ± 8.2b 71.3 ± 5.5a 0.0294 

Values are mean ± standard error (n = 4). Within rows, means followed by different letters are significantly different (Fisher’s l.s.d. test at P = 0.05). 
DAS, days after sowing. 
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Fig. 3. Shoot growth and yield components of Gatton panic in plots 
sown to non-thermal plasma treated seeds and non-treated control 
seeds: (a) shoot dry matter, (b) tiller population density, and (c) tiller 
dry weight. GDD: cumulative thermal time with a base temperature 
of 14.5°C. Capped lines indicate standard error (n = 4). For each 
time, means with different letters are significantly different (Fisher’s 
l.s.d. test at P = 0.05). 

performed (PMN3 vs control: slope P > 0.408, intercept 
P > 0.064, in all cases). Therefore, the PMN3 treatment 
promoted shoot DM production relative to the control (see 
previous sections, Fig. 3) but did not change any of the 
analysed parameters of forage quality (DM digestibility, 
crude protein, NDF and ADF). Because there were no 
differences between treatments, their data were pooled to 
obtain a single linear regression for each forage quality 
parameter as a function of shoot DM. As expected, DM 
digestibility and crude protein concentration were 

negatively related to shoot DM production (Fig. 4a, b; 
P = 0.0088 and < 0.0001, respectively), whereas NDF 
and ADF were positively associated with the increase in 
shoot DM production (Fig. 4c, d; P = 0.0012 and 0.0027, 
respectively). Therefore, the increase in forage produc-
tion, as long as the phenology of the pasture advanced, 
was related to an increase in NDF and ADF, and a 
concomitant decrease in crude protein content and DM 
digestibility. 

Discussion 

Studies were conducted to assess the effects of NTP on Gatton 
panic seed germination, employing two plasma treatments 
that differed by the type of dielectric barrier covering the 
ground electrode and the exposure time of seeds to plasma 
(i.e. MN1 and PMN3). Both treatments similarly enhanced 
viability, germination energy, and germination percentage 
compared with the control, indicating their utility in 
stimulating seeds to germinate faster, potentially leading to 
faster seedling emergence, which is crucial to reduce seed 
exposure to biotic and abiotic stresses in the soil. According 
to Cabrera et al. (2020), Gatton panic seeds present a type 
of dormancy that is strongly associated with seed covers. 
Holloway et al. (2021) found that the coleorhiza prevents 
root emergence of dormant caryopses; therefore, it forms 
part of the covering layers that control dormancy and 
germination in grasses. It has been suggested that seed 
dormancy due to seed covers can be alleviated through 
conventional pre-germination treatments such as physical 
scratching or scarification, and heat and chemical treatment 
(Hopkinson 1993; Adkins et al. 2002; Dutra et al. 2015). In 
this sense, the potential ability of NTP to produce erosion and 
cracks on the seed coat and to increase its hydrophilicity (Ling 
et al. 2014; Randeniya and de Groot 2015; Stolárik et al. 2015; 
Kriz et al. 2017; Puligundla et al. 2017) might explain the 
improvements observed in Gatton panic germination traits. 
Previous studies by our group back up these ideas, showing 
that plasma application can even stimulate the germination 
of non-dormant seeds such as soybean (Pérez-Pizá et al. 
2018, 2019, 2021). These studies show that NTP improves 
the wettability and imbibition of seeds by eroding their 
coat. They also demonstrate that plasma-generated ROS 
and RNS can positively regulate phytohormones involved in 
germination. In this sense, treatment of Gatton panic seeds 
with NTP could have increased the permeability of seed 
covers by modifying the physical or biochemical properties, 
mimicking what a conventional treatment (e.g. physical 
cover removal, scarification) achieves. ROS and RNS are 
also known to work as potential signal molecules for seed 
embryo transition from the dormant to the non-dormant 
state (Cui et al. 2019). Accordingly, it can be proposed that 
plasma-generated ROS and RNS contributed to alleviation 
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Fig. 4. Forage quality of Gatton panic in relation to shoot DM production in plots sown to non-thermal plasma treated 
seeds (PMN3) and non-treated control seeds: (a) digestible dry matter, (b) crude protein, (c) neutral detergent fibre, and (d) 
acid detergent fibre. Solid lines represent significant regressions, and the corresponding R2 and P-values are presented. 
Capped lines indicate standard error (n = 4). 

of Gatton panic seed dormancy, as shown in Chenopodium 
album (Šerá et al. 2009) and Arabidopsis thaliana (Cui et al. 
2019). Regarding the improvement observed in seed 
viability, plasma components might have enhanced the 
ability of seeds to restore the integrity of cell membranes 
within the imbibition as suggested previously for soybean 
seeds (Pérez-Pizá et al. 2019). Another contribution of 
NTP to enhancing seed viability and germination could be 
its ability to remove pathogens from seeds, resulting in 
significant improvement in seed health (Pérez-Pizá et al. 
2018, 2021). Further studies are needed to understand the 
mechanisms underlying the effects of NTP on seed 
germination traits. 

Because only non-significant differences were found in 
the effectiveness of the two NTP treatments on Gatton 
panic seeds in the  laboratory  tests, we randomly chose just 
one of them (PMN3) to guide the field experiment. 
Nonetheless, it should be noted that the exposure time of 
the MN1 treatment was shorter than PMN3 treatment by a 
factor of 3. This is consistent with the increase in power 
measured for the dielectric barrier discharge (by nearly 
the same factor, see Fig. 1), due to the corresponding rise 
in the discharge capacitance. In practice, the MN1 plasma 
treatment could offer some advantages over PMN3, in that 

it allows the seed processing rate to be considerably 
increased, thus favouring the upscaling of this technology 
for the industry. A pilot-scale plasma prototype (operating 
at atmospheric pressure) is being validated by our group, 
and finding the optimal configuration of the experimental 
arrangement that maximises positive effects on seeds 
is crucial. This prototype was designed to treat ~100 kg 
seed/h and is aimed to be transferred to industry as 
an environmentally friendly processing tool for seed 
treatment. 

In the field experiment, NTP treatment showed promising 
results, with seedling establishment parameters significantly 
improved, confirming the laboratory assay finding of a 
positive effect on the predisposition of seeds to germinate. 
This promotion of germination determined a faster seedling 
emergence and a greater number of seedlings per m2 in the 
field. Although opportunities for comparison are minimal 
because there are no available data about NTP effects on 
grass species, we suggest that the observed improvement in 
seedling establishment may be related not only to enhanced 
germination (this contribution) but also to the already 
known positive effect of NTP on root growth promotion, as 
seen in wheat (Jiang et al. 2014; Dobrin et al. 2015) and 
soybean (Pérez-Pizá et al. 2019, 2021). 

H 
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Regarding shoot growth, our results showed that NTP 
promoted biomass production and that this was related to 
an enhancement of yield components (tiller density and 
weight). Plasma has been shown to improve plant early 
growth in several species in the laboratory, but few studies 
have evaluated growth improvement under field conditions. 
Li et al. (2016), Kriz et al. (2017), and Kumar et al. (2017) 
show that plants grown from plasma-treated seeds of 
Brassica napus, Abelmoschus esculentus and Arachis hypogaea 
(respectively) grow faster, achieve flowering and maturity 
earlier, and yield more than plants grown from non-treated 
seeds. Those authors highlight the enhancement effect of 
NTP on root growth and suggest that this might be increasing 
the ability of plants to uptake water and nutrients from 
the soil. 

The NTP treatment had no negative impact on the quality 
of the high-yielding forage produced by the pasture in the 
field. This finding is of particular interest, because the 
impact of seed treatment with plasma on the biomass quality 
of the resulting plants has rarely been explored. As expected 
from the literature, the increased shoot DM production during 
advanced stages of pasture growth was correlated with higher 
NDF and ADF values and lower crude protein and digestible 
DM (Callow et al. 2003; Donaghy et al. 2008; Agnusdei 
et al. 2012; Chapman et al. 2014). This is typical in most 
forage species and particularly in C4 grasses because plants 
produce thickening lignification of the walls and show a 
reduction of cell content as they mature (Cano et al. 2004; 
Schnellmann et al. 2020). 

Our results concerning NTP applied to Gatton panic seeds 
are of interest for the seed industry because plasma 
treatment would allow poor-quality seeds coming from 
the field to reach the minimum germination values 
required by national institutions for sale (e.g. in 
Argentina 15% and 25% for germination percentage and 
viability, respectively, quantified in pure seeds; INASE 
2021), ensuring an innovative and competitive offer in 
the seed market. Farmers would also observe the benefits 
of the technology through sowing smaller volumes of 
seeds, which would reduce the associated costs (seeds, 
fuel, operating  time,  etc.). Furthermore, given  that  plasma  
enhances the emergence of seedlings and the supply of 
aerial biomass, the success of pasture establishment, 
which is associated with animal receptivity and, 
therefore, with economic indicators (Kunst et al. 2012), 
would be guaranteed by the application of this 
technology. Additionally, because the persistence of a 
perennial pasture largely depends on its early 
establishment (Descheemaeker et al. 2014; Moore et al. 
2014; Dutra et al. 2015), NTP might also indirectly 
improve this critical parameter. Future studies will 
evaluate the effects of seed treatment with NTP on the 
performance of the pasture in successive cuts and on its 
persistence. 

Conclusion 

This study allows the conclusions that NTP technology 
applied to seeds of Gatton panic can effectively alleviate 
seed dormancy and greatly improve germination. Under 
field conditions, we proved that NTP applied to seeds can 
speed up seedling emergence and increase tiller density and 
shoot DM without producing a negative impact on the 
quality of the forage produced. With this eco-friendly 
technology, there is potential to minimise establishment 
failures, thus reducing the costs of sowing additional seeds. 
Future studies should address the physiological responses 
underlying the promoting effects of NTP and the benefits of 
this technology to pasture productivity and persistence. 

Supplementary material 

Supplementary material is available online. 
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