N. GOODS

Unidad de Vinculación Académica en Agronomía, Agroindustrias, Enología y Alimentos

4tas. Jornadas de Investigación UVA Agronomía, Agroindustrias, Enología y Alimentos - 2023

Plantilla de postulación de trabajos

Marque con cruz

Tipo de postulación	Resumen de Proyecto I+D con resultados	Х
	Tesina de grado finalizada	
	Tesis de posgrado finalizada	
	Trabajo Final de carrera (TF)	
Modalidad postulación (elegir	Oral (hasta 10 filminas – hasta 15 min. presentación).	
preferencia. Comité Ejecutivo le	Póster (1 filmina – hasta 6 min. presentación).	
comunicará en qué modalidad fue	Video expositivo (duración 2 minutos).	
aceptado el trabajo).		Х

Área de Conocimiento a la que	Marque	Línea de Investigación a la que postula	Marque
postula	con cruz		con cruz
Ciencias Agropecuarias		Producción y sanidad animal	
Ciencias Agropecuarias		Producción, protección y mejoramiento vegetal	
Ciencias Agropecuarias		Horticultura y fruticultura	
Ciencias Agropecuarias		Agroindustrias	
Ciencias Ambientales		Ambiente y entornos sustentables	
Ciencias Ambientales		Cambio climático	
Ciencias Ambientales		Objetivos de Desarrollo Sostenible (ODS)	
Ciencias Ambientales		Química del medio ambiente	
Ciencias Ambientales		Gestión de recursos hídricos y suelos.	
Ciencias de la Salud		Nutrición	
Ciencias Sociales y Humanas		Educativa	
Ciencias Sociales y Humanas		Socioeconomía agropecuaria, agroalimentaria y agroindustrial.	
Ciencias Sociales y Humanas		Género, diversidad e inclusión	
Ciencias Sociales y Humanas		Ruralidades	
Tecnología		Bioenergía	
Tecnología		Biotecnología	
Tecnología		Agricultura y/o ganadería de precisión	
Tecnología	Х	Alimentos	X
Tecnología		Enología	
Calidad		Bromatología	
Calidad		Inocuidad y calidad de alimentos	
Calidad		Normas, certificaciones y sellos	

Unidad de Vinculación Académica en Agronomía, Agroindustrias, Enología y Alimentos

Análisis de la Etapa de Secado de Descartes de Zanahoria en Vista a Diseñar un Proceso Integral de Revalorización Analysis of the Drying Stage of Carrot Discards in Order to Design an Integrated Valorization Process

B. Bergia^{1,2}; M.A. Reinheimer^{2,3}; E. Godoy^{3,4} y N. Aimaretti¹

¹ INTA Ángel Gallardo. AER Monte Vera. EEA Rafaela

² Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

³ Facultad de Química. Universidad del Centro Educativo Latinoamericano (UCEL)

⁴ Centro de Investigación y Desarrollo en Tecnología de Alimentos. Facultad Regional Rosario.

Universidad Tecnológica Nacional (UTN)

Contacto: bebergia@gmail.com

Palabras Claves: descartes - secado – zanahoria Keywords: waste - drying – carrot

Cerca de 600 millones de toneladas de frutas y hortalizas se desperdician cada año a nivel mundial. La zanahoria es un cultivo de importancia comercial en Argentina. Entre 50 y 200 t son descartadas diariamente en el periodo de cosecha debido a la presencia de malformaciones. Para este cultivo estacional, el uso de técnicas de secado colabora con reducir las pérdidas poscosecha y proporciona además facilidad en el almacenamiento, transporte y disponibilidad del producto durante todo el año. El objetivo de este trabajo fue estudiar el secado de zanahoria a diferentes temperaturas a los fines de determinar las condiciones que permiten obtener un producto final con adecuada humedad, color y actividad acuosa (aw), para su revalorización y procesamiento. Para ello, las zanahorias se lavaron, pelaron y cortaron en rodajas. Se empleó un secadero batch de bandejas escala planta piloto. Las condiciones de secado fueron: i) temperatura de secado: 50, 60 y 70 °C; ii) espesor de rodajas: 1 mm; iii) tiempo de secado: hasta peso constante. Se confeccionó una curva de secado para cada condición ensayada. Se determinó el contenido de humedad, aw y color del producto obtenido. Los resultados mostraron que no hubo diferencia significativa en los parámetros de color entre las zanahorias secadas a las diferentes temperaturas (p>0.05). En cuanto al tiempo de secado se vio que a menor temperatura el tiempo requerido fue mayor (50 °C: 280 min, 60 °C: 220 min y 70 °C: 180 min), con diferencias significativas (p<0.05) El contenido de humedad y aw de la zanahoria seca a 50 °C, 60 °C y 70 °C fue de 6.88 % y 0.30; 3.95% y 0.30; 4.75 % y 0.33, respectivamente. Si bien a 60 °C se obtuvieron los menores valores, no hubo diferencia significativa (p>0.05) entre la temperatura de 60 y 70 °C, pero sí para 60 y 50 °C (humedad: p=0.04 y aw: p=0.03). Se concluyó que la temperatura de secado más eficiente es la de 60 °C, ya que permite obtener un producto final con menor humedad y aw, a un tiempo relativamente moderado.