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In this study, we explore the application of an artificial recurrent neural network (RNN) called
Long Short-Term Memory (LSTM) as an alternative to a turbulent Reynolds-Averaged Navier-
Stokes (RANS) model. The LSTM models are utilized to predict the shear Reynolds stress in
developed and developing turbulent channel flows. We conduct comparative analyses, comparing
the LSTM results propagated through computational fluid dynamics (CFD) simulations with the
outcomes from the κ− ϵ model and data acquired from direct numerical simulation (DNS). These
analyses demonstrate a good performance of the LSTM approach.

1 Introduction
Fluid flow predictions are of utmost importance in various fields of engineering, including me-

chanical, chemical, and aeronautical, to achieve diverse objectives such as design optimization and
equipment enhancement. Many of these engineering applications involve turbulent flows, which
require the use of Reynolds-averaged Navier-Stokes (RANS) modeling. RANS is a commonly
employed technique for high-velocity scenarios with high Reynolds numbers. It involves utiliz-
ing the Reynolds averaging method to derive the time-averaged general equations of fluid motion,
known as the RANS equations (Pope [2000]). These equations, expressed in dimensionless form
using tensor notation, are the conservation of mass

∂Ui

∂xi

= 0, (1)

and the momentum equations

∂Ui

∂t
+

∂(UjUi)

∂xj

= − ∂P

∂xi

+
1

Reτ

∂2Ui

∂xj∂xj

− ∂⟨ujui⟩
∂xj

, (2)

where Ui (equivalent to U, V, and W), is the mean velocity and P the mean pressure, x and t are
the space and time coordinates, respectively, and Rτ is the friction Reynolds number uτδ/ν. All
variables are non-dimensionalized using the friction velocity, uτ and half the distance between
walls, δ, which represent the characteristic velocity and length scales. Furthermore, when the
original Navier-Stokes equations are time-averaged, a tensor arises consisting of new unknowns,
known as the Reynolds stress tensor, ⟨ujui⟩. Given that this tensor is symmetric, for solving these
equations there are 6 new unknowns, in addition to Ui and P.
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Previous task involves incorporating a procedure or method for computing these 6 new un-
knowns (the velocities U, V, and W and pressure P are found using the conservation equations of
momentum and mass). These techniques are called RANS modeling for turbulence, as commented
above, with the Kappa-Epsilon model being an example of them. In general, these models employ
a pseudo viscosity that is determined based on the influence of turbulence. This approach draws an
analogy between the behavior of a Newtonian fluid and that of a turbulent flow. By incorporating
this pseudo viscosity, the models aim to capture the characteristics and dynamics of turbulent flows
in a manner similar to how a Newtonian fluid behaves.

RANS models depend on empirically-determined constants that are calibrated using experi-
mental turbulent flows or more accurate techniques such as Large Eddy Simulation (LES) or Direct
Numerical Simulation (DNS). However, when these models are utilized beyond the range of their
calibrated constants, their predictions may lack accuracy. This represents the primary challenge
associated with RANS techniques.

Following a prolonged period of stagnation, RANS modeling is now entering a new phase
with the integration of Artificial Intelligence (AI) techniques. AI involves a diverse range of data-
driven algorithms, ranging from well-known methods like linear regression to more advanced con-
cepts like neural networks. With the availability of high-fidelity data, AI allows for the capturing
of potentially complex relationships between turbulence mean-flow characteristics (features) and
modeling terms (predictions)

In the last years AI has been widely used in RANS models, employing a variety of methods
for addressing a wide range of problems (Milano and Koumoutsakos [2002], Lecun et al. [2015],
Ling and Templeton [2015], Ling et al. [2016a]). One such method that has gained attention for its
flexibility and precision is deep learning (DL), which involves transforming input features through
multiple layers of nonlinear interaction (Ling et al. [2016b]).

Turbulence, however, is a highly complex phenomenon that often proves challenging to accu-
rately model using conventional AI techniques like deep learning (DL). One of the primary reasons
for this complexity lies in the non-local effects of turbulence. The Reynolds stresses or turbulence
stresses not only depend on the flow characteristics at the specific location where they are calcu-
lated but also on the flow characteristics in the surrounding regions. This interdependency poses
a significant bottleneck in turbulence modeling. To address these non-linear problems more effec-
tively, recurrent neural networks (RNN) are better suited due to their ability to capture spatial or
temporal dependencies.

In particular, Long Short-Term Memory (LSTM) recurrent neural network is currently regarded
as one of the most interesting types of neural networks, with potential for effectively capturing the
non-locality of turbulence. LSTMs have found widespread applications in various fields, including
language modeling, sentiment analysis, machine translation, speech recognition, and time series
forecasting. In engineering, LSTMs are particularly useful for predicting trends and patterns in
time series data, such as stock prices, weather patterns, electricity demand, anomaly detection
in sensor data, industrial machinery health monitoring, and equipment failure prediction, among
others (Hochriter and Schmidhuber [1997], Sutskever et al. [2014]). LSTMs excel in tasks where
data has a sequential nature and long-term dependencies need to be captured, making them a
promising approach for turbulence modeling.

In this study, an application of LSTM is performed to predict Reynolds stresses from data gen-
erated by Direct Numerical Simulation (DNS). The following section discusses aspects related to
the Reynolds stress prediction using RNN; section 3 presents and discusses some of the LSTM
models tested in the study; section 4 gives some numerical details of the RANS simulations; sec-
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Figure 1: Mean flow and Reynolds stress dimensionless longitudinal profiles from DNS data for a channel
flow with Reτ = 300, perturbed with an adverse pressure gradient at a narrow region of wide W+ = 220
at the buffer region. Vertical solid lines are the perturbation region limits, and the 3 vertical broken-lines,
show middle, W+ and 5W+ distance from perturbation region. Solid line, ∂U+/∂y+; −.− .−∂P+/∂y+;
−−−, 20× ∂U+/∂x+; • · • · •, 20× ∂V +/∂x+; □ · □ · □ , 50× ⟨uv⟩+; ⋄ · ⋄ · ⋄10× ⟨uu⟩+ .

tion 5 discusses and shows the results of the neural network fitting and propagation of predictions
through RANS simulations, and finally section 6 lists some conclusions.

2 Reynolds stress prediction with LSTM RNN

Name Rτ Perturbation Parameter Purpose
Developed 300 train. test.
BRE3006 300 blowing v+ = 0.6 train. test.
SRE3006 300 suction v+ = 0.6 train. test.
APGRE30025 300 adv. p. grad. step ∂P+/∂x+ = +0.25 train. test.
FPGRE30025 300 fav. p. grad. step ∂P+/∂x+ = −0.25 train. test.
BRE3004 300 blowing v+ = 0.4 val.
SRE3004 300 suction v+ = 0.4 val.
APG100045 600 adv. p. grad. step ∂P+/∂x+ = +0.40 val.
FPG100045 600 fab. p. grad. step ∂P+/∂x+ = −0.40 val.
Developed 1000 val.

Table 1: Data set for training, testing or validation. v+ is the dimensionless wall-normal velocity in the slot
at the wall; ∂P+/∂x+ is the pressure gradient step in the perturbation region.

One of the most challenging aspects of turbulence is its non-local nature. Let’s consider a sce-
nario where we have a statistically stationary turbulent flow (the mean flow characteristics remain
constant with time). When this flow is disturbed by an immersed body, for example, the primary
effect is on the pressure field, mainly upstream and around the body. These pressure field changes
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subsequently influence the mean velocity field around the object, resulting in an increase in turbu-
lence primarily downstream of the body. In other words, the modifications in mean pressure and
velocity, and turbulence fields, occur in different regions of the flow, emphasizing the non-local
characteristics of turbulent flows.

Figure 1 shows the longitudinal profiles of mean flow and Reynolds stress in a channel flow
perturbed by an adverse pressure gradient in a narrow region near the wall. This figure reveals that
the maximum values of the shear Reynolds stress ⟨uv⟩ occurs downstream of the perturbation re-
gion, which is clearly downstream where the maximum changes in the mean pressure and velocity
are observed.

In the context of RANS turbulence models, such as the κ−ϵ model (Pope [2000]), the inclusion
of non-local effects is achieved through the convection and diffusion of kinetic energy (κ) and tur-
bulence dissipation (ϵ). However, incorporating these non-local effects becomes more challenging
when using a regression model in deep learning (DL). In this case, it is more appropriate to utilize
a recurrent neural network such as LSTM.

Another aspect of an NN model for Reynolds stress is its universality. The question arises
regarding the level of universality and complexity the model should possess, or conversely, how
specialized and simple it can be. Developing a universal model with an NN would necessitate
a large number of adjustable parameters to capture all possible flow characteristics. Furthermore,
fine-tuning an NN with a high parameter count is exceedingly challenging, and integrating a neural
network with a large number of parameters into a computational fluid dynamics (CFD) software
presents a significant obstacle due to the substantial computational demands it entails.

Consequently, this study aims to utilize an RNN with a reduced parameter count for rapid pre-
diction in a RANS simulation. To achieve this, the LSTM neural network was trained, tested, and
validated, using data generated from Direct Numerical Simulations (DNS) of fully developed or
perturbed (developing) turbulent flows. All the flows considered in this study are statistically 2D
channel flows, comprising the following scenarios: a) developed flows; b) flows perturbed with
wall injection; c) flows perturbed with wall suction; d) flows perturbed with an adverse pressure
gradient in a localized region; and e) flows perturbed with a favorable pressure gradient in a local-
ized region. Each perturbed flow initially represents a developed flow, with a small region of width
W+=220 being perturbed. To generate boundary conditions for a perturbed flow, two parallel DNS
simulations were conducted, with the first simulation employing periodic boundary conditions.
For more detailed information, please refer to the bibliography for additional insights (Pasinato
[2012]). Table 1 provides a comprehensive list of the flows utilized in the study, accompanied by
pertinent details such as perturbation parameters and their respective purposes.

Given that the turbulent flows studied are statistically stationary, the neural network is trained
using space-sequences instead of time-sequences. Each space-sequence consists of 64 consecutive
values along the longitudinal direction, with an approximate dimensionless distance of X+ ≃ 41
between each value. Consequently, the complete sequence covers a distance of approximately
X+ ≃ 2620, representing the entire physical domain. In other words, if for a DNS with Rτ = 300
a numerical grid with N = 254 nods is used in the longitudinal direction, for each spatial sequence
N/4 nodes of the DNS solution are employed at a fixed y+ distance from the wall.

To ensure a diverse representation during training, the full sequences are randomly shuffled.
Additionally, the values are normalized between 0 and 1, using the global maximum and mini-
mum values of the data set. This normalization process enables consistent scaling across different
variables. Finally, the entire data set is exclusively divided into training and testing data, with the
testing data comprising 20% of the complete data set.
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3 LSTM models

Name Parameters Learning rate Features Predictions
L110DL 531 0.025-0.001 S+

11; S+
12 ⟨uv⟩+

L15L25DL 386 0.025-0.001 S+
11; S+

12 ⟨uv⟩+
L15DL-Y 186 0.025-0.001 S+

11; S+
12;Y ⟨uv⟩+

L110DL-Y 571 0.025-0.001 S+
11; S+

12;Y ⟨uv⟩+

Table 2: LSTM tested models.
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Figure 2: Prediction of ⟨uv⟩+ with the LSTM model L110DL-Y. Solid line, S+
12; − − −, S+

11; −. − .−,
y/δ; □ ·□ ·□ , Prediction; ◦ · ◦ · ◦ , DNS data. The data set was normalized in the 0-1 range with the
global maximum and minimum.

All LSTM models were implemented in two different numerical codes: one developed in-house
using modern Fortran, and the other implemented in Python using the Keras-TensorFlow libraries
(Abadi et al. [2015]). The porpouse of the Fortran code was to gain insight into the forward and
backward algorithms of LSTM and compare them with the Keras version ( Chen [2018]).

The LSTM, like other deep learning models, has three hyper-parameters: a) the number of
stacked layers (or stacked LSTM cells), b) the number of memory units in each LSTM layer, and
c) the learning rate. In this study, these hyper-parameters were selected through trial and error.

It is worth mentioning that the TensorFlow libraries offer a wide range of optimization methods,
including dynamic learning-rate techniques that speed up convergence. However, both the Fortran
and Keras codes faced challenges when optimizing models with many stacked layers (5 or more
layers) and numerous memory units. To simplify the models and reduce the number of parameters,
a maximum of 3 stacked LSTM layers with a maximum of 10 memory units were used for all tested
models. Finally the best predicted solution were from models with 1 LSTM cell and 10 memory
units for the data set used.

Table 2 presents some of the LSTM models tested in this study. The name L15L25DL indicates
an LSTM with 2 stacked layers, each having 5 memory units, and a dense output layer. The
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Figure 3: Mean velocity for a developed channel flow with Reτ = 300 with ⟨uv⟩+ predicted from the
LSTM model L110DL-Y. Solid line, U+; + ·+ ·+, Logarithmic profile 1/0.41 ln(y+) + 5.5.

components S+
11 and S+

12 represent the dimensionless mean rate-of-strain-tensor Sij , which are
calculated as S+

ij = 1/2(∂U+
i /∂x

+
j + ∂U+

j /∂x
+
i ). Additionally, Y denotes the dimensionless wall

distance (y/δ). It is important to note that the axes in Sij are non-dimensionalized differently from
the distance to the wall Y .

Although the primary objective of this study was to predict the shear Reynolds stress ⟨uv⟩,
some of the models were developed to predict the normal Reynolds stress ⟨uu⟩, as an initial step,
followed by an LSTM model to predict ⟨uv⟩ based on the predicted ⟨uu⟩. In all of these cases,
the optimization of the LSTM models for ⟨uu⟩ yielded superior and faster results compared to the
LSTM models for ⟨uv⟩.

The previous architecture of one RNN to predict ⟨uu⟩ and a second RNN to predict ⟨uv⟩ is
based on the non-linearity of turbulence. In the context of channel turbulent flows, it is well-
established that turbulence acquires energy from the mean flow first through ⟨uu⟩. Subsequently,
the instantaneous pressure field transfers a portion of this energy to the ⟨vv⟩ and ⟨ww⟩ components
(Tennekes and Lumley [1972]). As consequence as depicted in Fig. 1, the modification of ⟨uu⟩
occurs promptly after the mean velocity and pressure field are perturbed, while the alteration of
⟨uv⟩ experiences a certain delay. No results are presented here of the LSTM model of ⟨uv⟩ based
on a previous prediction of ⟨uu⟩.

4 Numerical details of the RANS simulations
The RANS simulations with the propagation of the LSTM predictions and the κ − ϵ model

were computed with a physical domain of 3πδ× 2δ× 4/3πδ, and a numerical grid of 64× 64× 64
(∆x+ = 44, ∆z+ = 19.6, ∆y+max = 26.4, and ∆y+min = 1.), and the time step 0.15ν/u2

τ . In
the wall-normal direction a non-uniform mesh distributed with the hyperbolic tangent function is
used and the expansion ratio is adjusted to ensure that the y+ of the first cell center is equal to 1.
Furthermore, a van Driest function near the wall is used with the κ − ϵ model. Considering the
low Reynolds number flows employed in this study, it is believed that the wall modeling approach
adopted is adequate.

The RANS simulation of perturbed flow follows a similar approach to DNS. Initially, a fully
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Figure 4: Shear stresses for a developed channel flow with Reτ = 300 with ⟨uv⟩+ predicted with the
LSTM model L110DL-Y. Filled diamonds, total stresses; □ · □ · □ , ⟨uv⟩+; ◦ · ◦ · ◦ , molecular stress
dU+/dy+.

developed flow is considered, and a small region of width W+=220 is perturbed. To generate
boundary conditions for the perturbed flow, a second simulation is conducted in parallel with peri-
odic boundary conditions, representing the fully developed flow. In other words, at every time-step,
the input boundary condition for the perturbed flow is extracted from the middle of the computa-
tional domain of the fully developed flow.

5 Results and Discussion
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Figure 5: Comparison of half of the skin-friction for a channel flow with Reτ = 300 perturbed with
blowing with an injection dimensionless velocity 0.40 from a narrow slot at the wall, with ⟨uv⟩+ predicted
with the LSTM L110DL-Y model. Solid line, LSTM; −−−, κ− ϵ model; □ · □ · □ , DNS.

In this section, we present the results of the LSTM predictions and their integration with a
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CFD code for propagation. The term ”propagation” refers to the utilization of the LSTM RNN
as a substitute for a RANS turbulence model. At each time-step, sequences are formed and the
LSTM model is employed to calculate the Reynolds stress ⟨uv⟩ at every node of the grid. While we
provide some comparisons between the LSTM prediction and results obtained from the κ−ϵ model
(which computes all shear and normal Reynolds stresses), the RANS simulations with LSTM
predictions only consider the shear Reynolds stress ⟨uv⟩. The remaining Reynolds stresses were
taken equal to zero.

As mentioned earlier, the purpose of using the LSTM RNN in this study is not to capture
the universal behavior of turbulence, but rather to predict statistical stationary 2D turbulent flows
specifically for channel flow. The LSTM model serves as a proof of concept for predicting
Reynolds stresses. Consequently, the turbulent flows utilized for validating the LSTM model share
certain similarities with the flows employed for model adjustment and testing.

For instance, all the turbulent flows used for model adjustment, testing, and validation pertain to
channel flows. These flows encompass developed or perturbed developing flows, characterized by
low or medium friction Reynolds numbers Rτ (300-1000). It is worth noting that the mean velocity
and normal Reynolds stresses, along with other statistical measures, exhibit low Reynolds number
effects in these flows. The developing flows represent turbulent flows that have been perturbed
from the wall or in small regions in the buffer region.

500 1000 1500 2000 2500

1

2

3

4

x
+

f/
2

Figure 6: Comparison of half of the skin-friction for a channel flow with Reτ = 300 perturbed with suction
from a narrow slot at the wall, with ⟨uv⟩+ predicted with the LSTM L110DL-Y model. Solid line, LSTM;
−−−, κ− ϵ model; □ · □ · □ , DNS.

Prediction of the shear Reynolds stress without propagation: Figure 2 illustrates the LSTM-based
prediction of the shear Reynolds stress ⟨uv⟩+ utilizing S+

11, S
+
12, and Y(= y/δ) as input parameters,

with L110DL-Y model. The LSTM model employed for this prediction follows a sequence-by-
sequence (seqxseq) architecture (Sutskever et al. [2014]). To ensure consistent scaling, all data
points have been normalized within the range of 0-1, utilizing the global minimum and maximum
values across the entire dataset. These normalized values are subsequently transformed back to
their original, real-world scale using the same minimum and maximum values.

Propagation of predicted shear Reynolds stress in developed flow: In fully developed turbulent
flows, the momentum equation (2) in the longitudinal direction can be expressed in dimensionless
form using the characteristic velocity scale uτ and boundary layer thickness δ, as mentioned earlier.
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Figure 7: Comparison of the shear Reynolds stress for a channel flow with Reτ = 300 perturbed with
suction from a narrow slot at the wall, with ⟨uv⟩+ predicted from the L110DL-Y model. y+ = 5, solid line,
LSTM; ◦ · ◦ · ◦ DNS; y+ = 30, −−−, LSTM; ⋄ · ⋄ · ⋄, DNS.

It takes the following form:

dU+

dy+
= ⟨uv⟩+ + (1− y+

Rτ

) (3)

where the pressure gradient has been substituted with the wall shear stress (Tennekes and Lum-
ley [1972]). Equation (3) illustrates the equilibrium between the Reynolds shear stress and the
wall-normal gradient of the longitudinal mean velocity for a fully developed turbulent flow. This
equilibrium is depicted in the plots of U+, ⟨uv⟩+, and dU+/dy+ as functions of the dimension-
less distance to the wall, y+, in Figs. 3 and 4. Specifically, the agreement of the U+ profile with
the logarithmic law of the wall in the logarithmic sub-region, shown in Fig. 3, indicates that the
predicted value of ⟨uv⟩+ is accurate.

Thus, as observed in these figures, the mean velocity exhibits a logarithmic sub-region with
appropriate values for the given Reynolds number, indicating the characteristic velocity profile of
a developed turbulent flow. Furthermore, the shear stresses, including both molecular and turbulent
components, demonstrate a state of perfect equilibrium under developed flow conditions. This im-
plies that the LSTM predictions successfully capture the essential features of developed turbulent
flows.

In order to evaluate the stability of the results obtained from the LSTM model, a series of tests
were conducted using flows with initial conditions significantly distant from a fully developed
state. The objective of these tests was to assess the capability of the LSTM model to converge
towards a stable solution.

Propagation of predicted shear Reynolds stress in developing flows: In this section the results of
the LSTM model L110DL-Y propagated in developing turbulent channel flow are presented. The
first case is a blowing case in a channel with a dimensionless injection velocity of 0.40 (the set of
data for training included an injection case with a dimensionless injection velocity of 0.60). The
results of the propagated LSTM predictions are shown in comparison with κ − ϵ model and data
from DNS, Figs. 5 to 7.

Figures 5 and 6 clearly demonstrate the LSTM model’s superior performance in computing the
skin friction when compared to the traditional κ − ϵ model. Additionally, Figure 7 illustrates that
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the propagated shear Reynolds stress follows the general trend observed in the DNS data.
A RANS prediction depends on various factors, such as the numerical grid, software preci-

sion, and, of course, the RANS model itself. In this study, all these aspects were reasonably
implemented. Based on the presented comparisons between the LSTM RNN and the κ− ϵ model
predictions, it can be concluded that LSTM-RANS exhibits superior performance. However, it is
essential to note that the LSTM-RANS simulations with the L110DL-Y model used here required
approximately 50% more time for computation than κ− ϵ simulations.

Regarding the time-processing aspect of LSTM-RANS, it is worth mentioning that a more
comprehensive study should be conducted. This broader investigation should encompass the use
of different RANS models and LSTM networks with varying numbers of parameters to draw more
definitive conclusions.

In summary, the study demonstrates that LSTM-RANS outperforms the traditional κ−ϵ model,
but further research is needed to explore its efficiency and effectiveness fully.

6 Conclusions
In this study, we introduce the application of an artificial Recurrent Neural Network (RNN)

known as LSTM as a promising alternative to a turbulent RANS model. The primary objective
was to utilize the LSTM model for predicting the shear Reynolds stress in both developed and
developing turbulent channel flows, and subsequently propagate this prediction.

To assess its performance, we conduct a comparative analysis, where we compare the LSTM
results, propagated through CFD simulations, with the outcomes from the traditional κ− ϵ model
and data obtained from DNS. Remarkably, the LSTM approach demonstrates a strong performance
in these analyses, showing its potential as an effective technique for modeling the shear Reynolds
stress in turbulent flows.

It is essential to note that this study serves as a proof of concept, and the validation process
utilizes 2D statistical turbulent flows as the training and test data sets. Despite this limitation, the
results presented here indicate the LSTM RNN’s efficacy in modeling the shear Reynolds stresses
accurately in turbulent flows.

Overall, the findings from this study open up exciting possibilities for further exploring the
capabilities of LSTM models as alternatives to conventional RANS models in the context of tur-
bulence prediction and modeling.
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Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. URL https://www.
tensorflow.org/. Software available from tensorflow.org.

G. Chen. A gentle tutorial of recurrent neural network with error backpropagation. pages 1–10,
2018.

H. Tennekes and J. L. Lumley. A First Course in Turbulence. MIT Press, Cambridge USA, 1972.

11

https://www.tensorflow.org/
https://www.tensorflow.org/

	Introduction
	Reynolds stress prediction with LSTM RNN
	LSTM models
	Numerical details of the RANS simulations
	Results and Discussion
	Conclusions

