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Abstract

The 3D characterization of magnetic flux ropes observed in the heliosphere has been a challenging task for decades.
This is mainly due to the limitations on inferring the 3D global topology and physical properties from the 1D time series
from any spacecraft. To advance our understanding of magnetic flux ropes whose configuration departs from the typical
stiff geometries, here we present an analytical solution for a 3D flux rope model with an arbitrary cross section and a
toroidal global shape. This constitutes the next level of complexity following the elliptic-cylindrical (EC) geometry. The
mathematical framework was established by Nieves-Chinchilla et al. with the EC flux rope model, which describes a
magnetic topology with an elliptical cross section as a first approach to changes in the cross section. In the distorted-
toroidal flux rope model, the cross section is described by a general function. The model is completely described by a
nonorthogonal geometry and the Maxwell equations can be consistently solved to obtain the magnetic field and relevant
physical quantities. As a proof of concept, this model is generalized in terms of the radial dependence of current density
components. The last part of this paper is dedicated to a specific function, F 1 cosj d l j= -( ) ( ), to illustrate
possibilities of the model. This model paves the way toward the investigation of complex distortions of magnetic
structures in the solar wind. Future investigations will explore these distortions in depth by analyzing specific events;
studying implications for physical quantities, such as magnetic fluxes, helicity, or energy; and evaluating the force
balance with the ambient solar wind that allows such distortions.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Solar coronal mass ejections (310); Solar
evolution (1492)

1. Introduction

In heliophysics, a flux rope could be defined as a magnetized
plasma confined within magnetic field lines wrapping around
an axis that transports mass, magnetic flux, energy, and helicity
away from the Sun. In an effort to create an unidealized picture
of a flux rope in the heliosphere, it could be described by an
internal complex current density distribution driving a twisted
but not necessarily ordered magnetic field topology that keeps
the plasma enclosed. In this description, the global geometry
would be determined by the flux rope genesis back at the Sun
as well as by the dynamical balance with the ambient solar
wind as the flux rope evolves in the heliosphere.

Little is known about the internal structure and global shape of
heliospheric flux ropes, basically because of the lack of
observations, which are limited to a few locations in the
heliosphere. The progressive increase in the number of space-
based telescopes, such as the Parker Solar Probe (Fox et al. 2016)
and Solar Orbiter (Müller et al. 2020), that build on the work of the
Solar and Heliospheric Observatory (Domingo et al. 1995),
STEREO (Kaiser et al. 2008), and the Solar Dynamics
Observatory (Pesnell et al. 2012) is providing a valuable
combination of remote-sensing observations that partially enable
us to untangle the third dimension from the ecliptic-based field
of view.

On the basis of in situ observations, magnetic flux ropes
observed in the heliosphere have been assumed for decades to be

force-free magnetic structures with a simple circular-cylindrical
(CC) geometry (Lundquist 1951; Burlaga et al. 1981; Suess 1988;
Lepping et al. 1990) and occasionally in magnetohydrostatic force
balance (Sonnerup & Guo 1996; Hau & Sonnerup 1999; Hidalgo
et al. 2002a, 2002b; Hu 2017). In an effort to reconcile this view
with remote-sensing observations, a realistic flux rope may depart
from that idealized picture as it propagates through the corona and
in the interplanetary medium. The current understanding of
observed patterns in these observations suggests that the dark,
round void outlined by excess brightness is the flux rope cavity
with its axis seen oriented along the line of sight, while the bright
front defines the leading edge associated with part of the sheath in
interplanetary in situ data (e.g., Rouillard 2011; Kilpua et al. 2017).
The upcoming out-of-the-ecliptic observations from Solar

Orbiter are promising with regard to unraveling the global
shape of large structures in the inner heliosphere. In parallel
with the increase of available observations, the understanding
of the fundamental physics associated with flux ropes also
requires models adapted to the complexity of the space
environment. We approach this challenge with the revision of
the CC model in Nieves-Chinchilla et al. (2016), which
provides complexity in the flux rope magnetic structure by
including the polynomial series in the current density. In a
second paper (Nieves-Chinchilla et al. 2018a ), we developed a
mathematical formulation to solve any magnetohydrodynamic
equations in a nonorthogonal coordinate system, and
approached the geometrical complexity with an elliptical cross
section for the cylinder as an approximation to a distorted flux
rope (henceforth the elliptic-cylindrical (EC) model).
This paper aims to advance the development of a model that

better converges to the above definition of a heliospheric flux
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rope, namely one described by an internal complex current
density distribution driving a twisted but not necessarily
ordered magnetic field topology. To that aim, we develop a
3D flux rope model based on a toroid but allowing more
complex cross section geometries. Section 2 includes the
mathematical details of a general model and the physical
quantities such as magnetic fluxes, energy, helicity, and
Lorentz force. In Section 3, we adapt the model to a specific
cross section and compare it with imaging observations with
the cylindrical case. Section 4 includes a brief discussion and
final remarks.

2. General Distorted-toroidal Flux Rope Model

Following the path of previous papers and assuming a
toroidal geometry, we introduce a distorted-toroidal (DT)
coordinate system here,

x rF
y rF
z r

cos cos
cos sin

sin 1

r j y
r j y

j

= +
= +
=

[ ]
[ ]

( )

where ρ is the major radius for the torus, j and ψ are the
poloidal and toroidal angles, and F= F(j) is a function that
geometrically characterizes the cross section distortion.

Figure 1 illustrates the global 3D geometry and the details of
the distorted (green color) and nondistorted (gray color) cross
sections of a uniform-twist magnetic flux rope based on this
coordinate system. The new coordinates are indicated in pink
color in the graphics. The ψ and j range from 0 to 2π and the r-
coordinate ranges from 0 to R. The r-coordinate is not the distance
to the center of the flux rope, which will be defined by the rF(j)
function and will shape the cross section. In the case of Figure 1,
we have selected the function F 1 cosd l j= -( ) with δ= 0.9
and λ = 0.4. In this case, the structure is highly compressed in the
outer edge of the torus but it extends beyond the r=R value at the
inner edge of the torus. The amount of front compression or rear
extension in this case is determined by the λ parameter, while the
distortion is defined by the δ parameter. In the more general case,
the F function may be generalized to any angular function,
depending on the poloidal angle j and on the number of
parameters needed to characterize the cross section.

Figure 2 illustrates some other possibilities of the DT
coordinate system for four F functions. In the four cases,
colored cross sections are shown in contrast with a semitran-
sparent circular cross section (F= 1). Figures 2(a) and (b)
illustrate the previously discussed cases for F= δ and
F 1 cosd l j= -( ). In the latter case, the change in signs of
the λ parameter will determine the distortion face, outward for
a negative sign, inward for a positive sign. The other two
examples, Figures 2(c) and (d), represent two other observed
shapes that may recall some white light observations of coronal
mass ejections (CMEs) in the heliosphere.

2.1. Model Framework

Since the DT coordinate system is not necessarily orthogo-
nal, any physical quantity should be described by a set of
covariant and contravariant components. Here, we will follow
the methodology described in Nieves-Chinchilla et al. (2018a),
providing a critical description for this paper.

The basis vectors will be defined as

F F
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 These basis vectors are related to the unit vectors by the scale
factors
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where, for analogy with the EC model, the metric tensor
element hj is renamed rh.
The metric tensor must be built to relate the covariant

(subscript) and contravariant (superscript) spaces. The elements
of the metric tensor are

g F cos sin , 6rr r r
2 2 2e e j j= = +· [ ] ( )

g rF hcos , 72 2e e r j= = + =yy y y y· [ ] ( )

g r r hcos , 82 2 2 2 2e e j= = + =jj j j· [ ] ( )I

g g 0, 9r r re e= = =y y y· ( )

g g r F rgcos sin , 10r r r re e j j= = = + =j j j j· [ ] ( )I

g g 0. 11e e= = =yj yj y j· ( )

 Note we have renamed g rgr r=j j to separate the radial and
the angular dependency.
The metric is then

g g g g g g
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Note also that for the cylindrical approximation, hψ= 1 and
g d= (EC model) or 1 (CC model).

The contravariant components of the metric are
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 The final step is to define operators that allow us to solve the
MHD equations and obtain the physical quantities that
characterize heliospheric flux ropes (see Nieves-Chinchilla
et al. 2018a for more details). The divergence of the magnetic
field is given by

B
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g B
1

17
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1 2

1 2=
¶
¶
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where Bc
kdenotes the nonscaled contravariant components of

the magnetic field, and q k = (r, ψ, j). The same equation is

used for the current density ( j 0


= · ).
The curl components for the magnetic field are given by

B
g q

g B
1

18i ijk
j kl c

l
1 2

e´ =
¶
¶

( ) ( ) ( )

where ε ijk denotes the Levi-Civita coefficients.
Assuming ( B0, c

y,Bc
j) and ( jc

r , jc
y, jc

j) vector components of
the magnetic field and current density, the equations to solve
are obtained from Ampere’s law and Gauss’s law for
magnetism for a stationary case and imposing the continuity
equation for the currents. Based on the geometry, with the same
cross section shape and size along the flux rope axis, B 0c

r = ,
and assuming the same twisting profile, d/d ψ= 0. Thus, the
equation system will be
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1 2 1 2¶ + ¶ =j
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Here the magnetic field and current density components are the
nonscaled contravariant coefficients of εi and they should be
scaled using the scale factors of Equation (5).
Then, directly from Equation (19), the solution for the

poloidal magnetic field component must be

B r
B r

h g
, 24c

cj =j
j

y
( ) ( ) ( )

where henceforth B B rc c=j j ( ).
Now solving for Bc

j in Equation (21), we obtain
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Figure 1. Representation of a circular-toroidal flux rope (gray line) and a distorted flux rope with a uniform-twist field. In pink color are shown the r-, ψ-, and j-
components: ρ, the major radius; R, the minor radius; ψ, the azimuth angle; and j, the poloidal angle. Both structures are represented in the same DT coordinate
system with F = 1 (gray color, for the circular case) or F = 1 cosd l j-( ) (green color, for the distorted case), ρ = 4, δ = 0.9, and λ = 0.4.
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 The solution to the equation is

B
h

r

g

h

r

h
j r dr, , 28c

r

c0

2

2 0

1

2òm j= - ¢j y
s

c

c

y
s

y
-

- ( ) ( )



where j r,c jy ( ) should be such that B rc
j ( ) does not depend on

the poloidal coordinate. Thus,
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Figure 2. Illustration of different cross sections based on (a) F = δ (elliptical cross section), (b) F 1 cosd l j= -( ) with δ = 0.9 and λ = 0.4, (c)
F 1 cos2d l j= -( ) with δ = 0.5 and λ = 0.4, and (d) F 1 cos 3 sin 4d l j l j= - +( ) with δ = 0.9 and λ = 0.4. In all simulations, ρ = 3R. Each case is
displayed on top of a semitransparent circular cross section to highlight the distortion.
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where k(r) is an arbitrary function solely dependent on r. The
nonscaled poloidal magnetic field component is

B
B

h g

k r

h g
. 30c

c
0m= = -j

j

y y

( ) ( )

 Now solving, from Equation (23), the poloidal current
density component, we obtain

j
rf r

rg
, 31c

r=
¶j ( ( )) ( )


and the radial current density component is

j
h g

f r . 32c
r = -

y
( ) ( )I

 Note that, in the particular case of F constantj =( ) and a
cylindrical geometry, j r= 0 would be a solution of the
equations. This was the solution expressed in the case of the
EC and CC models.

Now, to solve for the toroidal magnetic field component, we

can impose B r,c
B r

h
cj =y y

y
( ) ( ) , and then the scaled toroidal

magnetic field component will be

B r f r , 33c
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where we will impose that the value of the central magnetic
field decreases with the radial distance to reach a value at r= R
that may be canceled or a scaled value of the central magnetic
field. This boundary condition may be arbitrarily set. We will
rename this function

f r f r . 34r
r
0=( ) ( )∣ ( )

Then, the nonscaled toroidal magnetic field component is
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 The scaled magnetic field components are
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 The scaled current density components are

37

j r h j r
h

gh
f r

j r h j r
h

g h
k r

r

h
k r r

j r rhj r h
rf r

g

, ,

, , ,

, , .

r
r c

r r

c

c
r

2

2
⎡
⎣⎢

⎤
⎦⎥

j j

j j c s

j j

=- = -

= = - + ¢

= =
¶

y

y
y

y

y y

j j

( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ( ))

I


The set of Equations (36) and (37) are the general solution of
the magnetic field for the radial profile of the current density
components. Table 1 summarizes the geometrical factors and
parameterized equations that directly impact the above model
equations. Thus, for any geometry consistent with the

coordinate system, Equation (1), and a chosen radial profile
of the current density component, the solution can be found.
For completeness and consistency with the CC and EC

models, relevant physical quantities such as magnetic fluxes,
magnetic energy, and helicity have been developed in the
Appendix. The analysis will be carried out in forthcoming
studies.

2.2. A General Case of Radial Variation of the Current Density
Components

In agreement with previous papers, the current density
components could be selected using the radial polynomial
function with arbitrary coefficients. Here, we are going to
simplify the problem and select one series term to develop the
problem. Thus,

k r r m, with 0, 38m
mb= ( ) ( )



f r r n, with 1, 39n
n 1a= - + ( ) ( )


where αn and βm are the two coefficient parameters of the
model, and the m and n indices determine the radial profile of
the current density components and eventually the magn-
etic field.
The scaled current density components are
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 The scaled magnetic field components are
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 The above equations could be simplified to a single term of
the polynomial series and parameterized to the parameters

Table 1
Geometrical Factors, including Scale Factors and Metric, and Parameterized

Equations Needed to Build the Model Equations

Geometrical Factors
and Parametric Funct.

1. F Fcos sinj j j= ¢ -( )I

2. h F cos sinr
2 2 2 1 2j j= +[ ]

3. h cos2 2 1 2j j= +[ ( ) ]I

4. h rF cosr j= +y ( )
5. g F cos sin2j j= -[ ]I

6. g Fcos sinr j j= +j [ ]I

7. 2
g
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8. 1
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 Table 2 includes all geometrical factors and solutions for the
parameterized equations listed in Table 1 for the circular case,
the elliptical case, and the distorted cases F 1 cosd l j= ( )
and F 1 cos2d l j= ( ). The case of Figure 3(d) brings more
complex calculations that can be approached numerically. The
same exercise can be done for distortions more complex than
those shown in Figure 2.

Figure 3 shows the total magnetic field distribution (first
column) and the poloidal (second column) and axial (third
column) magnetic field component distribution for the four
distorted cross-section cases and in the same order of Figure 2.
Figures 3(a)–(c) display the case of F = δ, (d)–(f) correspond to
F 1 cosd l j= -( ), (g)–(i) correspond to F 1 cos2d l j= -( ),
and (j)–(l) illustrate the F 1 cos 3 sin 4d l j l j= - +( )
example. Each case is displayed on top of the corresponding
quantity for the circular cross-section distribution in the
semitransparent background to highlight the effect of compres-
sion in the quantity and distribution over the cross section. In
the simulations, we use ρ= 3R, λ= 0.4, and δ= 0.5 in all
cases except those in Figures 3(d)–(f), which consider δ= 0.9.
In all cases, the torus center is located on the left of each plot.
Thus, due to curvature, there is an increase in the left side of the
magnetic field intensity in the magnitude or components, more
or less depending on the level of the curvature. In general, as
the curvature increases, there is a more notable increase of the

intensity of the field. The effect is remarkable in the toroidal
magnetic field component and consequently, in the magnitude,
but there is no effect in the case of the poloidal component. In
the simulated cases here, the effect can be similar to or greater
than the compression but more localized. Thus, as the
spacecraft crosses the structure, the in situ magnetic field
observations should indicate a smooth increase in the
compression area but a sharper and sudden increase in the
curved area.
However, in real events, the combinations of these effects

can be more complicated. Nieves-Chinchilla et al. (2018b)
carried out a survey of the interplanetary CMEs (ICMEs)
observed by the Wind spacecraft during the first 20 yr of the
mission. Based on the analysis of the magnetic field strength
profile, the authors proposed several scenarios, depicted in
Figure 11 of the paper. For instance, according to the data
analysis results, 22% of the observed ICMEs displayed
magnetic field strength compression at the back of the
structure. The specific case of the event observed on 2000
November 6 (day 311), in Figure 6(c) of that paper, depicts a
back compression of the magnetic field strength in spite of
the structure showing an expansion velocity V 58exp =
km s−1. This may be evidence of the effect of the curvature
in the in situ observations. In the case of the asymmetric
cross-section distortions addressed here (Figures 3(a)–(c) and
Figures 3(g)–(i)), there is a bilateral compression. This effect
is also due to the curvature plus the front compression is due
to the distortion. The magnetic field profile may result in a
symmetric magnetic field strength and it would be difficult to
decipher signatures of distortion. Examples of this scenario
are the event observed by Wind on 2010 January 1 (see
Figures 5 and 9(b) in Nieves-Chinchilla et al. 2016) and the
event observed on 2013 June 27 (see Figure 7 in Nieves-
Chinchilla et al. 2019).
These are some real-case events where we can interpret

signatures of distortion or compression. However, the next
section shows more insights for the specific case of
F 1 cosd l j= ( ) in a highly curved and cylindrical flux
rope structure. This is an exercise of human training based on
visual inspection in order to move forward in the understanding
of the distortion effect in in situ observations. Thus, this
preliminary back-and-forth exercise between the observations
and models would be a prologue to an exhaustive machine-
learning training method (see, for instance, dos Santos et al.
2020; Narock et al. 2022).

3. Magnetic Field Imprints of the Curved–Distorted
Flux Rope

As part of this paper, we have carried out a study of the
implications of distortion in the magnetic field configuration
as observed by spacecraft crossing a flux rope. The goal is to
identify what in situ signatures could provide insights into
distortion, compression, and curvature before carrying out
the traditional fitting of the model to the in situ observations.
Thus, the first approach would be to learn from the model to
identify such signatures based on visual inspection as part of
human training. This exercise would be similar but opposite
to the study carried out by Nieves-Chinchilla et al. (2018b)
that looked for signatures in the ICMEs observed by Wind for
20 yr to identify distortion, expansion, or curvature
signatures. In our case, we will simulate the trajectory of a
spacecraft to carry out human training based on visual

Table 2
Functions, Scale Factors, Parametric Functions, and Magnetic Field Model

Equations Associated with the Geometries Depicted in Figure2

Geometry Factors Field
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Figure 3. Each column in this array of plots shows the magnetic field magnitude distribution (first column) or the poloidal (second column) or axial (third column)
component for the four F functions displayed in Figure 2. From the top (a)–(c) correspond to F = δ with δ = 0.5 and ρ = 1.5R; (d)–(f) correspond to
F 1 cosd l j= -( ) with δ = 0.9, λ = 0.4, and ρ = 2R; (g)–(i) correspond to F 1 cos2d l j= -( ) with δ = 0.5, λ = 0.4, and ρ = 2R; and (j)–(l) correspond to

1 cos 3 sin 4d l j l j- +( ) with δ = 0.9 and λ = 0.4. Each case is displayed on top of the corresponding quantity for the semitransparent circular cross-section
distribution to highlight the change due to the distortion. The torus center is located on the left of each plot.
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inspection, learn how to identify signatures of distortion or
curvature in real data, and adapt the model to these structures
before fitting them.

In the following section, we will first define the trajectory
of the spacecraft taking into consideration the geometry of
the distortion, so as to generate synthetic magnetic field
profiles. Then, we will discuss the implications of curvature
and distortion in in situ observations of the magnetic field by
a satellite. For the experiment we will use one of the
functions we discussed in the previous section F 1d= -(

cosl j). We will cross two different curvatures and we will
map the magnetic field magnitude and components to
evaluate deviations from the expected in situ signatures that
a magnetometer would record if crossing a cylinder with a
circular cross-section geometry. We then will look for such
signatures in the real data. This exercise will pave the way
toward developing a more sophisticated model to identify
such signatures.

3.1. Spacecraft Trajectory

This section is dedicated to evaluating the effect of distortion
in 3D reconstructions based on in situ data. The trajectory of
the spacecraft is defined by the location of the spacecraft at the
entrance of the flux rope as indicated by Nieves-Chinchilla
et al. (2018a),

x
v t t F

F
z

2
. 43t
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sw 0 1

2
0=
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( ) ( )

In the case of the simulated spacecraft trajectory, the transit
time will be
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Note that we have corrected here an error in Equation (51) of
Nieves-Chinchilla et al. (2018a). In the case of a reconstruction
the spacecraft transit time, ts, and the bulk speed, vsw, are obtained
from the observations and the flux rope radius, R, is obtained as a
deduced output parameter. In the case of synthetic data, R and vsw
are the input parameters, and ts is the output parameter.

3.2. Implications on Magnetic Field Imprints at a Spacecraft
Crossing a Distorted Flux Rope with Different Curvatures and

Impact Parameters

In this section, we simulate the spacecraft trajectory and
collect the expected magnetic field observations assuming one

Figure 4. 3D view of the toroidal flux rope based on the geometry F 1 cosd l j= -( ) for (a) ρ = 1.5R and (b) ρ = 2.5R. In both cases, δ = 0.8, and λ = 0.4. The red
line indicates the trajectory of a simulated spacecraft. The blue dots indicate the spacecraft entrance location.
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of the geometries described in this paper. The goal is to make
an illustration to understand implications and be able to analyze
the resultant magnetic field configuration when the structure is
crossed by a spacecraft with the flux rope having different
curvatures of the axis. For this first experiment, we have
selected the m,n pair [0,1] and F 1 cosd l j= -( ) to describe
the cross-section geometry. The magnetic field model equations
are

B r B r

B r
h

h g

B

C
r

, ,

, , 46

1
2

1

10

j t

j

= -

=-

y

j

y

( ) [ ]

( ) ( )
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h
h r

g

sin 1 2 cos ,
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1 cos cos ,

1 cos , 47

2 2 2 1 2

d j l j
d l j j j
r d l j j
d l j

= +
= - +
= + -
= -

y

[ ]
[ ( ] ]
( ( ) )

( ) ( )

I

from Table 2. B1, C10, and τ are the model parameters and r is
the normalized cross-section radial distance.
We have considered two toroidal geometries to compare with

the cylindrical case. Figure 4 illustrates flux ropes with a central
radius of ρ= 2.5R (Figure 4(a)) and ρ= 1.5R (Figure 4(b)), R
being the major radius of the cross section. The tori have been
partially colored at the front, simulating the front of a CME and
indicating the trajectory of the spacecraft in red color with the
spacecraft in blue color. The simulated spacecraft crosses through
the compressed front of the flux rope and through its center
(y0= 0). On the top left of each figure, we have included the flux
rope front projected on the XY-plane to highlight the different
curvatures of the two cases and to distinguish the spacecraft
trajectory from the flux rope front on a perpendicular path to the
axis. The parameters for the simulation are δ= 0.8, λ= 0.4,
τ= 1.5, and C10=−1.5 (left-handed).
Thus, to evaluate the effect of distortion as well as of

curvature in in situ observations of spacecraft crossing the
structure, we have transformed the magnetic field

Figure 5. Contour plots of the magnetic field strength and RTN coordinates distributed on the flux rope cross section in the case of a CC cross section with ρ large
enough (ρ ?) for it to be considered a cylindrical geometry. Overplotted in each contour plot are the magnetic field values measured by a spacecraft crossing through
the flux rope center and at a 50% radial distance from the center, y0 = 0.5R (solid and dashed lines, respectively).
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components from the local coordinate system to, in this case,
the RTN coordinate system. Figures 5, 6, and 7 depict arrays
of plots for the two scenarios of Figure 4 plus the case of the
CC geometry, which will serve as a reference scenario to
compare them with. The figures show the cross-section
distribution of the magnetic field strength and RTN
components for three different geometries. Figure 5 displays
a CC geometry, Figure 6 displays a cross section
distorted with low curvature (associated with Figure 4(a),
F 1 cosd l j= -( ) with ρ= 2.5R), and Figure 7 displays the
same cross-section distortion and high curvature (associated
with Figure 4(b), F 1 cosd l j= -( ) with ρ= 1.5R). For
each geometry, we have simulated the crossing of a
spacecraft from the right side through the center, as
illustrated in Figure 4, and overplotted with a solid line the
magnetic field strength or components, depending on the
case. To evaluate the effect of spacecraft impact distance with
respect to the center on the quantities, we have also simulated
the crossing of a spacecraft at the closest approach of

y0= 0.5R, i.e., halfway from the axis to the flux rope edge
(dashed lines).
Comparing the magnetic field strength (Figures 5(a), 6(a),

and 7(a)), we can observe that the distortion implies an increase
of the asymmetry in the contour plot with a compression of the
magnetic field at the front of the structure. The curvature also
implies an increase of the magnetic field strength. This
assessment is confirmed if we analyze the magnetic field
configuration observed by the simulated spacecraft magnet-
ometer, the red lines overplotted on the black contour plots.
While in the CC case the magnetic configuration is symmetric,
in the distorted cases the maximum is displaced toward the
front of the flux rope. In the case of the highly curved flux rope,
there is a marked increase in the strength as the spacecraft
leaves the structure (back side of Figure 7(a)). Note that as we
increase the distance of the spacecraft to the center, the
maximum of the strength decreases as expected, but it is
important to highlight that also the effect of the curvature is less
relevant.

Figure 6. Contour plots of the magnetic field strength and RTN components distributed on the flux rope cross section in the case of a distorted cross section with a
geometry of F 1 cosd l j= -( ) with large ρ = 2.5R (Figure 4(a)). Overplotted in each contour plot are the magnetic field values measured by a spacecraft crossing
through the flux rope center and at a 50% radial distance from the center, y0 = 0.5R (solid and dashed lines, respectively).
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Given the relative orientation of the flux rope axis to the
spacecraft trajectory, the BT component has a very similar
profile to the magnetic field strength (Figures 5(c), 6(c), and
7(c)). Due to the distortion, there is a displacement of the
maximum toward the distorted area, as is also observed in the
magnetic field configuration (black lines). However, this
component does not display any feature associated with the
curvature.

The distortion is evident in the BR component. This component
is the one that provides information about the spacecraft impact
distance to the center. In general, as described largely in the
literature (see, for instance, Démoulin et al. 2013; Nieves-
Chinchilla et al. 2018b), this component is completely flat or
curved with its maximum in the center, depending on the
orientation when circular axial symmetry is assumed. The contour
plot in Figure 5(b) illustrates this case with a constant surface
perpendicular to the cross section. Thus in this case, for the two
spacecraft crossings simulated, we find constant values for the
spacecraft impact at the center, with BR= 0 and B constantR = in
the case of y0= 0.5R. The chirality determines the sign, so in our

left-handed flux rope, the bottom half provides positive BR values.
In the case of crossing through the top half, the BR values would
be negative. As we add distortion (Figure 6(b)) or curvature
(Figure 7(b)), the contours indicate a sudden change shortly after
the compressed front of the cross section. This effect is illustrated
with the crossing at y0= 0.5R (black dashed line). In the case of
distortion only (Figure 6(b)), BR remains almost constant right
after the front compression. However, in the case of adding
curvature (Figure 7(b)), in addition to the sudden change close to
the compressed area, there is an increase (in magnitude) at the
back of the structure (black dashed line). Interestingly, the effects
of both curvature and distortion go unnoticed in the case of
spacecraft crossing through the center (black solid line) and are
more noticeable as the spacecraft impact distance increases (black
dashed line).
The BN component changes polarity from north to south

(Figures 5(d), 6(d), and 7(d)). For the CC geometry, the change in
polarity occurs in the center of the cross section but the distortion
implies a displacement toward the front of the cross section. Thus,
for this specific case, the duration of the positive polarity of the BN

Figure 7. Contour plots of the magnetic field strength (panel (a)) and RTN components distributed on the flux rope cross section in the case of a distorted cross section
with a geometry of F 1 cosd l j= -( ) with ρ = 1.5R to enhance the effect of the curvature (Figure 4(b)). Overplotted in each contour plot are the magnetic field
values measured by a spacecraft crossing through the flux rope center and at a 50% radial distance from the center, y0 = 0.5R (solid and dashed lines, respectively).
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component is almost half that of the negative polarity. The effect
of the curvature implies a rapid change as the spacecraft
approaches the curved area. For the flux rope orientation, the
BN component is the one that mostly contributes to the increase in
the back side of the magnetic field strength. In this case, the
increase of the impact distance (red dashed lines) to the center
implies again a mitigation of the sudden change in polarity that is
observed with distortion and curvature.

4. Brief Discussion about In Situ and Remote-sensing
Observations of Distorted Structures and the Implications

on Space Weather Forecasting

Figure 8 displays two ICMEs observed by the Wind spacecraft
(see Wind ICME list4 ; Nieves-Chinchilla et al. 2018b). These

Figure 8. ICMEs observed by the Wind spacecraft and simulated data. (a) The Bastille Day event observed on 2000 July 15; (b) the event observed on 2012
September 30. The plots display the magnetic field magnitude and components in the RTN coordinate system. (c) Simulated magnetic field observations of a
spacecraft crossing a distorted flux rope. The selected function can be found at the top of the plot and the parameters’ values are ρ = 2.5R, τ = 1.2, chirality = −1,
C10 = 1.5, λ = 0.5, and δ = 0.5. The two vertical dashed lines indicate the magnetic obstacle boundaries.

4 https://wind.nasa.gov/ICMEindex.php
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are two examples where magnetic field signatures associated
with distortions can be seen in in situ observations: at the top,
the very well known Bastille Day event observed on 2000 July
15 and, at the bottom, the event observed on 2012 September
30. The plots display the magnetic field magnitude at the top
and the magnetic field components in the RTN coordinate
system at the bottom. The two vertical dashed lines indicate the
magnetic obstacle boundaries. Based on the boundaries
selected, both events display signatures associated with a flux
rope, i.e., rotation of the magnetic field direction, a coherent
magnetic structure, and (not shown here) association with
plasma signatures. In both cases, there is a clear compression in
the magnetic field strength at the front of the structure. In the
case of the Bastille Day event, the BR component displays a
clear change in profile. The first part is curved to negative
values and the second half rapidly reaches a zero flat value as
described by Figure 7(b), in what would be a spacecraft
crossing above but close to the flux rope axis in a structure
highly compressed at the front. Both events display asymmetric
profiles similar to those of the magnitude in the BT component,
which indicates that the structure axis is perpendicular to the
spacecraft trajectory. Finally, the BN component, in both cases,
crosses the polarity from south to north very close to the front,
while the positive polarity phase of the BN component lasts
almost twice as long in the case of the Bastille Day event and
almost three times as long in the case of the 2012 September 30
event.

Figure 8(c) displays the simulated observations of a
spacecraft crossing from the front, with a perpendicular axis,
to a distorted cross section based on the function
F 1 cosd l j= -( ). The parameters selected are ρ= 2.5R,
τ= 1.2, chirality=−1, C10= 1.5, λ= 0.5, and δ= 0.5.
Although the magnetic field components and magnitude are
not identical to those of the real events, the visual comparative
analysis exemplifies how this model may aid in the interpreta-
tion of actual observations exhibiting distortions. This exercise
based on visual inspection, accompanied by exploration of the
physical problem using machine-learning techniques (see, for
instance, dos Santos et al. 2020; Narock et al. 2022), will allow
us to make more accurate 3D reconstructions of the flux rope
morphology, geometry, and physical parameters based on
in situ observations.
Distortions not only are evident in in situ observations, but

also can be distinguished remotely in white light imagery. This
is the case of the CME seen on 2008 July 7 (top left panel of
Figure 9) as it crosses the field of view of the STEREO/
SECCHI COR2-A coronagraph. Its main axis of symmetry is
approximately aligned with STEREO-A’s line of sight, so that
the cross section of the magnetic flux rope can be discerned in
the image as circular threads outlining a dark circular cavity
(indicated by the green dashed circle). The other panels of
Figure 9 show the same CME as it evolves in the interplanetary
medium, within the field of view of the STEREO/SECCHI
HI1-A telescope. At these distances, the dark circular cavity is

Figure 9. Flux rope CME event and its evolution in the interplanetary medium. Top left panel: The CME on 2008 July 7 as seen by the COR2-A coronagraph (field of
view: ∼4–15 solar radii), with the circular flux rope structure outlined by the green dotted circle. Remaining panels: The same CME on 2008 July 8, seen evolving
with time by the HI1-A instrument (field of view: ∼15–90 solar radii). The light blue dots outline the distorted cavity as it flattens with time, in comparison with a
circular cross section.
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distorted into a heart-shaped form (light blue dots) that flattens
with distance. This case would be comparable to the one
illustrated in Figure 2(d), but considerably flattened.

Figure 10 illustrates the impact of the distortion in critical
elements for a reliable space weather capability such as the
duration and the arrival time. At the top, Figure 10(a)
displays in black and white a circular cross section and a
colored distorted cross section based on the function F =

1 cosd l j-( ) (τ= 1.5, negative chirality, C10= 2, λ= 0.6,

and δ= 0.6), where R is the radius of the circular cross
section in arbitrary units. This overlaid image could represent
a case of a distorted structure fitted by the conventional
gradual cylindrical shell (GCS) forward-modeling technique
(Thernisien et al. 2006, 2009), which is only capable of
simulating structures with circular cross sections. This could
be one of the options in the attempt to fit the GCS technique
in actual observations, very similar to the illustration in
Figure 9.

Figure 10. (a) A representation of the circular cross-section flux rope (black and white) overplotted with distorted cross sections (colored) based on the
F 1 cosd l j= -( ) geometry. The three colored (black, red, and light blue) lines indicate a spacecraft trajectory crossing from the left. (b) Simulation of the expected
in situ observations of the magnetic field magnitude and RTN components normalized to the central value (Bc) from the three spacecraft trajectories crossing a
distorted and a nondistorted flux rope at different distances from the center. The vertical dashed lines connect the size of the flux rope at the top with the crossing
duration along the circular flux rope center at the bottom.
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Figure 10(a) shows a three-spacecraft crossing with
trajectories from the left through the center (black line), to
halfway to the edge (red line), and to very close to the edge
(blue line). For the example case, the maximum duration of the
spacecraft within the structure will be when it crosses the center
(black line) with a duration D t tc f

c
s
c= - in the case of a

circular cross section (bounded by two black dashed vertical
lines) as assumed by the GCS technique. In contrast, the
duration would be D t t D1.2d f

d
s
d

c= - ~ for the distorted case
(bounded by two red dashed lines). Note that we do not use
specific time units but do a relative comparison, since the
duration or transit time will depend on the bulk velocity of the
structure and its size (R). Note also that this analysis is
conditioned by a cross-section distortion.

Figure 10(b) represents a comparative analysis of the simulated
in situ magnetic field observations of a spacecraft crossing a
circular (dashed line) and a distorted structure (solid line). This
exercise illustrates the possible cause of being off in the prediction
of the CME arrival time. By assuming a circular cross section, the
GCS reconstruction is typically performed to fit the height of the
distorted structure for this specific type of distortion. Then, on the
basis of the GCS fit, we would make a prediction of the arrival
time on the basis of the nondistorted model. For the example case,
the error in the arrival time will vary depending on the spacecraft
distance to the center. In the case of a crossing through the center,
the flux rope impact to the spacecraft will be delayed by ∼30%,
the expected duration assuming a circular cross section
(∼30%Dc). Interestingly, the peak or maximum of the magnetic
field will remain in the same location since the compression will
not displace the flux rope center and the location of the sign
change crossing in the BN polarity will not change. However,
since the change in polarity is not displaced, the duration with
negative polarity will be, at least, half shorter than expected, and
the BN positive polarity duration will be longer than predicted.
Thus, the space weather quantities may be impacted by these
changes in the magnetic field profiles.

Physical parameters, such as magnetic fluxes, are also
relevant for space weather studies. In the case of poloidal flux,
the impact of distortion on this parameter would depend on the
accuracy of the fitting based on either remote-sensing or in situ
observations. Thus, based on Equation (A2) in the Appendix,
the poloidal magnetic flux is not impacted by distortion if the
estimation of the radial size (R) of the structure is correct. In the
case of toroidal magnetic flux, deviation from the actual value
will depend on the integral

gd . 48
0

2

ò j
p

( )

 This factor will, in general, change the expected 2π value for
the CC case in the case of axial or toroidal magnetic flux. For
instance, in the elliptical case, Figure 2(a), the result of the
integral will be to reduce the toroidal magnetic flux into the
δ value of the expected or assumed CC case. This will be also
the effect in the case/example that we have developed in this
paper with F 1 cosj d l j= -( ) ( ). In this last case, the
observed asymmetry in magnetic field magnitude as well as the
rapid change in BT polarity could be confused with the effect of
magnetic flux erosion (e.g., Dasso et al. 2006; Ruffenach et al.
2012, 2015; Pal et al. 2020, 2021) if the structure is modeled
assuming a circular geometry. It is also very important to
highlight that the analysis carried out in this section is an
example that requires more in-depth examination using real

observations, ideally cases where remote-sensing and in situ
observations can be synchronized.

5. Summary and Final Remarks

This paper presents an improvement to the CC and EC
models (Nieves-Chinchilla et al. 2016, 2018a). Based on the
mathematical formulation developed for the EC model, we
have moved forward to more complex and perhaps more
realistic distortions of heliospheric flux ropes. Here we have
presented a model based on a toroidal geometry and expanded
to a general cross-section distortion. We have illustrated the
model with four functions, the morphology, and the internal
magnetic field distribution in Section 2. As a proof of concept,
in Section 3.2, we have developed the model with a particular
cross section based on the geometry F 1 cosd l j= -( ).
Section 3.2 describes the in situ implications of distortion on

heliospheric flux ropes. We have simulated two crossings of a
spacecraft through a flux rope (at the center and halfway to the
outer boundary) with two different curvatures and in comparison
with a regular CC geometry. We have mapped (using contour
plots) the magnetic field magnitude and the three RTN magnetic
components for the three cross sections and discussed the changes
in the profiles of the magnitude and components that the
magnetometer would record in the two crossings and as compared
with the CC geometry for two different global curvatures.
The exercise carried out in Section 3.2 provides the

opportunity to identify examples in real observations. In
Section 4 we have included two real events from the Wind
ICME catalog (Nieves-Chinchilla et al. 2018b) with magnetic
configurations that depart from the expected CC geometry.
Under visual inspection, we have identified in situ signatures
associated with the distortion, such as asymmetry in the
magnetic field strength, different duration from what is
expected from a CC geometry, and a significant difference in
the duration of the magnetic field polarity transition in the
spacecraft path. To assess different types of cross-section
distortions and axis curvatures, exhaustive inspection of real
events is required, with remote-sensing observations as a
starting point.
The reconciliation between multiple observations, including

heliospheric imaging, and new numerical techniques is far from
successful (see, for instance, Al-Haddad et al. 2013; Wood
et al. 2017). In order to develop a robust 3D physics-driven
modeling and reconstruction technique, the inclusion of
constraints from imaging observations in reconstruction
techniques, accompanied by Monte Carlo simulations, human
and machine training techniques, and eventually the evaluation
of dynamics associated with distortion and deformation (Kay &
Nieves-Chinchilla 2021), is a key element to take into account
toward a better description of flux ropes in the heliosphere.
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ME0008181TC (UTN) and 11220200102710CO (CONICET).
We acknowledge use of data from the STEREO (NASA)mission,
produced by the SECCHI consortium. The displayed STEREO/
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Appendix

Similar to those in previous papers, the relevant physical
quantities to study these structures in heliophysics can be
obtained from previous equations. Below we list some of them,
such as those for magnetic fluxes,
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Obviously, the toroidal magnetic field will depend on the cross-
section geometry, while the poloidal magnetic flux is not
altered.

The magnetic energy is
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 For completeness we include the magnetic helicity, calcu-
lated from a dot product with the magnetic potential (see
Woltjer 1958; Taylor 1974; Brown et al. 1999; Arfken &
Weber 2005),
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c
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The vector potential also requires an additional calculation that
will depend on the distortion and may also require numerical
solutions.

Finally, the nonscaled covariant cross-product that will lead
to the components of the Lorentz force is

j B g j B . A5i c ijk c
j

c
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,
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 Expanding the equation, now there are toroidal and poloidal
components in the internal Lorentz forces due to the distortion
and curvature:
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 This model establishes a mathematical formulation to
explore distortions in observed 3D flux ropes, but the solution
of the above equation system would change depending on the

kind of distortion of the flux rope under study as well as on the
internal distribution of current densities. Following the
approach in Nieves-Chinchilla et al. (2016, 2018a), we evaluate
the solutions to the equations based on the general radial
variation of the current densities with a specific geometry based
on F 1 cosd l j= -( ) for a highly curved and cylindrical
flux rope.
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