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Radiation guided along a cylindrical symmetry
system according to the refractive index profile
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We aim at finding, from purely theoretical analysis, the behavior that the refractive index should have within a cylindrical waveguide so
that the radiation entering the system in a definite way is guided through it. Based on the criterion we have set in a previous article applying
the Fermat’s extremal principle, in the framework of the geometrical optics, we depict the radiation confinement regions for refractive index
profiles often used in the construction of waveguides, one step, multi-step and parabolic, by drawing upon the Legendre transform space as
an intermediate resource in the process. We have also studied the possibility of performing the reverse path: for a wanted confinement region,
to find the parameters defining the refractive index profile of the waveguide to be built. We conclude that such a process is possible as long
as we know the shape of the profile. Under such restriction, our analysis allows us to deduce the characteristics that the guide should have so
that the radiation entering with a given angle and at a certain distance from its axis remains confined. The technique can be used in design
processes as a resource to limit the parameters that characterize the system.
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PACS: 42.00.00; 42.79.e.

The confinement and guidance of electromagnetic radiation 
in dispersive media due to total internal reflection is of great 
interest in many fields of theoretical physics, including radia-
tive transfer in the Earth’s atmosphere [1] and astrophysical 
media [2,3]. Particularly, an extensive literature concerning 
the confinement and guidance of radiation in media with ra-
dially varying refractive index, usually called GRIN media, 
does exist. Research on these topics has allowed the de-
sign and manufacture of all kinds of devices that involve 
nonhomogeneous media: integrated optics, lenses, 
waveguides, optical fibers, and diffraction gratings [4,5].

On the one hand, the confinement of radiation in

nonhomogeneous media with a given refractive index
profile has been a highly researched topic. We our-
selves, in two previous articles, [6,7], PI and PII hereafter,
have analyzed the captured radiation in systems where the
refractive index, n, varies smoothly with r, the radial co-
ordinate. Dealing with spherically symmetric systems in
PI and with cylindrical symmetry systems in PII, we apply
the Fermat’s extremal

1. Introduction principle in the framework of the geometrical optics to an-
alyze the confinement of the guided radiation in a given re-
gion. Analytical solutions of the ray-tracing problem can
be found in [8-10]. Also, Evans [11], by comparing the
Newtonian mechanics with the laws defining geometrical
optics, has calculated the three-dimensional trajectory of a
ray propagating through a medium with a parabolic refrac-
tive index.

On the other hand, the reconstruction of the unknown re-
fractive index profile of a waveguide according to the be-
havior that the radiation traveling through it shows is also 
a highly researched topic: from the first works using 
interferometric techniques [12] through those based on 
the measurement of the evanescent field on the surface of 
the waveguide combined with the use of sophisticated algo-
rithms ( [13] and references therein), to one of the newest 
proposing a non-destructive iterative interferometric tomo-
graphic technique [14].

At the present paper, we intend to analize the confinement 
of radiation in waveguides useful in both directions: i) given 
the refractive index profile in the guide, to infer how the ra-
diation will be guided according to the distance
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and the angle respect to the axis of the guide with which the
radiation entered, and ii) knowing how the radiation travels
along with the guide, to obtain information on the radial
variation of the refractive index within it and how the radia-
tion entered the guide.

Using the simple criterion we have established in PII that
allows us to infer whether radiation confinement occurs in a
given system, we intend to contribute to the design of
waveguides for predefined objectives, emphasizing on the de-
sign of multi-mode guides. Multi-mode waveguides are built
with either graded index or step-index. Graded index guides
minimize modal dispersion, although they have the disad-
vantage of being more expensive and difficult to build than
step-index guides. In this work, we will address both op-
tions.

We organize this paper as follows: In Sec. 2, we set out
the basis of our work methodology. In Sec. 3, we analyze the
confinement regions of radiation traveling through a waveg-
uide in which i) n takes a constant value a little greater than
1, sharply dropping at the edge (Sec. 3.1) n has a series of
steps (Sec. 3.2 and 3.3) n has a parabolic radial variation
(Sec. 3.3). In Sec. 4, we address the inverse process, namely,
to find the right refractive index profile of the waveguide to
radiation travels confined in a given region. In Sec. 5, we
present our conclusions.

2. Framework

In PII, we considered a homogeneous transparent cylinder of
radius R and infinite length characterized by a refractive in-

FIGURE 1. Used coordinate system. Coordinate system defined
to describe the path of a ray of light in a system with cylindrical
symmetry (see text for definition of the parameters).

dex n > 1. There, we considered a light ray propagating
within the cylinder in an arbitrary direction, but no parallel to
the cylinder axis, so that it eventually would strike the cylin-
der wall in which it would be reflected and refracted. The
reflected light would continue traveling inside the cylinder
until it again strikes the cylinder wall. If total internal reflec-
tion occurs, the process will be repeated over and over again.
In Fig. 1 of that paper, that we reproduce here as Fig. 1
for simplicity, we showed the portion between P1 and P2 of
that endless journey within the cylinder, being P1 and P2 the
points in the cylinder wall where two successive reflections
occur. We defined a Cartesian coordinate system so that the
Z-axis is along the cylinder axis, the ray is on a plane which
is parallel to the Y-Z plane, and the X-Y plane intersects the
ray at P0, the point which is equidistant from P1 and P2.

Considering a system whose refractive index presents a
monotonic variation with ρ, the distance from the cylinder
axis, and getting rid of the n dependence on ν, the light fre-
quency, we have defined in PII two parameters that fully char-
acterize a given ray: i) ρρρ000, the distance of closest approach to
the Z-axis (the X coordinate of P0) and ii) α, the angle
between the ray and a line parallel to the Y-axis passing
through P0 (see Fig. 1).

In PII, applying the Fermat’s extremal principle in the 
framework of the geometrical optics, we have shown that, 
in systems with cylindrical symmetry where the refractive 
index varies smoothly with the distance to the cylinder 
axis, confinement of radiation does occur, provided it is 
verified

ρ2n2(ρ) =
[
n2(ρ0ρ0ρ0) sin2 α

]
ρ2 +

[
ρρρ2
0n2(ρ0ρ0ρ0) cos2 α

]
. (1)

This expression allows finding a two-dimensional do-
main defined by the parameters ρρρ000 and α, that we have 
called ”the confinement region” whose shape is directly re-
lated with the function n(ρ).

For a given n(ρ), the confinement region is a region in
the (ρρρ000,α) plane limited by two or more curves. This implies
that every pair of values (ρρρ000,α) within this region represents
a possible way in which the rays might enter the waveguide
through one of its ends so that they reach the opposite end
after traveling along with it. In PII, we have found the
curves limiting that region by looking for the solutions of
Eq. (1) for each n(ρ) taken as an example.

Now, we will take into account that the limiting curves
of the confinement regions could be found by analyzing the
Legendre transform of the function defined by the left hand
of Eq. (1).

To comprise this, let us consider as an example n(ρ)
given by the parabola n(ρ) = n0

(
1− (Aρ2/2)

)
for ρ < 1,

being n0 a constant a little higher than unity and A a param-
eter which is obtained taking into account that n(ρ) = n0

along the cylinder axis (ρ = 0) and n(ρ) = 1 at the cylin-
der wall (ρ = 1), and let us draw the left hand of Eq. (1)
as a function of ρ2. On the one hand, for the adopted n(ρ),
ρ2n2(ρ) is a curve which increases monotonically with ρ2

until reaching a maximum, softly decreasing afterward to a
relative minimum reached at ρ2 = 1, as represented in Fig. 2.
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FIGURE 2. Left and right hand of Eq. (1). The left and right hand 
of Eq. (1) are shown as functions of ρ2 for given ρ0 and α values.

Although the maximum of the curve will not occur within 
the waveguide for n0 values lower than 1.5, a confinement 
region will exist, and the analysis we are going to do is quite 
the same. On the other hand, the right hand of Eq. (1) is al-
ways a straight line whose slope and intercept depend on the 
ρρρ000 and α values. One of these straight lines, for particular ρρρ000

and α values (ρρρ000 = 0.88 and α = 65.5◦), is represented in 
Fig. 2. Solutions of Eq. (1) are given by the pairs (ρρρ000,α) for 
which the functions given by left and right hands of Eq. (1) 
cut each other twice. It is easy to see that every straight line 
with slope and intercept values between those corresponding 
to the tangent lines to the curve represented in Fig. 2 cuts 
this curve twice. Then, from the equations of these tangent 
lines, we could get the limiting curves of the confinement 
regions in the ρρρ000 and α plane. That family of tangent lines is 
nothing but a Legendre transform of the function defined by 
the left hand of Eq. (1).

If n(ρ), rather than being represented by a smooth curve,
exhibits a step on the edge of the guide, the curve displayed
in Fig. 2 will increase monotonically with ρ2 until it reaches
a maximum at ρ2 = 1 where it will abruptly go down. In
this last case, at the same conclusions, we will arrive
through a similar analysis.

Using the Legendre transform of the function y(x), in-
stead of the function itself, to find the confinement regions 
gives us several advantages:

a) it allows us to make a general analysis, applicable in 
any case regardless of the particular form of n(ρ),

b) it gives us a new space of analysis easier to interpret 
and visualize, very convenient in the context of our task 
and

c) let us conclude straightforward manner about the 
characteristics that our waveguide should have so that 
the radiation is confined in one or another region ac-
cording to our interests.

The equivalence of the analysis methods will be verified 
in the next sections by recovering the results we have reached
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in PII for the two n(ρ) functions we took as examples at that
occasion, namely, one step and parabolic index. At that op-
portunity, we intended to find the confinement region for a
given n(ρ). In the present paper, we also focus on develop-
ing the reciprocal process: to find the n(ρ) with which the
waveguide should be built for a sought-after confinement re-
gion.

3. Looking for confinement regions for a given 
n(ρ) by using Legendre transform

The function whose Legendre transform we have to find is 

y(x) = n2(ρ)x, (2)

where x = ρ2.
We intend to pass from the (x, y) to the (u, v) plane

through the Legendre transform, doing 

u =
dy

dx
, (3) 

v = y[x(u)] − ux(u), (4)

where u and v represent the slopes and intercepts of the tan-
gent lines to y(x).

Before continuing, we want to highlight two things.
First, regardless of whether n(ρ) is a continuous and
derivable function for any ρ value or not, we can always
move from the (x, y) to the (u, v) plane by the appropriate
considerations. The considerations we are going to do in the
following sections to find the equations of the tangent straight
lines to y(x) must be interpreted as a way of extending the
concept of Legendre transform at the discontinuities. We
must keep in mind that the discontinuities, in the context
of a physical model of a continuous medium, represent only
a very convenient mathematical simplifier alternative for the
model. They do not imply, however, essential physical facts.

Second, regardless of the functional form of n(ρ), the 
slopes and intercepts of all straight lines that cut twice the 
curve representing y(x) are positive numbers, since all these 
lines are represented by the right hand of Eq. (1). This re-
stricts the solutions to the first quadrant of the (u, v) plane.

4. Applications of the method

In this section, we aim to apply the methodology exposed
in the previous section to particular cases. For the sake of
looking for confinement regions by using Legendre trans-
form, we will carry out the analysis for three different
n(ρ), two of which were already analyzed in PII, namely:
i) n(ρ) takes a constant value a little greater than 1 inside the
waveguide and sharply drops to 1 at the edge of it, ii) n(ρ)
has a series of steps inside the guide, characterized by a
value of n(ρ), ni, each of them and iii) n(ρ) is a parabola.
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FIGURE 3. One step refractive index profile. For a system charac-
terized by one step refractive, index we display: n as a function of
ρ0 in panel a), y as a function of x in panel b), v as a function of u
in panel c), and sin α as a function of ρ0 in panel d).

4.1. One step index waveguide

Firstly, let us consider the simplest case: a homogeneous 
transparent cylinder of radius R and infinite length, which 
is characterized by a refractive index n = n0 > 1 relative to 
the surrounding medium, as displayed in Fig. 3a).

Since n(ρ) = n0 if ρ < R and n(ρ) = 1 if ρ > R, inside 
the guide Eq. 2 can be written as

y(x) = n0
2x. (5)

We intend to find, first, the curves in the (u, v) plane 
that limits the zone of possible slope and intercept values 

of straight lines that cut y(x) twice.
Even though in the case we are considering y(x) is not a 

continuous function at x = 1, it is easy to get the results we 
are looking for by making the appropriate considerations.

Firstly, from Fig. 3b) it is easy to see at once that any
line cutting y(x) fulfill u < n0

2. Secondly, to cut y(x)
twice, the ordinate of any line must be higher than 1 and
lower than n0

2 at x = 1.
By taking into account these considerations, it is straight

forth to find that all the straight lines that cut the curve draw-
ing in Fig. 3b) twice have a slope and intercept values in
a region delimited by the two straight lines

v = −u + n0
2, (6)

and

v = −u + 1, (7)

being Eq. (6) the equation linking slopes and intercepts of ev-
ery straight line passing through the point (1, n0

2) and Eq. (7) 
the equation linking slopes and intercepts of every straight 
line passing through the point (1, 1). The region in the (u, v)
plane limited by Eqs. (6) and (7) is shown in Fig. 3c).

Taking into account that, in order Eq. (1) is satisfied, it 
must be fulfilled:

u = n2(ρρρ000) sin2 α, (8)

and

v = ρρρ0
2n2(ρρρ000) cos2 α. (9)

we finally obtain the limits of the confinement region in the 
plane (ρρρ000, sin α) as

sin2 α =
1 − ρρρ

2
0n2

0

n2
0(1− ρρρ2

0)
, (10)

sin2 α = 1, (11)

ρ0ρ0ρ0 = 1. (12)

This region is shown in Fig. 3d), where it is clear that
varying n0 results in a variation of the size of the confine-
ment region: the greatern0, the greater the confinement re-
gion. If the system, instead of being in the air, is a traditional
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waveguide consisting of a core with n = n0 and a cladding
characterized by n = n1, with 1 < n1 < n0, n0 should be
replaced by n0/n1 in Eq. (10).

In PII, the results for a system characterized by a one-step 
refractive index were given in terms of x and z, being x the 
X coordinate of any point between P1 and P2 on the ray trav-
eling inside the cylinder (since the ray is on a plane which is 
parallel to the Y-Z plane), and z the Z coordinate of P2. 
To show that the expression in PII, reproduced below for 
simplicity,

z2 =
n2

R2 (n2 − 1)

(
x2 − R2

n2

) (
x2 −R2

)

is equivalent to Eq. (10) in this paper, let us make the fol-
lowing considerations. Firstly, sinceρρρ =

√

√

x2 + y2 and
x is a constant, the shortest distance from the ray to the Z-
axis, ρρρ000, is verified for y = 0, which implies that x = ρρρ000.
Secondly, making geometrical considerations, it is found that
z = tan α 1− ρ0ρ0ρ0

2. Taking into account, finally, that we
have adoptedR = 1 andn = n0, the expression in PII in
terms ofx andz becomes Eq. (10) of this paper in terms of
α andρ0ρ0ρ0.

4.2. Multi-step index waveguide

An extension of the previous case is the case for which n(ρ)
presents, within the waveguide, a series of steps, rather than
a single one. This is the case of multilayer cylindrical waveg-
uide, of great interest for its possible technological applica-
tions. Guided radiation achieved by total internal reflection
through multilayer waveguides has been analyzed in articles
as [15]. Some others, like [16], analyze the multilayer cylin-
drical waveguide structures by identifying the modal field
exci-tations supported by the corresponding waveguide, re-
gardless of the guiding mechanism.

The case we are considering is the simplest one: n(ρ)
within the waveguide is represented by an N steps stair, 
with equal height and wide all of them, as it is illustrated 
in Fig. 4a) for N = 5. The guide of our example, thus, 
consists of five regions, Ri, extended from ρi−1 to ρi, 
within each of which n(ρ) = ni, with i = 1, ...5. The cor-
responding y(x), a sawtooth function, is displayed in Fig. 
4b).

Although y(x) exhibits discontinuities at every ρi, in a 
similar way to the one used in the previous case for which 
n(ρ) within the waveguide has a single step, we will be able 
to find the zones in the (u, v) plane we are looking for. Then, 
to find the slope (u) and intercept values (v) of the straight 
lines cutting a certain tooth of y(x) twice, it should be 
taken into consideration that the ordinate of any such line 
must be higher than ni

2ρi
2 and lower than ni

2
+1ρi

2 at x = ρi
2, 

and higher than ni
2ρi

2
−1 at x = ρi

2
−1, where i refers to the 

ith tooth. By taking into account these considerations, it is 
straight forth to find the equations of the three straight lines 
that delimit the space of solutions in the (u, v) plane for each 
tooth, namely:

FIGURE 4. Multi-step refractive index profile. For a system char-
acterized by multi-step refractive, index we display: n as a function
of ρ0 in panel a), y as a function of x in panel b), v as a function
of u in panel c), and sin α as a function of ρ0 in panel d). In panel
b), a straight line with slope u1 and intercept v1 is also shown (see
text).
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v = −uρ2
i + n2

i+1ρ
2
i , (13)

v = −uρ2
i + n2

i ρ
2
i , (14)

v = −uρ2
i−1 + n2

i ρ
2
i−1. (15)

From Eqs. (13), (14) and (15), and taking into account
Eqs. (8) and (9), the corresponding confinement regions in
the(ρ0ρ0ρ0, sin α) plane are found as limited by

sin2 α =
ρ2

i n
2
i+1− ρρρ0

2n2
i

n2
i (ρi

2− ρρρ0
2)

, (16)

sin2 α = 1, (17) 

ρρρ000 = ρi−1, (18) 

ρρρ000 = ρi. (19)

Each of the five zones in the (u, v) plane, Zi hereafter, 
corresponding to each of the five teeth of y(x), is displayed 
in Fig. 4c). Therefore, Zi contains all the possible slope and 
intercept values of the straight lines that cut the ith tooth 
twice. Consequently, the different confinement regions in 
(ρρρ000, sin α) plane, CRi hereafter, shown in Fig. 4d), con-
tain all possible ρρρ000 and sin α values with which the radiation 
could enter the guide to be confined ’exclusively’ in Ri.

However, it is apparent from Fig. 4c) that the spaces of so-
lutions in the (u, v) plane corresponding to the different teeth 
of y(x) intersect each other. Taking into account expressions 
(8) and (9) that allow the calculation of ρρρ000 and sin(α) for 
a given n(ρρρ000) value, it is clear that a given pair of values 
(u, v) belonging to any of these intersections corresponds to 
as many different pairs of values (ρρρ000, sin(α)) as zones inter-
sected, depending on the corresponding n(ρρρ000) values. The ra-
diation will be confined in one or another region of the guide 
depending on the value of ρρρ000, that is to say, on the distance to 
the axis with which the radiation enters the guide.

But, even for values of (u, v) belonging to these inter-
sections, radiation will always travel confined exclusively in 
one, and only one, a region of the guide, Ri.

On the other hand, outside these five zones Zi, there are 
(u, v) values for which the radiation remains confined in a 
sector of the guide, spanning, however, more than one single 
Ri region. Areas in the (u, v) plane limited by the straight 
lines given by Eqs. (13) and (14), but not (15), define a strip 
that differs from the space of solutions for a given tooth in a 
triangular area like the one labeled Area A in Fig. 5b), en-
largement of Fig. 4c). Although the Area A corresponding 
to 4th tooth is the only one indicated in the figure, each tooth 
has its own Area A. Straight lines with slope and intercept 
values contained in Area A of the ith tooth will cut this 
tooth where it sharply drops and some other where it ramps 
upward. This leads to radiation being confined between the 
two corresponding regions of the guide.

Then, for reasons that will be clearer below, it is impor-
tant to know how the curves that delimit every confinement

regionCRi exhibited in Fig. 4d), defined forρi−1 ≤ ρ0ρ0ρ0 ≤ ρi

each of them, extend to theρ0ρ0ρ0 intervals and then(ρ0ρ0ρ0) values
corresponding to other regions of the guide, other thanRi.
Replacingi with i − 1 in Eqs. (13), (14) and (15), for ex-
ample, we find the extension of the curves that delimit the ith
confinement region to the intervalρi−2 ≤ ρ0ρ0ρ0 ≤ ρi−1, inside
whichn = ni−1, as

sin2 α =
ρ2

i n
2
i+1 − ρρρ2

0n2
i−1

n2
i−1(ρ

2
i − ρρρ2

0)
, (20)

sin2 α =
ρ2

i n
2
i − ρρρ2

0n2
i−1

n2
i (ρ

2
i − ρρρ2

0)
, (21)

sin2 α =
ρ2

i−1n
2
i − ρρρ0

2n2
i−1

ni
2(ρi

2
−1− ρρρ0

2)
. (22)

To get curves defined for all ρρρ000 value lower than ρi,
similar expressions can be set for each region before Ri.
The first and third of these equations extended to the inter-
val (0, ρi) are those that limit the region in the (ρρρ000, sin α)
plane corresponding to Area A of the ith tooth in the (u, v)
plane. After that, we will call Area B to that region in
the (ρρρ000, sin α). In Fig. 6, enlargement of Fig. 4d), Area B
for 4th tooth is shown.

To make things clearer, let us take as an example the point 
(u1 = 1.13, v1 = 0.1) drawn in Area A in Fig. 5b). A 
straight line with slope u1 = 1.13 and intercept v1 = 0.1
cuts the 4th tooth where it sharply drops and cuts the 3rd tooth 
where it ramps upward, aside from it cut the 2nd tooth 
twice, as it is observed in Fig. 5b). Taking into account 
what we have set in the previous paragraphs, either from 
Fig. 5b) or Fig. 5c), we should be already able to deduce 
that it brings to radiation traveling through the 3rd and 4th 
regions of the guide, R3 and R4, respectively, provided 
that it enters the guide at the suitable distance from its axis 
(ρρρ000) and forming with it the suitable angle (α). Otherwise, 
the radiation might travel confined to R2.

FIGURE 5. AreaA corresponding to the 4th tooth. AreaA cor-
responding to the 4th tooth (see text for definition) is highlighted in
an enlargement of Fig. 4c).
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FIGURE 6. AreaB corresponding to the 4th tooth. TheAreaB
corresponding to the 4th tooth (see text for definition) is included
in an enlargement of Fig. 4d).

At the same conclusions, we should arrive by ana-
lyzing the solutions in the (ρρρ000, sin(α)) plane. To find the 
(ρρρ000, sin(α)) values corresponding to (u1, v1), and taking 
into account that u and v depend on n(ρρρ000), being ρρρ000

one of the unknowns we intend to find, we should itera-
tively solve the expressions (8) and (9). The two possible 
solutions we have found, (ρρρ000 = 0.35, sin(α) = 0.76) and 
(ρρρ000 = 0.42, sin(α) = 0.82), are represented by black dots 
in Fig. 6, both of them located in Area B, as expected. The 
meaning of this is as follows: if the radiation enters the guide 
at a distance of its axis of 0.35 and with an inclination such 
that sin(α) = 0.76, the radiation will travel through the guide 
confined in R2. If, instead, the radiation enters at a distance 
of 0.42 and with an inclination such that sin(α) = 0.82, the 
radiation will travel through the guide confined between R3

and R4.
For another point (u1

′ , v1
′ ), different from the one we have

taken as an example but belonging to the same Area A4, the
radiation might travel between R4 and some other internal
region, Rj , different from R3. That other region will be the
closest to the guide axis, whose defined strip by Eqs. (13) and
(14) in the (u, v) plane is located above the point(u1

′ , v1
′ ). Al-

though it is immediately deduced from Fig. 4b) or Fig. 4c), it
is always possible to analytically find the region Rj , looking
for the lowest j value that meets the expression

N2v1
′

j2
+ u′1 <

[
n1N − (n1 − 1)j

N

]2

, (23)

where 1 ≤ j ≤ i − 1, N is the number of steps that n(ρ) have
within the guide, and n1 is the value of n in the axis of the
guide. The previous expression is valid, provided the
steps have all the same height and width. In any case, to any
point (u1

′ , v1
′ ) in (u, v) plane belonging to Area A4 corre-

sponds one or more points in the (ρρρ000, sin(α)) plane, lo-
cated all of them in Area B4.

Clearly, it is possible to do this for any other point 
(u1
′ , v1

′ ) belonging to the Area A of some other tooth, dif-
ferent from the 4th.

FIGURE 7. AreaB for the five teeth.sin α as a function ofρ0 is
displayed as in Fig. 4d) but including the curves that delimit the
AreaB for the five teeth.

Finally, for the sake of clarity, a generalization of the re-
sults we have achieved in this section is written in the follow-
ing two paragraphs.

On the one hand, going from (ρ, n) plane to (ρρρ000, sin(α))
plane, through (x, y) and (u, v) planes, the following analysis
can be done: given a multi-step refractive index profile, any
straight line that cuts the ith tooth of the corresponding y(x)
where it sharply drops, the jth where it ramps upward, and the
hth twice, have a slope, u1

′ , and intercept, v1
′ , so that the

point (u1
′ , v1

′ ) is located in the intersection of Area Ai and
Zh in the (u, v) plane. It results in two points in the (ρρρ000,

sin(α)) plane, both of them located in Area Bi, one of
them in the CRh and the other out of any confinement re-
gion CR, and so that ρj−1 ≤ ρρρ000 ≤ ρj . Clearly, this can be
generalized to any straight line cutting twice more that one
tooth or none at all.

On the other hand, from Fig. 7 where the five Area Bi

are exhibited along with the five CRi, we conclude that: i) 
any pair (ρρρ000, sin(α)) located at some CRi will result in radia-
tion traveling confined in Ri, ii) any pair (ρρρ000, sin(α)) located 
inside some Area Bi so that ρi′−1 ≤ ρρρ000 ≤ ρi′ , but outside of 
any CRi, will result in radiation traveling confined between 
Ri
′ and Ri, and iii) any pair (ρρρ000, sin(α)) located outside of 

any CRi and outside of any Area Bi, will result in radiation 
no confined at all.

4.3. Parabolic index waveguide

In PII, we have also considered as an example of a system
with a parabolic variation of refractive index. Waveguides
with n varying this way, first developed by Uchida et al. (
[17]) and named SELFOCr, is of great interest since it has
been shown that a parabolic radial variation of the refractive
index considerably decreases distortions and losses. For
that reason, it is widely used in optical communication and
data processing.

In this case, n(ρ) can be written as

n(ρ) = n0

(
1− Aρ2

2

)
, (24)
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having n0 and A the meaning we have set in Sec. 2. For dif-
ferent A values, we have found in PII the confinement regions
in the ρρρ000 and α plane so that Eq. (1) is satisfied.

At the present paper, for n(ρ) given by Eq. (24), we start 
writing Eq. (2) as

y(x) =
[
n0

(
1− Ax

2

)]2

x, (25)

to move from (x, y) plane to (u, v) plane through the Le-
gendre transform.

Then, through Eqs. (3) we obtain 

u = n0
2A

(
3
4
Ax2 − 2x +

1
A

)
, (26)

and

x =
2

3A

(
2± 1

n0

√
n2

0 + 3u

)
. (27)

Replacing Eqs. (27) and (26) in Eq. (4) and taking into
account the Eq. (25), we obtain:

v=
4

3A

(√
n2

0+3u

9n0
(n2

0+3u)−1
3
(n2

0+3u)+
4
9
n2

0

)
. (28)

According to its definition, A can be calculated as

A = 2
(

1− n1

n0

)
, (29)

where n1 is the refractive index of the surrounding medium 
of the system. If the system is in the air, we can set n1 =
1, and Eq. (28) becomes a function of u and the n0 param-
eter, which characterizes the system. A, thus, represents a 
measure of the relative variation of the refractive index 
on the axis and the edge of the system.

Equation (28) allows us to find one of the limiting
curves of the zone in the (u, v) plane containing all slope
and intercept values of straight lines cutting y(x) twice. The
other can be found taking into account that the ordinate of

any straight line cutting y(x) twice must be higher than 1
(n1

2 if the system is not in the air) at x = 1. Then, the other
limiting curve is obtained from the expression that slope and

intercept of the straight lines passing through the point (1, 1)
verify, namely:

v = −u + 1. (30) 

The corresponding confinement region in the (ρρρ000, sin α)
plane is obtained by considering that Eqs. (8) and (9) must
be fulfilled to Eq. 1 is satisfied.

On the one hand, from Eqs. (8) and (9), and taking into
account the expression we have adopted for n(ρ), we obtain: 

ρ0
6 − 4A

ρ4
0 +

4
A2n2

0

ρρρ2
0

(
n2

0 − u
)− 4v

A2n0
2 = 0. (31)

The last expression must be solved iteratively for every
u value assumed and every v value calculated using ex-
pression (28), to obtain the ρρρ000 value.

Finally, taking into account Eq. (8) the corresponding,α
value is calculated as:

sin(α) =
√

u

n(ρρρ000)
. (32)

On the other hand, from Eq. (10), we obtain another curve
in the (ρρρ000, sin α) plane that limits the confinement region ex-
pressed as

sin(α) =

√√√√
1

n2
0

(
1−Aρ0ρ0ρ02

2

)2 − ρ0ρ0ρ0
2

1− ρ0ρ0ρ0
2

. (33)

Again, if the system, instead of being in the air, is a tra-
ditional waveguide consisting of a core withn = n0 and a
cladding characterized byn = n1 so that1 < n1 < n0, Eqs.
(30) and (33) should be replaced by

v = −u + n2
1, (34)

and

sin(α) =

√√√√√
n2

1

n2
0

(
1−Aρ0ρ0ρ02

2

)2 − ρ0ρ0ρ0
2

1− ρ0ρ0ρ0
2

, (35)

respectively.
In Fig. 8, we display four panels. We represent 

n(ρ), given by Eq. (24), in panel a), y(x), given by Eq. 
(25), in panel b), the two curves v(u) limiting the zone of 
solutions, given by Eq. (28) and Eq. (30), in plane c), 

and the two curves sin α(ρρρ000) limiting the confinement re-
gion, given by Eq. (32) and Eq. (33), in panel d). In every 
panel we show the respective functions for two possible n0

values, n0 = 1.15 and n0 = 1.8. If a system in the air is 
considered, the corresponding A values, calculated by Eq. 
(29), turn out to be 0.26 and 0.89, respectively. It is appar-
ent that the set of straight lines, with slope (u) and inter-
cept (v), that could cut twice the curves displayed in Fig. 
8b), is larger for higher n0 values. This means that both, the 
zone of solutions in the (u, v) plane and the confinement 
regions in the (ρρρ000, sinα) plane, become wider as the value 
of n0 increases, as it is clear in Fig. 8c) and Fig. 8d). 
Then, for a waveguide characterized by a parabolic refrac-
tive index, with a very small value of n on its axis (n0), the 
radiation may remain confined only if it enters the system 
forming small angles to its axis.

5. Looking for n(ρ) for a given confinement re-
gions.

In this section, we deal with the reverse problem we have just
addressed, namely: given a desired confinement region, to
find the rightn(ρ). Many aspects of the problem we intend
to analyze have been approached experimentally. What we
intend in this article is to carry out a theoretical study on the
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FIGURE 8. Parabolic refractive index profile. For a system charac-
terized by a parabolic refractive, index we display: n as a function
of ρ0 in panel a), y as a function of x in panel b), v as a function of
u in panel c), and sin α as a function of ρ0 in panel d). Solid lines
correspond to n0 = 1.15 and dashed lines correspond to n0 = 1.8,
being n1 = 1 in both cases.

topic, reaching analytical or numerical solutions within the 
framework of the geometric optics we are working with.

For clarity, we will talk in this section in terms of the four 
planes we have been working with. We call plane a), b), 
c), and d) (which correspond to panels a), b), c), and d), re-
spectively, in Figs. 3, 4, and 8 to the planes (ρ, n), (x, y), 
(u, v), and (ρρρ000, sin α), respectively.

In the previous sections, for every n(ρ) taken as an ex-
ample, we have been able to move from the plane a) to
plane d), through planes b) and c), without any complica-
tion. For the sake of analyzing the possibility of perform-
ing the reverse way, we might think that we could move
from plane d) to plane c) because of Eqs. (8) and (9),
which link u and v with ρρρ000 and sinα, are known. Once
v(u) is found since we have moved from plane b) to plane c)
by means the Legendre transform, we could go the reverse
way by means the Legen-dre inverse transform to find y(x).
Then, given v(u), y(x) would be achieved by doing

x = − dv
du

, (36)

and

y = v[u(x)] − xu(x). (37) 

Finally, since y(x) = n2(ρ)x, it could be easy to move
from plane b) to plane a) to obtain n(ρ). 

Unfortunately, it is not possible to move from (ρρρ000, sin α)
to (u, v) if we do not know at all about n(ρ). However, we 
may arrive at very useful information for our purposes if we 
know something about the radial behavior of the refractive 
index within the waveguide.

It is needful to remember that, for one step-index waveg-
uide, for example, u and v are always related by Eq. (6) or 
Eq. (7) on the curves that limit the zone containing the slope 
and intercept values of straight lines that cut y(x) twice. In 
the same way, ρρρ000 and sin α are always related by Eqs. (10), 
(11) or (12) on the borders of the confinement region in the 
(ρρρ000, sin α) plane. For a multi-step index waveguide, Eqs. 
(13), (14) or (15) relate u and v on the borders of the spaces 
of solutions in the (u, v) plane, and Eqs. (16), (17), (18) or 
(19) relate ρρρ000 and sin α on the borders of the confinement re-
gions. Likewise, Eqs. (28) or (30) and Eqs. (32) (along with 
(31)) or (33) are always verified if the refractive index has a 
parabolic profile.

What we have expressed in the previous paragraph al-
lows, with some restrictions, to design a waveguide in 
(ρρρ000, sin α) plane. If the refractive index has a parabolic 
profile, for example, we can choose ρρρ000 and sin α according to 
the practical needs and then infer the n0 and A parameters 
suitable for the case. In other words, the task is to find the 
range of values that the refractive index could take on the 
axis of the waveguide and, on the cladding, n0 and n1 , re-
spectively, so that the radiation entering the system at a dis-
tance ρρρ000 from its axis and forming an angle 90◦ − α with 
it (recall that α is defined as the angle that the light ray 
forms with a plane perpendicular to the axis), is guided 
through the device.
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FIGURE 9. n0 as a function of ρ0 for different α values. For every
α value, two curves are displayed, which enclose the feasible
n0 and ρ0 combinations so that the radiation is confined.

By means Eqs. (28), (30), (31), (32), and (33), which re-
main valid as long as n have a parabolic radial variation, we
have built Fig. 9, where n0 is represented as a function of
ρρρ000 for different α values. Two curves have been drawn for
each of the five α values, from 40◦ to 80◦, we have chosen.
The pair of curves corresponding to a given α value limits a
region in the (ρρρ000, n0) plane, which contains all possible
combinations of n0 and ρρρ000 that make the radiation enter-
ing the guide with this angle to be confined. In Fig. 9, it is

apparent that the two curves corresponding to a given α
value tend to the same value of n0 at ρρρ000 = 1, which can be
obtained the by solving the following expression:

n0
3

[
27
16

A (A− 2)2 − 1
]

+ 9n0 sin2(α)
(

1− 3
4
A

)

=
(
n2

0 + 3 sin2(α)
)3/2

. (38)

The last expression has been obtained from Eqs. (28),
(31), and (32) taking into account that n(ρρρ000) = 1 at ρρρ000 =
1. For n0 given by Eq. (38), and assuming n1 = 1, the A
value at ρρρ000 = 1 can be easily calculated from Eq. (29) for ev-
ery value of α.

Although Fig. 9 has been built for n1 = 1, it could be 
done for any n1 value by solving the corresponding equa-
tions iteratively.

From Fig. 9, it follows that, for a given angle with which 
the radiation enters the guide, the farther from the axis it does, 
the more precise the n0 value (for a given n1) with which the 
guide should be constructed so that the radiation kept 
confined. This point is illustrated with two examples in-
cluded in the figure. Radiation entering the guide making 
an angle with the axis of 10◦, that is to say, α = 80◦, at 
a distance ρρρ000 = 0.4 of it, will remain confined whenever 
the guide is built with a value of n0 within the range indi-
cated in the fig-ure as ∆1n0. If, on the other hand, the ra-
diation enters at a distance ρρρ000 = 0.2 from the axis, al-
though with the same angle, the range of values of n0 with 
which the guide could be constructed, ∆2n0 in the figure, is 
greater.

FIGURE 10. Size of the ith confinement region. Curves
limiting the ith confinement region in the(ρ0, sin α) plane
where the parameters defining its size, namely,(ρ0ρ0ρ0, sin α)1 =
(ρi−1,

√
[(ρi/ρi−1)2(ni+1/ni)2 − 1]÷ [(ρi/ρi−1)2 − 1]) and

(ρ0ρ0ρ0, sin α)2 = (ρini+1/ni, 0), are indicated.

Then, in the figure, a design method consisting in choos-
ing ρρρ000 and sin α values and inferring the range of possible 
values for n0 y A is proposed. This design criterion takes us 
directly from plane d) to plane a).

Also, for one-step and multi-step refractive index
profiles, clearly, an adequate construction of the guide will
allow wider margins in ρρρ000 and α, facilitating the task of
making radiation travel through the regions we want. From
what has been analyzed in Sec. 4.1 and 4.2 in the process
of finding the confinement regions for theses cases, it is
immediate to deduce how the parameters characterizing the
system should be varied so that the radiation is confined in
one or another region according to the way it enters the
waveguide. We only intend to note that, although in (4.2)
we have considered n(ρ) represented by five steps, of 
equal height and wide all of them, from Fig. 4d) The
confinement regions are not equal to each other in size.

In Fig. 10, where the confinement region for the ith step 
is represented, two points, (ρρρ000, sin α)1 and (ρρρ000, sin α)2, are 
indicated. From the expressions defining the curves that limit 
this region, it is easy to find the coordinates of these points, 
which belong to these curves. Indeed, evaluating Eq. (16) at 
ρρρ000 = ρi−1, we obtain

(ρ0ρ0ρ0, sinα)1=


ρi−1,

√√√√√
[
(ρi/ρi−1)

2 (ni+1/ni)
2−1

]
[
(ρi/ρi−1)

2−1
]


 ,

and doing sin α = 0 in Eq. (16), we obtain (ρρρ000, sin α)2
= (ρini+1/ni, 0). From these expressions, it is apparent
that size and location in the plane (ρρρ000, sin α) of any
confinement region can be changed by varying ni+1/ni

and/or ρi/ρi−1 ratios.
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6. Summary and Conclusions

Based on the criterion we have set in PII applying the Fer-
mat’s extremal principle in the framework of the geometrical 
optics, in this article, we have depicted the radiation 
confine-ment regions in the plane (ρρρ000, sin α) for the three 
refractive index profiles more often used in the construction 
of waveg-uides: one step, multi-step and parabolic, re-
spectively. To reach our aim, this time, we have analyzed 
the feasibility of using the Legendre transform space as 
an intermediate resource in the process. We have also 
studied the possibility of performing the reverse path, that 
is, for a wanted confine-ment region, to find the parameters 
characterizing the waveg-uide to be built. We have analyzed 
with particular detail the guidance of radiation in multi-
step refractive index profile systems. Waveguides charac-
terized by this refractive index profile have numerous tech-
nological applications. We conclude, on the one hand, 
that working in the Legendre transform space to find the 
confinement regions allows us to reach our goal in any case 
regardless of the particular form of n(ρ), makes the problem 
easier to interpret and visualize, and al-

lows us to conclude straightforward manner about the
characteristics that our waveguide should have so that radia-
tion is confined in one or another region, according to our
interests. On the other hand, we conclude that the reverse
path we have referred to is possible as long as we know the
power of ρ that defines the radial variation of the refractive
index. Then, provided that we know the shape of the profile,
our analysis allows us to deduce the characteristics that the
guide to be built should have so that the radiation entering
with a given angle and at a certain distance from the axis of
the guide, remains confined.

If different types of the electromagnetic wave can propa-

gate within the system, the angle and distance from the axis 
with which the radiation enters the guide, parameters 
defined according to the technological needs, require to be 
well differentiated. Choosing those parameters properly, the 
methodology allows us to define propagation modes through 
the different regions of the guide, and, in design pro-
cesses, by building suitably the waveguide, the technique 
can be used as a resource to limit the parameters that char-
acterize the system.
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