

Estudio del proceso de trefilado en frío de tubos sin costura aplicando un software de simulación

Ing. Fernando Gomez Ing. Claudio Bunte

Resumen

- Se realizaron simulaciones de un proceso de trefilado en frío de tubos sin costura para components de *airbags* de automóviles utilizando el software Simufact Forming ®.
- Se analizó la influencia de distintos parámetros del proceso sobre la carga de tiro.
- Se compararon dos configuraciones del proceso de trefilado en frío en dos pasadas.

Procesos de conformado

Se modifica la forma de una pieza sin modificar su masa ni su composición.

- 1. Material en estado plástico
- 2. Antes de la deformación
- 3. Después de la deformación
- 4. Fricción, lubricación y desgaste
- 5. Herramentales
- 6. Reacciones superficiales
- 7. Sistema máquina herramienta
- 8. Sistema de producción

Procesos de conformado

Se puede clasificar según el tipo de tensión aplicada sobre la pieza:

- 1. Compresión
- 2. Tracción y compresión combinadas
- 3. Tracción
- 4. Doblado
- 5. Corte

Procesos de conformado

Se puede clasificar según el tipo de tensión aplicada sobre la pieza:

- 1. Compresión
- 2. Tracción y compresión combinadas
- 3. Tracción
- 4. Doblado
- 5. Corte

Proceso de conformado por tracción y compresión combinadas (o compresión indirecta)

Proceso de conformado por tracción y compresión combinadas (o compresión indirecta)

Permite obtener:

- Tolerancias dimensionales bien controladas
- Buena terminación superficial
- Propiedades mecánicas elevadas

Normalmente se realiza a temperatura ambiente, pero pueden presentarse aumentos de temperatura considerables.

Tipos de trefilado de tubos

- a. Sin mandril (*sinking*)
- b. Con mandril móvil
- c. Con mandril fijo
- d. Con mandril flotante

Tipos de trefilado de tubos

- a. Sin mandril (*sinking*)
- b. Con mandril móvil
- c. Con mandril fijo
- d. Con mandril flotante

Matriz

- Núcleo (WC)
 - Campana
 - Ángulo de entrada
 - Cilindro de calibración
 - Ángulo de salida
- Caja (acero)

Matriz

Calidad de la Widia

Herramental

Trafila (matriz) y mandril

Herramental

Trafila (matriz) y mandril

- Método del planchón (Deformación homogénea)
- Método energético (Deformación uniforme)
- Campos de líneas de deslizamiento (Tensiones en deformación plana)
- Soluciones de límite superior e inferior (Análisis de límites)
- Método de elementos finitos (Cálculo matricial)

Método del planchón

- Deformación uniforme
- Ausencia de trabajo redundante
- Planos perpendiculares
- Fricción constante
- No se presenta endurecimiento por deformación

$$\sigma_1 = \sigma' \cdot \frac{1+B}{B} \cdot \left[1 - \left(\frac{t}{t_0}\right)^B \right]$$

$$B = \frac{2\mu}{\tan(\alpha)}$$

t₀: Espesor inicial
t: Espesor final
σ': Tensión de fluencia
μ: Coeficiente de fricción
α: Semiángulo de matriz

Solución de límite superior

- Sobreestima la fuerza de conformado
- Considera distintos componentes de la deformación (discontinuidades, fricción, deformación homogénea)

$$\sigma_{sink} = \frac{1 + B_1}{B_1} \left[1 - \left(\frac{r_1}{r_0}\right)^{B_1} \right] \sigma^*$$

$$\sigma_{thin} = \frac{1 + B_2}{B_2} \left[1 - \left(\frac{H_1}{H_0}\right)^{B_2} \right] \sigma^* + \left(\frac{H_1}{H_0}\right)^{B_2} \sigma_{sink}$$

$$\sigma_{size} = \sigma^* - (\sigma^* - \sigma_{thin})exp - 2\mu L \frac{R_i + R_o}{R_o^2 - R_i^2}$$

$$\sigma_{shear} = \frac{\sigma_y \hat{\alpha}}{\sqrt{3}}$$

Solución de límite superior

- Sobreestima la fuerza de conformado
- Considera distintos componentes de la deformación (discontinuidades, fricción, deformación homogénea)

$$\sigma_d = \frac{2\sigma_0}{3\sqrt{3}} \tan \alpha \left[\frac{R_0^2 + R_0 r_0 + r_0^2}{R_0 (R_0 + r_0)} + \frac{R_f^2 + R_f r_f + r_f^2}{R_f (R_f + r_f)} \right]$$

$$\sigma_{fi} = \frac{2\tau_i^{\beta}}{\sin 2\beta} \left[\frac{-1}{1+t} \ln \frac{r_0 + R_f t - r_f t + r_o t}{(R_f - r_f)t} + \frac{1}{1-t} \ln \frac{r_0 - r_o t + R_f t - r_f}{(R_f - r_f)t} \right]$$

$$\sigma_{fe} = \frac{2\tau_i^{\alpha}}{\sin 2\alpha} \left[\frac{1}{1+t} \ln \frac{R_0 + R_0 t - R_f t + r_f}{R_f - r_f} + \frac{1}{1-t} \ln \frac{R_0 + R_0 t - R_f t + r_f}{R_f - r_f} \right]$$

$$\sigma_{dh} = \frac{2\sigma_0}{\sqrt{3}} (1 + y + y^2)^{1/2} ln\left(\frac{A_o}{A_f}\right)$$

Ángulo óptimo

 $U_T = U_p + U_f + U_r$

 U_T : Energía total U_p : Energía de deformación plástica U_f : Energía para compensar la fuerza de fricción U_r : Trabajo redundante

Criterios de fractura

Distintos tipos de modelos:

- Cockroft-Latham
- Lemaitre
- Oyane
- Johnson-Cook
- Gurson
- Bonora
- Diagrama de límites de conformado

Criterios de fractura

Modelo elegido:

• Cockroft y Latham

$$CL = \int_{0}^{\overline{\varepsilon}_{fractura}} \sigma_{1} d\overline{\varepsilon} \qquad CL = CL_{critico}$$
$$nCL = \int_{0}^{\overline{\varepsilon}_{fractura}} \frac{\sigma_{1}}{\overline{\sigma}} d\overline{\varepsilon} \qquad Criterio normalizado$$

Método de elementos finitos

Se divide la estructura en una red de elementos pequeños (mallado) conectados en ciertos puntos (nodos).

Modelización y simulación

Representación de un sistema, cuyo comportamiento luego se evalúa

Modelización y simulación

Representación de un sistema, cuyo comportamiento luego se evalúa

Método de elementos finitos

Software utilizado

Simufact Forming cubre un gran rango de procesos de conformado en metales con una capacidad de representar y analizar en 3D.

Considera factores propios del proceso como:

- Fricción entre el herramental y las piezas a conformar
- Comportamiento no lineal del material durante su procesamiento
- Cinéticas incluidas dentro del proceso
- Variaciones térmicas dentro del proceso, desde condiciones iniciales y la posibilidad de analizar la evolución y el estado final de obtenido.

Software utilizado

Simufact Forming cubre un gran rango de procesos de conformado en metales con una capacidad de representar y analizar en 3D.

Incluye herramientas para:

- Crear e importar archivos de piezas
- Realizar mallado
- Una base de datos de Materiales, Simufact Material

Materiales utilizados

	Composición química (máx % en peso)												
Denominación	С	Si	Mn	Р	S	V	Nb	Ti	Al	Cr	Мо	Ni	В
AISI 1513	0,12	0,12	1,7	0,025	0,015	0,2	0,09	0,15	0,015				
A709 Gr100	0,16	0,3	1,45	0,012	0,005	0,04				0,55	0,37	0,15	
DIN 1.0958	0,23	0,80	2,20	0,08	0,015	0,20			2,00				0,005

	Propiedades mecánicas					
Denominación	Tensión de fluencia [MPa]	Curva de flujo				
AISI 1513	538	Ecuación de Hensel-Spittel				
A709 Gr100670DIN 1.09581023						
		Curva construída a partir de tabla de valores				

Materiales utilizados

Curvas de flujo – AISI/SAE 1513

$$\sigma_F = A e^{m_1 T} \varphi^{m_2} e^{\frac{m_4}{\varphi}} \dot{\varphi}^{m_3}$$

φ: deformación plástica equiv. φ: vel. de deformación plástica equiv.

T: temperatura

m

m

$$a_1 = -0,0012$$

$$_2 = 0,11292$$

$$m_3 = 0.0186$$

 $m_4 = -0.0106$

Simulaciones

Esquema:

- Se simuló el trefilado de tubos en frío variando distintos parámetros del proceso (geometría de la matriz, coeficiente de fricción).
- Se simuló el proceso de trefilado de tubos en frío de dos pasadas que se realiza actualmente.
- Se compararon dos configuraciones distintas del proceso mencionado (denominadas Ruta A y Ruta B).

Simulaciones

Simulación del trefilado de tubos en frío variando distintos parámetros del proceso

Se comprobó cómo se modificaba la carga de tiro en el proceso variando:

- El ángulo de la matriz,
- La longitud del cilindro de calibración,
- El radio de empalme,
- El diámetro de salida,
- El coeficiente de fricción

Parámetros

Coeficiente de fricción (µ) : entre 0,01 y 0,07 Ángulo de matriz (2α) : 15; 24; 30; 36 (°) Longitud del cilindro de calibración : 8,7; 10; 15 (mm) : 0; 5; 10 (mm) Radio de empalme : 33,4 (mm) / 28,10; 25,45 (mm) Diámetro inicial / Final Temperatura inicial :20°C : conducción, convección, radiación. Transferencia de calor Cinemática : velocidad de tiro de 500 mm/s. Mallado : generalmente más de 5700 elementos (cuadriláteros) con tamaño de arista máximo de 0,25 mm. Tiempo de simulación : 0,5 - 2 horas (8 horas con otra pc). $: 2,5x10^{-4} s$ Incremento

Simulaciones

Primer modelo

Elevada cantidad de roturas durante las simulaciones

Simulaciones

Segundo modelo

Se modificó:

- La forma de la mordaza
- El extremo del tubo

De esta manera, se obtuvieron mejores resultados

 $D_{inicial} = 33,4 \text{ mm}$ $D_{final1} = 25,45 \text{ mm}$ Radio de empalme = 5 mm

Simulaciones

Simulación del proceso de trefilado en frío de tubos sin costura en dos pasadas. Se comparan dos configuraciones del proceso (nombradas Ruta A y ruta B)

	Ruta A	Ruta B
Primer Tiro (Pasada)	↑ Espesor ↓ Diámetro	↓ Espesor ↑ Diámetro
Segundo Tiro (Pasada)	↓ Espesor ↑ Diámetro	↑ Espesor ↓ Diámetro

$$Q = \frac{\ln \left(e_f / e_0 \right)}{\ln \left(D m_f / D m_0 \right)}$$

Diagrama del proceso

Primer Tiro (Pasada)

Parámetros de la reducción

	OD x WT inicial (mm)	OD x WT intermedio (mm)	Reducción de área (%)	R. de espesor (%)	R. de diámetro medio (%)	Diámetro del mandril (mm)
Ruta A	33,40 x 2,70	28,10 x 1,95	38,5	27,8	14,8	24,20
Ruta B		25,45 x 2,20	38,3	18,5	24,3	21,05

 Matrices: Ángulo de entrada Longitud de calibración Radio de empalme 	: 30° (2α) : 10,00 mm : 5,00 mm
 Lubricación: Coeficiente de fricción 	· 0 05

Segundo Tiro (Pasada)

Parámetros de la reducción

	OD x WT intermedio (mm)	OD x WT final (mm)	Reducción de área (%)	R. de espesor (%)	R. de diámetro medio (%)	Diámetro del mandril (mm)
Ruta A	28,10 x 1,95	20 (4 - 1 (5	38,6	15,4	27,4	10.2
Ruta B	25,45 x 2,20	20,04 X 1,65	38,7	25,0	18,3	18,3

Matrices:

- Ángulo de entrada
- Longitud de calibración
- Radio de empalme
- : 10,00 mm : 5,00 mm

: 30° (2α)

Lubricación:

• Coeficiente de fricción : 0,05

Fuerzas de tiro en 1° y 2° Pasada

Fuerzas de tiro en 1° y 2° Pasada

Fuerzas de tiro en 1° y 2° Pasada

Fuerza de tiro (kN)	Valor promedio	Desvío estándar	
Primer tiro (Pasada)			
Ruta A	105,4	1,6	
Ruta B	104,4	1,5	
Segundo tiro (Pasada)			
Ruta A	66,2	1,2	
Ruta B	66,0	1,3	

Fuerzas de tiro en 1° y 2° Pasada – Cálculo por Métodos comparativos

Fuerza de tiro (kN)	Método del planchón	Solución de límite superior (1)	Solución de límite superior (2)	Valor obtenido en la simulación
Primer tiro (Pasada)				
Ruta A	36,3	165.0	230,1	105,4
Ruta B	23,4	174.4	222,8	104,4
Segundo tiro (Pasada)				
Ruta A	13,5	112,2	138,2	66,2
Ruta B	21,2	105,9	136,5	66,0

Deformación plástica equivalente

Tensiones residuales longitudinales

Tensiones residuales tangenciales

Daño (Cockroft y Latham)

Primer tiro

Izquierda: Muestra del tubo antes de la segunda pasada de trefilado

Derecha:

Muestra del tubo luego de la segunda pasada de trefilado

Microscopía óptica – Antes del trefilado

Superficie interna

Superficie externa

Microscopía óptica – Antes del trefilado

Microscopía óptica – Antes del trefilado – Decarburación

L = 0,15 mm

L = 0,25 mm

Microscopía óptica – Antes del trefilado

Microscopía óptica – Después del trefilado

Superficie interna

Zona interna del espesor

Microscopía óptica – Después del trefilado

Microscopía electrónica – Después del trefilado

Dureza Vickers después del Segundo Tiro (Pasada)

Dureza Vickers Antes y Después del Segundo Tiro (Pasada)

Ruta B

Conclusiones

- Se realizó una recopilación de literatura concerniente al proceso de conformado en frío de tubos por trefilado, a la metodología de elementos finitos y a su aplicación al proceso mencionado.
- El software Simufact Forming permite el análisis de procesos de conformado en frío, como por ejemplo el trefilado de tubos sin costura.
- Se analizaron los parámetros principales de diseño de las trefilas: el ángulo de entrada, la longitud del cilindro de calibración y el radio de empalme.
- También se analizaron parámetros relacionados con otros componentes del proceso, como el coeficiente de fricción, y su influencia sobre el mismo.

Conclusiones

- Permite trabajar en ciertos parámetros para optimizar el proceso, minimizando la carga de tiro.
- Teniendo en cuenta los dos puntos anteriores, se puede enfatizar la necesidad de contar con un sistema de calidad para el control del herramental.
- Se modelizaron los procesos de trefilado en frío de tubos correspondientes a dos configuraciones que se llevan a cabo en la empresa, y se compararon los resultados obtenidos para cada uno de ellos.
- Se realizaron ensayos para caracterizar el producto en distintas etapas del proceso.
- Se obtuvieron distribuciones de parámetros de daño en el proceso, lo que permite identificar las zonas más susceptibles de presentar defectos.

Trabajo a futuro

- Modelar el apunteado previo y los tratamientos térmicos.
- Validar simulaciones con propiedades mecánicas del material (tensión de fluencia, resistencia a la tracción, curva de flujo), obtener valor crítico de daño.
- Llevar a cabo mediciones de tensiones residuales.

¡Muchas gracias por su atención!

cbunte@frba.utn.edu.ar