Earth Syst. Sci. Data, 16, 501-523, 2024 https://doi.org/10.5194/essd-16-501-2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

CoCO2-MOSAIC 1.0: a global mosaic of regional, gridded, fossil, and biofuel CO₂ emission inventories

Ruben Urraca¹, Greet Janssens-Maenhout^{1,12}, Nicolás Álamos², Lucas Berna-Peña³, Monica Crippa⁴, Sabine Darras⁵, Stijn Dellaert⁶, Hugo Denier van der Gon⁶, Mark Dowell¹, Nadine Gobron¹, Claire Granier^{7,8}, Giacomo Grassi¹, Marc Guevara⁹, Diego Guizzardi¹, Kevin Gurney¹⁰, Nicolás Huneeus², Sekou Keita⁷, Jeroen Kuenen⁶, Ana Lopez-Noreña³, Enrique Puliafito³, Geoffrey Roest¹⁰, Simone Rossi¹¹, Antonin Soulie⁷, and Antoon Visschedijk⁶

¹European Commission, Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra, Italy
²Center for Climate and Resilience Research, Universidad de Chile, 8320000 Santiago, Chile
³Research Group for Atmospheric and Environmental Studies (GEAA), Mendoza Regional Faculty, Mendoza, M5500, Argentina
⁴Uni Systems Italy, Via Michelangelo Buonarroti 39, 20145 Milano, Italy
⁵Observatoire Midi-Pyrénées, 31400 Toulouse, France
⁶TNO, Department of Climate, Air and Sustainability, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
⁷Laboratoire d'Aeirologie, CNRS-Université de Toulouse, 31400 Toulouse, France
⁸NOAA Chemical Sciences Laboratory, CIRES, University of Colorado Boulder, 80309 Boulder, CO, USA
⁹Barcelona Supercomputing Center, 08034 Barcelona, Spain
¹⁰School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 86011 Flagstaff, AZ, USA
¹¹Arcadia SIT, Via Pessano, 20151 Milano, Italy
¹²Ghent University, Faculty of Engineering and Architecture, Technology Park, 9052 Zwijnaarde, Ghent, Belgium

Correspondence: Ruben Urraca (ruben.urraca-valle@ec.europa.eu)

Received: 31 May 2023 – Discussion started: 27 June 2023 Revised: 31 October 2023 – Accepted: 20 November 2023 – Published: 22 January 2024

Abstract. Gridded bottom-up inventories of CO_2 emissions are needed in global CO_2 inversion schemes as priors to initialize transport models and as a complement to top-down estimates to identify the anthropogenic sources. Global inversions require gridded datasets almost in near-real time that are spatially and methodologically consistent at a global scale. This may result in a loss of more detailed information that can be assessed by using regional inventories because they are built with a greater level of detail including country-specific information and finer resolution data. With this aim, a global mosaic of regional, gridded CO_2 emission inventories, hereafter referred to as CoCO2-MOSAIC 1.0, has been built in the framework of the CoCO2 project.

CoCO2-MOSAIC 1.0 provides gridded (0.1°×0.1°) monthly emissions fluxes of CO₂ fossil fuel (CO₂ff, long cycle) and CO₂ biofuel (CO₂bf, short cycle) for the years 2015–2018 disaggregated in seven sectors. The regional inventories integrated are CAMS-REG-GHG 5.1 (Europe), DACCIWA 2.0 (Africa), GEAA-AEI 3.0 (Argentina), INEMA 1.0 (Chile), REAS 3.2.1 (East, Southeast, and South Asia), and VULCAN 3.0 (USA). EDGAR 6.0, CAMS-GLOB-SHIP 3.1 and CAMS-GLOB-TEMPO 3.1 are used for gap-filling. CoCO2-MOSAIC 1.0 can be recommended as a global baseline emission inventory for 2015 which is regionally accepted as a reference, and as such we use the mosaic to inter-compare the most widely used global emission inventories: CAMS-GLOB-ANT 5.3, EDGAR 6.0, ODIAC v2020b, and CEDS v2020_04_24. CoCO2-MOSAIC 1.0 has the highest CO₂ff (36.7 Gt) and CO₂bf (5.9 Gt) emissions globally, particularly in the USA and Africa. Regional emissions generally have a higher seasonality representing better the local monthly profiles and are generally distributed over a

higher number of pixels, due to the more detailed information available. All super-emitting pixels from regional inventories contain a power station (CoCO2 database), whereas several super-emitters from global inventories are likely incorrectly geolocated, which is likely because regional inventories provide large energy emitters as point sources including regional information on power plant locations. CoCO2-MOSAIC 1.0 is freely available at zenodo (https://doi.org/10.5281/zenodo.7092358; Urraca et al., 2023) and at the JRC Data Catalogue (https://data.jrc.ec.europa.eu/dataset/6c8f9148-ce09-4dca-a4d5-422fb3682389, last access: 15 May 2023; Urraca Valle et al., 2023).

https://doi.org/10.5194/essd-16-501-2024