

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL RAFAELA Departamento Ingeniería Electromecánica

Asignatura PROYECTO FINAL

"MÁQUINA RECONSTRUCTORA DE CASQUILLOS METÁLICOS
PARA MUNICIONES CALIBRE 9 MM CON CULOTE TIPO
RANURA CON UN MODO DE TRABAJO MANUAL-AUTOMÁTICO,
ORIENTADO A LA REPÚBLICA ARGENTINA".

<u>Autores</u>:

ROMITELLI, Germán - SENN, Pablo Gastón

<u>Director</u>:

MOREL, Agustín: Ing. Electromecánico.

Palabras claves:

Reconstructora, Casquillos, Municiones.

Rafaela (Santa Fe), Argentina

Julio de 2024

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL RAFAELA Departamento Ingeniería Electromecánica

Asignatura PROYECTO FINAL

"MÁQUINA RECONSTRUCTORA DE CASQUILLOS METÁLICOS
PARA MUNICIONES CALIBRE 9 MM CON CULOTE TIPO
RANURA CON UN MODO DE TRABAJO MANUAL-AUTOMÁTICO,
ORIENTADO A LA REPÚBLICA ARGENTINA".

Proyecto final realizado por:

Romitelli Germán¹, Senn Pablo Gastón²

Correo Electrónico:

¹ germanromitelli@hotmail.com - ² pablosenn@gmail.com

Bajo la Dirección de:

Ing. Electromecánico Morel Agustin

Correo Electrónico:

morelagustin2@gmail.com

www.frra.utn.edu.ar Rafaela (Santa Fe), Argentina Julio 2024

ROMITEUN GERMAN

A nuestras familias, por apoyarnos y darnos la oportunidad de llevar adelante una carrera universitaria. Por confiar en nosotros y no dejarnos abandonar en este largo .

camino.

A los docentes, por ser los guías principales del todo lo aprendido en esta etapa de

nuestras vidas.

A todo el personal y directivos de la Facultad Regional Rafaela que hace posible

que una universidad de esta magnitud funcione día a día.

A nuestros amigos y compañeros de curso que compartimos gran parte de nuestra

vida en las aulas de esta universidad.

A nuestro director de proyecto, por su incondicional predisposición desde el

momento en que le propusimos serlo.

A nosotros mismos, por confiar y persistir para llegar al objetivo propuesto de ser

ingenieros

Germán y Pablo

Enmienda

Se deja expresado en el presente documento que se realizan los siguientes cambios respecto a lo propuesto en el plan de proyecto presentado al Departamento y al Consejo Departamental.

Modificación del título del proyecto.

Originalmente el título del proyecto era: "Máquina automática reconstructora de casquillos metálicos servidos para municiones calibre 9 mm con culote tipo ranura orientado a la República Argentina", y el titulo final se modifica para especificarlo a lo realizado en el proyecto a: "Máquina reconstructora de casquillos metálicos para municiones calibre 9 mm con culote tipo ranura con un modo de trabajo manual-automático, orientado a la República Argentina".

Modificación de un objetivo específico.

Dentro de los objetivos específicos del proyecto se plantea diseñar y calcular un sistema mecánico de placas deslizantes que reconstruya los casquillos de calibre 9 mm a sus medidas originales. Este objetivo fue modificado a una adaptación del actual sistema de reconstrucción que posee la maquina Case Pro100 para ser utilizado en la maquina diseñada en este proyecto.

Con aceptación por unanimidad de los autores se modifican dichas situaciones.

Resumen.

El presente Proyecto Final se basa en el estudio, análisis, cálculo, dimensionamiento, proyección, manual de usuario y evaluación económica de una Máquina reconstructora de casquillos metálicos para municiones calibre 9 mm con culote tipo ranura con un modo de trabajo manual-automático, orientado a la República Argentina.

El propósito de estos equipos es generar la reconstrucción de las dimensiones generales de los casquillos que se deforman después de ser utilizados permitiendo así su reutilización.

Previo a la aparición de este tipo de máquinas la reconstrucción de los casquillos se realizaba con metodologías caseras poco eficientes y que no conseguían resolver adecuadamente el problema en su totalidad. Por otro lado, esta máquina busca generar una solución automática al problema para que el usuario obtenga aun mayor beneficio en el uso de esta.

Se plantea, un equipo que pueda satisfacer las necesidades de reconstrucción de casquillos como alternativa de los métodos actualmente ya disponibles en el mercado, cumpliendo con la normativa referente a Higiene, Seguridad y Medio Ambiente: regional y nacional.

El documento se encuentra organizado de la siguiente manera: en el capítulo 1 se encuentra el Plan de Proyecto, el capítulo 2 se contextualiza el trabajo, se desarrollan los cálculos y la selección de componentes para la máquina; en el capítulo 3 se plantea la planimetría del equipo para su fabricación y el listado de elementos correspondientes y se presenta la empresa donde se fabricará el equipo; el capítulo 4 corresponde al Manual de Usuario; el capítulo 5 se hace el Estudio Económico; y por último se encuentran las conclusiones del trabajo y los anexos correspondientes.

Índice.

Cap	oítulo 1. Plan de proyecto	15
1.1	Justificación del tema elegido	15
1.1.1	Introducción	15
1.1.2	El casquillo	17
1.1.3	Clasificación de los casquillos	19
1.1.4	Beneficios deportivos	22
1.1.5	Beneficios económicos	22
1.1.6	Normativas	23
1.1.6.1	Casquillos	23
1.1.6.2	Legales	26
1.1.7	Higiene y seguridad	26
1.1.8	Inconvenientes técnicos	27
1.1.9	Tratamientos térmicos	35
1.1.10	Patentes publicadas	35
1.2	Fundamentación del tema elegido	37
1.2.1	Fabricantes internacionales	37
1.2.2	Fabricantes nacionales	38
1.2.3	Propuesta de valor	39
1.2.4	Análisis de alternativas	41
1.3	Objetivos del proyecto	45
1.3.1	Objetivo general	45
1.3.2	Objetivos específicos	45
1.4	Metodología de desarrollo	46
1.5	Referencias bibliográficas	47
Cap	oítulo 2. Carpeta técnica	48
2.1	Introducción	48
2.2	Esfuerzos	48
2.3	Análisis y definición de diseños	50
2.3.1	Movimiento principal de trabajo	51
2.3.2	Sistema de alimentación de casquillos	. 53

2.3.3	Regulación del sistema de placas reconstructoras	60
2.3.4	Conjunto motor-reductor: dimensionado y selección	68
2.3.5	Base de la máquina	78
2.3.6	Sistema de transmisión	80
2.3.7	Sistema de soporte	83
2.4	Dimensionamiento de tornillos	84
2.5	Verificación del rodamiento	87
2.6	Circuito eléctrico	89
2.7	Sistema de higiene y seguridad	89
2.8	Referencias bibliográficas	91
Ca	pítulo 3. Carpeta técnica. Especificaciones	92
3.1	Codificación de componentes	92
3.2	Listado de componentes y materiales	95
3.3	Planos mecánicos	98
3.4	Planos eléctricos	136
3.5	Diagramas de flujo	138
3.6	Planta industrial	178
3.6.1	Nomenclatura planos planta industrial	179
3.6.2	Máquinas existentes en la empresa	180
3.6.3	Presentación de planos de la empresa	181
3.6.4	Verificación de la instalación eléctrica	197
3.6.5	Verificación de la instalación lumínica	198
3.6.6	Instalación neumática	203
3.6.7	Seguridad e higiene	208
3.7	Referencias bibliográficas	209
Ca	pítulo 4. Manual de usuario	210
4.1	Introducción	210
4.2	Glosario	210
4.3	Simbología utilizada	211
4.4	Instrucciones de seguridad	211
4.5	Descripción de componentes	212

4.6	Tablero de comandos	213
4.7	Primeros pasos	214
4.7.1	Nivelación	214
4.7.2	Calibración	214
4.7.3	Conexión eléctrica	218
4.8	Funcionamiento	218
4.9	Mantenimiento	222
4.9.1	Antes de poner en marcha el equipo	223
4.9.2	Durante la marcha del equipo	223
4.9.3	Después de usar el equipo	223
4.10	Posibles problemas y soluciones	224
4.11	Garantía	225
4.12	Lista de componentes	225
4.13	Contacto	227
4.14	Referencias bibliográficas	227
Ca	pítulo 5. Evaluación económica	228
5.1	Análisis de costos	228
5.1.1	Caracterización de costos	229
5.1.2	Determinación de costos variables	233
5.1.3	Determinación de costos fijos indirectos	236
5.2	Precio del producto	238
5.2.1	Análisis de contribución marginal y punto de equilibrio	239
5.2.2	Flujo de fondos, valor actual neto y tasa interna de retorno	242
5.3	Análisis de sensibilidad	245
5.3.1	Análisis de sensibilidad n°1	245
5.3.2	Análisis de sensibilidad n°2	247
5.3.3	Análisis de sensibilidad n°3	249
5.3.4	Análisis de sensibilidad n°4	252
5.4	Conclusión del análisis económico	254
5.5	Referencias bibliográficas	255
Ca	pítulo 6. Conclusión	256
An	exos	257

Índice de Tablas.

Tabla 1 - Proceso de disparo en un arma de fuego semiautomático cal. 9[mm]	29
Tabla 2 - Resultados del Ensayo.	32
Tabla 3 - Análisis de requisitos de diseño	42
Tabla 4.a análisis de requisitos técnicos.	43
Tabla 5. Resultados de la experiencia práctica con una CasePro	50
Tabla 6. Tabla de ejemplo de evaluación de alternativas	51
Tabla 7 - Evaluación de alternativas de los accionamientos de la máquina	52
Tabla 8. Evaluación de alternativas de los sistemas de alimentación	60
Tabla 9. Evaluación de alternativas de los sistemas de regulación	67
Tabla 10. Evaluación de diferentes accionamientos electromecánicos	77
Tabla 11.a - Lista de componentes (parte 1 de 2).	96
Tabla 11.b - Lista de componentes (parte 2 de 2).	967
Tabla 12 - Máquinas existentes.	180
Tabla 13 - Estaciones de trabajo.	180
Tabla 14 - Luminarias utilizadas en planta.	199
Tabla 15 – Verificación iluminación baño	200
Tabla 16 - Verificación iluminación Oficina.	211
Tabla 17 - Verificación iluminación Zona 1.	211
Tabla 18 - Verificación iluminación Zona 2.	212
Tabla 19 - Verificación iluminación Zona 3.	212
Tabla 20 - Verificación iluminación Zona 4.	213
Tabla 21 - Herramientas neumáticas existentes.	214
Table 22 Posibles follos	23/

Tabla 23. Costos implicados en el proyecto	240
Tabla 24. Costos variables.	241
Tabla 25. Costos fijos	242
Tabla 26. Costo de materiales.	243
Tabla 27. Costo de mano de obra	244
Tabla 28. diagrama de torta costos fijos	244
Tabla 29. Costo energía eléctrica utilizada en fabricación	245
Tabla 30. Costos indirectos en la producción.	245
Tabla 31. Costos indirectos en la producción por máquina fabricada	246
Tabla 32. Costos mano de obra indirecta.	247
Tabla 33. Contribución marginal y punto de equilibrio	251
Tabla 34. Costos de inversión inicial.	253
Tabla 35. Flujo de fondos. E	254
Tabla 36. Análisis de sensibilidad n° 1.	256
Tabla 37. Análisis de sensibilidad n° 2.	258
Tabla 38. Costos variables de análisis de sensibilidad nº 3	259
Tabla 39. Análisis de sensibilidad n° 3	261
Tabla 40. Costos variables de análisis de sensibilidad nº 4	262
Tabla 41. análisis de sensibilidad n° 4.	263

Índice de figuras.

Fig. 1- Deformación del casquillo.	13
Fig. 2 - Diagrama de sistemas intervinientes en el proyecto	16
Fig. 3 - Detalle de la conformación de una munición.	17
Fig. 4. Partes esenciales del casquillo y del casquillo largo	18
Fig. 5- Clasificación de los casquillos en función del sistema de percusión	20
Fig. 6 - Clasificación según la forma geométrica de los casquillos	20
Fig. 7- Clasificación según la forma del culote.	21
Fig. 8. Dimensiones estandarizadas de una munición calibre 9 mm	24
Fig. 9 - Plano de las dimensiones fundamentales de un casquillo	25
Fig. 10 - Deformación de un casquillo servido.	30
Fig. 11- Acotación de las dim. fundamentales de un casquillo calibre 9 mm	31
Fig. 12 - Casquillo deformado debido al ensayo realizado	32
Fig. 13 - Uña extractora en su posición de trabajo.	33
Fig. 14 Comparación de Uña Extractora rota y una nueva.	34
Fig. 15 - Detalle de herramienta y Máquina de la patente US005515766A	36
Fig. 16 - Die de rectificación utilizado en una máquina de recarga	38
Fig. 17 - Punzonadora neumática para restaurar casquillos casera	38
Fig. 18 - Alternativa Die de rectificación nacional	39
Fig. 19 - Física del método propuesto de reconstrucción.	40
Fig. 20 - Detalle del método propuesto de reconstrucción.	41
Fig. 21 - Experiencia práctica con Case Pro.	49
Fig. 22 - Case feeder o alimentador de casquillos	54
Fig. 23 -Alimentación de casquillos	54

Fig. 24. Sistema de alimentación de casquillos. Opción 1	55
Fig. 25 . Sistema de alimentación de casquillos. Opción 2	57
Fig. 26 - Sistema de alimentación de casquillos. Opción 3	58
Fig. 27 - Sistema de regulación de las placas. Opción 1.	62
Fig. 28 - Sistema de regulación de las placas. Opción 2	63
Fig. 29 - Sistema de regulación de las placas. Opción 3	64
Fig. 30 - Sistema de regulación de las placas. Opción 4	66
Fig. 31 - Motor Ignis MR20A-024150-31	75
Fig. 32 - Controlador CC5MD	76
Fig. 33 - Base de la máquina. Elaboración propia.	79
Fig. 34 - Sistema de accionamiento manual.	80
Fig. 35 - Sistema de transmisión.	81
Fig. 36 - Sistema de accionamiento manual.	82
Fig. 37 - Sistema de soporte.	84
Fig. 38 - Solicitación en tornillos.	85
Fig. 39. Carcasa de protección.	90
Fig. 40. Diagrama de flujo.	139
Fig. 41 - Ubicación geográfica	178
Fig. 42. Zonas de verificación lumínica	199
Fig. 43 - Nomograma "Determinación de longitudes equivalentes"	206
Fig. 44 - Nomograma" determinación de diámetro de la tubería"	207
Fig. 45. Descripción de componentes sin carcasa protectora	212
Fig. 46. Tablero de comando	213
Fig. 47. Componentes de calibración.	215

Fig. 48. Tornillos de apriete final.	216
Fig. 49. regulación de la placa móvil.	217
Fig. 50. Casquillo patrón entre placas de reconstrucción	217
Fig. 51. Kit de accionamiento manual.	218
Fig. 52. Accionamiento manual instalado 1	220
Fig. 53. Accionamiento manual instalado 2.	220
Fig. 54. kit de accionamiento automático.	220
Fig. 55. Accionamiento automático instalado.	221
Fig. 56. Diagrama de costos variables.	231
Fig. 57. Diagrama costos fijos.	232
Fig. 58. Punto de equilibrio.	242

Nomenclatura, siglas o abreviaturas declaradas

Abreviatura	Descripción					
"	Pulgadas					
\$	Pesos argentinos					
9%	Porcentaje					
0	Grados					
A	Amperios					
ABS	Acrilonitrilo Butadieno Estireno (plástico)					
AC	Corriente alterna					
CIP	Costos indirectos de la producción					
DC	Corriente continua					
F	Fuerza					
Fig	Figura					
g	Gramo					
h	Horas					
HE	Hoja de ensayo					
HI	Hoja de inspección					
HMOD	Horas de mano de obra directa					
hp	Caballo de fuerza					
HP	Hoja de Proceso					
Hz	Herzios					
i	Relación de reducción					
I	Corriente					
ID A M	Instituto Argentino de normalización y					
IRAM	certificación					
Kg V	Kilogramos					
Kgm	kilográmetros kilovatio					
kw						
kw-h L	kilovatio hora					
1	Longitud litro					
-	Metro					
m Min	Minutos					
mm	Milímetros					
MOI	Mano de obra indirecta					
N	Newton					
N°	Número					
NC	Contacto normal cerrado					
Pot	Potencia Potencia					
PTFE	Teflón					
PWM	Modulación por ancho de pulso					
1 1/11/1	into autuation por uniono de puiso					

R Resistencia eléctrica

Rad Radianes
Rev Revoluciones

rpm Revolución por minuto

S Segundos

Instituto de fabricantes de armas y municiones

SAAMI deportivas T Torque

TIR Tasa interna de retorno

TREA Tasas reales efectivas anuales
UOM Unión obrera metalúrgica
USD Dólares norteamericanos

V Voltios

VAN Valor actual neto

w Vatio

X Reactancia inductiva

 π Pi

σ Tensión longitudinal

Capítulo 1 - Plan de proyecto.

1.1 Justificación del tema elegido.

1.1.1 Introducción.

En el siguiente proyecto se realizará el diseño de una máquina que de manera automática reconstruya los casquillos utilizados en municiones calibre 9 mm cuya forma de culote sea del tipo ranurado.

Cuando se realiza el disparo de un arma de fuego la gran cantidad de energía liberada en la explosión y debido a la flexibilidad del material con el que se fabrican los casquillos se produce una gran deformación de estos, pero a su vez son la única pieza de todas las que componen una munición que es posible recuperar y reutilizar.

Un casquillo servido, es decir usado, es posible reutilizarlo sin realizarle ninguna reconstrucción de sus dimensiones, pero esto trae aparejado que produzca fallas en el arma o la rotura de esta. Para evitar esto es necesario realizarle una reconstrucción de sus dimensiones fundamentales.

Como se puede ver en la figura 1, los casquillos se deforman en gran medida y es esto lo que se solucionará con este proyecto, el cual traerá una gran cantidad de ventajas a los recargadores.

Fig. 1- Deformación del casquillo. Elaboración Propia

El propósito de diseñar esta máquina se basa en la necesidad de:

- Aumentar la vida útil de los casquillos.
- Evitar la rotura temprana de determinadas piezas del arma.
- Proporcionar la precisión adecuada en los elementos que se utilicen para recargar municiones.
- Optimizar los tiempos de entrenamientos de los deportistas que necesitan recargar sus municiones.
- Promover la actividad deportiva del tiro.
- Generar una herramienta que permita un ahorro económico en el entrenamiento de las fuerzas públicas como lo son la policía, gendarmería, ejercito, etc.
- Desarrollar la industria local

En la Figura 2 se observa un diagrama que muestra los diferentes sistemas intervinientes.

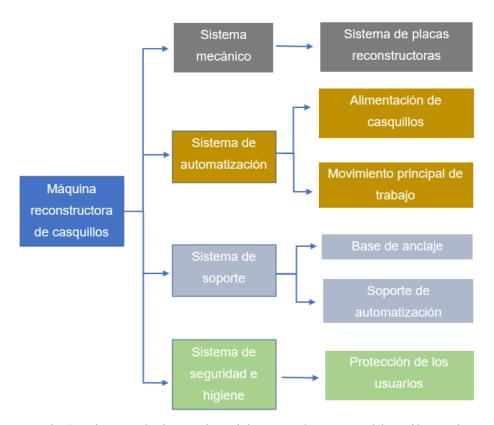


Fig. 2 - Diagrama de sistemas intervinientes en el proyecto. Elaboración Propia

La innovación que se propone para la temática expuesta es la de alcanzar un diseño de una máquina, disponible en Argentina, acorde a nuestros usos, costumbres y normativas que genere la reconstrucción de los casquillos de manera automática.

El proyecto se enmarca en la normativa reglamentaria de la materia "Proyecto Final", de la carrera de grado Ingeniería Electromecánica, ya que se aplican contenidos adquiridos durante el cursado de la carrera.

1.1.2 El casquillo.

Los componentes de una munición son los siguientes.

El casquillo, que es la base de la munición sobre la cual se colocan los demás elementos de esta y es el principal factor de este proyecto.

El fulminante, que es el elemento encargado de generar la chispa para la ignición de la pólvora.

La pólvora, que es el elemento que se quema y libera la energía necesaria para impulsar el proyectil.

La punta o proyectil, que es el elemento solido que se proyecta desde el arma al lugar de impacto.

En la siguiente figura, se observa una munición armada con todos sus elementos.

Fig. 3 - Detalle de la conformación de una munición. Elaboración Propia

El casquillo, además de servir como portadora de la pólvora, es la parte que reúne a los demás elementos que componen a la munición y consta de tres partes esenciales: Boca, Cuerpo y Culote.

I. <u>Culote:</u> es la base del casquillo. Por la parte exterior es plano y lleva una pestaña y/o una ranura para poder extraer el casquillo del arma.

Si la munición es de percusión central el culote tiene un orificio en su centro para alojar la cápsula fulminante, siendo el culote de mayor grosor que el cuerpo del casquillo.

Si la munición es de percusión anular, el grosor del culote es fino y no lleva cápsula fulminante, ya que el fulminante se encuentra dispuesto en el interior del reborde del culote, siguiendo la periferia de la base de la munición.

En este caso, el percutor del arma, en vez de golpear la cápsula en el centro, debe golpear cualquier punto de la periferia para producir la ignición.

- II. <u>Cuerpo:</u> Puede ser cilíndrico o troncocónico. Las paredes pueden ser más gruesas cerca del culote, donde están sometidas a mayor presión. Los cuerpos troncocónicos están en desuso, si bien los cilíndricos son ligeramente troncocónicos.
- III. <u>Boca:</u> Es la parte abierta del casquillo, sirve para colocar la pólvora en el interior de esta y sostener el proyectil.

Fig. 4. Partes esenciales del casquillo y del casquillo largo. Elaboración Propia

1.1.3 Clasificación de los casquillos.

Los casquillos se pueden clasificar atendiendo a varios criterios como lo son:

a. Calibre.

El diámetro de la boca del casquillo es el que determina el calibre de este. Según el origen y el uso que se le dé al casquillo su denominación puede encontrarse en milímetros o en pulgadas.

b. Material de construcción.

1. Metálicas, que son las más utilizadas en el mercado, estas deben reunir condiciones especiales de tenacidad, maleabilidad y elasticidad, que les permitan soportar, sin agrietarse, las dilataciones que sufren en el momento del disparo. Hay que tener en cuenta que en el momento del disparo es necesario que se ajusten a las paredes de la recámara con el objeto de obturarla herméticamente, y posteriormente cuando se reduzca la presión de los gases recuperar en lo posible su tamaño original.

Estas cualidades las cumple adecuadamente el "latón militar", llamado latón 70/30 (70% de cobre y 30 de zinc), siendo en algunos países de Europa como España, el latón 72/28. Luego le sigue el acero latonado, el acero y en menor medida el aluminio.

2. Semimetálicas, originalmente estaban compuestas de un cuerpo cilíndrico de cartón o plástico, un culote metálico casi siempre de una aleación de cobre y un disco de papel enrollado fuertemente que ajustaba el cilindro de cartón contra el culote impidiendo que ambas partes se pudieran separar.

c. Sistema de percusión:

- Percusión anular.
- Percusión central.

A su vez los casquillos de percusión central, dependiendo de la existencia o no del yunque en el casquillo, pueden ser:

- 1. Boxer (sin yunque)
- 2. Berdan (con yunque)

Hoy en día, los casquillos con el sistema Berdan están prácticamente en desuso por su gran complejidad en recargarlas y es por esto por lo que se utilizan solamente en calibres muy especiales.

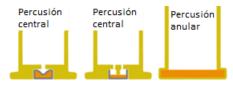


Fig. 5- Clasificación de los casquillos en tunción del sistema de percusión. Extraído de: https://es.wikipedia.org/wiki/C%C3%A1psula_fulminante

Según su forma geométrica:

- 1. Cilíndrica
- 2. Cilíndrica golleteada
- 3. Cónica
- 4. Cónica golleteada

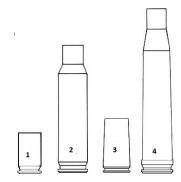


Fig. 6 - Clasificación según la forma geométrica de los casquillos. Extraído de: https://es.wikipedia.org/wiki/Vaina_(munici%C3%B3n

Según la forma externa del culote:

- 1. Pestaña
- 2. Ranura
- 3. Reforzada
- 4. Ranura y pestaña
- 5. Ranura y pestaña corta

La forma del culote del casquillo está en función del sistema de extracción del arma. En aquellas que es necesario que el culote del casquillo haga de apoyo en la recamara evitando que la munición se introduzca dentro de ella más de lo debido se utilizan casquillos con pestañas.

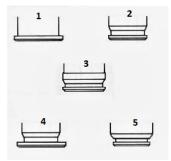


Fig. 7- Clasificación según la forma del culote. Extraído de: https://es.wikipedia.org/wiki/Vaina_(munici%C3%B3n

Observación:

- Los casquillos de Percusión Central son aquellos que se pueden reutilizar y los casquillos de Percusión Anular no son reutilizables, ya que el iniciador de la explosión es colocado dentro del casquillo en su proceso de fabricación.
- Los casquillos del tipo Berdan o Bóxer no presentan diferencias en sus dimensiones exteriores y es por esto que ambos pueden ser reconstruidos por la máquina presentada en este proyecto.

1.1.4 Beneficios deportivos.

Hoy en día el deporte del tiro se encuentra teniendo un gran auge en nuestro país y en el mundo, esto hace que la demanda de los insumos para recargar municiones incremente a grandes rasgos. Dentro de nuestro país existe solo una fábrica que genera casquillos nuevos pero que no los comercializa a los usuarios civiles que realizan sus propias recargas siendo este uno de los principales motivos por los que es necesario reutilizar los casquillos.

Un tirador deportivo realiza en su entrenamiento aproximadamente mil disparos semanales lo que hace fundamental y necesario la optimización de los recursos. Dentro de estos recursos, como se mencionó anteriormente, el único que es posible reutilizar es el casquillo y es en esto que radica la importancia de llevar a cabo este proyecto.

Además, todo deportista necesita optimizar sus tiempos de entrenamiento y es por esto por lo que necesita que los procesos extras al mismo, como lo es en este caso la recarga de la munición, sean lo más automáticos posibles para que no necesiten de la presencia de este.

1.1.5 Beneficios económicos.

Para poder analizar los beneficios económicos que trae aparejado la utilización de esta máquina, se realizó una investigación de mercado, mediante un cuestionario de Google y publicado a través de las redes sociales actuales alcanzando un rango de entre 250 y 300 encuestados. Analizando los resultados, se puede comentar que:

- a- El mercado para esta máquina es el esperado: Si bien no estamos hablando de un mercado masivo como lo pudiera ser el de un bien de consumo diario, si estamos ante un mercado acotado, pero realmente provechoso.
- b- Aproximadamente el 95% de los encuestados recargarían su propia munición: En nuestro país hay 1.300.000 de personas que, bajo la Ley de armas y explosivos nº 20429/73 y sus decretos complementarios, tienen la condición de ser legítimos

- usuarios y disponen de permisos legales para poseer un arma y una máquina para recargar sus propias municiones.
- c- La cantidad promedio de municiones mensuales consumidas: un legítimo usuario consume aproximadamente 1.320 unidades, de las cuales el 90.8 % son calibre 9 [mm], siendo este el calibre más popular en nuestro país y en el mundo debido a sus bajos costos ya la facilidad con la que se consiguen sus insumos.
- d- El universo de personas que reconstituyen las medidas de los casquillos: el 64 % de las personas encuestada que recargan reconstituyen las medidas de los casquillos, solo un 9 % realiza esta tarea en algunas ocasiones, el grupo restante no lo realiza (observamos que no lo hace por no poseer el medio adecuado o por desconocimiento).
- e- Métodos de reconstitución de las medidas de los casquillos: se optan por implementar métodos caseros o no apropiados, con lo que la precisión, la efectividad y la seguridad e higiene para lo tarea que se busca no es la adecuada.

1.1.6 Normativas.

1.1.6.1 Casquillos.

Dentro de las normativas a cumplimentar en este proyecto se puede nombrar a aquellas normas que establecen las medidas fundamentales de las municiones que se van a generar con los casquillos reconstruidos.

Si bien existen varios fabricantes de municiones y casquillos en el mundo, los de mayor renombre y calidad de producto se encuentran en Estados Unidos. Y debido a esto es que existe una organización de fabricantes encargada de crear y publicar estándares de la industria de estos productos para generar seguridad, intercambiabilidad, confiabilidad y calidad.

El Instituto de Fabricantes de Armas y Municiones Deportivas (SAAMI) es una asociación de los principales fabricantes de armas de fuego, municiones de Estados Unidos, la cual fue fundada en 1926 y desde ese entonces estableció permanentemente normas a cumplir por estos fabricantes.

Dentro de las muchas normas que ellos establecen y controlan se encuentra una que es de vital importancia para este proyecto y es la que establece las medidas estándares que deben tener las municiones que se fabrican con los casquillos que este proyecto abarca.

Norma: Sporting Arms and Ammunition Manufacturers Institute (2022), Voluntary Industry Performance Standards for Pressure and Velocity of Centerfire Pistol and Revolver Ammunition for the Use of Commercial Manufacturers (Z299.3) https://saami.org/technical-information/ansi-saami-standards/

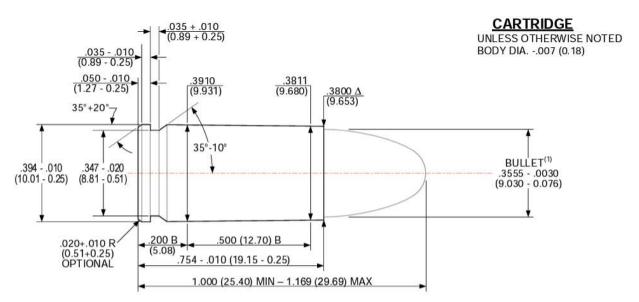


Fig. 8. Dimensiones estandarizadas de una munición calibre 9 mm. Extraída de: Norma SAAMI Z299.3-2022

Cabe aclarar que la conicidad del cuerpo del casquillo es realizada por la máquina encargada de montar la munición. Las medidas reales de los casquillos antes de ser utilizados para conformar la munición son las mismas que se pueden ver en la imagen anterior, pero sin la conicidad correspondiente.

Además, es importante destacar que el diámetro del cuerpo del casquillo cercano a la base es la medida realmente fundamental del mismo y que hace a su correcto funcionamiento. Las demás medidas de su cuerpo (largo y diámetro de boca) estarán sujetas al tipo de munición en el que se van a utilizar estos casquillos.

Teniendo en cuenta las dimensiones establecidas por la norma presentada anteriormente en la Fig. 9 se exponen las dimensiones a considerar en este proyecto acerca del casquillo.

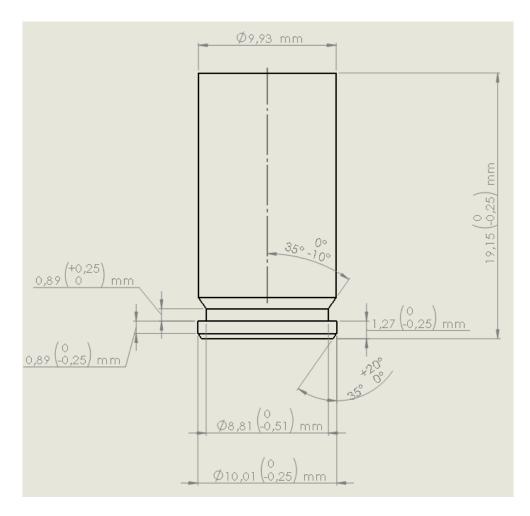


Fig. 9 - Plano de las dimensiones fundamentales de un casquillo. Elaboración propia

1.1.6.2 Legales.

La ley 20.429, Ley nacional de Armas y Explosivos, 21 de marzo de 1973, junto con sus decretos complementarios es la encargada de establecer todas aquellas normas a cumplir por los legítimos usuarios de armas. Esta ley regula ciertas pautas para la recarga de las municiones que utilizan dichas personas y más concretamente, de interés de este proyecto, el decreto complementario 395 de 1975, artículo 57, establece que:

Las autorizaciones de tenencia del material clasificado como arma de guerra o de uso civil condicional y usos especiales, permitirán al legítimo usuario:

- (...) 8) Adquirir los elementos o ingredientes necesarios para la recarga autorizada de la munición a ser utilizada exclusivamente en el arma.
- 9) Recargar la munición correspondiente al arma o armas autorizadas

Dentro de los elementos necesarios para la recarga se enmarca la máquina que se desarrolla en este proyecto.

1.1.7 Higiene y seguridad.

Por otro lado, se presentan las normativas que se cumplimentaran en el ámbito de la higiene y seguridad. En este proyecto se desarrollará una máquina destinada al uso hogareño de los compradores, pero no por esto las condiciones de higiene y seguridad necesarias para su correcta utilización deben ser básicas o insuficientes. Es por esto que se decide en el diseño de la misma cumplimentar la Ley n.º19.587, Higiene y Seguridad en el Trabajo, 21 de Abril de 1972.

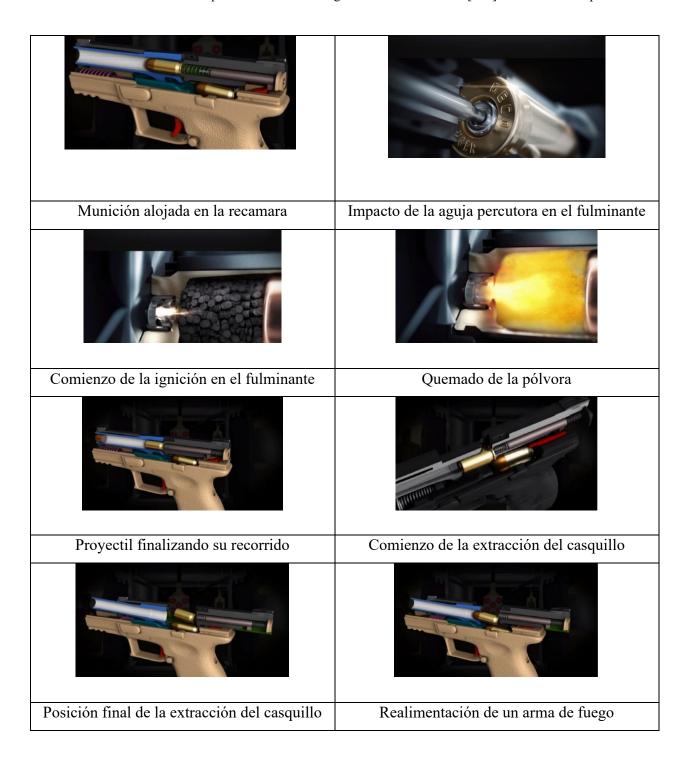
Dicha Ley se plantea para ser aplicada en el ámbito laboral pero ciertos artículos o capítulos de ella y de los decretos complementarios establecen normas de seguridad y condiciones necesarias de las maquinas herramientas para ser utilizadas de manera segura.

Basándonos en los capítulos 14 y 15 y concretamente desde los artículos 95 al artículo 109 de esta ley, se establecen las siguientes condiciones de higiene y seguridad necesarias en este proyecto.

- El usuario no tendrá acceso directo al elemento motor.
- Los elementos de transmisión de movimientos estarán debidamente protegidos.
- Los elementos deslizantes se encontrarán debidamente protegidos.
- Los elementos de protección deberán encontrarse en su correcta posición antes de la puesta en marcha de la máquina.
- La instalación eléctrica estará protegida y no se encontrará al alcance del usuario.
- Dicha maquina poseerá un botón de emergencia para su detención automática en casa de serlo necesario.
- En caso de sobre exigencias debido a alguna falla en el funcionamiento normal de la máquina existirán sistemas de detención automática.
- La instalación eléctrica estar realizada cumplimentando todas las normas de seguridad requeridas.

1.1.8 Inconvenientes técnicos.

a. Mecánica de deformación.


Dentro del arma de fuego, en el momento en que la energía contenida en la pólvora es liberada, el casquillo se deforma. Así, el casquillo se expande todo lo necesario hasta quedar pegado a las paredes de la recamara del cañón. Esto es fundamental y necesario para el correcto funcionamiento del arma ya que de esa forma produce el sellado del cañón necesario para que toda la presión que se genera se transmita directamente al proyectil y no haya perdidas de esta. Este es el momento de mayor deformación que se va a tener del casquillo.

Y como se puede ver en este punto influye ampliamente el tipo y las condiciones del arma. Por ej: un arma con mucho desgaste tiene una recamara mucho más amplia que la de un arma cuando sale de fábrica y por lo tanto los casquillos que se disparen en el arma usada se deformarán más que los que se disparen en la nueva. A medida que el proyectil se desliza por el cañón, la presión interna que contiene el casquillo va disminuyendo ya que esta comienza a disiparse a medida que el proyectil avanza. La energía liberada en la explosión no solo despide el proyectil por el cañón, sino que además hace que la corredera de la pistola comience a deslizarse hacia atrás para eliminar el casquillo utilizado.

Aquí, cuando la corredera comienza a deslizar el casquillo hacia atrás, es cuando se produce la deformación con esta forma de hongo que queda en el casquillo servido. Esto se debe a que la presión que hay en el interior de este todavía es elevada, ya que el proyectil no abandonó el cañón del arma, entonces la parte del casquillo que sale de la recamara (que contuvo su expansión) comienza a expandirse aún más. Una vez que el proyectil termina su recorrido en el cañón, la presión interna del casquillo y del cañón se reduce a cero y es por esto que en el casquillo no se sigue produciendo su deformación. Una vez que la corredera llega a su límite posterior de recorrido produce la expulsión del casquillo utilizado. Una vez que comienza a regresar a su posición inicial arrastra la siguiente munición del cargador a la recamara del cañón. Este último paso se produce porque el arma utilizada en este ejemplo es un arma semiautomática y esta es la característica que la diferencia de otras armas que el proceso de recarga es diferente.

De esta forma concluye el proceso completo de un disparo un arma de fuego semiautomática.

Tabla 1 - Proceso de disparo en un arma de fuego semiautomático cal. 9[mm]. Elaboración Propia

b. Deformación.

Todos los casquillos que se utilizan en un arma de fuego deben aguantar sin agrietarse, las dilataciones que sufren en el momento del disparo. Es decir, cuando se estiran para ajustarse a las paredes de la recámara con el objeto de obturarla hermética y posteriormente cuando se reduzca la presión de los gases recuperar su tamaño primitivo. A pesar de que el casquillo tenga el mejor material posible y con el diseño adecuado se deforman debido a que:

- i- La cantidad de energía liberada en un disparo es realmente alta.
- ii- Las recamaras de las armas que se utilizan generalmente tienen una sobre medida por falta de ajuste en la fabricación o por desgaste del propio uso.
- iii- Cuando la corredera de la pistola comienza a deslizarse y desplazar el casquillo hacia atrás todavía parte de la presión generada queda en el interior de la vaina.

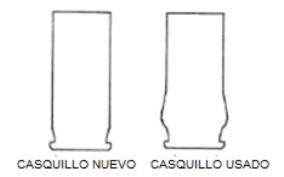
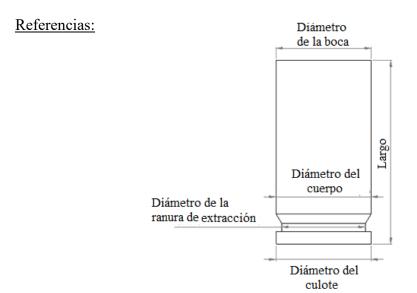


Fig. 10 - Deformación de un casquillo servido. Elaboración Propia.

A la hora de reconstruir los casquillos, es necesario eliminar la deformación que se produjo en ellos, y principalmente en las dimensiones fundamentales de la base del casquillo, con el fin de que no generen ningún tipo de problema en el arma a la hora de re dispararlos o que no produzcan trabas en el proceso de recarga.

Con el fin de demostrar lo mencionado anteriormente se realizó la siguiente experiencia:

Datos:


- Casquillos marca CBC (nuevos), Calibre 9 [mm], metálicos, de percusión central tipo bóxer, cilíndrico con un culote en forma de ranura. Cantidad: 10
- Arma de Fuego Semiautomática Marca: Cz, Modelo: Shadow 2 con aproximadamente 5000 disparos.

Metodología de Ensayo Adoptada:

- i. Se procedió a tomar/registrar medidas sobre un casquillo nuevo (casquillo testigo).
- ii. Se separa-resguarda el casquillo testigo.
- iii. 1er Ronda: se disparan las municiones cargadas con los casquillos restantes y se separa uno de ellos, sobre el cual se van a relevar las medidas establecidas.
- iv. Se recargan los casquillos restantes (sin reconstruir).
- v. Se repite la secuencia a partir del punto dos de manera consecutiva.

Comentarios:

En la ronda Nº 5 el ensayo se detiene, debido a que produjo la rotura de la pieza de extracción de la vaina del arma utilizada, motivo por el cual el ensayo se dio por finalizado para evitar cualquier otro tipo de inconveniente.

31

Fig. 11- Acotación de las dimensiones fundamentales de un casquillo calibre 9 mm. Elaboración propia.

Resultados:

Tabla 2 - Resultados del Ensayo. Elaboración Propia

N ^{ro} de Ronda	0	1	2	3	4	5
Diámetro culote	9.80	9.86	9.87	9.9	9.94	9.99
Diámetro ranura de extracción	8.56	8.58	8.6	8.61	8.65	8.66
Diámetro cuerpo	9.79	9.88	9.98	10.02	10.12	10.13
Diámetro en la boca	9.45	9.71	9.80	9.78	9.78	9.77
Largo	19.20	18.94	18.74	18.74	18.6	18.55

Conclusión:

- Sobre las 10 municiones sin ensayar se observó que no presentaban variaciones sustanciales de una a la otra, sino solo algunas centésimas.
- Luego del tercer disparo se comenzó a observar que en el cuerpo de las vainas empezó a acumularse la deformación y a generar una especie de anillo cercano a la ranura de extracción, lo cual es totalmente perjudicial tanto para el procedimiento de recarga como para la utilización de la munición a la hora de ser disparada.
- Las medidas tomadas en el culote del casquillo y de la ranura de extracción presentan una variación aproximada del 1.5 %, pero en las otras 3 medidas obtenidas, la variación que sufre es de aproximadamente el 3.5 %.
- La principal dimensión que es necesario reconstruir es el diámetro del cuerpo ya que es en esta zona donde se observa el anillo de deformación, más específicamente a una distancia de 5 mm desde la base de la vaina.

Fig. 12 - Casquillo deformado debido al ensayo realizado. Elaboración propia

c- Vida útil:

Un casquillo puede utilizarse varias veces dependiendo de ciertas circunstancias como:

- El ajuste de la recámara del arma, que debe estar en perfectas condiciones, cuanto más ajustada esté menos se deformará el casquillo.
- La vida útil de los casquillos desciende rápidamente si se utilizan cargas máximas. Esto es debido al debilitamiento de sus paredes ya que se sobrepasa el límite de elasticidad del latón.
- El número de recargas que posea el casquillo.
- La calidad de los materiales utilizados en la fabricación de éstas.

Estos son algunos de los factores que influyen en la vida útil de los casquillos lo cual va a ser analizado con mayor precisión en el transcurso de este proyecto.

d-Rotura de Uña Extractora del Arma.

La pieza del arma, encargada de la expulsión del casquillo servido, se llama uña extractora y trabaja como se puede ver en la figura 13.

Fig. 13 - Uña extractora en su posición de trabajo. Elaboración propia

Gracias a la acción de un resorte, se encuentra en permanente contacto con el casquillo y mediante un perno pasante por su orificio se encuentra unida a la corredera de la pistola, lo que hace que cuando esta llegue a su recorrido final y el casquillo fuerce la uña extractora permitiéndole vencer el resorte y produciendo la expulsión del mismo.

El espacio donde la uña extractora se pone en contacto con la ranura de extracción del casquillo es mínimo y debido a esto cualquier deformación produce una rotura de esta pieza esencial en el correcto funcionamiento de un arma.

Un dato muy importante sobre el ensayo realizado es que, durante la Ronda Nro 5, se produjo la rotura de la uña extractora como se puede observar en la figura 14.

Fig. 14 Comparación de Uña Extractora rota y una nueva. Elaboración Propia.

Lo que nos sugiere que un método adecuado para reconstituir las medidas de los casquillos puede extender la vida útil de esta pieza y evitar su rotura.

1.1.9 Tratamientos térmicos.

A todos aquellos materiales que sean mecánicamente deformados generalmente se les suele realizar un tratamiento térmico final de distensionado como puede ser un recocido o un estabilizado para evitar tensiones internas en ellos y aumentar su ductilidad. Este tipo de tratamientos no son necesarios realizar en los casquillos del calibre que se propone en la propuesta debido a que:

- Si estuviésemos hablando de casquillos de armas largas, con los que se busca extrema precisión a distancias muy largas, sí serían necesarios estos tratamientos, pero la influencia de las características físicas que estos modifican en la conformación y en las prestaciones de una munición calibre 9 mm es ínfima.
- Esta máquina se diseñará para una aplicación hogareña, con simpleza y sencillez de reutilización de insumos y con la intención de bajar costos asociados, por lo que, la reconstrucción mecánica de los casquillos es suficiente.

1.1.10 Patentes publicadas.

Dentro de las patentes existentes en todo el mundo solo se hace referencia a una de las máquinas que se presentaron antes como competidores directos de este proyecto además de algunas tecnologías o métodos desactualizados o ya fuera del mercado.

Este invento patentado por Michael F. Fleury (1996) permite observar con detalle el riel de deformación que realiza la reconstrucción del casquillo y, además, brinda referencias de las medidas que serían correctas para que realice la reconstrucción adecuada del casquillo.

El riel de deformación de esta máquina es el encargado de realizar todo el trabajo de deformación y su tamaño recomendado es de 0.005" pero puede oscilar entre 0.005 y 0.01", es decir, entre 0.127 mm y 0.254 mm. Además, se recomienda que tenga una forma redondeada para no generar rayas no deseadas en el proceso de reconstrucción.

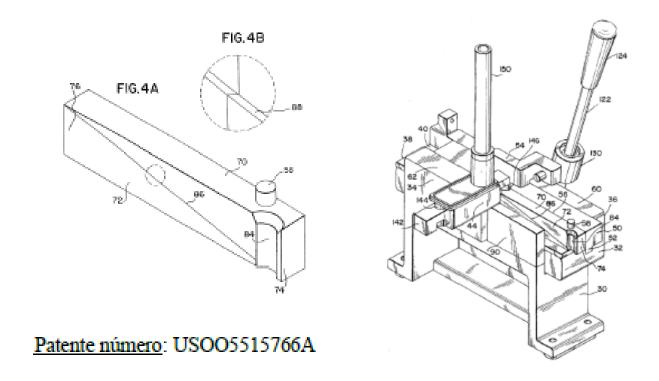


Fig. 15 - Detalle de herramienta y Máquina de la patente US005515766A

1.2 Fundamentación del tema elegido.

Fabricantes internacionales. 1.2.1

A nivel internacional existen dos fabricantes, los cuales se detallan a continuación.

a. CasePro100: Este fabricante produce una máquina que realmente reconstituye todas

las medidas del casquillo de manera eficiente, pero tiene las desventajas de tener una

capacidad productiva baja, de que el peso de la maquina es elevado, lo que hace muy

dificultoso su transporte internacional y como principal aspecto negativo, su

funcionamiento es manual. La empresa está localizada en Estados Unidos.

Sitio web: http://www.casepro100.com/

b. Gbo Reload: Esta fabricante comercializa una máquina que realiza la reconstrucción

de solo algunas medidas, las más importantes, pero no todas. La empresa se

encuentra localizada en Italia.

Sitio web: http://www.gbo-reload.com/

c. Alternativa Die de rectificación: Generalmente es la más utilizada debido a su

simpleza, pero no realiza la reconstrucción de manera eficiente. Esta herramienta se

coloca en las maquinas utilizadas para recargar municiones y durante el

funcionamiento, realizan la reconstrucción parcial de algunas dimensiones de los

casquillos. Además, algunas también realizan la tarea de quitar el fulminante

gastado.

Su funcionamiento es similar al punzonado que se expone a continuación, pero con el

movimiento de manera inversa.

37

Fig. 16 - Die de rectificación utilizado en una máquina de recarga. Elaboración propia.

1.2.2 Fabricantes Nacionales

No existe un fabricante nacional que produzca de manera constante una maquina o herramienta que realice el trabajo que este proyecto busca realizar. Por usos y costumbres, existen diversos métodos caseros que los usuarios fueron utilizando para suplir la faltante de una máquina-herramienta que lo realice correctamente. A su vez también se diseñaron varios métodos caseros con herramientas que se encuentran en distintos talleres pero que ninguno de ellos realiza de manera completa la restauración de los casquillos.

a) <u>Punzonadora neumática para restaurar casquillos casera</u>: Consiste básicamente en una especie de extrusión a través de una matriz muy dura, la cual tiene la medida del diámetro que queremos lograr en la vaina para poder reutilizarlas.

Fig. 17 - Punzonadora neumática para restaurar casquillos casera. Elaboración propia

b) <u>Alternativa Die de rectificación nacional</u>: Existen algunas herramientas nacionales muy precarias que se comercializan en el mercado y que realizan el trabajo de reconstrucción de la misma manera que los die de rectificación de las máquinas de recargar. Estos elementos no quitan el fulminante usado y también es necesario colocarlos en una máquina de recarga para su utilización.

Fig. 18 - Alternativa Die de rectificación nacional. Elaboración propia.

1.2.3 Propuesta de valor.

Luego de analizar las distintas características que poseen las tecnologías existentes en el mercado se decide proponer una máquina reconstructora de casquillos que reconstruya todas las dimensiones de estos, de manera automática y eficiente.

El método propuesto consta básicamente de dos placas, una fija y una móvil. En la placa móvil se encuentra lo que denominamos riel de deformación, que como se puede apreciar en la figura 21, es el encargado de desplazar la deformación en la vaina usada hasta hacerla desaparecer por la boca. Además, en la placa fija hay un riel de deformación inferior que es el encargado de restituir las medidas de la ranura de extracción. La placa móvil es la encargada de generar la rotación de la vaina usada en la máquina a través de un movimiento lineal y automático.

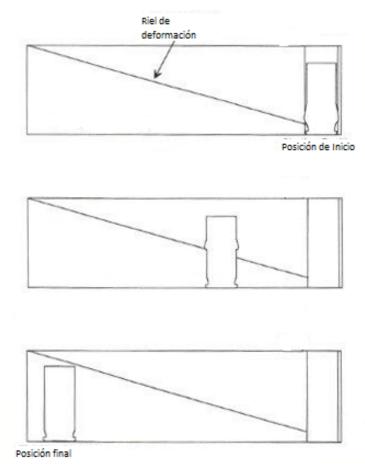


Fig. 19 - Física del método propuesto de reconstrucción. Extraído de: http://www.casepro100.com/how_it_works.ydev

En la siguiente figura se realiza un detalle primario de las placas de deformación actuando sobre un casquillo. Las Flechas rojas que se pueden visualizar indican el sentido del movimiento que tienen las diferentes partes.

Además, se puede ver con claridad el riel de deformación de la placa fija que se encarga de restaurar la ranura de extracción y el diámetro del culote.

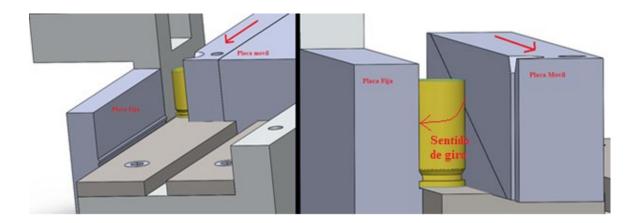


Fig. 20 - Detalle del método propuesto de reconstrucción. Elaboración propia

1.2.4 Análisis de alternativas

En la tabla 3 se muestran las diferentes ventajas y desventajas de cada alternativa existente y nuestra propuesta. Los ítems analizados son características del diseño que consideramos importantes e impactan directamente en las prestaciones.

Por otro lado, desde el punto de vista técnico se expone en la tabla 4 la comparativa de ciertas características del método propuesto en contraposición con las demás alternativas hoy vigentes.

Tabla 3 - Análisis de requisitos de diseño. Elaboración propia.

Referencias:	✓	Valor muy bajo
	$\checkmark\checkmark\checkmark\checkmark$	Valor muy alto

Máquina:	Punzonado	Sistema de reconstrucción en máquina de recarga	Case Pro	Gbo Reload	Propuesta
Cumple Normativa Nacional	✓	///	✓✓	√ √	////
Cumple Normativa Europea o Internacionales	✓	✓✓✓✓	////	✓✓	✓✓✓✓
Facilidad de Utilización:	✓ ✓	VVV	////	////	✓✓✓✓
Control de las medidas finales	✓	✓	✓	✓	V V V
Regulaciones disponibles	✓	V V V	✓	V V V	✓✓✓✓
Robustes y duración:	////	√√√√	////	///	////
Repuestos y Accesorios complementarios:	✓	V V V	√√√√	////	////
Simplicidad de Mecanizmo:	√√√√	✓	✓	V V V	√√
Servicio Tecnico:	V V V	1111	////	111	////
Limpieza, Higiene y Mantenimento Equipo	√√√	1111	////	V V V	////
Espacio necesario	√√√√	V V V	✓	////	✓
Equipos complementarios	√√√√	✓	✓	✓	✓
Seguridad:	✓	V V V	///	////	/////
Velocidad de trabajo	✓	///	V V	////	/////
Transportabilidad	✓	✓✓✓✓	/ /	✓	///

Casquillo/Vaina:

Reconstruccion Diametro de la Boca	NO	SI	SI	NO	SI
Reconstruccion Diametro del Cuerpo	SI	SI	SI	SI	SI
Reconstruccion Diámetro Ranura Extraccion	NO	NO	SI	NO	SI
Reconstruccion Diámetro del Culote	AVECES	NO	SI	SI	SI
Reconstrucción de Perfil Interior	NO	NO	NO	NO	NO
Reconstruccion Largo	PARCIAL	PARCIAL	SI	PARCIAL	SI
Calidad Retrabajo: marcas,rayas,otros	NINGUNA	NINGUNA	NINGUNA	NINGUNA	NINGUNA
Nro de Recuperacion de las Vainas	INCIDE	INCIDE	NO INCIDE	INCIDE	NO INCIDE

Tabla 4.a.. análisis de requisitos técnicos. Elaboración propia

				=			
	Unidad de medida	Referencia	Punzonado	Sist. de reconstrucción en máq. de recarga	Case Pro	Gbo Reload	Propuesta
Máquina L							
Datos Generales Industria:			Nacional	Nacional/Importado	Importado	Importado	Nacional
Aplicación y uso			Hogareño (particular)	Hogareño (particular)	Hogareño (particular)	Hogareño (particular)	Hogareño (particular)
Campo de aplicación			Casquillo de un calibre especifico	Casquillo de un calibre especifico	Casquillos de diversos calibres	Casquillos de diversos calibres	Casquillo de un calibre especifico
Operación			Reconstruccion parcial	Reconstruccion y reemplazo del fulminante	Reconstruccón total	Reconstruccion parcial	Reconstruccón tota
Sistema:			Prensa hidraulica ó neumatica	Prensa Manual	Placas de Deslizamiento	Prensa (Biela-Manivela)	Placas de Deslizamiento
Tipo de Ejecucion:			Manual	Manual	Manual/Automatica	Automatica	Automatica
Capacidad Productiva	casqillos hora		Sujeta a la velocidad del operario	Sujeta a la velocidad del operario	Sujeta a la velocidad del operario/ No especifica	1.050	1500/2000
Dimension Gral	[mm]		Depende de la instalación	Diam: 25 Largo: 100	270 x 430 x 180	500 x 350 x 1650	Similar a Case Pro
Peso	[kg]		8	0.5	9 (sin kit de automatizacion)	38	Menor a Case Pro
Costo de adquisición (FECHA)	[USD]			100 (20/05/2020)	2200 (20/05/2020)	760 (20/05/2020)	Similar a los competidores
Costo Variable Reparacion y Mantenimiento	[USD]		-	0	0	55	0
Vida Util	[años]		1	-	Garantia de por vida	-	Garantia de por vida
Especificaciones							
Tipo de actuadores			Neumatico	Prensa (Biela-Manivela)	Electromecanico	Electromecanico	Electromecanico
Alimentacion de casquillos			M 1	M	M	A 4	A
Tipo Ejecucion:			Manual	Manual/ automatico	Manual/Automatico	Automatico	Automatico
Automaticos son tipo:			-	Vibrador Rotativo	Vibrador Rotativo	Vibrador Rotativo	Vibrador Rotativo
Carga Vainas/Casquillos			individual	Individual/ Granel	Granel	Granel	Granel

Tabla 4.b. análisis de requisitos técnicos. Elaboración propia

Higiene y	Seguridad							
Nivel de R	uido		Ley 19.587/72	No Cumple	Cumple	No especifica	No especifica	< 85 db
Elementos	de protección		Ley 19.587/73	NO PRESENTA	NO PRESENTA	NO PRESENTA	NO PRESENTA	CUMPLE
Detención	en caso de fallas		Ley 19.587/74	NO PRESENTA	NO PRESENTA	NO PRESENTA	NO PRESENTA	CUMPLE
Producto:	Casquillo							
Datos Entr	ada							
Limpieza				LIBRE DE IMPUEREZAS	LIBRE DE IMPUEREZAS	LIBRE DE IMPUEREZAS	LIBRE DE IMPUEREZAS	LIBRE DE IMPUEREZAS
Tratamien	to			NINGUNO	NINGUNO	NINGUNO	NINGUNO	NINGUNO
Material:			CW505L	LATON MILITAR		LATON MILITAR		LATON MILITAR
Dureza:		HRB	CW505L	70-95	70 - 95	70-95	70-95	70-95
Largo		mas	C 11303E	A DEFINIR	A DEFINIR	A DEFINIR	A DEFINIR	A DEFINIR
Culote	Diametro			INFLUYE	INFLUYE	NO INFLUYE	INFLUYE	NO INFLUYE
Culott	Ranura			NO INFLUYE	NO INFLUYE	NO INFLUYE	NO INFLUYE	NO INFLUYE
				THO IT ILLOTE	THO IT IT EOTE	NO INI ZOTZ	TO HALLOTE	110 1111 2012
Datos Salic	da							
Limpieza				NO REALIZA	NO REALIZA	NO REALIZA	NO REALIZA	NO REALIZA
Tratamien	to			NO REALIZA	NO REALIZA	NO REALIZA	NO REALIZA	NO REALIZA
Dureza de	Casquiilo/Vainas			NO MODIFICA	NO MODIFICA	NO MODIFICA	NO MODIFICA	NO MODIFICA
Largo Defi	inido			NO MODIFICA	NO MODIFICA	NO MODIFICA	NO MODIFICA	NO MODIFICA
Culote	Diametro			NO RECONSTRUYE	NO RECONSTRUYE	RECONSTRUYE	RECONSTRUYE	RECONSTRUYE
	Ranura			NO RECONSTRUYE	NO RECONSTRUYE	RECONSTRUYE	NO RECONSTRUYE	RECONSTRUYE
Diametro o	del cuerpo			RECONSTRUYE	RECONSTRUYE PARCIALMENTE	RECONSTRUYE	RECONSTRUYE	RECONSTRUYE
Datos Aux	iliares				THICHENERIE			
Identificac	ion y marcado de			NO REALIZA	NO REALIZA	NO REALIZA	NO REALIZA	NO REALIZA
Producto				TO REALIZA	110 KEALIZA	NO REALIZA	110 KLALIZA	NO REALIZA
Metodo de	Control							
Dimension	al			NO REALIZA	NO REALIZA	NO REALIZA	NO REALIZA	REALIZA
Visual				NO PERMITE	PERMITE	PERMITE	NO PERMITE	PERMITE

1.3 Objetivos del proyecto.

1.3.1 Objetivo general.

Proponer el diseño de una Máquina automática reconstructora de casquillos metálicos servidos para municiones calibre 9 mm con culote tipo ranura orientado a la República Argentina

1.3.2 Objetivos específicos.

- Diseñar y calcular un sistema mecánico de placas deslizantes que reconstruya los casquillos de calibre 9 mm a sus medidas originales.
- Diseñar, proyectar y automatizar un sistema de alimentación de casquillos a la máquina reconstructora.
- Diseñar, proyectar y calcular un sistema de automatización para el movimiento de las placas reconstructoras.
- Diseñar, proyectar y un sistema de montaje de la máquina que permita su transportabilidad y fácil utilización.
- Diseñar y proyectar un sistema de protección del usuario que cumpla con las normas de higiene y seguridad durante el funcionamiento de la máquina.
- Diseñar y Proyectar un sistema de puesta a punto, regulación, reparación y cambio de insumos y repuestos, acorde a las necesidades funcionales.
- Respetar toda normativa y reglamentación inherente a esta clase de equipos.
- Respetar la normativa referente a: Higiene, Seguridad y Medio Ambiente: nacionales, regionales e internacionales.
- Realizar un estudio de factibilidad técnico-económica, atendiendo a todos los aspectos relacionados para dicha meta (estudio de mercado, ubicación, proveedores, infraestructura, maquinarias, recursos, etc.).
- Confeccionar Manual de Usuario (Instalación, Operación o funcionamiento, Mantenimiento gral, otros)

1.4 Metodología de Desarrollo.

El proyecto contempla el desarrollo de las siguientes etapas:

a- Recopilación de la Información: Justificación, Fundamentación, otros.

b- Estudio/análisis de: Producto, Mercado, Procesos, Legales, Higiene, Seguridad y Medio Ambiente, otros.

c- Estudio Técnico y de Desarrollo del Proyecto: Planos Eléctricos y Mecánicos en todas sus versiones e instancias, Lay-Out, Diagramas de Flujo, Hojas de Proceso, Inspección y Ensayo. Listado de Materiales y Componentes, Listado de Máquinas y/o Equipos, otros.

d- Implementación de la Propuesta: Evaluación Integral de la Planta que lo fabricaría: Planos de Planta (identificar los sectores con requerimientos especiales para que se tenga presenta en la parte civil), Detalle de Servicios que requerirá la planta (agua, gas, electricidad, iluminación, aire comprimido, tratamiento de residuos, tratamientos de afluentes, etc), Plan de Operación (Métodos y Tiempos) y Mantenimiento, Sistemas de Aseguramiento de la Calidad, Sistemas de Higiene-Seguridad y Medio Ambiente, Recursos Humanos y servicio posventa, otros.

- e- Estudio Económico y Evaluación Económica.
- f- Manual de Usuario.
- g- Redacción y defensa del Proyecto.
- h- Otros

El trabajo es una investigación aplicada, ya que se propone un producto final. En la parte conceptual de la investigación aplicada, se caracteriza por su interés práctico, es decir, que los resultados se aplican o se utilizan, inmediatamente, para solucionar los problemas que ocurren en la realidad.

Esta investigación puede ser clasificada también como bibliográfica, ya que será elaborada a partir de los materiales publicados en libros, revistas, artículos científicos, patentes y lugares puestos a disposición en Internet; y se justifica la investigación bibliográfica, al considerar la misma un excelente medio de formación científica, y porque el objetivo de este estudio no requiere la aplicación del modelo propuesto, pero sí su presentación.

También, se va a tener en consideración la dispersión de la información necesaria para resolver el problema y los objetivos específicos planteados, que están involucrados en diversas áreas del conocimiento, tales como: investigación y desarrollo, ingeniería, mercado, contabilidad, recursos humanos, tecnología de la información y, otros. En cuanto a las fuentes de información que se emplearán para el estudio expuesto en los párrafos anteriores, serán fuentes de tipo secundario como libros, normas, artículos, artículos científicos, otros. También se emplearán fuentes primarias a través de la observación no participante directa de hechos y situaciones dentro de las organizaciones e instituciones.

1.5 Referencias bibliográficas

- José Ramón Gomez López (2014). Máquinas-herramientas: diseño construcción y mantenimiento. Madrid, Ed. Paraninfo
- Robert L. Pond (1975). The Complete Guide to Handgun Ammunition. EEUU.
 Ed. Gun Digest Books.
- Fleury Michael F. (14 de 05 de 1996) obtenido de https://patentscope.wipo.int/search/es/detail.jsf?docId=US38529628&_cid=P22-LUQ0TG-47113-1
- How it Works y dimensiones generales, [En línea]. Recuperado el día 05/03/2019, de http://www.casepro100.com/how_it_works.ydev

Capítulo 2 - Carpeta técnica.

2.1 Introducción.

Como se expuso anteriormente en este proyecto el método de reconstrucción está basado en dos placas, una fija y una móvil, la cual al moverse hace rolar el casquillo entre ellas y a través del riel de deformación, se genera la reconstrucción del casquillo.

Observando las deformaciones que se generan en los casquillos y analizando más en detalle la patente del inventor de este método de reconstrucción se puede ver que el mayor esfuerzo se genera en la reconstrucción del cuerpo de los casquillos ya que es la zona más deformada y que más perjuicios causa a los tiradores.

Si bien existen diversos métodos constructivos, de diseño y de realización de este trabajo, en este proyecto se buscará permanentemente la generación de una máquina compacta, transportable y que de manera rápida y sencilla reconstruya los casquillos.

Es por esto que se decide utilizar el mismo principio de funcionamiento y dimensionamiento de las partes que se utiliza en la maquina patentada por Case Pro.

2.2 Esfuerzos.

Debido a la cantidad de factores que intervienen en el funcionamiento de esta máquina es que se hace excesivamente complejo realizar un cálculo teórico de cuáles son los esfuerzos actuantes en el momento de la reconstrucción del casquillo. Para poder hacer esto, se deberían realizar excesivas suposiciones de factores que no son posibles medir o calcular y esto provocaría un análisis erróneo de la situación. Es por todo esto que se decide realizar una experiencia práctica con un ejemplar de la maquina patentada y a partir de los valores allí obtenidos realizar el cálculo de los demás componentes de la máquina diseñada en este proyecto.

Para dicha experiencia se analizó la fuerza realizada en la palanca de accionamiento de la máquina a la hora de reconstruir 15 casquillos con distintos grados de deformación. Para esto se montó sobre dicha palanca un medidor de fuerza el cual deja registro de la fuerza máxima ejercida por cada accionamiento.

Teniendo en cuenta que dicho elemento de medición se fijó en el extremo superior de la palanca y que la fuerza que interesa para este proyecto se encuentra a la altura de la placa móvil, que es donde el mecanismo accionador va a ejercerla, se realiza la traslación de las mediciones a dicha altura.

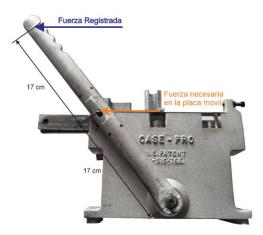


Fig. 21 - Experiencia práctica con Case Pro. Elaboración propia

En la siguiente tabla se exponen los resultados de la experiencia donde se puede apreciar el diámetro del cuerpo del casquillo antes de ingresar a la máquina, lo cual nos demuestra el grado de deformación que tienen estos antes de ingresar, la fuerza registrada por el medidor y la fuerza que es de interés para este proyecto.

Tabla 5. Resultados de la experiencia práctica con una CasePro. Elaboración propia.

N°	Diámetro del cuerpo	Fuerza	Fuerza necesaria en
1	del casquillo [mm]	registrada [kg]	la placa móvil [kg]
1	9.92	4,5	9,5
2	9.88	4,3	9
3	9.97	4,7	10
4	9.8	3,3	7
5	10.03	6,1	13
6	10.15	7,3	15,5
7	10.10	7,2	15,2
8	9.99	5,7	12
9	9.95	5,1	10,8
10	10.25	7,6	16
11	10.10	7,1	15
12	9.98	5,2	11
13	10.17	7,3	15,5
14	9.85	3,5	7,5
15	10.0	7,1	15

Como conclusión de esta experiencia se afirma que la fuerza a aplicar por el mecanismo accionador estará en función de la deformación que tenga el casquillo. Teniendo en cuenta esto y la experiencia práctica presentada en el primer capítulo de este proyecto es que decide colocar en el diseño de la maquina un diámetro máximo del cuerpo de los casquillos que ingresan a la máquina de 10.25 mm y determinar que la fuerza necesaria a aplicar en la placa móvil para el correcto funcionamiento de la máquina es de 16 Kg.

2.3 Análisis y definición de diseños.

Como se menciona al inicio de este proyecto, esta máquina está compuesta de distintos sistemas que trabajaran de forma conjunta para cumplir el objetivo de reconstruir los casquillos. Dentro de estos sistemas, existen varias alternativas de diseño para realizarlos y que realizan la misma operación utilizando distintos movimientos o mecanismos y es por esto que realizando un análisis de cada uno y comparándolos a través de una tabla como la que se puede ver de ejemplo a continuación se decidirá qué tipo de sistema es más conveniente en su utilización.

Se propondrán tres o cuatro aspectos importantes a ser evaluados para cada sistema y dentro de cada uno se tendrán en cuenta ciertos ítems de relevancia. Estos ítems serán evaluados con un puntaje de 1 a 5.

Tabla 6. Tabla de ejemplo de evaluación de alternativas. Elaboración propia

		0	0:4 2
		Opción 1	Opción 2
	Ponderación		
Mecanismo	40%	(A'+A''+A''')*0,4	(B'+B''+B''')*0,5
Aspecto de Evaluación 1		Α	В
Aspecto de Evaluación 2		A´	B′
Aspecto de Evaluación 3		A´´	B´´
Higiene y seguridad	25%	(A'+A'')*0,25	(B'+B'')*0,26
Aspecto de Evaluación 1		Α	В
Aspecto de Evaluación 2		A´	B′
Mantenibilidad	20%	(A'+A'')*0,2	(B'+B'')*0,3
Aspecto de Evaluación 1		Α	В
Aspecto de Evaluación 2		A´	B′
Costo	15%	(A'+A''+A''')*0,15	(B'+B''+B''')*0,16
Aspecto de Evaluación 1		Α	В
Aspecto de Evaluación 2		A´	B´
Aspecto de Evaluación 3		A´´	B′′
Total		Σ totales	Σ totales

Cabe aclarar que la sumatoria total ponderada de cada opción está conformada por la sumatoria del valor obtenido en los aspectos: mecanismo, mantenibilidad e higiene y seguridad y sustrayendo el factor de análisis: costo, ya que particularmente esta variable de análisis es beneficiosa cuanto menor sea su valor.

2.3.1 Movimiento principal de trabajo.

El movimiento principal, donde se genera el trabajo de reconstrucción, es un movimiento lineal de vaivén el cual se realizará de manera automática. Analizando el principio de funcionamiento de la reconstrucción podemos notar que la longitud de la placa móvil tiene una influencia directa en la fuerza que se deberá ejercer para reconstruir los casquillos.

Debido a que las fuerzas referenciales para el posterior diseño de los elementos de la máquina provienen de la experiencia práctica con la una Case Pro es que se decide realizar la placa móvil con las mismas dimensiones de longitud en inclinación del riel móvil, lo cual nos asegura una completa reconstrucción de los casquillos ejerciendo los mismos valores de fuerza que en la ya mencionada experiencia.

Por otro lado, la forma de accionamiento que realizará el movimiento principal de trabajo puede evaluarse entre las siguientes 3 opciones:

- Neumático (Uso de aire comprimido para ejercer el accionamiento)
- Hidráulico (Uso de un líquido para ejercer el accionamiento)
- electromecánico (Uso de un motor eléctrico y un sistema mecánico de transmisión)

Tabla 7 - Evaluación de alternativas de los accionamientos de la máquina

		Alternativa a	Alternativa b	Alternativa c	
	Ponderación	Accionamiento neumatico	Accionamiento hidraulico	Accionamiento electromecánico	
Mecanismo	40%	6,4	6,8	9,2	
Simplicidad de fabricad	ión	3	4	3	
Confiabilidad en el fun		3	3	4	
Compacticidad		2	2	4	
Montaje	9	2	2	4	
Robustez		2	2	4	
Simplicidad de operaci	ón	4	3	4	
Higiene y seguridad	25%	1,25	1,5	2	
Ruido	8	2	3	4	
Protección	7	3	3	4	
Mantenibilidad	20%	1,6	1,4	2,2	
Componentes estánde	res	4	4	4	
Resistencia al desgaste	i i	3	2	4	
Complejidad de mante	nimiento	1	1	3	
Costo	15%	1,35	1,35	0,9	
Adquisicion		3	3	2	
Operacion	2	3	3	2	
Montaje		3	3	2	
Total		7,9	8,35	12,5	

Considerando, que el uso de esta máquina es pura y exclusivamente hogareño, junto con las distintas evaluaciones realizadas y observando que el accionamiento electromecánico es el que mejor se adecua a los requerimientos de este proyecto se decide realizarlo de esta forma.

2.3.2 Sistema de Alimentación de casquillos.

Dentro de este sistema podemos diferenciar 2 funciones o parte esenciales. La primera es el dispositivo encargado de acomodar, orientar y alimentar los casquillos a la máquina y la segunda será el sistema que coloque a estos casquillos en su posición correcta para ser reconstruidos.

La alimentación de los casquillos a la máquina se realizará utilizando un elemento de las máquinas de recargar munición que es el que abastece a dichas máquinas y que también puede hacerlo para la máquina reconstructora de este proyecto. Este elemento, normalmente conocido como case feeder o alimentador de casquillos, no será desarrollado en este proyecto ya que existen diversos productos en el mercado, tanto nacional como internacional, que realizan esta tarea y que son relativamente fácil de acceder a ellos.

Como se puede ver en la Fig. 22 este alimentador de casquillos consta básicamente de un plato giratorio que se encuentra dispuesto de manera inclinada y mediante una lenta rotación va acomodando los casquillos y los desliza por un tubo flexible (Fig. 23) que permite alimentar las maquinas.

Este tubo es universal y al ser flexible permite el cambio rápido de una máquina de recarga a la máquina que se está proyectando.

Una vez que los casquillos se encuentran acomodados en este tubo es necesario colocarlos dentro de la máquina, en la posición correcta para su reconstrucción, y para realizar esto existen tres formas de hacerlo.

Fig. 22 - Case feeder o alimentador de casquillos. Elaboración propia.

Fig. 23. Alimentación de casquillos. Elaboración propia

a) Opción 1. Sistema de alimentación con deslizador ranurado.

Esta opción es muy similar a la que utiliza la máquina CasePro presentada como competidor directo de este proyecto y la cual muestra sus detalles en la patente de esta. La alimentación de los casquillos a la máquina se realiza mediante la acción de una pieza deslizante ranurada, la cual, mediante un simple perno plástico montado en la placa móvil de deformación, se desliza y abastece de casquillos a la máquina para que realice el trabajo.

Como se puede ver en la Fig. 24, los casquillos se encuentran en el tubo alimentador esperando ser movidos por el deslizador dentro de la máquina y cuando debido al movimiento de la placa móvil, el perno plástico ingresa en la ranura del deslizador, comienza a generar el movimiento de este hasta que el orificio se alinea con el espacio entre placas y el casquillo cae en su posición para ser arrastrado por la placa móvil en su retorno y ser reconstruido.

Al abandonar el perno plástico la ranura del deslizador, este regresa a su posición de reposo alimentándose de un nuevo <u>ca</u>squillo que se encontraba en el tubo alimentador.

Además, la corredera donde este deslizador se desplaza cuenta con una tapa plástica que hace de tope al movimiento de este impidiéndole salirse de su recorrido y producir algún tipo de inconveniente en el automatismo.

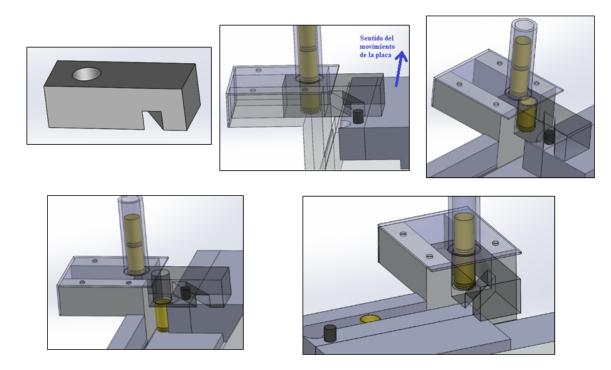
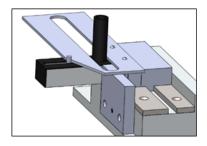


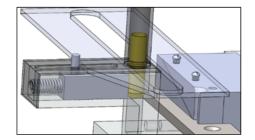
Fig. 24. Sistema de alimentación de casquillos. Opción 1. Elaboración propia

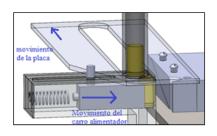
Ventajas.

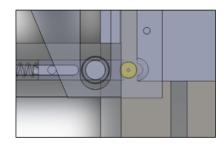
- Sencillez de montaje.
- Mecanismo sencillo.
- Bajo mantenimiento.

Desventajas.


- Posible detención del movimiento (si la ranura del deslizador se desalinea con el perno plástico).
- Caída del casquillo en posición incorrecta.


b) Opción 2. Sistema de alimentación tipo leva.


Este sistema de alimentación está conformado por dos piezas fundamentales, una de ellas montada sobre la placa móvil y realiza el movimiento en conjunto con esta. La otra es un deslizador que mediante la acción de un resorte se encuentra permanentemente apoyada en la primera pieza mencionada y es la encargada de alimentar de casquillos a la máquina.


El funcionamiento básico de este sistema es similar al de una pieza que sigue el recorrido de una leva. Al moverse la placa móvil produce el movimiento de la placa montada sobre ella y esta hace que el deslizador tenga un movimiento lineal dentro de su corredera. Al deslizarse por detrás del orificio del tubo alimentador permite que un casquillo caiga en esta corredera y al retornar lo empuja hacia su posición de trabajo entre las placas de reconstrucción.

En la siguiente figura se puede ver una secuencia que permite apreciar el funcionamiento de este sistema de alimentación.

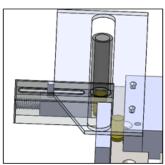
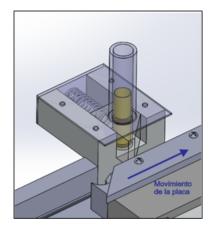
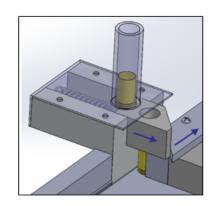


Fig. 25 . Sistema de alimentación de casquillos. Opción 2. Elaboración propia

Ventajas.

- Movimiento totalmente coordinado
- Genera protección del usuario. (no permite el acceso a la zona de trabajo)


Desventajas.


- Complejidad del montaje
- Cantidad de piezas intervinientes.
- Posible caída del casquillo en posición incorrecta.

c) Opción 3. Sistema de alimentación tipo seguidor.

Este sistema de alimentación de casquillos utiliza partes de los dos sistemas explicados anteriormente y genera una alimentación segura y confiable, eliminando cualquier posibilidad de falla en la máquina.

Para esto el sistema se compone de un carro deslizador con un orificio donde caen de manera guiada los casquillos que luego caerán entre las dos placas. En uno de los extremos de este carro se encuentra montado un resorte el cual hace que permanentemente el carro se encuentre apoyado en la pieza encargada de guiar el movimiento de este. Esta pieza guía, se encuentra montada sobre la placa de reconstrucción móvil y de esta manera posee el mismo movimiento que está realizando la misma y así queda la alimentación de los casquillos totalmente coordinada.

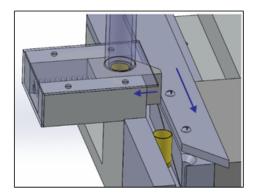


Fig. 26 - Sistema de alimentación de casquillos. Opción 3. Elaboración

Ventajas.

- Mecanismo sencillo
- Eficiencia
- No existe posibilidad de detención

Desventajas.

- Mayor cantidad de piezas
- Piezas no estándares

d) Evaluación de alternativas.

La elección entre estos tres sistemas de alimentación se realizará a través de una tabla de elección de alternativas, evaluando y ponderando distintas características generales de los mecanismos.

Como se puede ver en esta tabla, en las imágenes y en el análisis hecho, el sistema de alimentación de la opción 3 es significativamente superior en sus prestaciones ya que permite una alimentación de los casquillos suave, segura y sin posibilidad de detención debido a un mal funcionamiento.

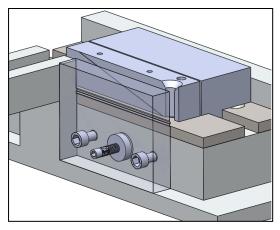
Tabla 8. Evaluación de alternativas de los sistemas de alimentación. Elaboración

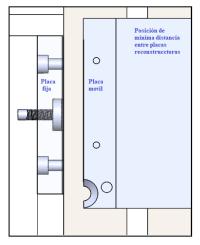
		Opción 1	Opción 2	Opción 3
	,	Sistema de	Sistema de	Sistema de
		a lim entación	alimentación	alimentación
		con deslizador	tipo leva	tipo seguidor
		ranurado		
	Ponderación			
Mecanismo	40%	8	8	9,2
Simplicidad		3	2	3
Eficiencia		3	4	5
Suavidad		3	4	4
Compacticidad		4	3	3
Montaje		4	3	4
Robustez		3	4	4
Higiene y seguridad	25%	1	1,75	1,75
Ruido		3	3	3
Proteccion		1	4	4
Mantenibilidad	20%	1,4	1,8	2,2
Componentes estánderes		1	2	2
Resistencia al desgaste		3	3	3
Complejidad de mantenimiento		1	1	1
Confianza		2	3	5
Costo	15%	0,45	0,75	0,6
Adquisicion		2	4	3
Operacion		0	0	0
Montaje		1	1	1
Total		9,95	10,8	12,55

2.3.3 Regulación del sistema de placas reconstructoras.

Otro componente de esta máquina es el sistema de placas encargadas de generar la reconstrucción de los casquillos presentado anteriormente. Debido a las tolerancias geométricas inevitables en el proceso de fabricación de los diferentes elementos que constituyen la máquina, es necesario poder realizar el ajuste de las placas para asegurar que el casquillo reconstruido cumpla con las medidas requeridas por el usuario.

La deformación que poseen los casquillos al ingresar a la máquina es variable y depende de factores pura y exclusivamente del proceso de disparo de estos, pero dichas deformaciones se encuentran dentro de ciertos márgenes, ya que la recamara de las armas de fuego en los que se utilizan son su contención evitando que estos se sigan deformando o lleguen a la rotura.


Como se puede ver en las mediciones echas en las experiencias prácticas las deformaciones que se generan son del orden de las centésimas de milímetro. Como se mencionó anteriormente el diámetro máximo del cuerpo de los casquillos que ingresan a la máquina será de 10.25 mm y recordando que una munición que cumpla con las normativas de fabricación posee un diámetro del cuerpo de 9.93 mm se afirma que la reconstrucción necesaria será como máximo de 0.37 mm.


Siendo este uno de los extremos a considerar, es necesario poder tener un ajuste de las placas reconstructoras del orden de los 0.05 mm, lo cual asegura la correcta regulación de la máquina.

A continuación, se presentan y evalúan 4 alternativas posibles para realizar este ajuste.

a) Regulación de placa fija con tornillo central.

Este sistema de ajuste está conformado por un tornillo de paso muy fino que posee en su extremo un disco de empuje y se encuentra montado en el centro de la placa reconstructora fija. Básicamente es un sistema de empuje y apriete que mediante este tornillo central realiza el empuje de la placa reconstructora alejándola de la base de la máquina, permitiendo agrandar la distancia entre ellas y mediante otros dos tornillos de ajuste se realiza la fijación a la base de la máquina. Mediante la regulación de estos 3 tornillos se puede realizar el ajuste de las placas.

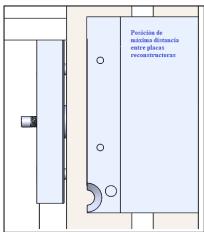
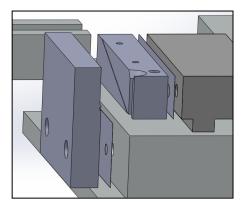


Fig. 27 - Sistema de regulación de las placas. Opción 1. Elaboración propia.

Ventajas:

- Mecanismo sencillo
- Bajo mantenimiento
- Regulación externa


Desventajas:

- Posible irregularidad del ajuste
- Falta de precisión en la regulación
- Distancia mínima entre placas que no se puede reducir.

b) Laminas separadoras.

En este tipo de regulación, se presenta un método muy simple de implementar que permitiría un ajuste entre las placas reconstructoras. Básicamente este ajuste se realizaría intercalando delgadas láminas de acero entre la placa reconstructora móvil y su soporte o entre la placa reconstructora fija y la base dependiendo cual sea la necesidad de regulación que se tenga.

Estas laminas estarían echas de flejes de acero de espesores que van desde 0.02 mm a 0.5 mm lo que permitiría el ajuste a prácticamente cualquier medida que se quiera ajustar la máquina.

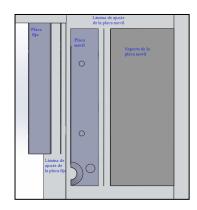


Fig. 28 - Sistema de regulación de las placas. Opción 2. Elaboración propia.

Ventajas:

- Sencillez de fabricación
- Facilidad de montaje
- Mantenimiento nulo

Desventajas:

- Falta de precisión en el ajuste
- Producción excesiva de láminas de ajuste
- Engorrosa puesta a punto de la máquina (Necesidad de desarmar para ajustar)

c) Regulación de placa móvil con tornillos de ajuste.

Este sistema es similar a la opción "a" donde se realiza el ajuste sobre la placa fija con un tornillo central. En este caso mediante el ajuste de dos tornillos que se encuentran montados en un extremo de la placa móvil se produce la regulación de esta, permitiendo reducir las distancias entre las placas. Estos dos tornillos poseen un paso de 0.5 mm lo que permite que por cada cuarto de vuelta que se les dé a ambos tornillos la placa se mueva 0.125 mm haciendo de esta forma que el ajuste sea bastante preciso. Estos tornillos de regulación se encuentran ubicados en el extremo de la placa móvil donde se finaliza el trabajo, lo que permite que esa parte de la placa sea la que realmente tenga la distancia necesaria que se necesita para reconstruir adecuadamente el casquillo.

Además, la placa móvil se encuentra sujetada a la barra de soporte mediante otros dos tornillos de gran medida lo que le dan la firmeza necesaria para realizar el trabajo.

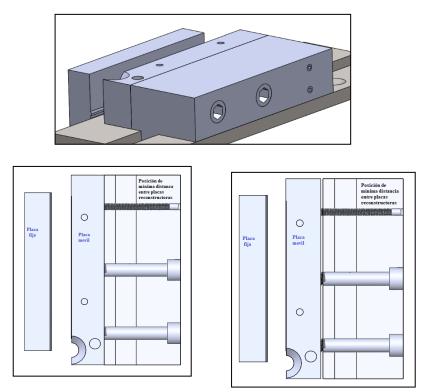
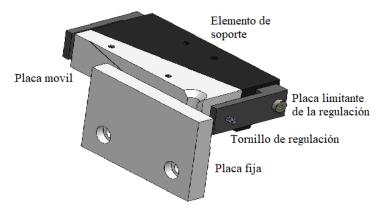


Fig. 29 - Sistema de regulación de las placas. Opción 3. Elaboración propia.

Ventajas:

- Sencillez de fabricación
- Facilidad de montaje
- Mantenimiento nulo


Desventajas:

- Limitante en la regulación (Distancia máxima entre placas)
- No asegura la reconstrucción completa del casquillo
- d) Regulación de placa móvil mediante sistema de cuñas.

El sistema de cuñas realiza el ajuste de la distancia entre las placas deslizando la placa móvil sobre una corredera en un plano inclinado permitiendo ajustar la distancia entre estas según sea necesario. La cara opuesta al riel de deformación de la placa móvil está conformada con un ángulo específico de 9. 5º y una cola de milano que permite su montaje al elemento de soporte, encargado de transmitir el movimiento a la placa móvil, que posee el mismo ángulo y cola de milano.

En los extremos del elemento de soporte se encuentran montadas dos piezas que sirven de limitante para el deslizamiento de la placa móvil en la corredera. Mediante el ajuste de dos tornillos de paso muy fino en sus extremos podemos generar el movimiento de esta placa. Con un tornillo de un paso de 0.5 mm, combinado con el ángulo de la cuña, se logra que por cada ¼ de vuelta que se genera se obtiene un movimiento lineal de la placa de 0.08 mm lo que permitiría un ajuste de la máquina realmente muy preciso.

Además, otros dos tornillos ubicados de manera normal a la corredera realizan el apriete final cuando la regulación de la placa móvil sea la correcta para evitar cualquier tipo de movimiento o desregulación durante el funcionamiento de la máquina.

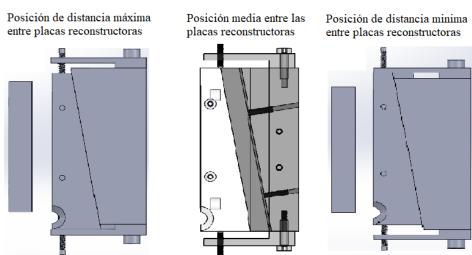


Fig. 30 - Sistema de regulación de las placas. Opción 4. Elaboración propia.

Ventajas:

- Facilidad de montaje
- Regulación muy precisa
- Sencillo funcionamiento
- Regulación externa

Desventajas:

• Fabricación compleja

e) Evaluación de las alternativas.

La elección entre estas 4 alternativas de ajuste de las placas reconstructoras se realizará a través de una tabla de elección de alternativas, evaluando y ponderando distintas características generales de los mecanismos.

Tabla 9. Evaluación de alternativas de los sistemas de regulación . Elaboración

Regulación de placa fija con tornillo central. Ponderación Mecanismo Simplicidad de fabricación Eficiencia del ajuste Confiabilidad en el funcionamiento Compacticidad Montaje Regulación de placa fija con tornillo central. Laminas separadoras Ponderación 40% 9,6 9,6 9,6 20 21 22 24 24 44 Montaje	gulación de laca móvil on tornillos de ajuste 10 3 3 4 4	Alternativa d Regulación de placa móvil mediante sistema de cuñas 12,8 2 5 3 3
Ponderación Ponderación Ponderación Ponderación Mecanismo Simplicidad de fabricación Eficiencia del ajuste Confiabilidad en el funcionamiento Compacticidad Montaje Regulación de la Laminas separadoras Ponderación 40% 9,6 9,6 9,6 2 3 2 2 4 4 4 Montaje	laca móvil on tornillos de ajuste 10 3 3 3 4	placa móvil mediante sistema de cuñas 12,8 2 5 5
Simplicidad de fabricación 3 5 Eficiencia del ajuste 2 3 2 Confiabilidad en el funcionamiento 2 4 Compacticidad 4 4 Montaje 4 3	3 3 3 4 4	2 5 5 3
Eficiencia del ajuste 2 3 2 Confiabilidad en el funcionamiento 2 4 Compacticidad 4 4 Montaje 4 3	3 3 4 4	5 5 3
Confiabilidad en el funcionamiento 2 4 Compacticidad 4 4 Montaje 4 3	3 4 4	5
Compacticidad 4 4 Montaje 4 3	4	3
Montaje 4 3	4	
		3
		_
Robustez 3 2	3	4
Simplicidad de operación 2 4	2	5
Higiene y seguridad 25% 2 2,25	2	2
Ruido 4 5	4	4
Protección 4 4	4	4
Mantenibilidad 20% 1,2 1,2	1,8	1,4
Componentes estánderes 1 0	4	3
Resistencia al desgaste 4 5	4	3
Complejidad de mantenimiento 1 1	1	1
Costo 15% 0,6 0,45	0,45	0,9
Adquisicion 3 3	2	4
Operacion 0 0	0	0
Montaje 1 0	1	2
Total 12,2 12,6	13,35	15,3

Como se puede ver en esta tabla, en las imágenes y en el análisis echo, el sistema de regulación de la placa móvil mediante cuñas es claramente el que mayor beneficio posee, y teniendo una superioridad respecto de los demás sistemas en los aspectos más importantes como lo son la eficiencia del ajuste, la simplicidad y confiabilidad en la operación.

2.3.4 Conjunto motor – reductor: dimensionado y selección.

a) Determinación de: revoluciones, torque y potencia.

Para poder determinar estos factores importantes en el proyecto, es necesario partir de la fuerza que se necesita para realizar la reconstrucción del casquillo. La fuerza máxima que se hizo en la experiencia práctica expuesta en la tabla 5 fue de 16 kg.

Teniendo en cuenta el factor de seguridad determinado para este proyecto, la fuerza que será necesaria aplicar por el elemento motor será:

Datos:

- $F_{exp} = 16 \text{ kg (tabla 5)}$
- Coef. De seguridad = 1.5

$$F = Fexp * Coef de seguridad = 16 kg * 1.5 = 24 kg$$
 (1)

Torque:

Esta fuerza se encuentra aplicada tangencialmente una distancia "d" del eje del motor aproximadamente de 100 mm (largo de la biela)

Esto genera un torque necesario de:

Velocidad referencial.

Para realizar la correcta selección de un accionamiento es necesario considerar una

velocidad referencial de trabajo y por eso anteriormente en la tabla 4 se propone una

producción mínima de 1500 casquillos por hora.

Producción de la máquina: 1500 casquillos/hora

Velocidad de rotación referencial: 25 rpm

 $Velocidad = 25 \frac{Rev}{Min} \times \frac{2 \pi rad}{1 Rev} \times \frac{1 Min}{60 Seg} = 2.62 \frac{Rad}{Seg}$ (3)

Existen varios métodos para realizar el accionamiento automático de la máquina, pero

buscando la sencillez del accionamiento y enfocando el diseño al uso hogareño y

sencillo es que se selecciona el accionamiento a utilizar entre las siguientes 3 opciones.

i. Opción 1: Conjunto motor monofásico y reductor.

Este accionamiento estará compuesto por un motor eléctrico monofásico que será el

encargado de entregar la fuerza necesaria para reconstruir el casquillo durante su

movimiento y un reductor que será el encargado de adecuar la velocidad de rotación del

motor a revoluciones acordes a la necesidad de este proyecto.

A partir de los datos referenciales descriptos anteriormente se procede a seleccionar un

motor y una reducción acorde a este proyecto y que cumpla con los requerimientos de

este.

Relación de reducción.

A pesar de que todavía no se ha seleccionado el motor, pero considerando lo que se

encuentra disponible en el mercado y que lo más común es la utilización de un motor de

4 polos se establece una relación de reducción de:

69

$$i = \frac{n_1}{n_2} = \frac{1450}{25} = 58 \tag{4}$$

Por ende, se adopta una relación de reducción de i = 60 para seleccionar el reductor.

Debido a la alta relación de reducción es necesario selecciona un reductor del tipo sin fin corona. Los reductores al igual que los motores, se encuentran normalizados en sus dimensiones y prestaciones, es por esto que se selecciona el siguiente reductor que puede ser provisto por distintas marcas nacionales que lo comercializan:

Reductor:

Tipo: sin fin – corona

Modelo: PFM-40 o C40 (dependiendo del fabricante)

Relación de transmisión: 1:60

Rendimiento mecánico: 0.58

Selección del motor eléctrico.

En función de la potencia requerida por la máquina reconstructora de casquillos y teniendo en cuenta el rendimiento mecánico del reductor se decide seleccionar un motor eléctrico.

Potencia = 21.57 N m * 2.62
$$\frac{rad}{s}$$
 = 56.51 $\frac{Nm}{s}$ = 0.0565 KW = **0.076 Hp** (5)

$$Pot.motor = \frac{Pot\ necesaria}{Rendimiento\ reductor} = \frac{0.08\ hp}{0.58} = 0.14\ hp \tag{6}$$

Dado que el diseño de esta máquina es realizado con un fin de uso hogareño, el motor

que se utilizará es un motor monofásico y debido a esto, el motor más próximo a las

necesidades del proyecto es el siguiente motor:

• Carcasa: 63

• Potencia: 0,25 HP

• Frecuencia: 50 Hz

• Polos: 4

• Rotación nominal: 1420 rpm

Voltaje nominal: 220 V

• Corriente nominal: 2,2 A

• Ip/In: 2,9

• Par nominal: 1.25 Nm

Tanto el motor como el reductor es necesario que estén coordinados, es decir que los

acoples entre ellos sean posibles, los diámetros de ejes coincidan, etc. Es por esto que lo

ideal para esta opción de accionamiento es que se utilizara el motor y el reductor de un

mismo proveedor.

La empresa Dininno, provee este conjunto listo para su utilización, quedando pendiente

el análisis económico con opciones de motor y reductor de distintos proveedores.

Motorreductor seleccionado:

Modelo: C40 - 60025 - 4

Motor:

• Potencies: 0.25 HP

Numero de polos: 4

• Velocidad: 1500 Rpm

monofasico 220V

Reductor: C40

• Relación: 1:60

• Eje de salida: 18 mm

• Torque de salida: 3.7 Kgm

• Rpm de salida: 25 Rpm

b) Opción 2: Conjunto motor trifásico, reductor y variador de frecuencia.

Otra manera de realizar el accionamiento de la máquina es a través de un motor trifásico que se encuentra conectado a un variador de frecuencia con el cual se puede regular la velocidad de rotación del motor.

Esta configuración del accionamiento nos permitiría además de controlar como sea necesario la velocidad de la maquina pudiendo alimentar un motor trifásico desde una línea monofásica como la que se encuentra normalmente en los hogares cumplimentando con los requisitos de este proyecto ampliamente.

Además, debido a que la velocidad de trabajo seleccionada para la máquina es muy baja respecto a la velocidad nominal de funcionamiento del motor es necesario adecuarla mecánicamente a través de un reductor para que la perdida de potencia del motor al reducir sus velocidades de trabajo mediante el variador no sea excesiva y que el mismo no trabaje en una zona inestable de temperatura ya que su auto refrigeración no funcionaría correctamente en las velocidades de trabajo establecidas.

El reductor que se utilizara será un reductor a engranajes debido a que estos poseen un rendimiento aproximadamente del 95% lo cual no generaría una perdida mecánica excesiva en su reducción como el presentado en la opción 1. Este reductor generaría una aproximación de la velocidad con una relación de reducción de 1/30 obteniendo una velocidad de salida de 41 rpm aproximadamente y permitiendo el ajuste final de esta velocidad mediante el variador de velocidad.

Por otro lado, por seguridad de funcionamiento ya que la regulación de la velocidad queda a criterio del usuario de la máquina es necesario agregar en este accionamiento un sistema de ventilación independiente del giro del motor ya que si el usuario lo desea puede accionar el mecanismo a muy bajas vueltas pudiendo poner en peligro el funcionamiento del motor.

Para poder realizar esto el accionamiento estaría conformado por:

Motor:	Reductor a engranajes:	Variador de velocidad:
Carcasa: 63	Marca: Polyfix	Marca: Startvert iE5
Potencia: 0,16 HP	Modelo: FR 43	Modelo: SV002 iE5-1
Frecuencia: 50 Hz	Relación: 1/30	Tensión de entrada: monofásica 220 V
Polos: 4	Eje de salida: 25 mm	
Rotación nominal: 1375	Rendimiento: 0.95 %	Corriente nominal: 1.4 A
Voltaje nominal:220/380 V	Peso: 4 kg	Tensión de salida: trifásica 220 V
Cor. nom: 0,767/0,444 A		Frecuencia de salida: 0 -
Masa aproximada: 6 kg		200 Hz
Nivel de ruido: 44 dB(A)		Tamaño (ancho x prof. x alto): 68 mm x 85 mm x
		128 mm
		Peso: 600 gr

Dentro del mercado actual existen gran cantidad de estos variadores que podrían utilizarse para este proyecto, pero el seleccionado tiene la particularidad de tener integrado un control de la frecuencia de salida mediante un potenciómetro lo cual haría muy sencilla la regulación de velocidad de la máquina.

c) Opción 3: Conjunto motor DC y control por modulación por ancho de pulsos.

Otra manera de realizar el accionamiento de la máquina es realizarlo a través de un motorreductor de corriente continua que nos brinde la fuerza necesaria en el eje para poder accionar la máquina.

En el mercado actual existen una serie de motores de corriente continua para diversas aplicaciones y dentro de ellos algunos de alto torque.

La empresa Ignis Motor comercializa una serie de motores de este tipo como el que puede ver en la imagen que cumple con las necesidades de este proyecto.

El motorreductor seleccionado para nuestra aplicación es:

- Marca: Ignis motor
- Modelo: MR20A-024150-31
- **Potencia** [watt]: 150
- Tensión nominal [V]: 24 vcc
- Corriente nominal [A]: 4.5
- **Vel. Nominal motor** [rpm]: 2750
- Velocidad de salida en el eje [rpm]: 31
- Relación de reducción: 64:1
- Numero de etapas del reductor: 3
- <u>Torque</u> [kgf*cm]: 447
- <u>**Peso**</u> [kg]: 4.9
- <u>Largo</u> [cm]: 32.9
- **Ruido Max** [Db]: 90

Fig. 31 - Motor Ignis MR20A-024150-31 - WEB IGNIS

Como se puede ver, este motor cumple ampliamente con las solicitaciones de la máquina y por otro lado permite de una manera muy sencilla realizar el control de este mediante la modulación por ancho de pulso de la corriente aplicada al mismo.

Para poder realizar esto, una fuente de alimentación de corriente continua de 24 v alimenta un controlador el cual realiza el control por ancho de pulso y de esta manera se puede configurar la velocidad de salida del motor como sea requerido.

En el mercado actual existen diversos controladores y fuentes de alimentación que permiten el correcto funcionamiento de este sistema propuesto.

Para este proyecto se utilizará un controlador: CC5MD

• Tensión de alimentación: 6V a 30V DC

• Corriente máxima en modo continuo: 8 A

• Corriente máxima de pico: 10 A

• Display LED indicador de ciclo (0 al 100%)

Pulsador para encendido – apagado.

• Ciclo de trabajo ajustable: 0% a 100%

• Frecuencia de PWM: 20kHz

Dimensiones: 79 x 42 x 24 mm

Fig. 32 - Controlador CC5MD

Este controlador tiene la particularidad de que además de permitir el control de la velocidad del motor tiene integrado un botón de marcha y parada y un visualizador de la velocidad actual del motor.

d) Evaluación de alternativas

A continuación, se realiza una comparación, mediante una tabla de alternativas, de las tres opciones de accionamiento proyectadas.

Tabla 10 – Evaluación de diferentes accionamientos electromecánicos. Elaboración propia.

		Opción a	Opción b	Opción c	
			Motorreductor	Motor de CC	
		Motorreductor	con variador	con control	
			de frecuencia	por PWM	
Caracteristicas					
Tamaño [cm] (Alt. x	anc. x prof.)	31 x 16 x 17	13 x 26 x 19	11 x 7 x 33	
Peso [kg]		8,4 kg	9 kg	4,9 kg	
Costo [USD]		238 usd	260 usd	190 usd	
	Ponderación				
Mecanismo	40%	7,6	8,4	10,8	
Simplicidad		3	3	5	
Eficiencia		2	4	5	
Suavidad		3	4	5	
Compacticidad		3	3	5	
Montaje		4	3	3	
Robustez		4	4	4	
Regulación disponibl	e	0	4	4	
Higiene y seguridad	25%	1,25	1,75	2,25	
Ruido		3	3	5	
Proteccion		2	4	4	
Mantenibilidad	20%	2,6	2,8	3	
Componentes estáno	deres	4	3	4	
Resistencia al desgas	te	3	4	3	
Complejidad de man	tenim iento	3	3	4	
Confianza		3	4	4	
Costo	15%	0,75	0,75	0,45	
Adquisicion		4	3	2	
Montaje		1	2	1	
Total		10,7	12,2	15,6	

Como se puede ver claramente en la tabla anterior el accionamiento mediante un motor de corriente continua controlado por modulación por ancho de pulso es el sistema de accionamiento que tiene mayores beneficios.

Desde lo mecánico, esta opción utiliza un reductor de engranajes acoplado al motor de manera integral obteniendo de esta forma un alto rendimiento es su reducción mecánica de la velocidad.

Además, la regulación de la velocidad mediante el control por PWM es muy eficaz permitiendo al usuario de manera muy sencilla establecer la velocidad de trabajo que desee.

Por otro lado, desde el punto de vista de diseño pura y exclusivamente, esta opción permite reducir el peso y el tamaño de la maquina en general y, por último, analizándolo desde los costos se puede ver que es una opción considerablemente más económica que las demás.

Debido a todas estas fundamentaciones es que se decide en este proyecto realizar el control del movimiento mediante la opción 3 presentada anteriormente.

2.3.5 Base de la máquina.

Tanto el sistema de alimentación de los casquillos como el sistema de regulación de las placas encargadas de reconstruirlos necesitan hermanarse para poder trabajar en conjunto y lograr de esa manera el correcto funcionamiento de esta máquina. Para esto, ambos sistemas son montados sobre una base de aluminio conformada específicamente con las dimensiones y los orificios necesarios para el montaje de todos los elementos necesarios como se puede visualizar en la Fig.33.

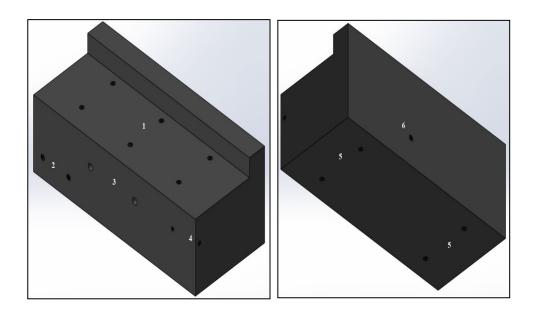
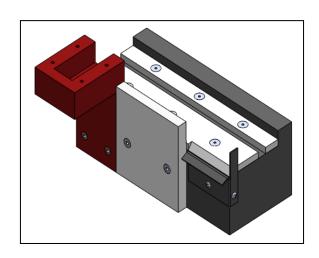


Fig. 33 - Base de la máquina. Elaboración propia. Elaboración propia


En su superficie superior posee 6 perforaciones roscadas (Nº 1 en la Fig. 33) que se utilizan para montar dos guías rectificadas para el deslizamiento del elemento de soporte lo que facilita el armado y a la hora de su funcionamiento reduce el rozamiento ampliamente.

En las perforaciones N.º 2 se monta el sistema de alimentación de casquillos el cual está conformado como una pieza independiente de esta base lo que permite una mayor simplicidad a la hora de la fabricación de todos los componentes.

En su lateral posee, dos perforaciones (Nº 3 en la Fig. 33) que permiten el montaje de la placa reconstructora fija mediante dos tornillos guía, y dos perforaciones (nº 4 en la Fig. 33) para el montaje una pieza de acompañamiento para los casquillos que ya fueron reconstruidos.

Por otro lado, en el otro lateral de esta base (nº 6 en la Fig. 33) se encuentra la perforación para el montaje de la palanca de accionamiento manual y en la superficie inferior posee 4 perforaciones mas (nº 5 en la Fig. 33) que permiten el montaje de dicha base sobre el elemento de soporte de todos los componentes de la máquina.

En la siguiente figura se puede apreciar todos los elementos montados sobre la base descripta anteriormente.

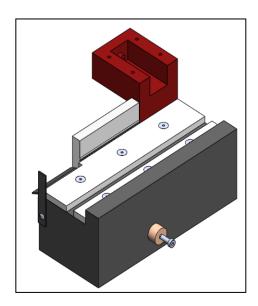


Fig. 34 - Sistema de accionamiento manual. Elaboración propia

2.3.6 Sistema de transmisión

a) Opción 1: Automática

La potencia entregada por el motor es trasladada al elemento de soporte de la placa móvil a través de un sistema de transmisión mecánico de biela manivela encargado de transformar el movimiento de rotación en un movimiento lineal de vaivén.

El mecanismo estará conformado por una barra de transmisión (manivela) montada en un extremo al motor y en el otro a través de una ranura a otra barra de transmisión (biela). Esta ranura permitirá realizar el ajuste final de la longitud de desplazamiento que la máquina requiera para su correcto funcionamiento. La biela se montará al elemento de soporte de la placa de reconstrucción móvil a través de una un rodamiento y una pieza de conexión generada especialmente para este fin.

En la siguiente imagen se aprecia el sistema de transmisión entre el motor, el reductor y la máquina propiamente dicha.

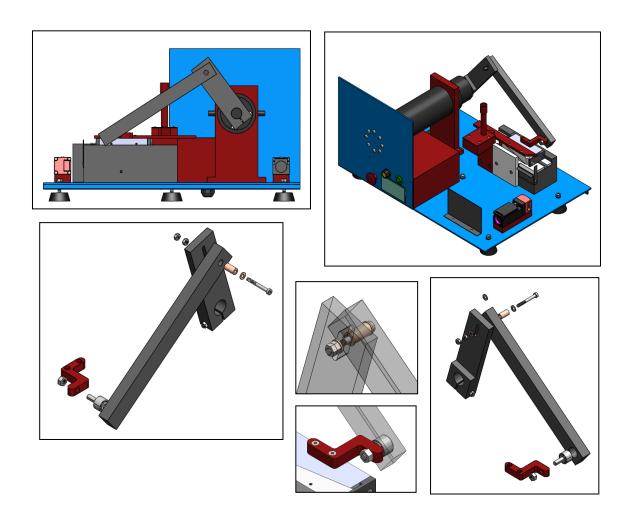
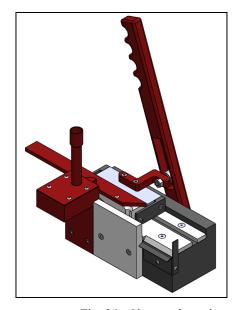


Fig. 35 - Sistema de transmisión. Elaboración propia.


b) Opción 2: Manual.

Dentro de todas las perforaciones roscadas que se encuentran en la base de la máquina y permiten el montaje de todas las partes necesarias se realizará un orificio sobre el cual, en caso de ser necesario por falta de suministro eléctrico o por requerimiento del usuario, se montará una palanca la cual permite el accionamiento manual de la máquina.

Así mismo esta puede ser utilizada para realizar la regulación fina de la maquina antes de comenzar su proceso de trabajo automático.

En la parte baja de la base se atornilla dicha palanca, la cual posee en el lateral que se encuentra sobre la maquina una ranura que trabaja como una corredera para un rodamiento tipo leva que se encuentra montado sobre la misma pieza que se utiliza para conectar la manivela con el carro de soporte.

Este sistema de accionamiento manual permite un cambio sencillo del modo de operación automático a manual y viceversa.

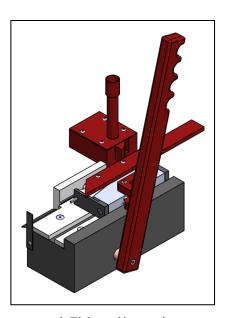


Fig. 36 - Sistema de accionamiento manual. Elaboración propia.

2.3.7 Sistema de soporte.

Una de las principales características de esta máquina es la posibilidad de ser transportable y compacta y para poder lograr esto se diseña un sistema de soporte que permite el montaje y desmontaje sencillo y rápido de toda la máquina y su automatización.

Esto trae consigo ciertas ventajas como:

- Compactibilidad
- Transportabilidad
- Reducción del volumen de envío
- Fácil ajuste y montaje de la máquina

Para poder cumplir con estas características el sistema de soporte esta echo con chapa lisa de aluminio de 3 mm de espesor y sobre la cual se generan todas las perforaciones necesarias para montar sobre ella todos los componentes de la máquina.

Además, sobre esta estructura se montan todos los complementos accesorios como, por ejemplo, una chapa plegada que permite la colocación de las bandejas de recolección de los casquillos, como así también los elementos de seguridad necesarios para cumplimentar la normativa de higiene y seguridad vigente respecto de este tipo de máquinas. En la parte inferior de la base se encuentra soldada una guía donde deslizan las puertas protectoras de esta máquina

En su parte trasera esta base posee todas las perforaciones necesarias para el montaje del motor de accionamiento y del tablero eléctrico con todos sus comandos.

Esta base posee 5 perforaciones sobre las que se montan las patas de soporte. Estos soportes son de fácil acceso en el mercado, permiten la nivelación de la máquina y poseen un sistema antideslizante lo que hace que la máquina no se mueva durante su funcionamiento.

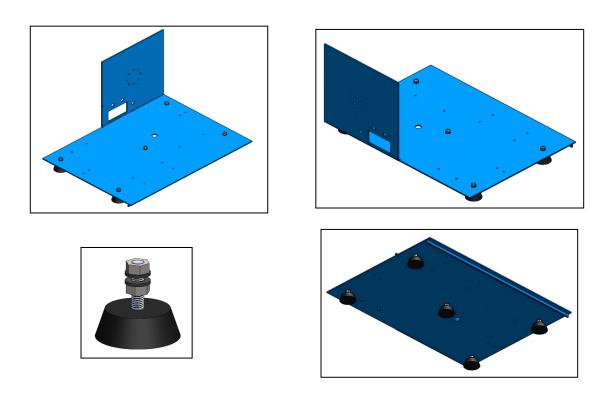


Fig. 37 - Sistema de soporte. Elaboración propia.

2.4 Dimensionamiento de tornillos.

A continuación, se realiza el cálculo necesario para seleccionar los tornillos que se utilizarán en el armado de la máquina. Como se presentó a lo largo de todo el proyecto, esta máquina está diseñada y proyectada para que su montaje sea sencillo y es por esto que se estandarizará todo lo que sea posible respecto a medidas de los elementos de unión a utilizar.

Dentro de toda la máquina se pueden diferenciar básicamente dos tipos de tornillos como lo son aquellos utilizados para el montaje de la maquina propiamente dicha, que serán aquellos que soporten los esfuerzos de trabajo y, por otro lado, aquellos que solo se utilizan para sujeción de piezas complementarias pero que no estarán sometidos a un esfuerzo durante el funcionamiento normal.

Como se puede ver en las imágenes las fuerzas que solicitan a estos tornillos se encuentran normales a sus ejes lo cual hace que estos tornillos a analizar se encuentren sometidos meramente a un esfuerzo de corte, siendo críticos aquellos que unen el sistema de transmisión con el carro de soporte de la placa móvil y los que unen a los elementos del sistema de transmisión.

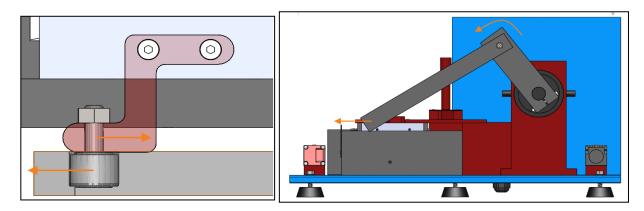


Fig. 38 - Solicitación en tornillos. Elaboración propia

Área mínima del tornillo.

Analizando las solicitaciones que poseen los tornillos de nuestro proyecto, para asegurar un correcto y seguro funcionamiento de la máquina, la condición que se debe cumplir es que la solicitación "F" sea menor que la resistencia cortante "Fr" del tornillo seleccionado.

$$Fr = \frac{n \times 0.5 \times \sigma_{adm \ tornillos} \times As_{tornillo}}{Coef \ de \ seguridad}$$
 (7)

Siendo:

• F = Fuerza solicitante. F = 22 kg = 216 N

• n = Numero de planos cortantes n = 1

 $\sigma_{adm\ tornillos}$ = Tensión a la tracción que admite el tornillo dependiendo de la

clase.

Adoptando una clase de tornillo sencilla de conseguir en el mercado y de las menos

resistentes como es la clase 5.8 tenemos una $\sigma_{adm tornillos} = 500 \text{ N/mm}^2$

• As tornillo: Es el área efectiva que resiste el esfuerzo cortante y físicamente es el

área interna del núcleo del tornillo sin tener en cuenta los filetes.

Coef. De seguridad: Para este proyecto se utiliza un valor de coeficiente = 2

Aplicando estas consideraciones podemos definir el área mínima efectiva del tornillo

que necesitamos para nuestra aplicación.

$$216 N < \frac{1 \times 0.5 \times 500 \frac{N}{mm^2} \times As_{tornillo}}{2}$$
 (8)

$$As_{tornillo} > 1.73 \, mm^2 \tag{9}$$

Considerando el área mínima resultante del cálculo, un tornillo métrico de 2 x 0.4

cubriría nuestras necesidades, pero por una simpleza a la hora de abastecerse de estos en

el mercado actual y que los costos que insumen la utilización de un tornillo más grande

no influyen en el resultado final de todo el proyecto se decide en aquellos tornillos que

se encuentren sometidos a esfuerzo utilizar:

Tornillo métrico

Diámetro: 4 mm

Paso: 0.7

Calidad: 5.8 o superior

86

El tipo de cabeza, largo y forma de ajuste quedara a consideración meramente del diseño

y de la funcionalidad de la máquina.

Por otro lado, aquellos elementos de unión utilizados para sujetar piezas

complementarias se utilizarán tornillos de menor diámetro como ser M2 o M3 quedando

a consideración del diseño propiamente al igual que el tipo de cabeza, largo y forma de

ajuste.

Los tornillos que se utilizarán para fijar las placas reconstructoras fijas van a ser

tornillos guía ISO 7379 para evitar una mala colocación o un mal posicionamiento de la

placa lo que haría que no se pueda reconstituir el anillo de extracción del casquillo

correctamente o que el casquillo no logre su correcto rodamiento entre las placas.

2.5 Verificación del rodamiento

El rodamiento que se utilizará es rodamiento de agujas tipo tornillo el cual facilita

muchísimo su instalación y, además, nos permite un rápido cambio de accionamiento en

caso de que sea necesario accionar la máquina de manea manual.

Este tipo de rodamientos son esencialmente rodamientos de agujas con eje macizo en

lugar de un aro interior. Este eje esta roscado en su extremo de modo que pueda

acoplarse de manera sencilla y rápida.

Rodamiento utilizado:

Marca: SKF

Modelo: KR16

• <u>C:</u> 2.92 KN

• <u>P:</u> 0.325 KN

Velocidad límite: 6000 rpm

• **Peso:** 0.019 kg

• **Tornillo:** M6 x 1

87

El movimiento de nuestra máquina es un movimiento relativamente constante, entonces podemos verificar la vida nominal del rodamiento en valores de horas de funcionamiento de la máquina de la siguiente manera.

$$L_{10h} = \frac{10^6}{60 \times n} \left(\frac{C}{P}\right)^p \tag{10}$$

Donde:

 L_{10h} = Vida nominal expresada en horas de funcionamiento.

n = velocidad nominal de trabajo en rpm.

C = capacidad de carga dinámica en KN. Dato técnico.

P = Carga dinámica que soporta el rodamiento.

p = Exponente de la ecuación de la vida de un rodamiento. Es igual a 3 para los rodamientos de bola y a 10/3 para los rodamientos de rodillos o agujas.

$$L_{10h} = \frac{10^6}{60 \, x \, n} \left(\frac{C}{P}\right)^p = \frac{10^6}{60 \, x \, 31 \, rpm} \left(\frac{2.92 \, KN}{0.325 \, KN}\right)^{\frac{10}{3}} = 0.81 \, x \, 10^6 \, hs$$
 (11)

Estos valores de horas de funcionamiento para el rodamiento elegido nos muestran claramente que no es una pieza crítica y que se encuentra realmente bien dimensionada para no generar ningún tipo de inconveniente en el funcionamiento habitual de la máquina.

2.6 Circuito eléctrico.

Para poder entregar la energía eléctrica necesaria para el correcto funcionamiento del sistema de automatización, esta máquina estará provista de una fuente de alimentación AC/DC de 250W de 220VAC de entrada y 24VDC de salida y con una capacidad máxima de 10 Amper en la salida lo cual es ampliamente mayor a lo requerido por el motor de accionamiento.

En la parte frontal de la máquina, se encuentra el panel de control al cual tiene acceso el usuario. En este panel de control se ubicarán, el pulsador de marcha y parada, el regulador de velocidad y la pantalla que permite visualizar el porcentaje actual de la velocidad a la que está girando el motor.

El control de la velocidad como se menciona anteriormente será realizado por un controlador CCM5D el cual también trabaja en 24VCC.

Además, en conjunto con estos elementos eléctricos estarán instalados los elementos de seguridad como son el pulsador de parada de emergencia con enclavamiento y los switchs de apertura ubicados en las protecciones mecánicas de la maquina los cuales impiden el accionamiento de esta si alguno de ellos se encuentra abierto.

El diagrama de conexionado está detallado en el plano de circuitos eléctricos adjunto a los planos de la máquina.

2.7 Sistema de higiene y seguridad.

Buscando cumplimentar con la Ley de Higiene y Seguridad en el trabajo N°19.587 y generar una protección para el usuario al momento de utilizar la máquina se diseña un elemento de protección que no permita el ingreso de ningún objeto y de ninguna parte del cuerpo del operario mientras el dispositivo se encuentre en funcionamiento.

Estos elementos de protección son similares a los que posee una maquina en una industria, está formado por dos carcasas de chapa plegada que se deslizan sobre una

corredera que posee la base la máquina. Además, esta carcasa de protección en su parte frontal posee dos visores de acrílico que le permiten al usuario permanentemente visualizar la operación de la máquina.

Además, montado sobre la base se encuentran 2 switches de seguridad los cuales interrumpen la alimentación eléctrica a la maquina si no se encuentran colocados los sistemas de protección. Estos switches trabajan como una especie de cerradura con un contacto NC que al separarse las protecciones interrumpen inmediatamente la alimentación eléctrica de la maquina generando su detención.

Como se puede ver en las siguientes figuras además de los elementos mencionados anteriormente, la máquina contará con un tablero de operación donde se ubicarán los pulsadores de marcha y parada correspondientes, pero además se colocará un pulsador de emergencia con enclavamiento.

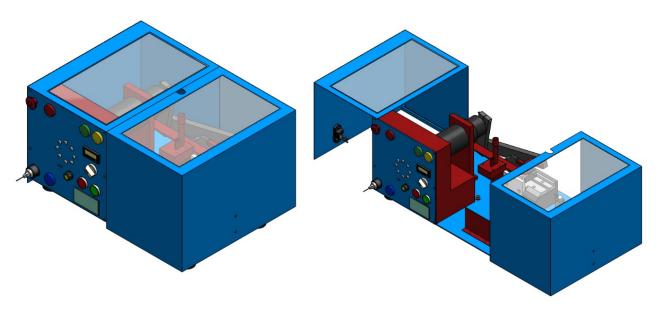
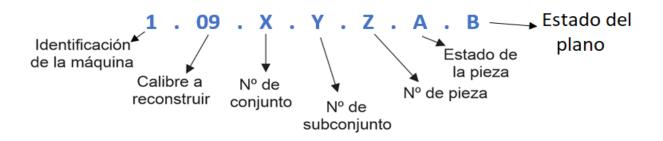


Fig. 39. Carcasa de protección. Elaboración propia

2.8 Referencias bibliográficas.


- Héctor N. Cosme (1977), ELEMENTOS DE MÁQUINAS MÉTODOS MODERNOS DE CÁLCULO Y DISEÑO. Buenos Aires Ed.Marymar.
- Casillas, A. L. (2009). MÁQUINAS: CÁLCULOS DE TALLER. Ed. Casillas.
- SKF (2011), Manual de mantenimiento de los rodamientos SKF. Illinois EEUU. Ed. Grupo SKF
- José Ramón Gomez López (2014). Máquinas-herramientas: diseño construcción y mantenimiento. Madrid, Ed. Paraninfo
- Catalogo Ignis motor. [En línea]. Recuperado el día 25/010/2021, de http://www.ignismotor.com/DESKTOP/AR/motores.html

Capítulo 3 – Carpeta técnica. Especificaciones

3.1 Codificación de componentes.

Para poder identificar cada parte de esta máquina se decide generar el siguiente código de identificación de piezas el cual permite designar a cada parte con un numero único e irrepetible.

Código utilizado:

Donde:

- 1. Es el numero indicativo de la máquina que se está tratando dentro de la empresa.
- **09.** Indica el calibre de los casquillos que esta máquina reconstruirá. Por ej: 09 = calibre 9 mm
- X. (Numero de un solo digito) Indica el número de conjunto.

Existiendo 4 conjuntos posibles:

- 1. Accionamiento
- 2. Reconstructora
- 3. Complementos
- 4. Componentes Estándar
- Y. (Numero de un solo digito) Indica el número de subconjunto.

Existiendo para el conjunto:	
1. 2 subconjuntos:	
1.	. Automático
2.	. Manual
2. 3 subconjuntos:	
	1. Alimentadora de casquillos
	2. Placas reconstructoras
	3. Base de armado
3. 3 subconjuntos:	
	1. Sistemas de seguridad
2	2. Instalación eléctrica
:	3. Elementos de soporte
4. 3 subconjuntos:	
	1. Eléctrico
2	2. Tornillería
	3. otros
Z. (Numero de 2 dígitos) Indica el número de pieza fin	al.
A. Letra Mayúscula que indica el estado de la pieza	
	A – Terminado
	B – En proceso de fabricación
	C – Esperando proceso
. 1	

tercerizado

B. Letra mayúscula que indica el estado del plano.

A. Terminado

B. En revisión

La empresa interesada en este proyecto debido a las maquinas herramientas que posee puede fabricar las siguientes piezas:

- 1.09.1.1.02
- 1.09.1.1.03
- 1.09.1.1.04
- 1.09.1.2.02
- 1.09.2.2.04

Las piezas que son conformadas en plástico mediante una impresora 3D serán tercerizadas y son las siguientes:

- 1.09.1.1.01
- 1.09.1.2.01
- 1.09.2.1.01
- 1.09.2.1.03
- 1.09.2.1.02
- 1.09.2.2.05
- 1.09.2.2.06
- 1.09.3.2.01
- 1.09.3.2.02
- 1.09.3.3.02
- 1.09.3.3.03
- 1.09.3.3.04

Además, las piezas:

- 1.09.2.2.01
- 1.09.2.2.02
- 1.09.2.2.04
- 1.09.2.3.01
- 1.09.2.3.02
- 1.09.2.3.03

Son piezas que también se tercerizarán para lograr un alto nivel de precisión en su fabricación que con las maquinas disponibles en la empresa no sería posible realizarlo.

Por otro lado, las piezas numeradas a continuación que están construidas mediante chapas plegadas también serán tercerizadas.

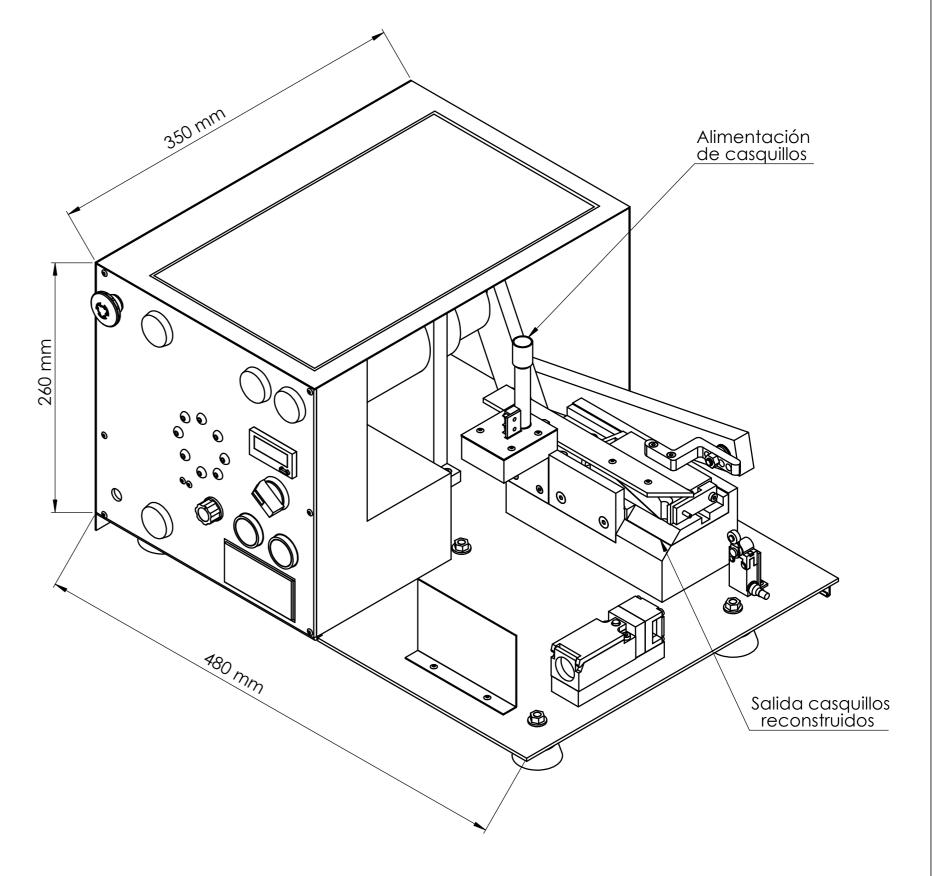
- 1.09.2.3.04
- 1.09.3.1.01
- 1.09.3.1.02
- 1.09.3.3.01

3.2 Listado de componentes y materiales.

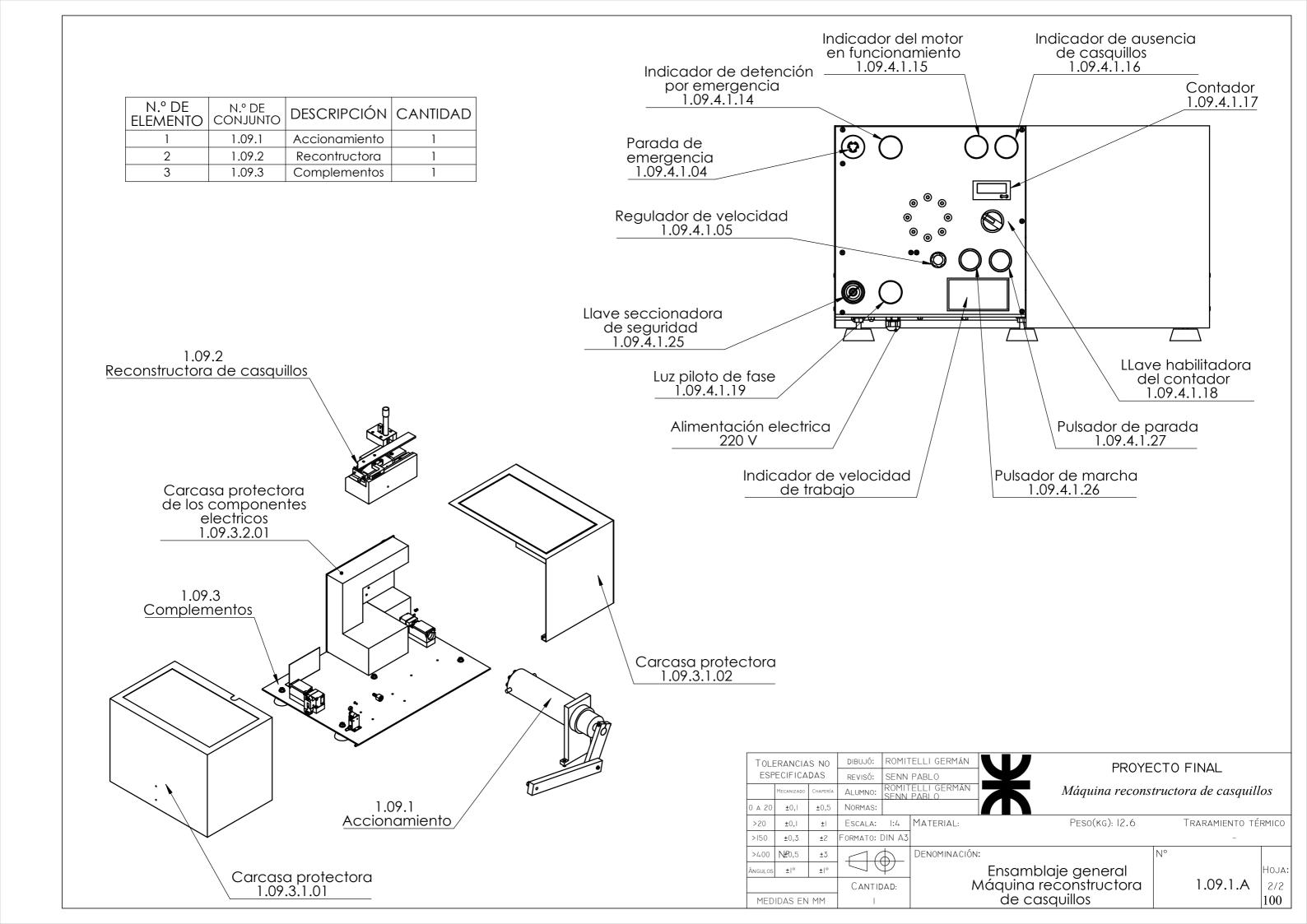
A continuación, se presenta una tabla con todos los componentes necesarios para el armado completo de la máquina proyectada.

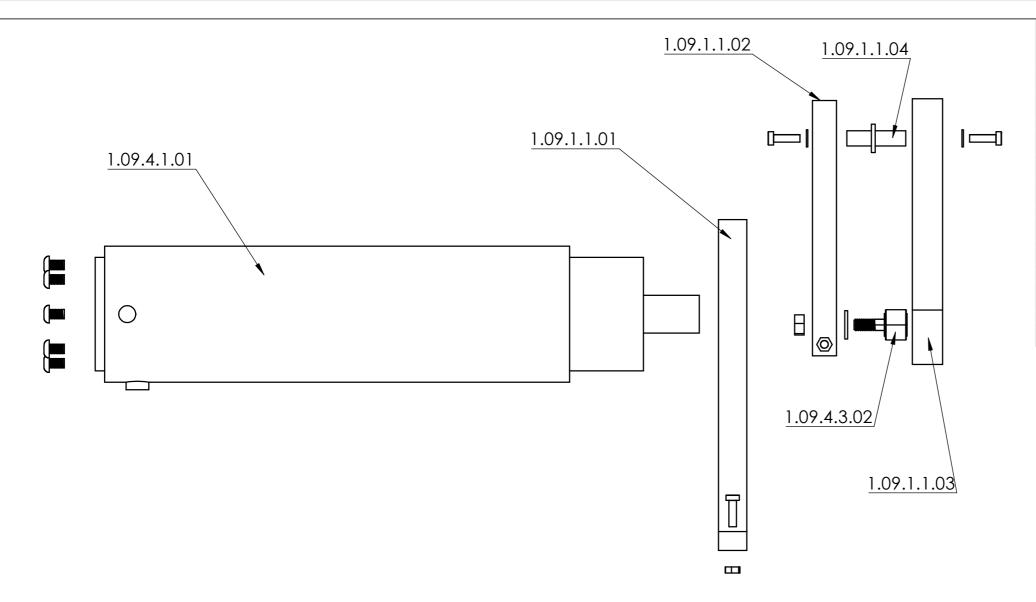
Tabla 11.a - Lista de componentes (parte 1 de 2). Elaboración propia

N.º	N.º DE PIEZA	Descripción	Especificación	Marca	Modelo/Material	Cantidad	Costo Unit	Costo Total [USD]
1	1.09.1.1.01	Soporte motor	Plano: 1.09.1.1.01.1.A	-	ABS	1	USD 5.13	USD 5.13
2	1.09.1.1.02	Manivela	Plano: 1.09.1.1.02.1.A	-	Aluminio A6063	1	USD 5.76	USD 5.76
3	1.09.1.1.03	Biela	Plano: 1.09.1.1.03.1.A	-	Aluminio A6063	1	USD 11.52	USD 11.52
4	1.09.1.1.04	Buje	Plano: 1.09.1.1.04.1.A	-	Bronce SAE 64	1	USD 15.38	USD 15.38
5	1.09.1.2.01	Palanca de accionamiento	Plano: 1.09.1.2.01.1.A	-	ABS	1	USD 3.09	USD 3.09
6	1.09.1.2.02	Separador de la palanca	Plano: 1.09.1.2.02.1.A	-	Bronce SAE 64	1	USD 4.50	USD 4.50
7	1.09.2.1.01	Soporte carro alimentador	Plano: 1.09.2.1.01.1.A	-	ABS	1	USD 2.10	USD 2.10
8	1.09.2.1.03	Carro alimentador	Plano: 1.09.2.1.03.1.A	-	ABS	1	USD 0.36	USD 0.36
9	1.09.2.1.02	Tubo alimentador	Plano: 1.09.2.1.02.1.A	-	ABS	1	USD 2.30	USD 2.30
10	1.09.2.2.01	Placa de reconstrucción movil	Plano: 1.09.2.2.01.1.A	-	SAE 1045	1	USD 5.96	USD 5.96
11	1.09.2.2.02	Elemento deslizador	Plano: 1.09.2.2.02.1.A	-	SAE 1045	1	USD 9.03	USD 9.03
12	1.09.2.2.04	Tope y fijador de la placa de reconstrucción Movil	Plano: 1.09.2.2.04.1.A	-	Aluminio A6063	2	USD 0.64	USD 1.28
13	1.09.2.2.05	Pieza de conexión	Plano: 1.09.2.2.05.1.A	-	ABS	1	USD 0.30	USD 0.30
14	1.09.2.2.06	Placa guia	Plano: 1.09.2.2.06.1.A	-	ABS	1	USD 0.53	USD 0.53
15	1.09.2.3.01	Base de montaje	Plano: 1.09.2.3.01.1.A	-	1060-H18 Barra	1	USD 36.45	USD 36.45
16	10.9.2.3.02	Placa de reconstrucción fija	Plano: 10.9.2.3.02.1.A	-	SAE 1045	1	USD 5.67	USD 5.67
17	1.09.2.3.03	Guia del deslizador	Plano: 1.09.2.3.03.1.A	-	PTFE - Teflón	1	USD 60.75	USD 60.75
18	1.09.2.3.04	Chapa guiadora de casquillos	Plano: 1.09.2.3.04.1.A	-	Chapa Aluminio 1060	1	USD 13.20	USD 13.20
19	1.09.3.1.01	Protección derecha	Plano: 1.09.3.1.01.1.A	-	Chapa Aluminio 1060	1	USD 43.56	USD 43.56
20	1.09.3.1.02	Protección izquierda	Plano: 1.09.3.1.02.1.A	-	Chapa Aluminio 1060	1	USD 34.32	USD 34.32
21	1.09.3.2.01	Caja protectora 1	Plano: 1.09.3.2.01.1.A	-	ABS	1	USD 3.78	USD 3.78
22	1.09.3.2.02	Caja protectora 2	Plano: 1.09.3.2.02.1.A	-	ABS	1	USD 0.66	USD 0.66
23	1.09.3.3.01	Base de soporte y ensamblaje	Plano: 1.09.3.3.01.1.A	-	Chapa Aluminio 1050	1	USD 117.81	USD 117.81
24	1.09.3.3.02	Soporte del switch de seguridad	Plano: 1.09.3.3.02.1.A	-	ABS	2	USD 1.48	USD 2.96
25	1.09.3.3.03	Soporte de la caja receptora	Plano: 1.09.3.3.03.1.A	-	ABS	1	USD 0.30	USD 0.30
26	1.09.3.3.04	Soporte final de carrera	Plano: 1.09.3.3.04.1.A	-	ABS	1	USD 0.33	USD 0.33
28	1.09.4.1.01	Motor 24 Vcc - MR20A-024150	Motor 24 Vcc - 150 W - 31 rpm	IGNIS	MR20A-024150	1	USD 440.00	USD 440.00
29	1.09.4.1.02	Switch de seguridad p/puertas	Switch de seguridad en puertas - 1 NA 1NC - 220V	OMRON	D4NS_1 CYC	2	USD 24.70	USD 49.40
30	1.09.4.1.03	Switch de seguridad - D4NS_1 llave	Llave de seguridad para switch de puertas	OMRON	D4NS_1	2	USD 6.12	USD 12.24
31	1.09.4.1.04	Pulsador de emergencia	Pul. Emer. Con retorno por giro - 220V	OMRON	A22E-L-01	1	USD 46.99	USD 46.99
32	1.09.4.1.05	Controlador de velocidad	Control PWM - capacidad: 10 A - 24 V	-	CCM5D-10A	1	USD 5.24	USD 5.24
33	1.09.4.1.06	Fuente de alimentación	220 V /24 Vcc - 10 A - 150 mv PP max ripple	DIGOFAT	FA02410C	1	USD 10.80	USD 10.80
34	1.09.4.1.07	Prensacable	Prensacable plastico de 1/2	OMRON	8161/8-M12-0601-L 0	1	USD 3.88	USD 3.88
35	1.09.4.1.08	Base porta fusible	Base doble portafusible 6.3 * 32	Eaton - Bussman	S8202-2	1	USD 4.24	USD 4.24
36	1.09.4.1.09	Fusible del motor	Fusible de vidrio 6.3 x 32 - Ultra Rapido - 220V - 1A	Eaton - Bussman	6ASF1	1	USD 1.01	USD 1.01
37	1.09.4.1.10	Fusible de la fuente	Fusible de vidrio 6.3 x 32 - Lento - 24 V - 10 A	Eaton - Bussman	6AT10 - 32	1	USD 1.68	USD 1.68
38	1.09.4.1.11	Barra de conexión a tierra	Bornera colectora de 8 contactos sin base	STECK	SBTN8B	1	USD 6.01	USD 6.01
39	1.09.4.1.12	Final de carrera posicionamiento	Final de carrera de 4 contactos (2 NC/2NA) - 24 V	OMRON	SS_01	1	USD 1.65	USD 1.65
40	1.09.4.1.13	Final de carrera Omron SS 01GL	Micro switch con actuador de lamina - 24V	OMRON	SS 01GL	1	USD 2.36	USD 2.36
41	1.09.4.1.14	Luz indicadora roja	Luz piloto roja - Ø 22 mm - 220 V	OMRON	M22N-BN-TRA-RC	1	USD 6.82	USD 6.82
42	1.09.4.1.15	Luz indicadora verde	Luz piloto verde - Ø 22 mm - 24 V	OMRON	M22N-BN-TGA-GC	1	USD 6.82	USD 6.82
43	1.09.4.1.16	Luz indicadora amarilla	Luz piloto amarilla - Ø 22 mm - 24 V	OMRON	M22N-BN-TYA-YC	1	USD 6.82	USD 6.82
44	1.09.4.1.17	Contador	Contador 8 digitos - Señal de entrada de voltaje - 24 V	OMRON	H7EC NFV B	1	USD 98.28	USD 98.28
45	1.09.4.1.18	Llave de habilitacion contador	Llave selectora sin retorno - Ø 22 mm - 24 V	OMRON	A22NS-2RM-NWA-G102-NN	1	USD 7.31	USD 7.31
46	1.09.4.1.19	Luz indicadora Azul	Luz piloto Azul - Ø 22 mm - 220 V	OMRON	M22N-BN-TYA-BC	1	USD 6.82	USD 6.82

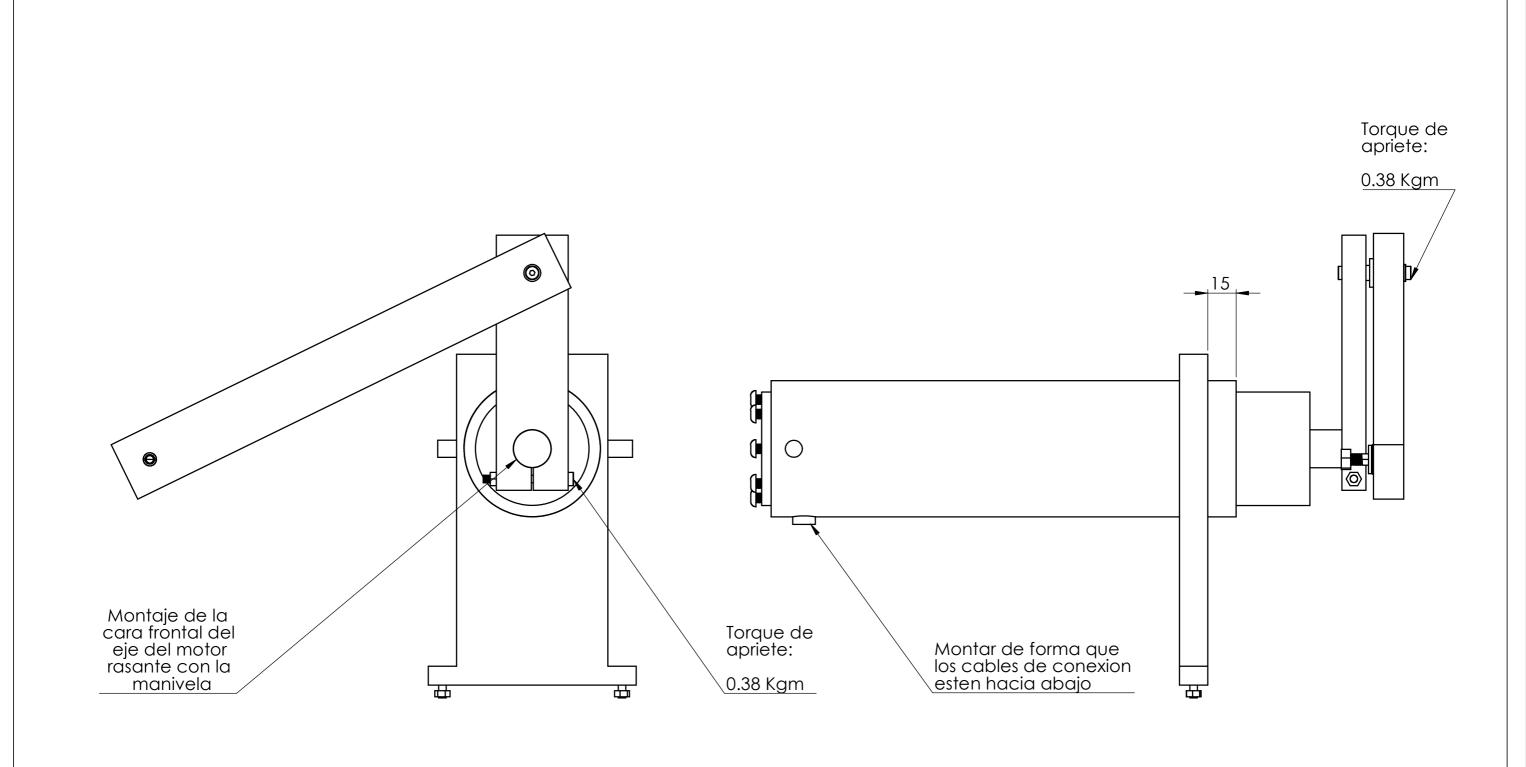

Tabla 11.b. Lista de componentes (parte 2 de 2). Elaboración propia

47	1.09.4.1.20	Rele K1	Rele con bobina 24 V - 4 inversores - 5A	OMRON	MY4N DC24 S	1	USD 4.74	USD 4.74
48	1.09.4.1.21	Rele K2	Rele con bobina 24 V - 2 inversores - 5A	OMRON	G2R1SN DC24S	1	USD 4.23	USD 4.23
49	1.09.4.1.22	Zocalo rele K1	Zocalo para relee de 4 inversores	OMRON	PYFZ-08 - MY2N DC24 S	1	USD 8.01	USD 8.01
50	1.09.4.1.23	Zocalo rele K2	Zocalo para relee de 2 inversores	OMRON	P2RF-05-S - G2R1SN DC24S	1	USD 4.42	USD 4.42
51	1.09.4.1.24	Final de carrera Omron SS_01GL	Micro switch con actuador simple - 24V	OMRON	D4F-320-1R	1	USD 24.61	USD 24.61
52	1.09.4.1.25	Llave seccionadora	Interrupto selector con llave de seguridad - NC - 220 V	OMRON	A22TK_2RL	1	USD 96.11	USD 96.11
53	1.09.4.1.26	Pulsador de marcha	Pulsador rasante sin enclavamiento verde - Contacto NA	OMRON	A22NZ_MN-G	1	USD 12.83	USD 12.83
54	1.09.4.1.27	Pulsador de parada	Pulsador rasante sin enclavamiento rojo - Contacto NC	OMRON	A22NZ_MN-R	1	USD 12.83	USD 12.83
55	1.09.4.3.01	Soporte antideslizante	Pata de goma antideslizante	ACPLIND	PG.3.14.25	5	USD 8.18	USD 40.90
56	1.09.4.3.02	Rodamiento - SKF KR16	Rodamiento de rodillos de leva	SKF	KR16	2	USD 55.49	USD 110.98
57	1.09.4.3.03	Resorte	Øext = 7 mm - Øalambre = 1 mm - Largo: 40 mm - P=2.90 mm	RESORTECNICA	-	1	USD 0.62	USD 0.62
58	1.09.4.2.01	Tornillo allen Cabeza Cilindrica M4 x 14 DIN 7984	Allen Cil. Baja -12.9 - M4 x 14 - Fosf.	FORNIS	70.B.4.14 (DIN 7984)	10	USD 0.13	USD 1.30
59	1.09.4.2.02	Tornillo allen Cabeza Cilindrica M4 x 35 DIN 7984	Allen Cil. Baja -12.9 - M4 x 35 - Fosf.	FORNIS	70.B.4.35 (DIN 7984)	1	USD 0.17	USD 0.17
60	1.09.4.2.03	Tornillo allen Cabeza Cilindrica M4 x 45 DIN 7984	Allen Cil. Baja -12.9 - M4 x 45 - Fosf.	FORNIS	70.B.4.45 (DIN 7984)	5	USD 0.22	USD 1.10
61	1.09.4.2.04	Allen fresado - 12.9 - M4 x 12 - Fosf.	Allen fresado - 12.9 -M4 x 12 - Fosf.	FORNIS	78.4.12 (DIN 7991)	9	USD 0.09	USD 0.81
62	1.09.4.2.05	Allen guia - 12.9 - M5 x 10 - Fosf.	Allen guia - 12.9 - M5 x 10 - Fosf.	FORNIS	377.5.10 (ISO 7379)	2	USD 1.35	USD 2.70
63	1.09.4.2.06	Tornillo esparrago M3 x 12 DIN 916	Gusano allen - 12.9- M3 x 12 - Fosf.	FORNIS	72.M.3.12 (DIN 916)	6	USD 0.12	USD 0.72
64	1.09.4.2.07	Gusano allen - 12.9 - M4 x 16 - Fosf.	Gusano allen - 12.9- M4 x 16 - Fosf.	FORNIS	72.M.4.16 (DIN 916)	4	USD 0.15	USD 0.60
65	1.09.4.2.08	Tornillo cabeza boton M3 x 8 DIN 9427	Allen boton - 12.9 - M3 x 8 - Fosf.	FORNIS	378.3.8 (DIN 9427)	31	USD 0.12	USD 3.72
66	1.09.4.2.09	Tornillo cabeza boton M5 x 8 DIN 9427	Allen boton - 12.9 - M5 x 8 - Fosf.	FORNIS	378.5.8 (DIN 9427)	8	USD 0.19	USD 1.52
67	1.09.4.2.10	Tuerca M3 DIN 934	Tuerca hexag. M3 x 0.5 - Zinc.	FORNIS	23.3 (DIN 934)	10	USD 0.12	USD 1.20
68	1.09.4.2.11	Tuerca M4 DIN 934	Tuerca hexag. M4 x 0.70 - Zinc.	FORNIS	23.4 (DIN 934)	11	USD 0.19	USD 2.09
69	1.09.4.2.12	Tuerca M6 DIN 934	Tuerca hexag. M6 x 1 - Zinc.	FORNIS	23.6 (DIN 934)	11	USD 0.14	USD 1.54
70	1.09.4.2.13	Arandela M4 DIN 125-1	Arandela plana M4 DIN Zinc	FORNIS	447.4 (DIN 125 - 1)	3	USD 0.34	USD 1.02
71	1.09.4.2.14	Arandela M6 DIN 125-1	Arandela plana M6 DIN Zinc	FORNIS	447.6 (DIN 125 - 1)	11	USD 0.41	USD 4.51

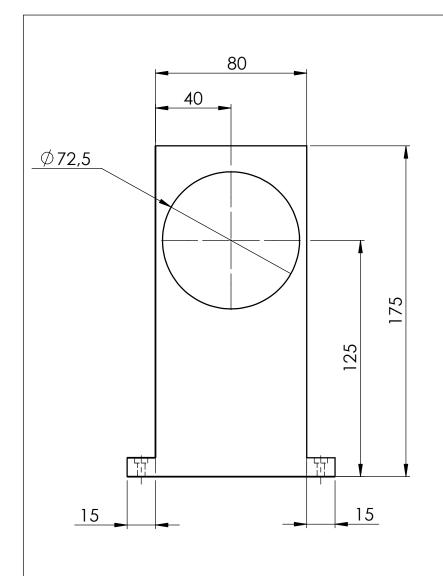

3.3 Planos de mecánicos.

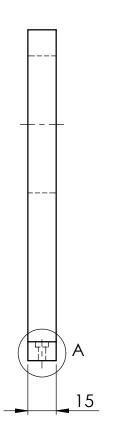

A continuación, se presentan los planos de los componentes y conjuntos de componentes de la máquina reconstructora de casquillos. En los mismos, podemos encontrar detalles constructivos, materiales utilizados para cada componente, tolerancias y otros datos necesarios para la fabricación y el armado.

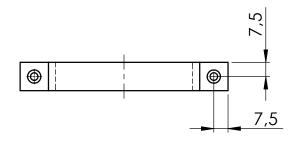
Caracteristicas		
Dimensiones Grales.	[mm]	260 x 480 x 350
Peso	[Kg]	12.7
Alimentacion eléctrica	[V]	220
Clavija de conexión eléctrica		Tipo I
Tipo de accionamiento		Manual/Automático
Regulacion de medidas		Manual
Regulacion de velocidad		Si
Conteo de unidades reconstruidas		Si
Capacidad productiva	[Casquillos/hora]	1800
Calibre de trabajo		9 mm
Dimensiones de casquillos		
Entrada: (Max)	[mm]	10.5

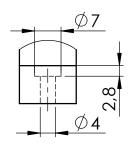


N.º	N.º DE PIEZA Descripción				
1	1.09.1.1.01	Soporte motor	1		
2	1.09.1.1.02	Manivela	1		
3	1.09.1.1.03	Biela	1		
4	1.09.1.1.04	Buje	1		
5	1.09.4.1.01	Motor 24Vcc - MR20A-024150	1		
6	1.09.4.3.02	Rodamiento - SKF KR16	1		
7	1.09.4.2.01	Tor. allen cabeza cilindrica M4 x 14 DIN 7984	4		
8	1.09.4.2.09	Tornillo cabeza boton M5 x 8 DIN 9427	8		
9	1.09.4.2.03	Tor. allen cabeza cilindrica M4 x 45 DIN 7984	1		
10	1.09.4.2.11	tuerca M4 DIN 934	3		
11	1.09.4.2.12	tuerca M6 DIN 934	1		
12	1.09.4.2.13	Arandela M4 DIN 125-1	2		
13	1.09.4.2.14	Arandela M6 DIN 125-1	1		

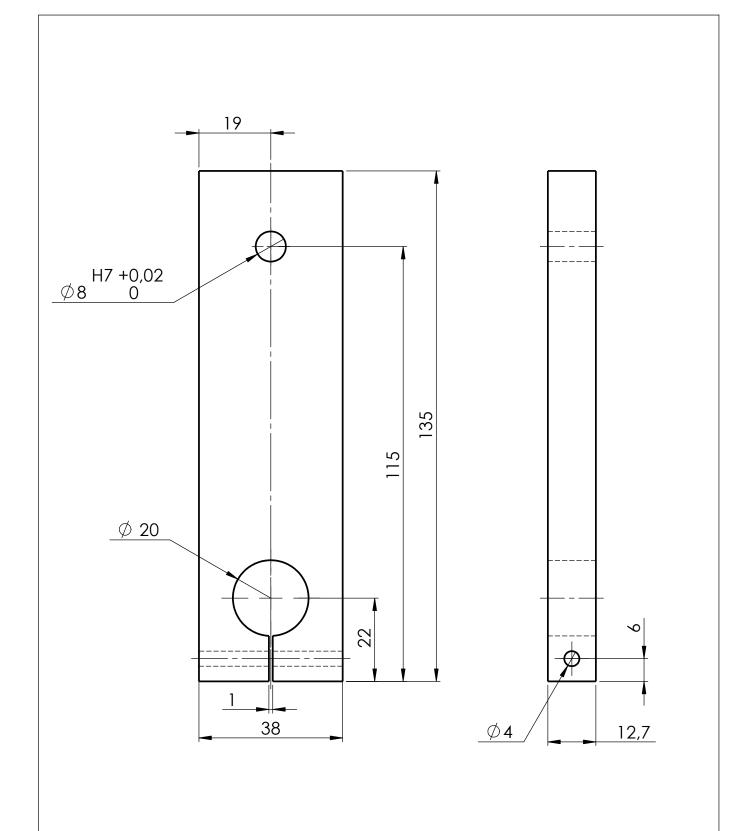

Orden de montaje:

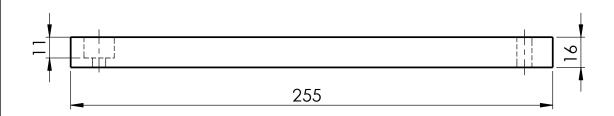

- 1°. Enclavar rodamiento (1.09.4.3.02) en la biela (1.09.1.1.03)
- 2°. Enclavar el buje (109.1.1.04) en la manivela (109.1.1.02) y fijar con la arandela y el tornillo correspondiente.
- 3°. Enclavar la biela (1.09.1.1.03) en el buje (109.1.1.04) y fijar con la arandela y el tornillo correspondiente.
- 4°. Introducir el motor (1.09.4.1.01) en la pieza de soporte (1.09.1.1.01)
- 5°. Montar la manivela (1.09.1.1.02) en el eje del motor (1.09.4.1.01) y apretar el tornillo correspondiente.
- 6° Reservar el subconjunto junto con sus tornillos de anclaje para el armado final.

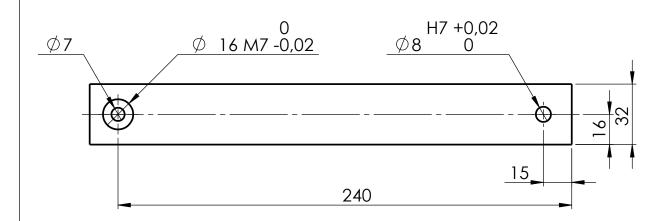

TOLE	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN		\VEC	STO EINIAI				
ESP	ECIFICA	DAS	REVISÓ:	SEN	N PABLO	FRO	PROYECTO FINAL					
	MECANIZADO CHAPERÍA ALUMNO: Máquina reco							nstructora de casquillos				
0 A 20	±0,	±0,5	Normas:									
>20	±0,1	±Ι	ESCALA:	1:2	MATERIAL:	PESO(GR): 550	20	O TRARAMIENTO TÉRMICO				
>150	±0,3	± 2	FORMATO: [DIN A3		550)()	_				
>400	±0,5	±3	10	$\overline{\lambda}$	DENOMINACIÓN	:	N°		HOJA:			
ÁNGULOS	± °	±Ι°		4	^ •			1.09.1.1.1.A	1/2			
			CANTIC	AD:	Accionamiento Automático			1.07.1.1.1.	1/2			
			1 .						101			



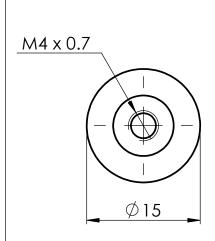
Tole	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN	PROYECTO FINAL					
ESP	ECIFICA	DAS	REVISÓ:	SENN	PABLO	TROTE	CIOTINAL				
	MECANIZADO	CHAPERÍA	ALUMNO:			Máquina recons	tructora de casquil	los			
0 д 20	±0,	±0,5	Normas:								
>20	±0,	±Ι	ESCALA:	1:2	MATERIAL:	PESO(GR): 5500	Traramiento té	RMICO			
>150	±0,3	±2	FORMATO: [DIN A3		3300	-				
>400	№ 0,5	±3		7	DENOMINACIÓN	:	N°	HOJA:			
ÁNGULOS	±Ι°	±Ι°			A:		1 00 1 1 1 4	0.40			
			CANTID	AD:	Accior	namiento Automático	1.09.1.1.1.A	2/2			
MED	IDAS EN	I MM						102			
		•	.,,			·					



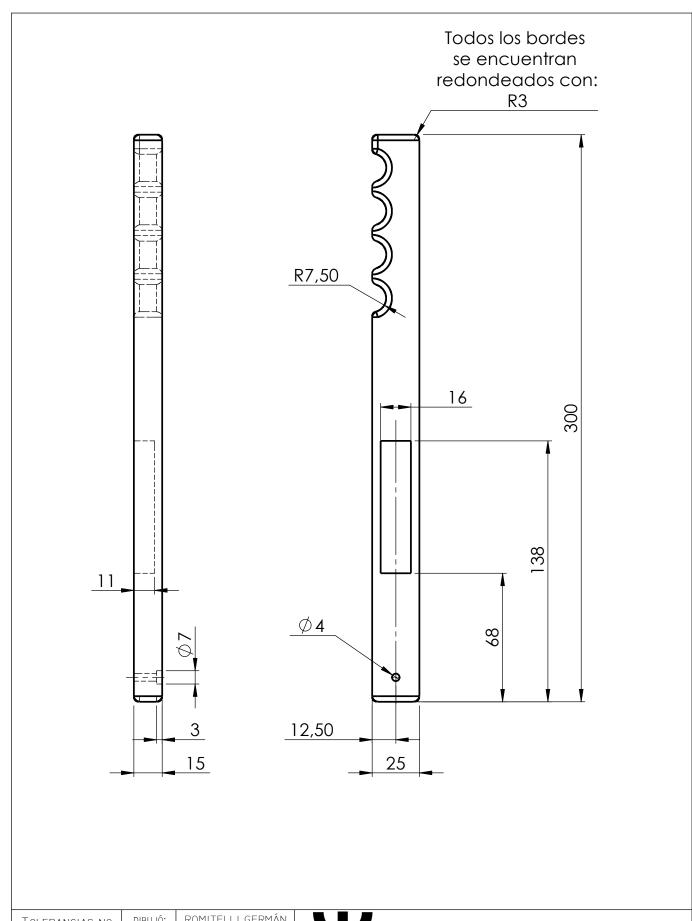



DETALLE A ESCALA 1 : 1

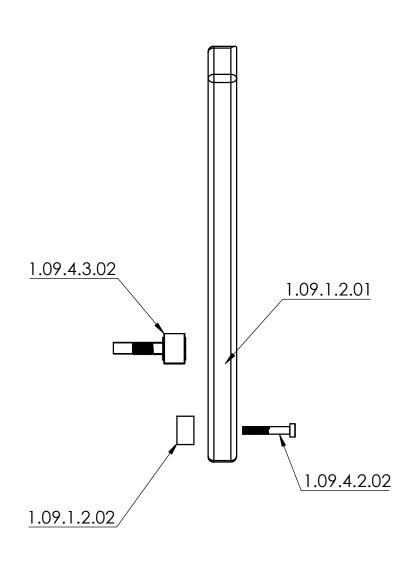
ToL	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁI	N					
ESI	PECIFICA	DAS	REVISÓ:	SENN	N PABLO		PROYECTO FINAL				
	MECANIZADO	CHAPERÍA	ALUMNO:				Máquina reconstructora de casquillos				
0 A 20	±0,1	±0,5	Normas:				Maquina reconstructora de casquittos				
>20	±0,1	±Ι	ESCALA:	1:2	Material:	PESO(GR.): 155.22 TRARAMIE					
>150	±0,3	± 2	FORMATO: [DIN A4		I LA	-				
>400	±0,5	±3		$\overline{\Delta}$	DENOMINACIÓ	Ń:	N°				
ÁNGULOS	±I°	±Ι°		Ψ^-		2000	HOJA:				
			CANTIE	DAD:		30pc	orte motor 1.09.1.1.01.1.A				
ME	DIDAS E	N MM	I				103				



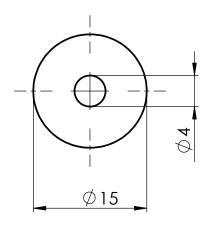

Toli	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN							
ESF	ECIFICA	DAS	REVISÓ:	SENN	N PABLO			PRO	YECT	O FINAL		
	MECANIZADO	CHAPERÍA	ALUMNO:				Máguina	ı reco	าทรtru	ictora de casqi	uillos	
0 д 20	±0,1	±0,5	Normas:				maquino	<i>i i</i> ccc	i i sir vi	iciora ac casqi	111105	
>20	±0,	±Ι	ESCALA:	1:1	Material:		PESO(GR.):			TERMINACIÓN SUF	PERFICIAL	
>150	±0,3	± 2	FORMATO: [DIN A4	Alu	minio A6063 161.74			.74	4 PINTADO EPOXY		
>400	±0,5	±3		1	DENOMINACIÓN	:			N°			
ÁNGULOS	±Ι°	±Ι°									Hoja:	
			CANTIC	AD:		Manivela			1.09	9.1.1.02.1.A	1/1	
ME	MEDIDAS EN MM		1								104	

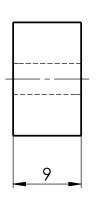


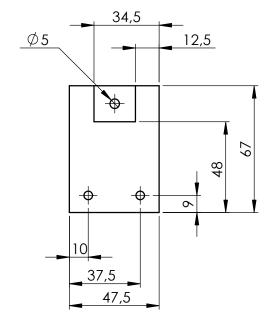
Toli	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN							
ESF	PECIFICA	DAS	REVISÓ:	SENN	N PABLO		PROYECTO FINAL					
	MECANIZADO	CHAPERÍA	ALUMNO:				a voca	econstructora de casquillos				
0 д 20	±0,1	±0,5	Normas:			Maquina reconstructora de cas						
>20	±0,	±Ι	ESCALA:	1:2	Material:		PESO(GR.):			Terminación suf	PERFICIAL	
>150	±0,3	±2	FORMATO: [DIN A4	Alı	Aluminio A6063 343.85 PINT			PINTADO EP	OXY		
>400	±0,5	±3		$\overline{\Delta}$	Denominación:	:			N°			
ÁNGULOS	± °	±Ι°		¥7		D: 1					HOJA:	
			CANTIE	DAD:		Biela	Biela			.1.1.03.1.A	1/1	
ME	MEDIDAS EN MM		l								105	
	CANTIDAD:				Biela	Biela			.1.1.03.1.A	1,		

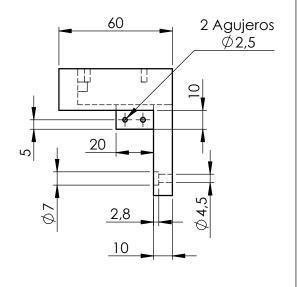


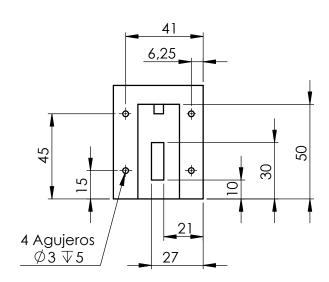
TOLERANCIAS NO ESPECIFICADAS			DIBUJÓ:	ROMI	TELLI GERMÁN						
			REVISÓ:	SENN	N PABLO			PROYECTO FINAL			
	MECANIZADO	CHAPERÍA	ALUMNO:				Máquina	a rece	onstructora de casq	uillos	
0 A 20	±0,1	±0,5	Normas:				maquin	<i>i 1</i> ecc	msiruciora de casq	uiiiOs	
>20	±0,1	±Ι	ESCALA:	2:1	Material:		PESO(GR.):		Traramiento té	RMICO	
>150	±0,3	± 2	FORMATO: [DIN A4	Bro	Bronce Sae 64 13			.68		
>400	±0,5	±3		$\overline{\Delta}$	DENOMINACIÓN:	:			N°		
ÁNGULOS	±Ι°	±Ι°		Y	Buje					HOJA:	
			Cantidad:		БОЈС			1.09.1.1.04.1.A	1/1		
ME	DIDAS E	N MM	1							106	

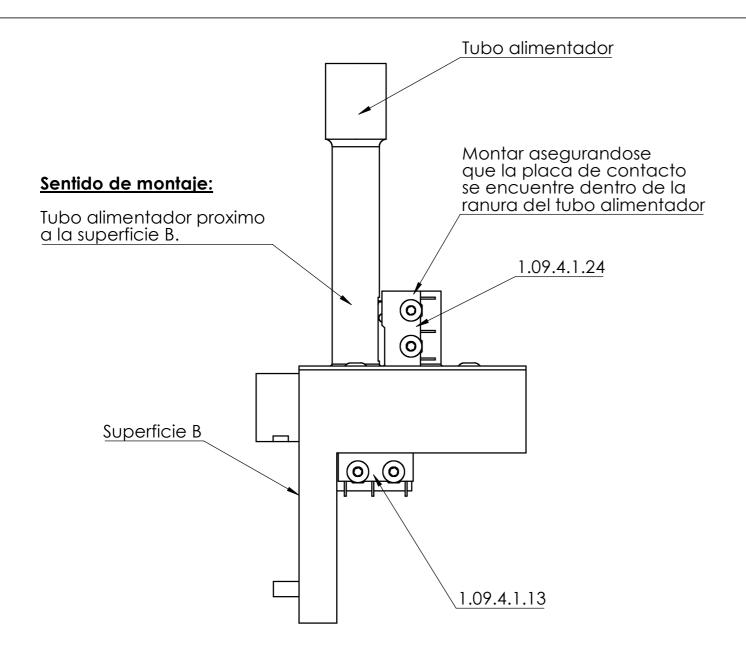


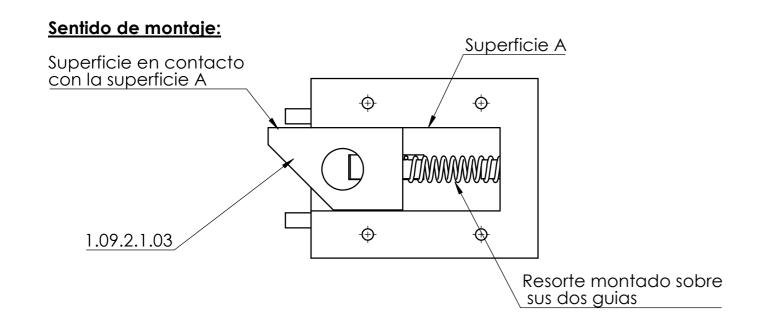

Т	TOLERANCIAS NO ESPECIFICADAS			DIBUJÓ:	ROMI	TELLI GERMÁN	W				
E				REVISÓ:	SENN	N PABLO		PROYECTO FI			
		MECANIZADO	CHAPERÍA	ALUMNO:				Máguing reco	onstructora de casqu	uillos	
0 д	20	±0,1	±0,5	Normas:				maquina reco	mstructoru ue cusqt	iiiOS	
>2	20	±0,	±Ι	ESCALA:	1:2	MATERIAL:	PLA	Peso(gr.): 93.70 Traramiento térmico			
>15	50	±0,3	± 2	FORMATO: [DIN A4	Г	LA	70.7	-		
>4	00	±0,5	±3	DENOMINA			1:		N°		
Ángi	ULOS	±Ι°	±Ι°			Palanca de				HOJA:	
				Cantidad:		accionamiento manual			1.09.1.2.01.1.A	1/1	
	ME	DIDAS E	N MM	ı						107	


N.º	N.º DE PIEZA	DESCRIPCIÓN	CANTIDAD
1	1.09.1.2.01	Palanca de accionamiento manual	1
2	1.09.1.2.02	Separador de palanca de acc. manual	1
3	1.09.4.2.02	Tornillo allen cabeza cilindrica M4 x 35 DIN 7984	1
4	1.09.4.3.02	Rodamiento - SKF KR16	1

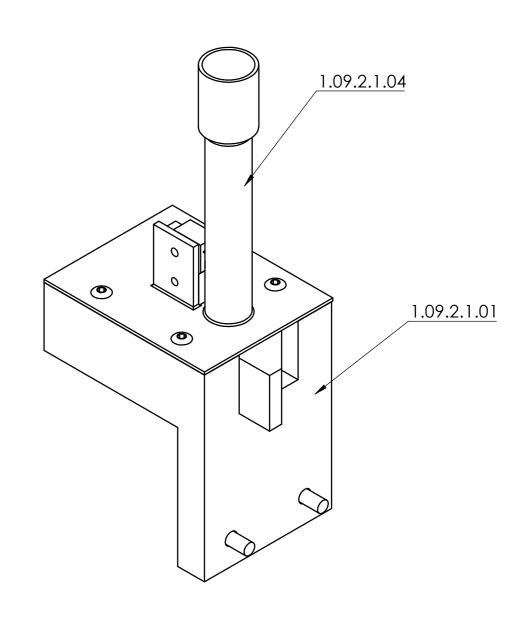

ME	MEDIDAS EN MM		CANTIDAD: ACC		Acc	cionamiento manual	1.09.1.2.1.A	108	
ÁNGULOS	± °	±Ι°		¥7-				Hoja:	
>400	±0,5	±3	10	$\overline{\lambda}$	DENOMINACIÓN:		N°		
>150	±0,3	± 2	FORMATO: [DIN A4		107.	_		
>20	±0,1	±Ι	ESCALA:	1:2	Material:	PESO(GR.): 107.	o Traramiento tér	RMICO	
0 A 20	±0,1	±0,5	Normas:			Maquina reco	msiruciora de casqi	aiiios	
	MECANIZADO	CHAPERÍA	ALUMNO:			Máquina reco	onstructora de casqu	uillos	
ESPECIFICADAS REVISÓ: SENN PABLO PROYEC		YECTO FINAL							
TOLE	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN				



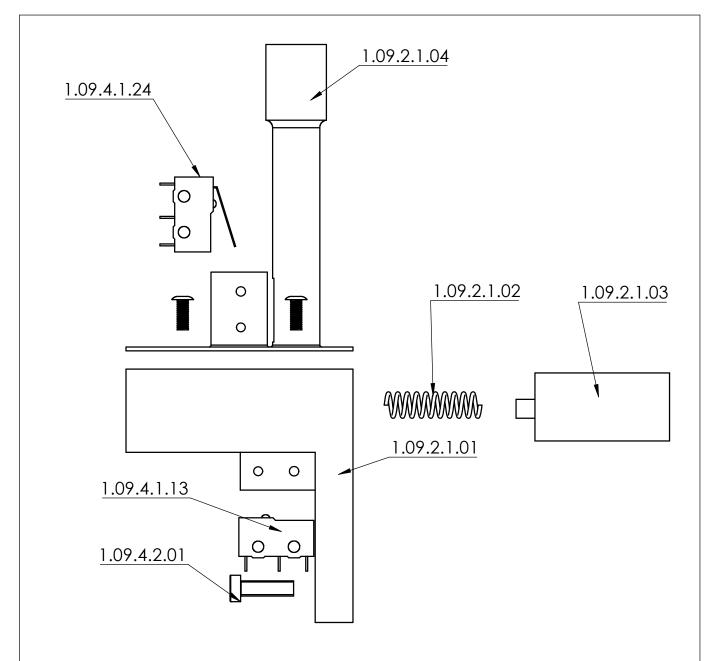

						i			
TOLE	TOLLINATICIAS IN			ROMI	TELLI GERMÁN				
ESF	ECIFICA	DAS	REVISÓ:	SENN	N PABLO	PROYECTO FINAL			
	MECANIZADO	CHAPERÍA	ALUMNO:			Maguina race	onstructora de casqi	uillas	
0 д 20	±0,1	±0,5	Normas:			Wind in the co	mstructora de casqi	iiios	
>20	±0,1	±Ι	ESCALA:	2:1	MATERIAL:	PESO(GR.):	Traramiento téf	RMICO	
>150	±0,3	± 2	FORMATO: [DIN A4	Br	once Sae 64 12.9	-		
>400	±0,5	±3	$\Delta \alpha$	<u> </u>	DENOMINACIÓN	:	N°		
ÁNGULOS	±1°	±Ι°		1	Se	parador palanca		Hoja:	
			CANTIDAD: de C		de ac	parador palanca ccionamiento manual	1.09.1.2.02.1.A	1/1	
ME	MEDIDAS EN MM		I					109	



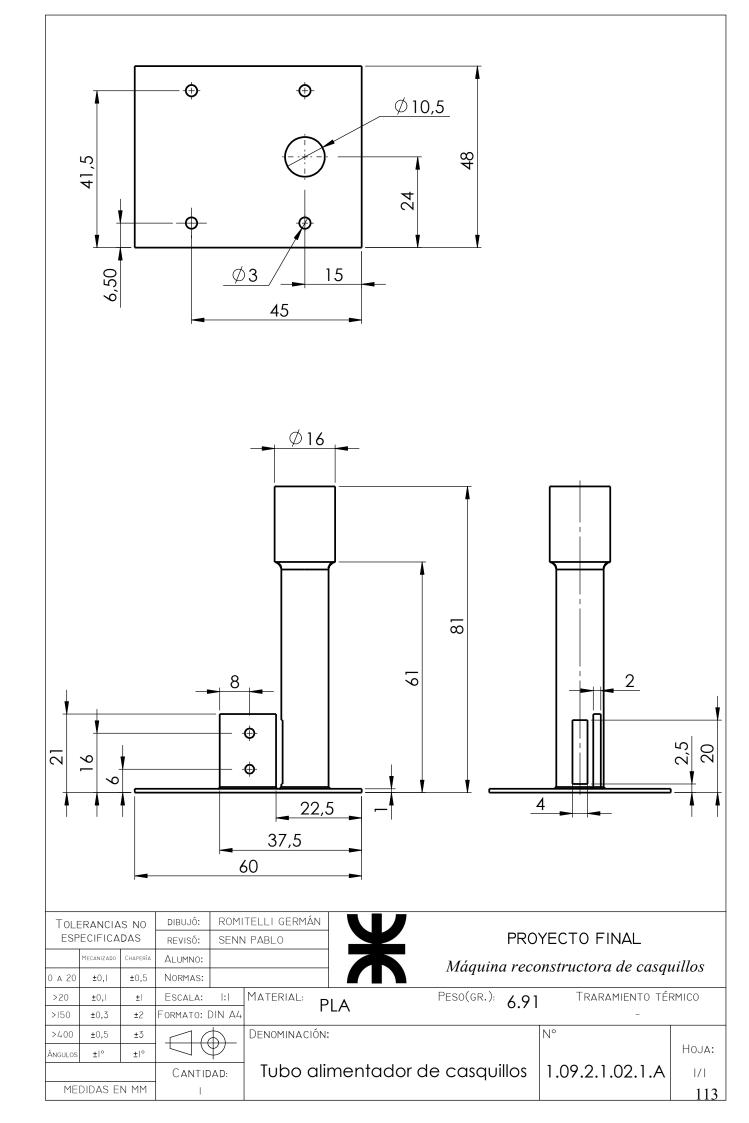
_			DIBUJÓ:	DOMI	TELLI GERMÁ	NI I				
	ERANCIA					IN I	PROVENTO FINIAL			
ESF	PECIFICA	DAS	REVISÓ:	SENN	N PABLO		PROYECTO FINAL			
	MECANIZADO	CHAPERÍA	ALUMNO:				Máquina reconstructora de casquillos			
0 д 20	±0,1	±0,5	Normas:				maquina reconstructora de casquitios			
>20	±0,	±Ι	Escala:	1:2	Material:	PLA	Peso(gr.): 63.68 Traramiento térmico			
>150	±0,3	± 2	FORMATO: [DIN A4		I LA	-			
>400	±0,5	±3		<u> </u>	DENOMINACI	ίν:	N°			
ÁNGULOS	± °	±Ι°		4			HOJA:			
			CANTIDAD: SC		Sopo	Soporte carro alimentador 1.09.2.1.01				
ME	MEDIDAS EN MM		1				110			

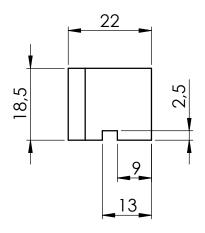


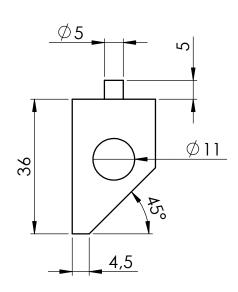
Vista superior sin las piezas:


- * 1.09.2.1.04 * 1.09.4.1.13 * tornillos de fijación

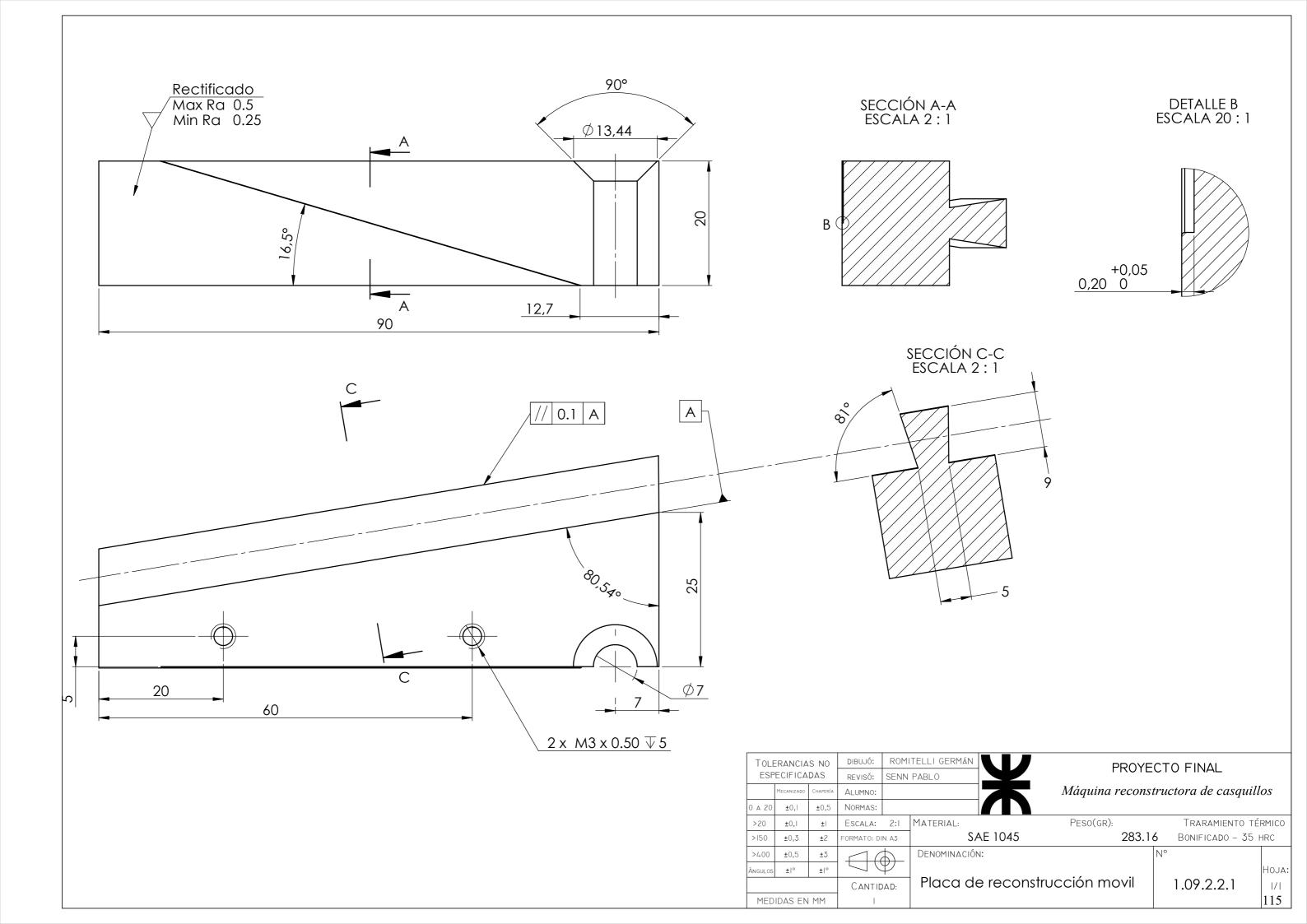
N.º	N.º DE PIEZA	DESCRIPCIÓN	CANTIDAD
1	1.09.2.1.01	Soporte carro alimentador	1
2	1.09.2.1.02	Resorte	1
3	1.09.2.1.03	Carro alimentador	1
4	1.09.2.1.04	Tubo alimentador	1
5	1.09.4.2.01	Tornillo allen cabeza cilindrica M4 x 14 DIN 7984	2
6	1.09.4.2.08	Tornillo cabeza boton M3x 8 DIN 9427	8
8	1.09.4.1.24	Final de carrera Omron SS_01GL	1
9	1.09.4.1.13	Final de carrera Omron SS_01GL	1

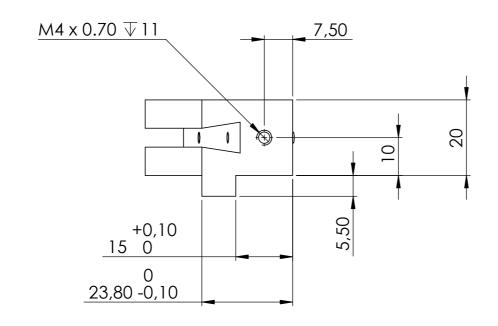

ToL	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN	PROYECTO FINAL		
ESF	PECIFICA	DAS	REVISÓ:	SENN	N PABLO	IROIL	CTOTINAL	
	MECANIZADO	CHAPERÍA	ALUMNO:			Máquina recons	tructora de casquil	los
0 A 20	±0,1	±0,5	Normas:					
>20	±0,1	±Ι	ESCALA:	1:1	Material:	PESO(GR): 87.09	TRARAMIENTO TI	ÉRMICO
>150	±0,3	± 2	FORMATO: [DIN A3		67.07	-	
>400	№ 0,5	±3	10	$\overline{\mathcal{A}}$	DENOMINACIÓN	:	N°	
ÁNGULOS	±I°	±Ι°			Ensc	amblaie Subconiunto		HOJA:
			CANTIDAD:		Ensamblaje Subconjunto de alimentación de casquillos		1.09.2.1.1.A	2/2
MED	DIDAS EN	I MM	I			·		111

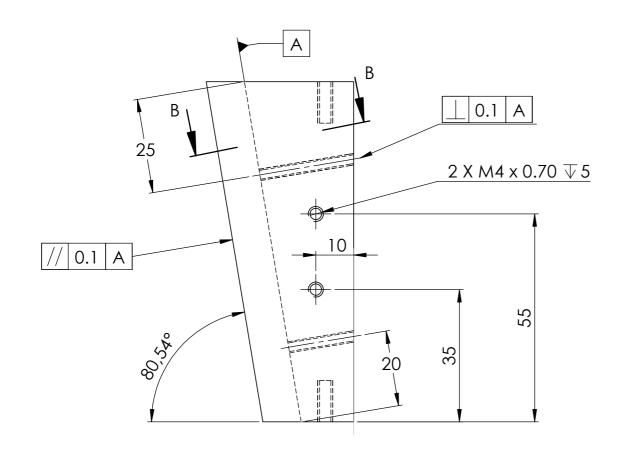



Orden de armado:

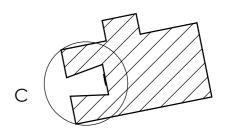
- 1°. Montar la pieza 1.09.4.1.24 en la pieza 1.09.2.1.04 con los tornillos correspondientes.
- 2°. Montar la pieza 1.09.4.1.13 en la pieza 1.09.2.1.01 con los tornillos correspondientes.
- 3°. Colocar el resorte (1.09.2.1.02) en la guia de la pieza 1.09.2.1.01
- 4°. Montar el carro (1.092.1.03) en la ranura de la pieza 1.09.2.1.01 y en el resorte.
- 5°. Montar la pieza 1.09.2.1.04 sobre la pieza 1.09.2.1.01 con los tornillos correspondientes.
- 6º Reservar el subconjunto junto con sus tornillos de anclaje para el armado final.

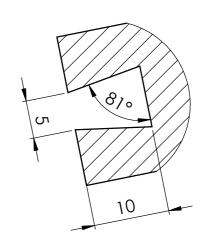

Toli	ERANCIA	S NO	DIBUJÓ: ROMITELLI GERMÁN						
ESF	ESPECIFICADAS REVISÓ:		SENN PABLO		PROY	PROYECTO FINAL			
	MECANIZADO	CHAPERÍA	ALUMNO:			Máquina recov	ıstructora de casqı	uillos	
0 A 20	±0,1	±0,5	Normas:			I I I I I I I I I I I I I I I I I I I	isir uciora ac casqi	niii OS	
>20	±0,	±Ι	ESCALA:	1:1	Material:	PESO(GR.): 87.09	Traramiento téi	RMICO	
>150	±0,3	± 2	FORMATO: [DIN A4		07.07	-		
>400	±0,5	±3		$\overline{\lambda}$	DENOMINACIÓN	: \	V°		
ÁNGULOS	±1°	±Ι°						Hoja:	
			CANTIC	AD:	Alimor	stación do carquillos	1.09.2.1.1.A	1/2	
ME	MEDIDAS EN MM		I		Alimentación de casquillos			112	

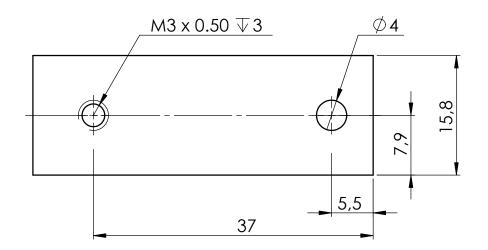


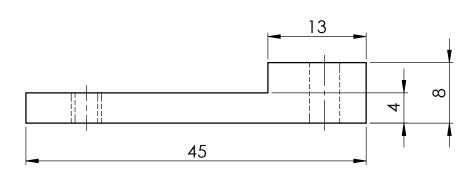


ToL	ERANCIA	.5 110		TELLI GERMÁN					
ESI	PECIFICA	DAS	REVISÓ:	SENN	N PABLO		PRO	YECTO FINAL	
	MECANIZADO	CHAPERÍA	ALUMNO:				Máguina reco	onstructora de casqu	uillos
0 A 20	±0,1	±0,5	Normas:				maquina rece	msiruciora ac casqi	aiiiOS
>20	±0,	±Ι	ESCALA:	1:1	MATERIAL:	'LA	PESO(GR.): 10 2	8 TRARAMIENTO TÉF	RMICO
>150	±0,3	± 2	FORMATO: [OIN A4	'		10.2	-	
>400	±0,5	±3		7	DENOMINACIÓN	:		N°	
ÁNGULOS	±1°	±Ι°							Hoja:
			CANTIDAD:		Carro alimentador de casquillos			1.09.2.1.03.1.A	1/1
ME	DIDAS E	N MM	I						114

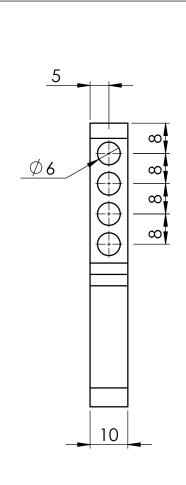


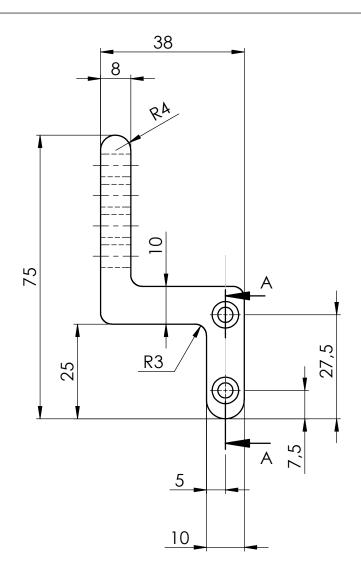


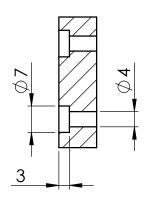

SECCIÓN B-B



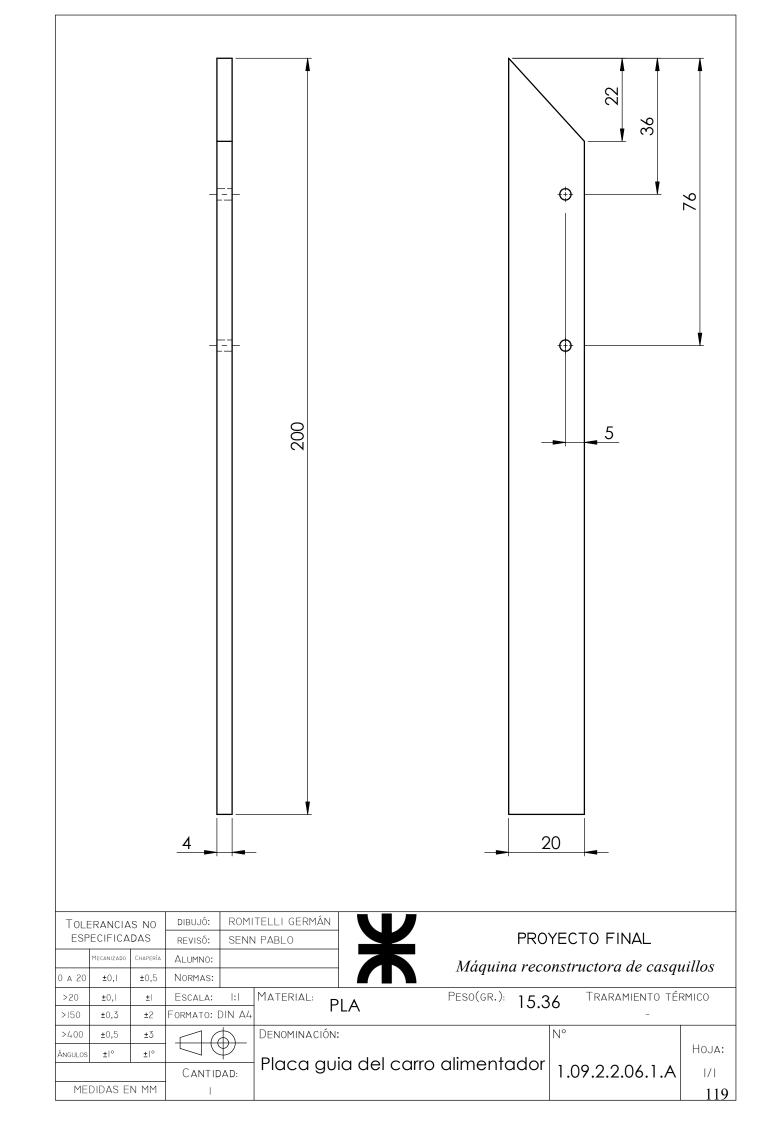
DETALLE C ESCALA 2:1

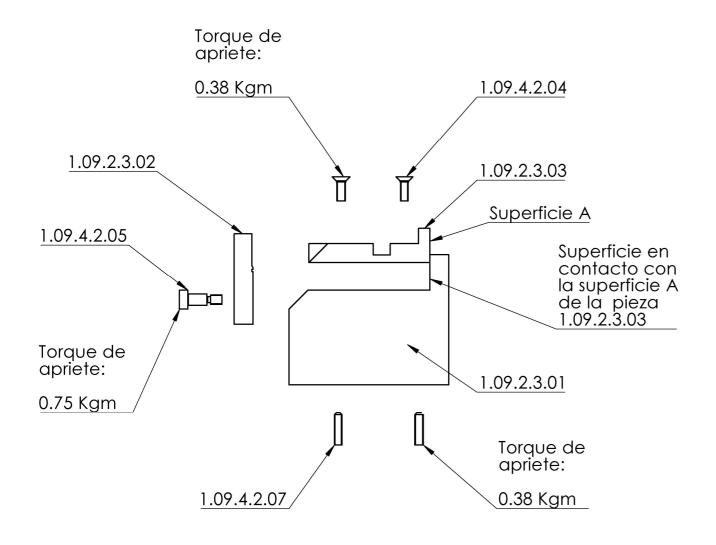



Tole	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁI	PROYECTO FINAL				
ESP	ECIFICA	DAS	REVISÓ:	SENN	N PABLO		11(01	LCIC) I INAL	
	MECANIZADO	CHAPERÍA	ALUMNO:				Máquina recon	struci	tora de casquill	los
) д 20	±0,	±0,5	Normas:							
>20	±0,1	±Ι	ESCALA:	1:1	Material:		PESO(GR):		Traramiento téi	RMICO
>150	±0,3	± 2	FORMATO: [OIN A3		SAE 1045	429.	.53	NITRURADO	С
>400	±0,5	±3	10	7	DENOMINACIÓ	ŃΝ:		N°		
NGULOS	±Ι°	±Ι°								Ноја:
			CANTID	AD:		Elemento	deslizador	1.0	9.2.2.02.1.A	1/1
MED	IDAS EN	MM	ı							116



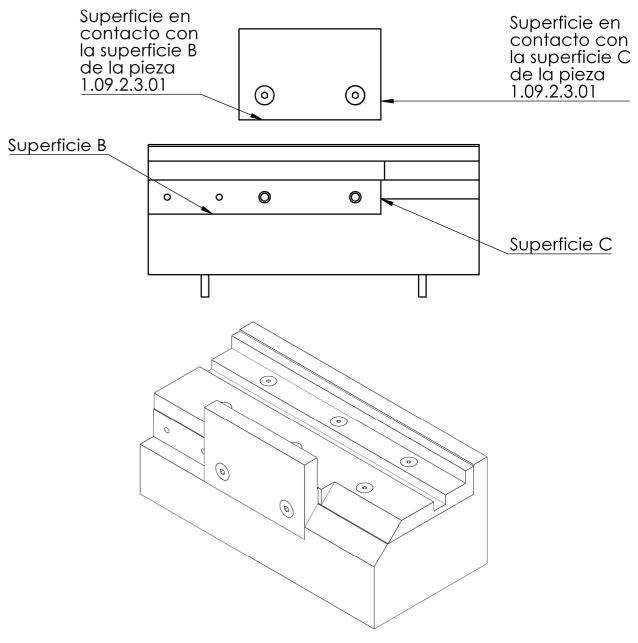
Toli	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN					
ESF	PECIFICA	DAS	REVISÓ:	SENN	N PABLO	PROYECTO FINAL				
	MECANIZADO	CHAPERÍA	ALUMNO:			Máquina reconstructora de casqu	uillos			
0 д 20	±0,1	±0,5	Normas:				ıııos			
>20	±0,	±Ι	Escala:	2:1	MATERIAL:	PESO(GR.): 9.55 TERMINACIÓN SUPE	RFICIAL			
>150	±0,3	±2	FORMATO: [DIN A4	Alu	Iminio A6063 7.55 Pintado epo	XY			
>400	±0,5	±3		A	DENOMINACIÓN:	l: N°				
ÁNGULOS	±1°	±Ι°		¥)	Tope	y fijador de las placas econstrucción movil 1.09.2.2.04.1.A	Hoja:			
			CANTIDAD:		dė re	econstrucción movil 1.09.2.2.04.1.A	1/1			
ME	MEDIDAS EN MM		1				117			

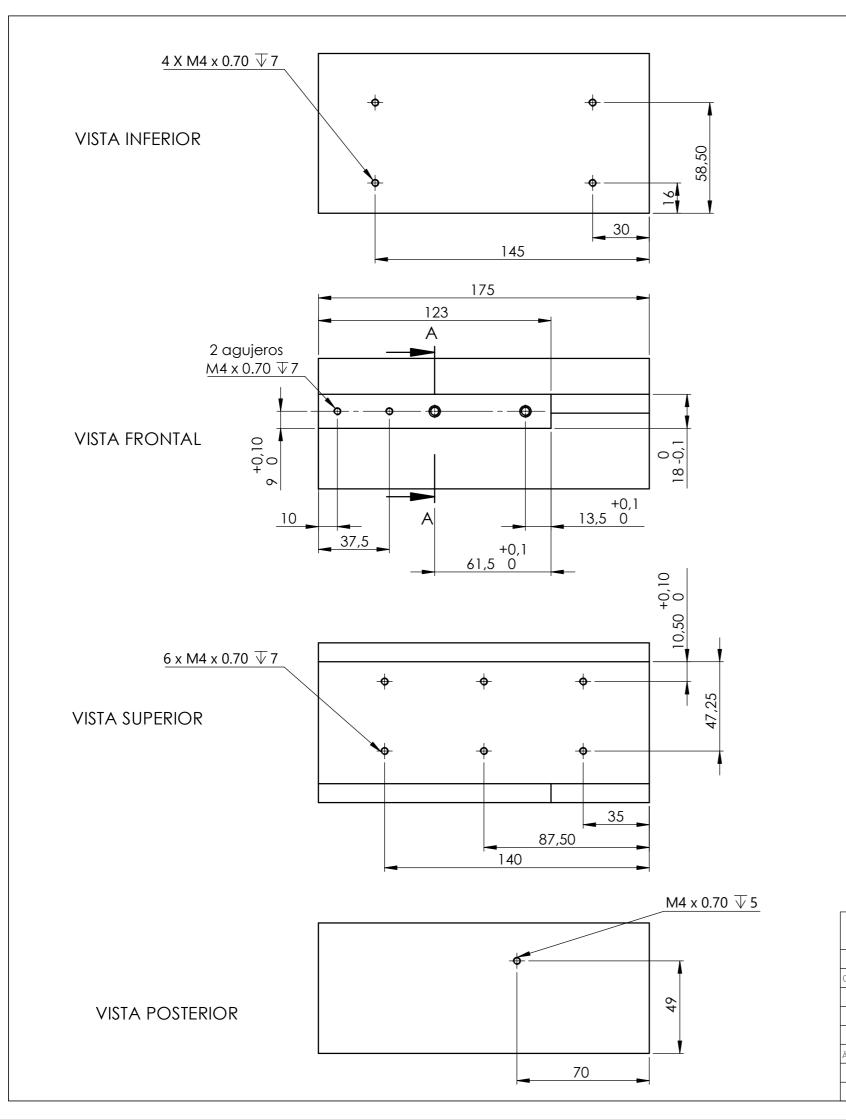




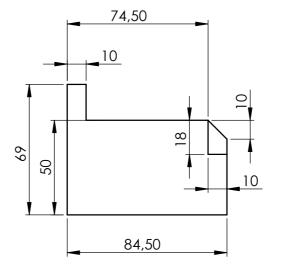
SECCIÓN A-A

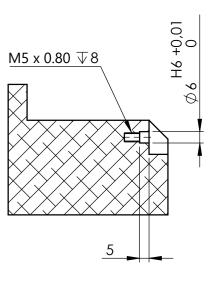
Toli	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁI	1	.I <i>J</i>
		PROYECTO FINAL					
	MECANIZADO	CHAPERÍA	ALUMNO:			_ 7	Máquina reconstructora de casquillos
0 A 20	±0,1	±0,5	Normas:				Maquina reconstructora de casquittos
>20	±0,	±Ι	Escala:	1:1	Material:	PLA	Peso(gr.): 8.18 Traramiento térmico
>150	±0,3	± 2	FORMATO: [DIN A4		I LA	-
>400	±0,5	±3		<u> </u>	DENOMINACIÓ	N:	N°
ÁNGULOS	±1°	±Ι°		1			HOJA
			CANTIE	AD:		Pie	za de conexión 1.09.2.2.05.1.A 1/1
ME	DIDAS E	N MM	1				

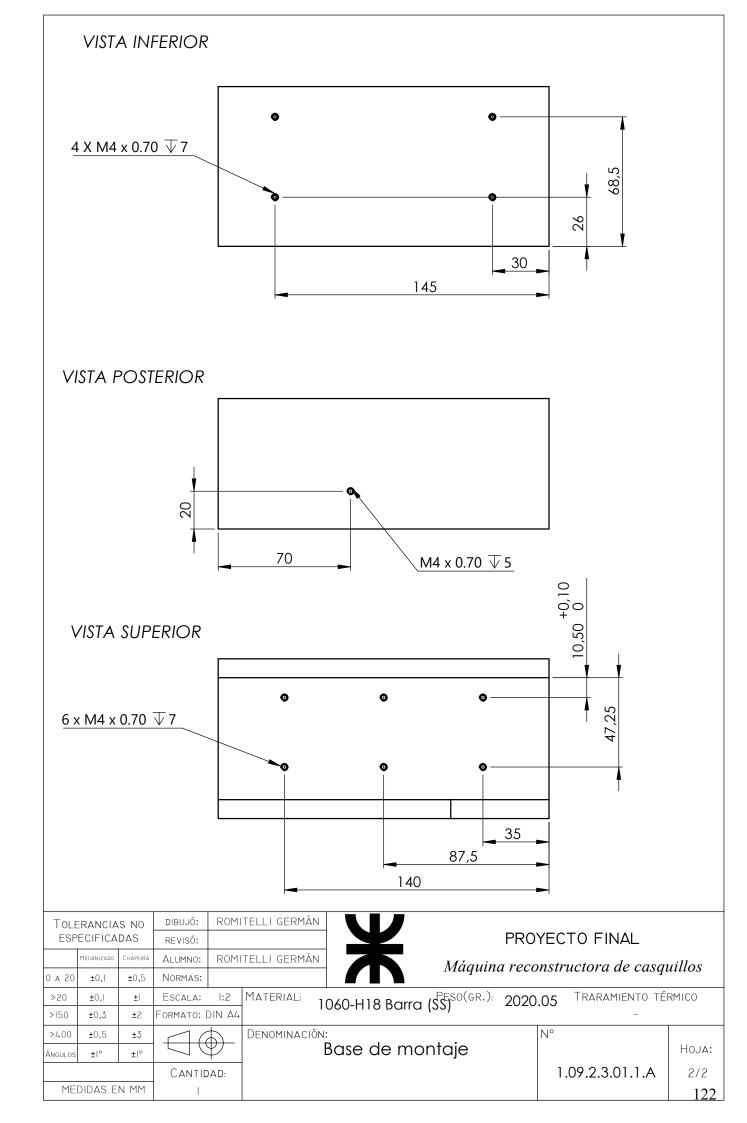


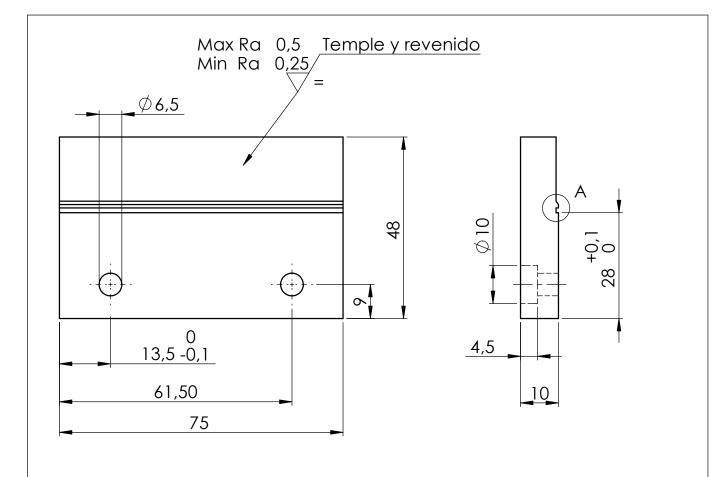

Orden	de	montaj	<u>e:</u>

- 1°. Montaje de la pieza 1.09.2.3.03 sobre la parte superior de la pieza 1.09.2.3.01 respetando las referencias de este plano y mediante los tornillos correspondientes.
- 2°. Montaje de la pieza 1.09.2.3.02 en el lateral de la pieza 1.09.2.3.01 respetando las referencias de este plano mediante los tornillos correspondientes.
- 3°. Insertar los tornillos gusano para su proximo montaje en la base de la máquina.
- 4°. Reservar el subconjunto junto con sus tornillos de anclaje para el armado final.

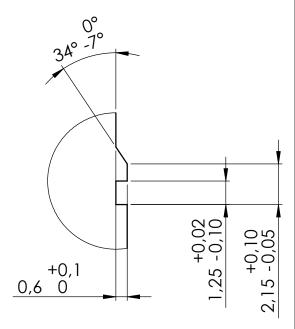

N.º DE ELEMENTO	N.º DE PIEZA	DESCRIPCIÓN	CANTIDAD
1	1.09.2.3.01	Base de montaje	1
2	10.9.2.3.02	Placa de reconstrucción fija	1
3	1.09.2.3.03	Guia del deslizador	1
4	1.09.4.2.05	Allen guia - 12.9 - M5 x 10 - Fosf.	2
5	1.09.4.2.04	Allen fresado - 12.9 -M4 x 12 - Fosf.	6
6	1.09.4.2.07	Gusano allen - 12.9- M4 x 16 - Fosf.	4


Tole	ERANCIA	S NO	DIBUJÓ: ROMI		TELLI GERMÁN PROYE		CTO FINAL			
ESP	ECIFICA	DAS	REVISÓ:	SENN	I PABLO					
	MECANIZADO	Chapería	ALUMNO:			Máquina reconstructora de casquillos				
0 д 20	±0,1	±0,5	Normas:							
>20	±0,	±Ι	ESCALA:	1:2	Material:	PESO(GR):	Traramiento té	RMICO		
>150	±0,3	±2	FORMATO: [DIN A3			-			
>400	№ 0,5	±3		1	DENOMINACIÓ	N:	N°			
Ángulos	±Ι°	±Ι°		٧		Ensamblaje general		HOJA:		
		Cantidad/I			Ensamblaje general Máquina reconstructora	1.09.2.3.1.A	1/1			
MEDIDAS EN MM			I			de casquillos		120		

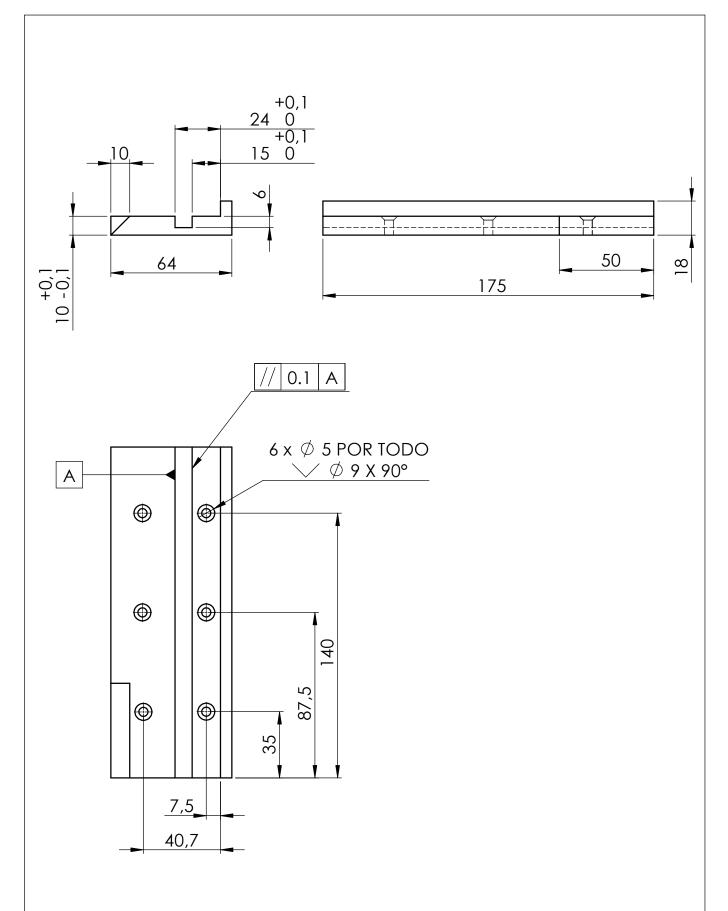

VISTA LATERAL IZQUIERDA

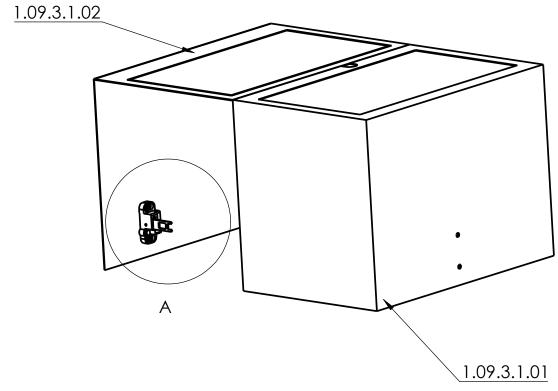


SECCIÓN A-A

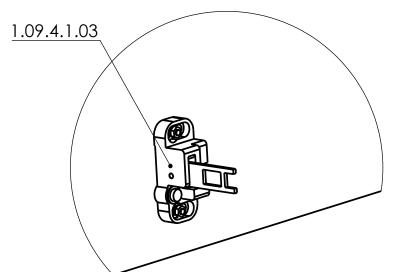


Tole	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN		PROYE	CTO FINAL	
ESP	ECIFICA	DAS	REVISÓ:				TROIL	.CTOT INAL	
	MECANIZADO	CHAPERÍA	ALUMNO:	ROMIT	ELLI GERMÁN		Máquina recons	tructora de casquil	los
0 A 20	±0,	±0,5	Normas:						
>20	±0,	±Ι	ESCALA:	1:2	MATERIAL:	40 D (00)	PESO(GR):	Terminación superi	FICIAL:
>150	±0,3	±2	FORMATO:	DIN A3	1060-H	18 Barra (SS)	2019.54	PINTADO EPO	XY
>400	±0,5	±3		$\overline{\Delta}$	DENOMINACIÓN	:		N°	
ÁNGULOS	±Ι°	±Ι°		\(\tag{\tau} \)		Base de m	ontaie		HOJA:
, ,		CANTI	DAD:	base de moi		ornajo	1.09.2.3.01	1/1	
MED	IDAS EN	I MM	1						121



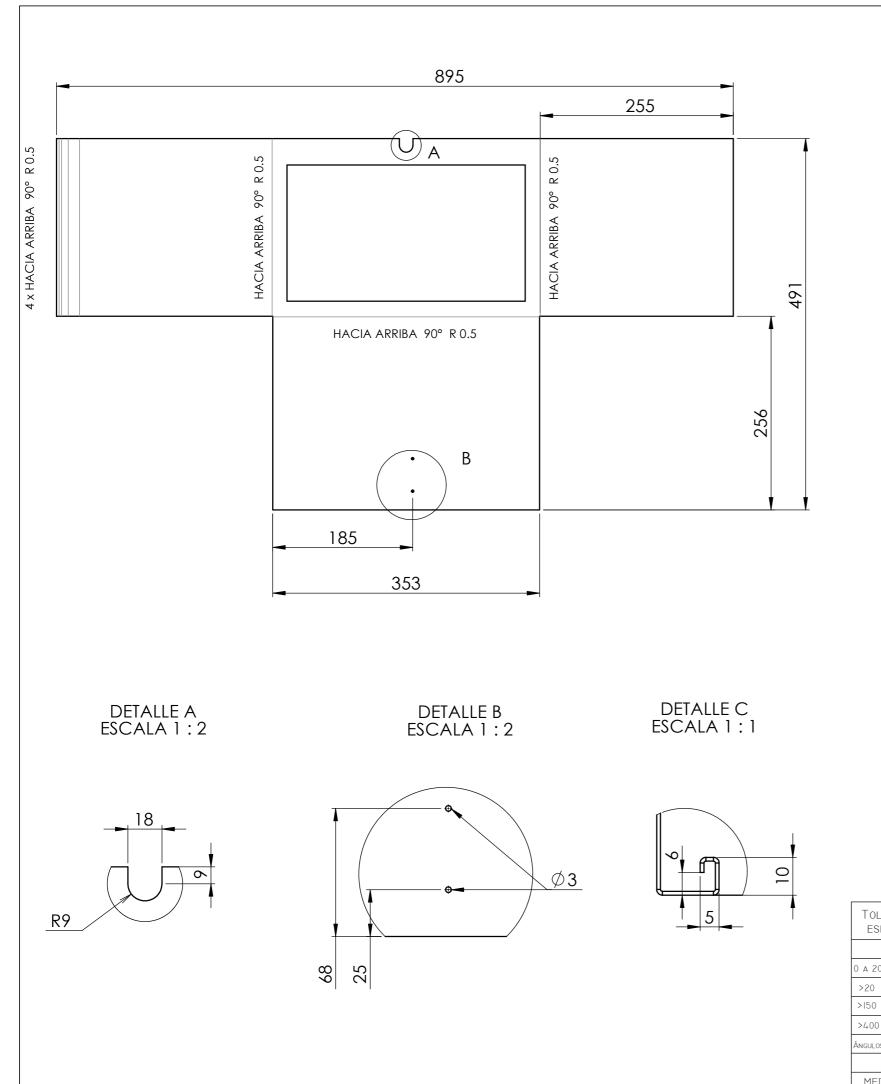


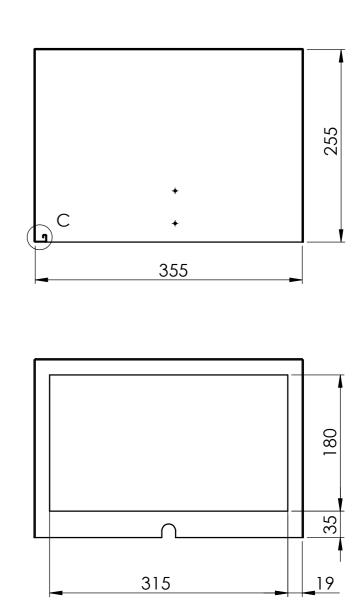
ToL	ERANCIA	S NO	DIBUJÓ:	ROMI	ROMITELLI GERMÁN							
ESF	PECIFICA	DAS	REVISÓ:	SENN	N PABLO	PROYECTO FINAL						
	MECANIZADO CHAPERÍA ALUMNO: 20 ±0.1 ±0.5 NORMAS:						Máquina reconstructora de casquillos					
0 A 20	±0,1	±0,5	Normas:				1010	aquina re	econstructora de ci	isquitios		
>20	±0,	±Ι	ESCALA:	:	MATERIAL:		PESO(GR.):		Traramiento			
>150	±0,3	±2	FORMATO: [DIN A4	SAI	E 1045	2	268.02	TEMPLE Y REVENIO	00 - 55 HRC		
>400	±0,5	±3		$\overline{\Delta}$	DENOMINACIÓN:				N°			
ÁNGULOS	±1°	±Ι°		Ψ_						HoJA:		
	CANTIDAD:			DAD:	Placa de reconstrucción fija 1.09.2.3.02.1.A				.A 1/1			
ME	MEDIDAS EN MM									123		



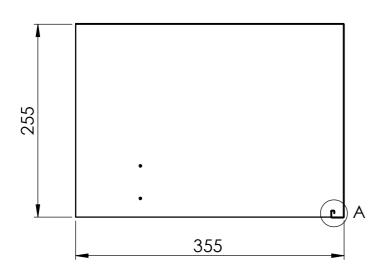
Tole	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN					
ESP	ECIFICA	DAS	REVISÓ:	SENN	N PABLO			PROYEC	TO FINAL	
	MECANIZADO	Chapería	ALUMNO:				Máquina	reconstr	uctora de casqu	uillas
0 д 20	±0,1	±0,5	Normas:				Maquina	reconstr	uctora ae casqi	iiios
>20	±0,	±	ESCALA:	1:2	Material:	PTFE - Teflon	PESO(GR.):	248.5	Traramiento tér	RMICO
>150	±0,3	±2	FORMATO: [DIN A4		I II L - TEIIOII	•	2 10.0	_	
>400	±0,5	±3		1	DENOMINACIÓ	N:		N°		
ÁNGULOS	±Ι°	±Ι°								Hoja:
			CANTIC	AD:		Guia del des	lizador	1.0	9.2.3.03.1.A	1/1
ME	MEDIDAS EN MM		I							124

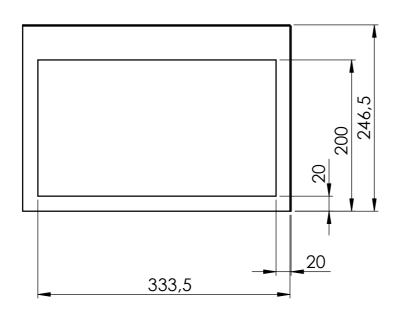
N.º	N.º DE PIEZA	DESCRIPCIÓN	CANTIDAD
1	1.09.3.1.01	Protección derecha	1
2	1.09.3.1.02	Protección izquierda	1
8	1.09.4.1.03	Switch de seguridad - D4NS_1 llave	2
11	1.09.4.2.08	Tornillo cabeza boton M3x 8 DIN 9427	4
12	1.09.4.2.10	Tuerca M3 DIN 934	4

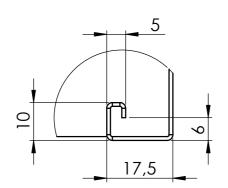


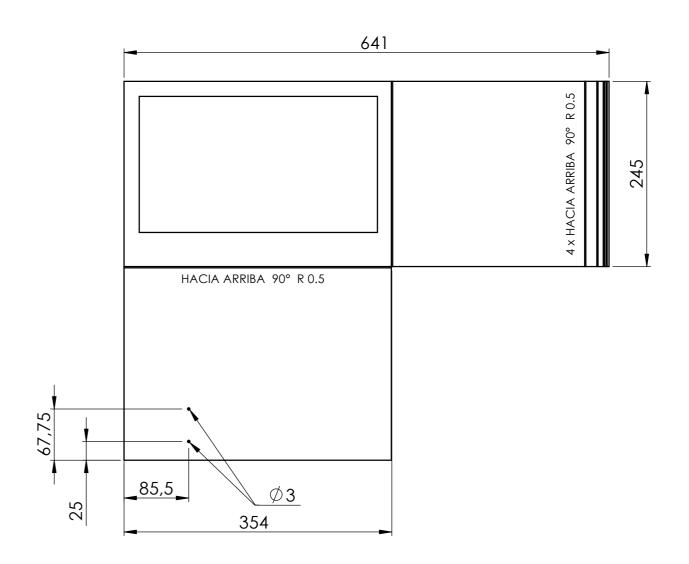


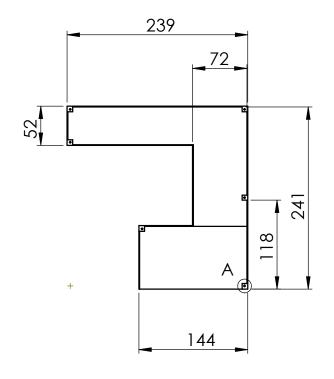
Orden de montaje:

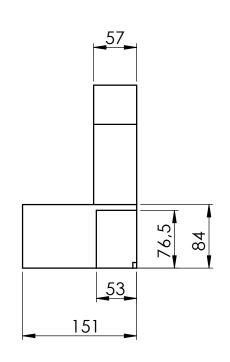

1. Montar lasobre las protecciones las llaves de seguridad (1.09.4.1.03) mediante los tornillos correspondietes y reservar para el armado final.

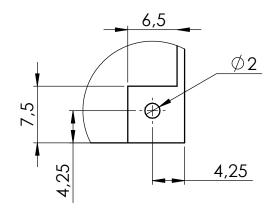

						+		
Toli	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN			
ESF	ECIFICA	DAS	REVISÓ:	SENN	N PABLO	PRO	YECTO FINAL	
	MECANIZADO	CHAPERÍA	ALUMNO:			Maguina raca	onstructora de casqi	uillos
0 A 20	±0,1	±0,5	Normas:			Maquina reco	msiruciora de casqi	ullios
>20	±0,	±Ι	ESCALA:	1:5	MATERIAL:	Peso(gr.): 761.	OA TRARAMIENTO TÉI	RMICO
>150	±0,3	± 2	FORMATO: [DIN A4		701.	.7 4	
>400	±0,5	±3			DENOMINACIÓN:	:	N°	
ÁNGULOS	±Ι°	±Ι°		4	Su	ubconiunto del		Hoja:
	,		CANTIE	AD:	Subconjunto del sistema de seguridad		1.09.3.1.1.A	1/1
ME	DIDAS E	N MM				3		125



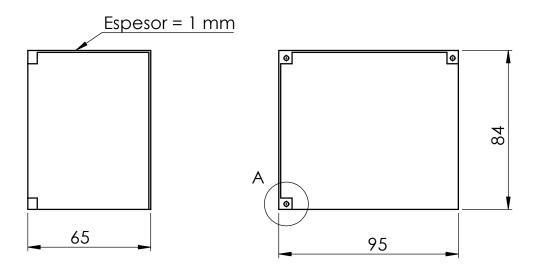


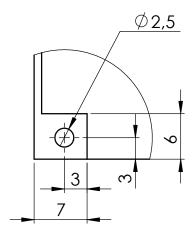


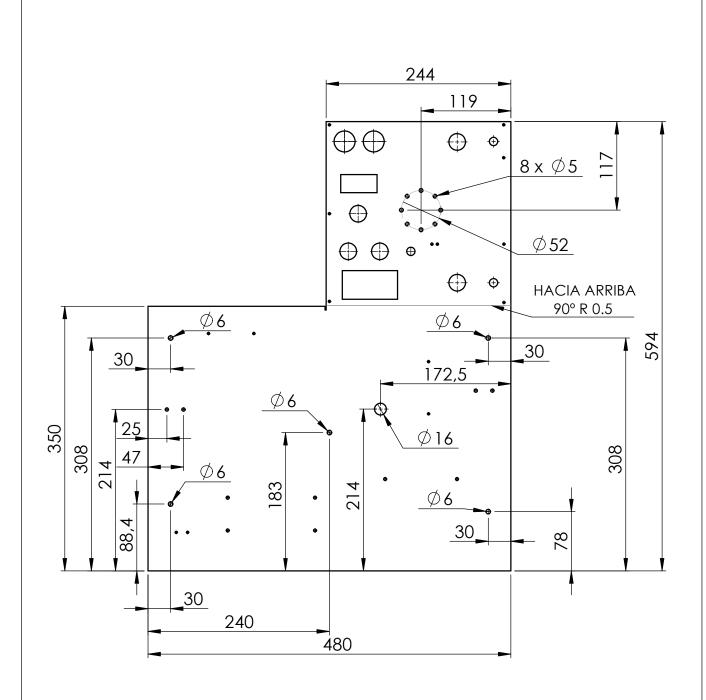

DETALLE A ESCALA 1 : 1



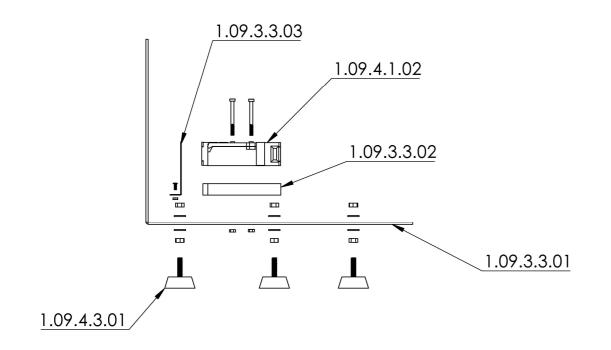
Tole	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN		PR	OYECT	O FINAL	
ESP	ECIFICA	DAS	REVISÓ:	SENN	N PABLO		111	OILCI	OTINAL	
	MECANIZADO	CHAPERÍA	ALUMNO:				Máquina re	constru	ctora de casqui	llos
0 A 20	±0,	±0,5	Normas:							
>20	±0,1	±Ι	ESCALA:	1:5	MATERIAL:	Chapa de	PESO(GR):		Traramiento t	ÉRMICO
>150	±0,3	±2	FORMATO: I	DIN A3	alum	ninio 1060. e= 1	mm	516.4	9 –	
>400	№ 0,5	±3			DENOMINACIÓ	N:		N°		
ÁNGULOS	± °	±Ι°		4						HOJA:
			CANTIE	DAD:		Chapa protecto	ora Izquierda		1.09.3.1.02.1.A	1/1
MED	IDAS EN	I MM								127

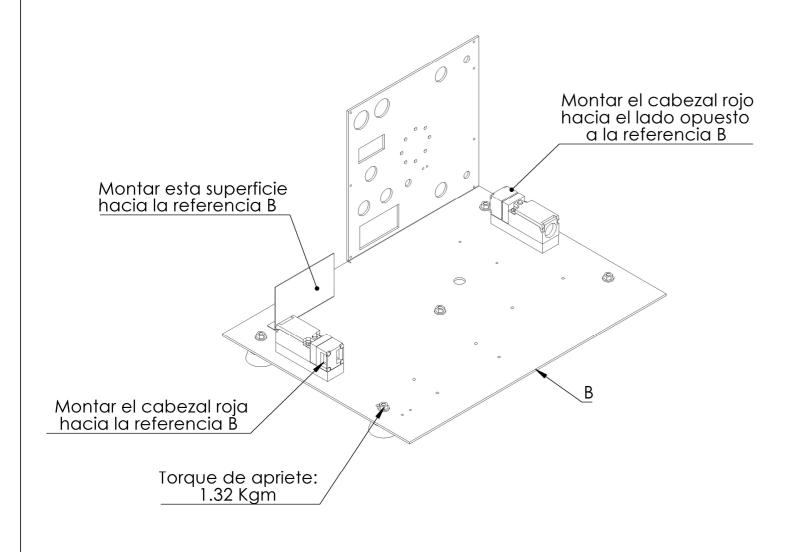



DETALLE A ESCALA 2 : 1


ToL	.ERANCIA	AS NO	DIBUJÓ:	ROMI	ITELLI GERMÁI	1	
ESI	PECIFICA	DAS	REVISÓ:				PROYECTO FINAL
	MECANIZADO	CHAPERÍA	ALUMNO:	ROMI	ITELLI GERMÁN	1	Máquina reconstructora de casquillos
0 A 20	±0,1	±0,5	Normas:				Maquina reconstructora de casquitios
>20	±0,1	±I	Escala:	1:5	MATERIAL:	PLA	PESO(GR.): 114.43 TRARAMIENTO TÉRMICO
>150	±0,3	±2	FORMATO: [DIN A4		ΓLA	-
>400	±0,5	±3		1	DENOMINACIÓ	N:	N°
ÁNGULOS	s ±l°	±Ι°		¥7—			1.09.3.2.01.1.A
			CANTIC	AD:	Caja pr	otect	tora Inst. Electrica
ME	EDIDAS E	N MM	ı				128

DETALLE A ESCALA 2 : 1

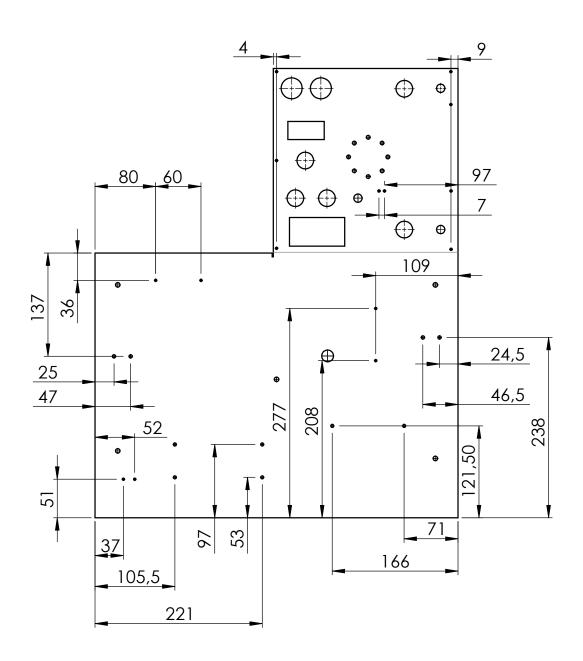



ToL	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN				
ESF	PECIFICA	DAS	REVISÓ:	SENN	I PABLO	PROYECTO FINAL			
	MECANIZADO	CHAPERÍA	ALUMNO:			Máquina reconstructora de casquill	OC		
0 A 20	±0,1	±0,5	Normas:			Maquina reconstructora de casquita	US		
>20	±0,1	±Ι	ESCALA:	1:2	MATERIAL: DI	PESO(GR.): TRARAMIENTO TÉRMIC	0		
>150	±0,3	± 2	FORMATO: [DIN A4	PL.	A 19 .84			
>400	±0,5	±3		$\overline{\Delta}$	DENOMINACIÓN:	: N°			
ÁNGULOS	±I°	±Ι°		Ψ		Caja protectora de la	OJA:		
			CANTIE	DAD:	i	Caja protectora de la instalación electrica 2 1.09.3.2.02.1.A	1/1		
ME	DIDAS E			instance of the state of the st					

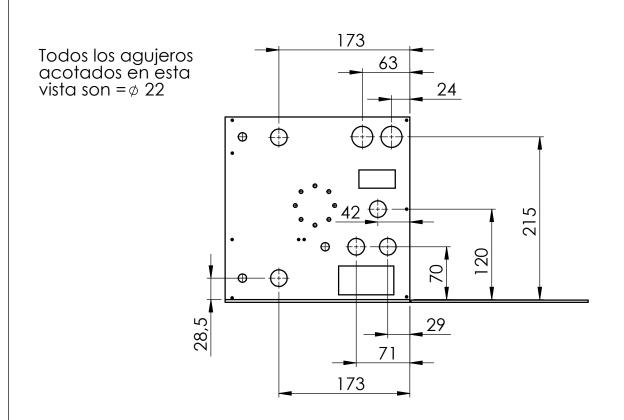
Espesor de la chapa = 3 mm

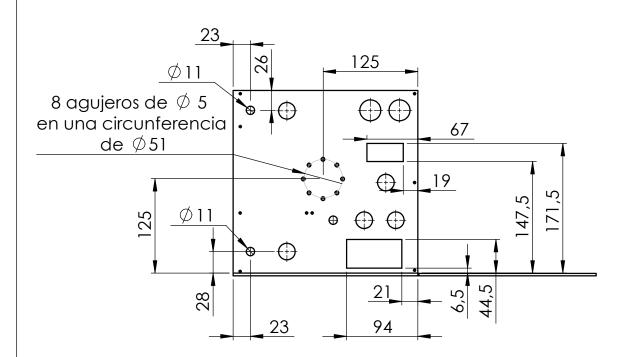
TOLE	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN		
ESP	ECIFICA	DAS	REVISÓ:	SENN	N PABLO	PROYECTO FINAL	
	MECANIZADO	CHAPERÍA	ALUMNO:			Máquina reconstructora de casquil	los
0 д 20	±0,1	±0,5	Normas:			Maqama reconstructora de casquita	103
>20	±0,	±Ι	Escala:	1:5		Chapa lisa de Peso(gr.): 1781.84 Traramiento términ	СО
>150	±0,3	± 2	FORMATO: [DIN A4	alı	Iluminio 1050 H14	
>400	±0,5	±3		A	DENOMINACIÓN:		
ÁNGULOS	±Ι°	±Ι°		4			:ALOH
			CANTIC	AD:	Base c	de soporte y ensamblaje 1.09.3.3.01.A	1/3
ME	MEDIDAS EN MM						130

N.°	N.º DE PIEZA	DESCRIPCIÓN	CANTIDAD
1	1.09.3.3.01	Base de soporte y ensamblaje	1
2	1.09.3.3.02	Soporte del switch de seguridad	2
3	1.09.3.3.03	Soporte de la caja receptora	1
4	1.09.4.3.01	Soporte antideslizante	5
5	1.09.4.2.08	Tornillo cabeza boton M3x 8 DIN 9427	2
6	1.09.4.2.10	Tuerca M3 DIN 934	2
7	1.09.4.2.12	tuerca M6 DIN 934	10
8	1.09.4.2.14	Arandela M6 DIN 125-1	10
9	1.09.4.2.09	Tornillo cabeza boton M5 x 8 DIN 9427	4
10	1.09.4.2.08	Tor. allen cabeza cilindrica M4 x 45 DIN 7984	4
11	1.09.4.1.021	D4NS_1 CYC	2

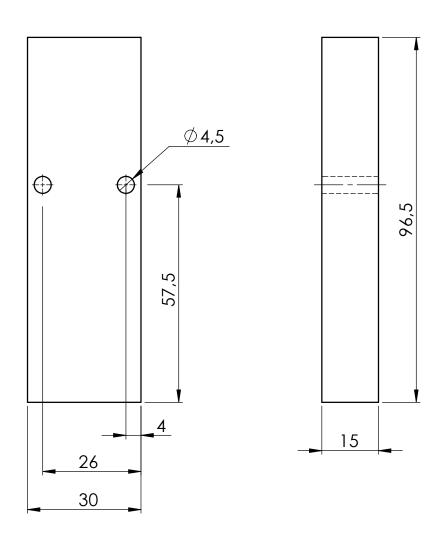

Orden de montaje:

- 1. Montar los 5 soportes antideslizantes (1.09.4.3.01) en los orficios correspondiente mediante las tuercas necesarias.
- 2. Montar la pieza 1.09.3.3.03 sobra la base de soporte.
- 3. Montar las piezas 109.3.3.02 junto con los switch de seguridad (1.09.4.1.02) mediante los tornillos correspondientes.
- 4. Reservar el subconjunto para el armado final.

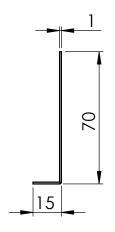

	Tole	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN	NIJ PROYE	СТС) FINAL	
	ESF	ECIFICA	DAS	REVISÓ:	SENN	N PABLO	TROTE) I INAL	
		MECANIZADO	CHAPERÍA	ALUMNO:			Máquina reconst	truci	tora de casquill	los
	0 д 20	±0,1	±0,5	Normas:						
	>20	±0,1	±Ι	ESCALA:	l:5	MATERIAL:	PESO(GR): 2083.	၁၀	Traramiento té	RMICO
	>150	±0,3	± 2	FORMATO: [DIN A3		2003.	20	-	
	>400	± 0,5	±3		$\overline{\Delta}$	DENOMINACIÓN	ı:	Ν°		
,	ÁNGULOS	±Ι°	± °		Ψ_	Sul	hooniunto elementos			HOJA:
			CANTIE	DAD:	Subconjunto elementos de soporte			1.09.3.3.1.A	171	
	MED	IDAS EN	I MM				30 00 00 00 00			131

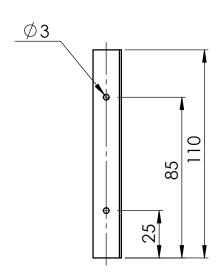

Todas las perforaciones acotadas en este plano son:

$$\phi = 3$$



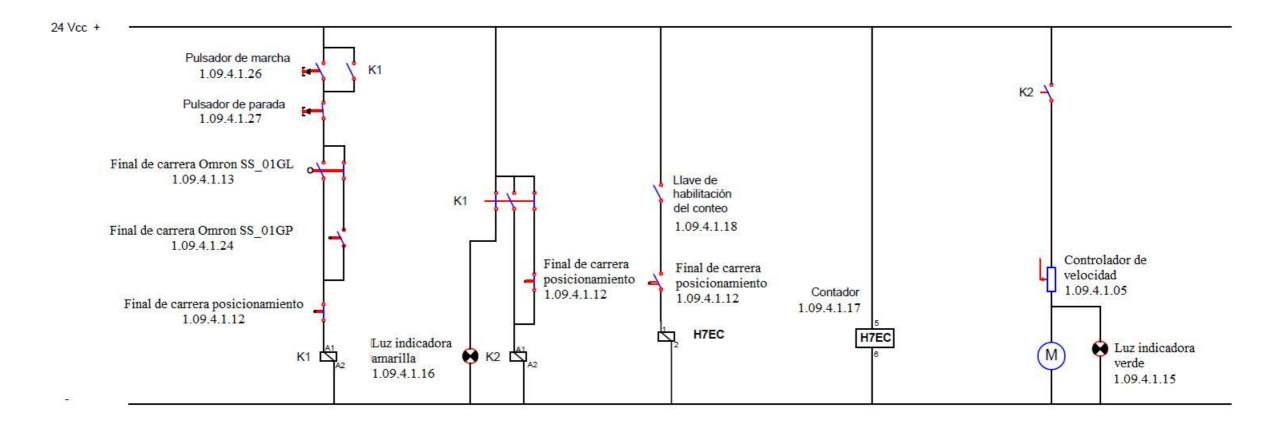
ME	DIDAS E	N MM	Cantid	DAD:				
Ángulos	± °	±Ι°		٣_	Base de	soporte y ensamblaje	1.09.3.3.01.A	Hoja: 2/3
>400	±0,5	±3		<u> </u>	DENOMINACIÓN	1:	N°	
>150					alı	uminio 1050 H14	-	
>20	±0,1	±Ι	ESCALA:	1:5		napa lisa de Peso(gr.): 1781	84 TRARAMIENTO TÉF	RMICO
0 A 20			Normas:					
	MECANIZADO	CHAPERÍA	ALUMNO:			Máguing raco	nstructora de casqi	uillas
ESF	ECIFICA	DAS	REVISÓ:	SENN	I PABLO	PRO	YECTO FINAL	
TOLE	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN			



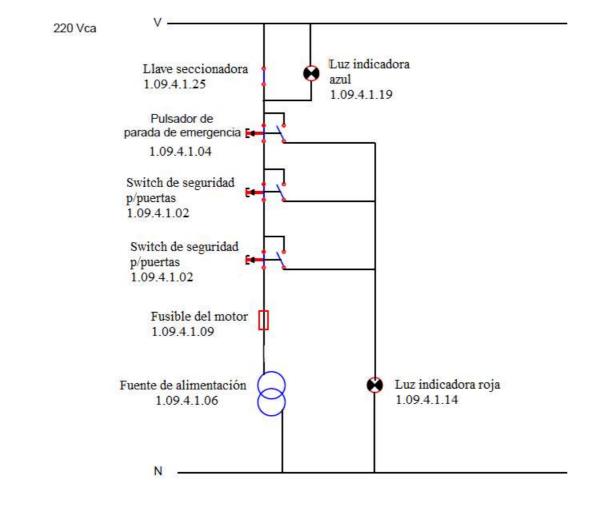


Toli	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN			
ESF	PECIFICA	DAS	REVISÓ:	SENN	N PABLO	PROY	ECTO FINAL	
	MECANIZADO	CHAPERÍA	ALUMNO:			Máquing raco	nstructora de casqi	uillos
0 A 20	±0,1	±0,5	Normas:			I I I I I I I I I I I I I I I I I I I	nstructora de casqi	ıııos
>20	±0,	±Ι	ESCALA:	1:5	MATERIAL: C	napa lisa de PESO(GR.): 1781	84 TRARAMIENTO TÉR	RMICO
>150				DIN A4	alı	napa lisa de PESO(GR.): 1781 Uminio 1050 H14	-	
>400	±0,5	±3		T	DENOMINACIÓN:		N°	
ÁNGULOS	±1°	±Ι°		Ψ_				Hoja:
	,		CANTIC	DAD:	Base de	soporte y ensamblaje	1.09.3.3.01.1.A	3/3
ME	MEDIDAS EN MM							133

Toli	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN					
ESF	PECIFICA	DAS	REVISÓ:	SENN	N PABLO		PR:	OYEC	TO FINAL	
	MECANIZADO	CHAPERÍA	ALUMNO:					onetv	uctora de casqu	uillos
0 A 20	±0,1	±0,5	Normas:				Waqama rec	Ousu	uctora de casqi	iiios
>20	±0,	±Ι	ESCALA:	1:1	Material:	ABS	PESO(GR.): 43	81	Traramiento tér	RMICO
>150	±0,3	±2	FORMATO: [DIN A4	·	AD3	10		-	
>400	±0,5	±3		1	DENOMINACIÓN	V:		N°		
ÁNGULOS	±1°	±Ι°			Sonorte	a del swite	ch de seguridad	4		Hoja:
			CANTIC	AD:	3000110	o del sville	en de segundat	1 1.0	9.3.3.02.1.A	1/1
ME	DIDAS E	N MM	I							134



TOLE	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁ	N			
	ECIFICA		REVISÓ:	SENN	N PABLO	–	PROYECTO FINAL		
	MECANIZADO	CHAPERÍA	ALUMNO:				Máquina reconstructora de casquillos		
0 д 20	±0,1	±0,5	Normas:				Maquina reconstructora de casquitios		
>20	±0,	±Ι	ESCALA:	1:2	MATERIAL:	PLA	PESO(GR.): 8.45 TRARAMIENTO TÉRMICO		
>150	±0,3	±2	FORMATO: [DIN A4		I LA	-		
>400	±0,5	±3		<u> </u>	DENOMINACIO	ÓΝ:	N°		
ÁNGULOS	±Ι°	±Ι°		4			HOJA:		
			CANTIE	AD:	Sc	porte	e caja receptora 1.09.3.3.03.1.A 1/1		
ME	DIDAS E	N MM	I				135		


3.4 Planos eléctricos.

A continuación, se presenta el plano de la instalación eléctrica de la máquina.

Circuito de 24 Vcc

Circuito de 220 Vca

Tole	ERANCIA	S NO	DIBUJÓ:	ROMI	TELLI GERMÁN	PROVE	CTO FINAL		
ESF	PECIFICA	DAS	REVISÓ:			TROIL	TROTECTOTINAL		
	MECANIZADO	CHAPERÍA	ALUMNO:	ROMIT	ELLI GERMÁN	Máquina reconst	tructora de casquill	os	
0 A 20	±0,	±0,5	Normas:						
>20	±0,1	±Ι	ESCALA:	:	MATERIAL:	PESO(GR):	Traramiento té	RMICO	
>150	±0,3	±2	FORMATO: [DIN A3			-		
>400	№ 0,5	±3	$\overline{100}$	$\overline{\lambda}$	DENOMINACIÓN	:	N°		
ÁNGULOS	± °	± °		¥7		Circuitos eléctricos		HOJA:	
			CANTIE	DAD:			137	1/1	
MED	IDAS EN	I MM	ı						

3.5 Diagramas de flujo.

A continuación, se presenta la ingeniería de proceso aplicada a la producción de las diferentes piezas que conforman esta máquina mediante un diagrama de bloque, hojas de flujo, hojas de procesos y hojas de inspección.

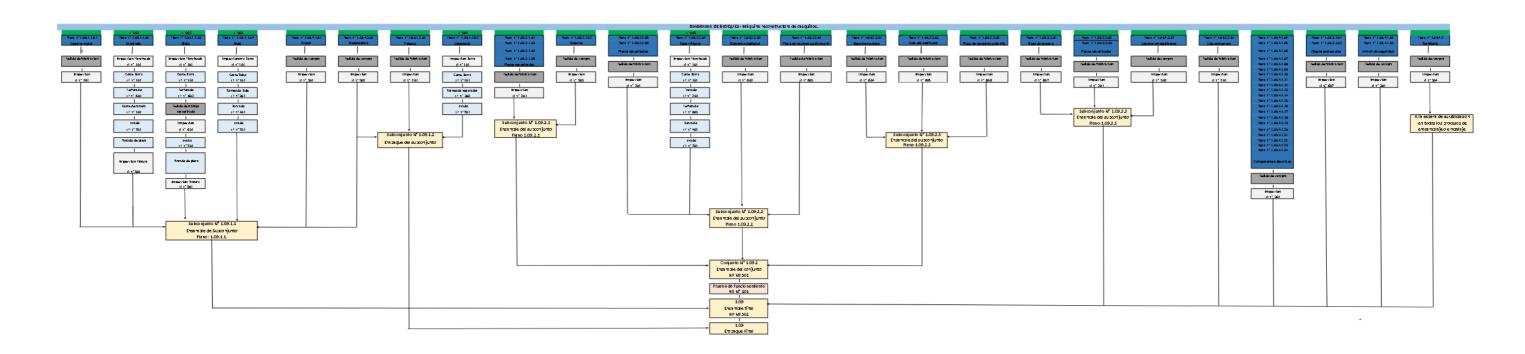


Fig. 40. Diagrama de flujo. Elaboración

Hoja N°: 001

	旦			Æ	Pieza N°:	1.09.1.1.02	Denominación:	Manivela
ő	ORI	7	₫	ALMACENAJE	Conjunto N°:	1.09.1	Denominación:	Accionamiento
PROCESO	TRANSPORTE	CONTROL	DEMORA	ACE	Proveedores: Aym	net SRL		
PRO	TRA	CO	DEM	ALM	DESCRIPCIÓ	N DE LA ACTIVIDAD	MÉTOE	OO DE CONTROL
		Χ			Recepción de la	a materia prima	HI N° 101	
Х					Corte de mater	ia prima	HP № 101	
X					Perforado		HP Nº 601	
X					Ranurado		HP Nº 102	
X					Lavado		HP № 701	
	Х				Pintado			
		Χ			Inspección de p	pintura	HI Nº 501	
				Χ	Espera de Arm	ado	S/ plano: 1.09	.1.1
						_		
<u> </u>								

	REVISIÓN										
L/C	Descripción	Realizó	Fecha	Aprobó	Fecha						
Α	EMISIÓN ORIGINAL										

Hoja N°: 001

				1				
	ſΕ			ΙE	Pieza N°:	1.09.1.1.03	Denominación:	Biela
000	OR)L	4	:NA	Conjunto N°:	1.09.1	Denominación:	Accionamiento
PROCESO	TRANSPORTE	CONTROL	10R,	ALMACENAJE	Proveedores:			
PRC	TRA	CO	DEMORA	ALM	DESCRIPCIÓ	ON DE LA ACTIVIDAD	MÉTOD	O DE CONTROL
		Χ			Recepción de la	a materia prima		
		Χ			Inspección de l	a planchuela	HI N° 101	
X					Corte en sierra	sin fin.	HP Nº 101	
X					Perforado		HP Nº 602	
	Х				Fresado del alc	jamiento del rodamient	0	
X					Inspección del	fresado	HI Nº 601	
X					Lavado de piez	а	HP Nº 701	
	Х				Pintado de la p	ieza		
		Χ			Inspección de p	ointura	HI N° 501	
				Χ	Espera de Arm	ado		
							•	

		REVISIÓN			
L/C	Descripción	Realizó	Fecha	Aprobó	Fecha
Α	EMISIÓN ORIGINAL				

Hoja N°: 001

				1				
	Ē			E	Pieza N°:	1.09.1.1.04	Denominación:	Buje
Õ	ORI)[4	NAJ	Conjunto N°:	1.09.1	Denominación:	Accionamiento
PROCESO	TRANSPORTE	CONTROL	DEMORA	ALMACENAJE	Proveedores:			
PRO	TRA	CON	DEN	ALM	DESCRIPCIĆ	ON DE LA ACTIVIDAD	MÉTOD	O DE CONTROL
		Χ			Recepción de la	a materia prima		
		Χ			Inspección de l	a barra.	HI N° 101	
Χ					Corte en sierra	sin fin.	HP Nº 101	
Χ					Torneado del b	uje	HP Nº 301	
X					Roscado		HP N° 401	
X					Lavado de la pi	eza	HP Nº 701	
				Χ	Espera de Arm	ado		

		REVISIÓN			
L/C	Descripción	Realizó	Fecha	Aprobó	Fecha
Α	EMISIÓN ORIGINAL				

Hoja N°: 001

				١						
00	TRANSPORTE	CONTROL	DEMORA	Щ	Pieza N°:	1.09.1.2.02	Denominación:	Separador		
				NAJ	Conjunto N°:	1.09.1	Denominación:	Accionamiento		
PROCESO				ALMACENAJE	Proveedores:					
PRO					DESCRIPCIĆ	N DE LA ACTIVIDAD	MÉTOE	OO DE CONTROL		
		Χ			Recepción de la	a materia prima				
		X			Inspección de l	a barra.	HI N° 101			
X					Corte en sierra	sin fin.	HP Nº 101	HP N° 101		
X					Torneado del s	eparador	HP Nº 302	HP N° 302		
X		Lavado de la pieza				eza	HP № 701			
				Χ	Espera de Arm	ado				

REVISIÓN										
L/C	Descripción	Realizó	Fecha	Aprobó	Fecha					
Α	EMISIÓN ORIGINAL									

DIAGRAMADE FLUJO DE PROCESO E INSPECCIÓN

Hoja N°: 001

Alt: **A**

			١					
	ſΕ			ΙE	Pieza N°:	1.09.2.2.04	Denominación:	Tope y fijador
000	TRANSPORTE)L	4	:NA	Conjunto N°:	1.09.2	Denominación:	Reconstructora
PROCESO		CONTROL	DEMORA	ALMACENAJE	Proveedores:			
PRC	TRA	CO	DEN	ALM	DESCRIPCIĆ	DESCRIPCIÓN DE LA ACTIVIDAD		OO DE CONTROL
		Χ			Recepción de la	a materia prima		
		X			Inspección de l	a planchuela	HI N° 101	
X					Corte en sierra	sin fin.	HP Nº 101	
X					Fresado de la p	pieza	HP Nº 201	
X					Perforado de lo	s orificios	HP Nº 603	
X					Roscado del or	ificio	HP Nº 402	
X					Lavado de la pi	eza	HP Nº 701	
				Χ	Espera de Arm	ado		
Ь	1						1	

REVISIÓN						
L/C	Descripción	Realizó	Fecha	Aprobó	Fecha	
Α	EMISIÓN ORIGINAL					

OPERACION	DESCRIPCION	COD. PIEZA
UE 101	PRUEBA DE FUNCIONAMIENTO DE LA	Varios

HR003 – Plataforma de ensayo

HE 101

RECONSTRUCTORA

Varios

N° DESCRIPCION: DISPOSITIVO: ESPECIFICACION INST. CNTR. FREC. 1 Montar el conjunto 1.09.2 en la plataforma de ensayo. HR003 Fijar con las tuercas 1.09.4.2.11 el conjunto a la plataforma Visual 1/1 2 Montar el accionador manual de la plataforma a la pieza 1.09.2.2.05 HR003 Fijar con las tuercas 1.09.4.2.12 el conjunto a la plataforma de la plataforma Visual 1/1 3 Ajustar la placa móvil Casquillo patrón Realizar la regulación de la placa móvil con el casquillo de muestra Visual 1/1 4 Alimentar a la reconstructora de casquillos deformados en el alimentador Accionar 10 casquillos deformados en el alimentador Visual 1/1 5 Accionar manualmente la reconstructora Casquillo su funcionalidad Visual 1/1 6 Verificar dimensionalmente los casquillos reconstruidos Casquillo patrón SAAMI Z299.3 –2015 Calibre de precisión 1/1 7 Desmontar el conjunto 1.09.2 de la plataforma de ensayo Desmontar el conjunto Visual 1/1	OP. ANT.N°: Varios							
Montar el conjunto 1.09.2 en la plataforma de ensayo. HR003 Montar el accionador manual de la plataforma a la pieza 1.09.4.2.12 el conjunto a la plataforma Montar el accionador manual de la plataforma a la pieza 1.09.2.2.05 HR003 Ajustar la placa móvil Casquillo patrón Realizar la regulación de la placa móvil con el casquillo de muestra Colocar 10 casquillos deformados en el alimentador Accionar manualmente la reconstructora de casquillos de ensayo verificando su funcionalidad Visual 1/1 Accionar dimensionalmente los casquillos reconstructora Visual 1/1 Desmontar el conjunto 1.09.2 de la plataforma de ensayo Desmontar el conjunto Visual 1/1	Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.		
Montar el accionador manual de la plataforma a la pieza 1.09.4.2.12 el conjunto a la plataforma 1.09.2.2.05 Ajustar la placa móvil Casquillo patrón Realizar la regulación de la placa móvil con el casquillo de muestra Colocar 10 casquillos deformados en el alimentador Accionar manualmente la reconstructora de ensayo verificando su funcionalidad Visual 1/1 Accionar la plataforma de ensayo verificando su funcionalidad Visual 1/1 Accionar la plataforma de ensayo verificando su funcionalidad Visual 1/1 Accionar la plataforma de ensayo verificando su funcionalidad Visual 1/1 Desmontar el conjunto 1.09.2 de la plataforma de ensayo Desmontar el conjunto Visual 1/1	1		HR003	1.09.4.2.11 el conjunto a la	Visual	1/1		
Alimentar a la reconstructora de casquillos deformados Accionar manualmente la reconstructora Verificar dimensionalmente los casquillos reconstruidos Casquillo SAAMI Z299.3 –2015 Calibre de precisión 1/1 Desmontar el conjunto 1.09.2 de la plataforma de ensayo Desmontar el conjunto 1.09.2 de la plataforma de ensayo Desmontar el conjunto 1.09.2 de la plataforma de ensayo Visual 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1	2	de la plataforma a la pieza	HR003	1.09.4.2.12 el conjunto a la	Visual	1/1		
4 Alimentar a la reconstructora de casquillos deformados 5 Accionar manualmente la reconstructora 6 Verificar dimensionalmente los casquillos reconstruidos Casquillo SAAMI Z299.3 –2015 Calibre de precisión 7 Desmontar el conjunto 1.09.2 de la plataforma de ensayo Desmontar el conjunto 1.09.2 de la plataforma de ensayo Casquillo SAAMI Z299.3 –2015 Desmontar el conjunto 1.09.2 de la plataforma de ensayo	3	Ajustar la placa móvil	•	de la placa móvil con el casquillo de	Visual	1/1		
de ensayo verificando su funcionalidad Visual 1/1 Verificar dimensionalmente los casquillos reconstruidos Casquillo patrón SAAMI Z299.3 –2015 Calibre de precisión 1/1 Desmontar el conjunto 1.09.2 de la plataforma de ensayo Desmontar el conjunto 1.09.2	4			deformados en el	Visual	1/1		
casquillos reconstruidos patrón SAAMI 2299.3 –2015 precisión 1/1 Desmontar el conjunto 1.09.2 de la plataforma de ensayo Desmontar el conjunto Visual 1/1	5			de ensayo verificando	Visual	1/1		
de la plataforma de ensayo	6		•	SAAMI Z299.3 –2015		1/1		
PROX. OP.N°: HP 502	7			Desmontar el conjunto	Visual	1/1		
	PRO	X. OP.N°: HP 502						

	HOJA DE PROCESO	
OPERACION	DESCRIPCION	COD. PIEZA
HE 101	PRUEBA DE FUNCIONAMIENTO DE LA RECONSTRUCTORA	Varios

HR003 – Plataforma de ensayo

PTA. PUNTO: Verificar visualmente la plataforma de ensayo.

EJECUCION: Montar el conjunto 1.09.2 en la plataforma de ensayo mediante las tuercas

correspondientes.

Montar el accionador manual de la plataforma al conjunto 1.09.2 Verificar el correcto accionamiento del sistema sin casquillos.

Regular la placa móvil con el casquillo patrón

Asegurar la placa móvil ajustando los tornillos 1.09.4.2.06

Alimentar la maquina con 10 casquillos deformados.

Realizar la reconstrucción de esos 10 casquillos verificando el correcto

funcionamiento de la máquina.

Realizar la comprobación dimensional de los casquillos reconstruidos con el

calibre y verificando la reconstrucción realizada

Si las dimensiones de los casquillos no es la correcta, volver a realizar el

ensayo verificando la regulación de la placa movil.

Una vez lograda la reconstrucción requerida, desmontar el conjunto 1.09.2 de

la plataforma de ensayo.

OPERACION	DESCRIPCION	COD. PIEZA
HP101	CORTE DE MATERIA PRIMA	Varios

MAQUINA O EQUIPO:

MQ004 - Sierra sin fin horizontal

	-			
Hoja de flujo	Código del componente a fabricar	Dimensiones del material	Material	Longitud de corte
HF 001	1.09.1.1.02	38 x 12.7	Aluminio - A6063	135 mm ± 0.5
HF 002	1.09.1.1.03	32 x 16	Aluminio - A6063	255 mm ± 0.5
HF 005	1.09.2.2.04	15.8 x 8	Aluminio - A6063	45 mm - 0.3
HF 003	1.09.1.1.04	Ø = 15 mm	Bronce - Sae 64	32 mm + 0.2
HF 004	1.09.1.2.02	Ø = 15 mm	Bronce - Sae 64	9 mm + 0.2

OP.	OP. ANT.N°: HI 101 -							
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.			
1	Identificar material a cortar	Calibre / cinta métrica	Según tabla		1/1			
2	Realizar medición de la longitud de corte y marcar	Calibre / Cinta métrica	Según tabla	Patrón	1/5			
3	Corte	Sierra Sin Fin		Patrón	1/5			
4	Eliminar cantos vivos	Amoladora		Patrón	1/1			
PRO	PROX. OP.N°: Según Nº de HF							

PTA. PUNTO: Controlar cotas.

Corte a 90 grados con respecto dirección de la mesa.

Verificar velocidad de funcionamiento.

EJECUCION: Tomar material.

Posicionar en sierra sin fin horizontal.


Alinear material utilizando caballetes de ser necesario.

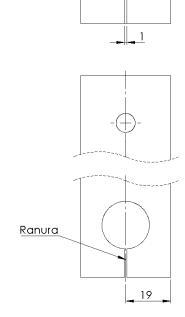
Medir y marcar el corte a realizar. Apretar el material en la morsa.

Realizar el corte sobre la marca realizada.

Verificar corte con patrón.

Repetir estas operaciones las veces que sean necesarias. Eliminar rebarbas producidas según el patrón de muestra.

HOJA DE PROCESO	


CORTE DE RANURA DE LA MANIVELA

MAQUINA O EQUIPO:

MQ004 - Sierra sin fin horizontal

HP102

OP.	OP. ANT.N°: HP 102 -								
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.				
1	Medición y marcado del corte	Regla / microfibra	Centrado en el ancho de la pieza.						
2	Corte	Sierra Sin fin	Hasta generar la ranura completa						

PROX. OP.N°: HI 401

PTA. PUNTO: Controlar cotas.

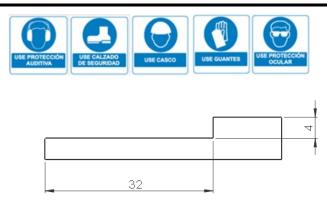
Corte a 90 grados con respecto dirección de la mesa.

Verificar la cinta de corte a utilizar y la velocidad de trabajo.

EJECUCION: Tomar la pieza.

Posicionarla en la sierra y sujetarla en la morsa.

Utilizando la regla y una microfibra marcar la zona a cortar. Realizar el corte marcado hasta generar la ranura completa. Eliminar rebarbas producidas en caso de ser necesario.


1.09.1.1.02

OPERACION	DESCRIPCION	COD. PIEZA

HP 201 | FRESADO DEL TOPE Y FIJADOR

MQ001 - Rectificadora/Fresadora

OP. A	OP. ANT. N°: HP 101					
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.	
1	Sujeción de la pieza					
2	Puesta a punto de la máquina.		Según imagen superior	Visual	1/5	
3	Ejecución del rebaje.		Según imagen superior	Calibre vernier 1/20	1/3	

PROX. OP.N°: HP 603

PTA. PUNTO: Verificar velocidad de trabajo del cabezal.

Seleccionar inserto a utilizar.

Colocar los finales de carrera correspondientes

Programar los movimientos de la mesa.

EJECUCION: Tomar material.

Posicionar el material en la morsa de la fresadora.

Ajustar el material.

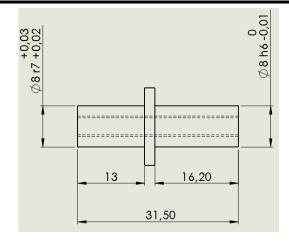
Realizar las pasadas de desbaste necesarias para llegar a la medida final

necesaria.

Eliminar rebarbas producidas en caso de ser necesario. Realizar inspección dimensional según corresponda. 1.09.2.2.04

OPERACION	DESCRIPCION	COD. PIEZA
HP 301	TORNEADO DEL BUJE	1.09.1.1.04

MAQUINA O EQUIPO:


MQ003 - Torno

OP. A	DP. ANT. N°: HP 101					
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.	
1	Tornear el 1º diámetro.	Herramienta de torno	Según imagen superior	Calibre vernier 1/50	1/1	
2	Frentear la 1º longitud.	Herramienta de torno	Según imagen superior	Calibre vernier 1/50	1/1	
3	Tornear el 2º diámetro.	Herramienta de torno	Según imagen superior	Calibre vernier 1/50	1/1	
4	Frentear la 2º longitud.	Herramienta de torno	Según imagen superior	Calibre vernier 1/50	1/1	
5	Ejecución del orificio .	Mecha HSS	Ø = 3.25 mm	Calibre vernier 1/50	1/3	

PROX. OP.N°: HP 401

PTA. PUNTO: Verificar velocidad de trabajo del torno.

Seleccionar herramientas a utilizar.

EJECUCION: Tomar material.

> Colocar en el plato del torno y centrar. Tornear el 1º diámetro a medida indicada. Frentear la longitud final del 1º diámetro.

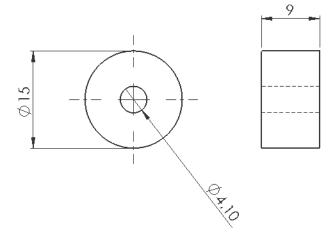
Sacar pieza del plato y volver a colocar en sentido contrario.

Tornear el 2º diámetro a medida indicada. Frentear la longitud final del 2º diámetro.

Realizar perforado transversal

HOJA DE PROCESO			
OPERACION	DESCRIPCION	COD. PIEZA	
HP 302	TORNEADO DEL SEPARADOR	1.09.1.2.02	

MAQUINA O EQUIPO:


MQ003 - Torno

OP. A	OP. ANT. N°: HP 101					
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.	
1	Tornear el diámetro exterior	Herramienta de torno	Según imagen superior	Calibre vernier 1/50	1/1	
2	Ejecución del orificio .	Mecha HSS	Según imagen superior	Calibre vernier 1/50	1/3	

PROX. OP.N°: HP 102

PTA. PUNTO: Verificar velocidad de trabajo del torno.

Seleccionar herramientas a utilizar.

EJECUCION: Tomar material.

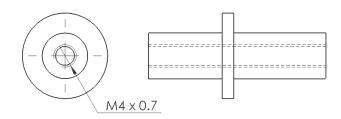
Colocar en el plato del torno y centrar.

Tornear el diámetro exterior de ser necesario

Realizar perforado transversal

Realizar la comprobación dimensional según corresponda.

OPERACION	DESCRIPCION	COD. PIEZA
HP 401	ROSCADO DEL BUJE	1.09.1.1.04


MQ005 - Perforadora - HR001 Macho para roscado

OP. A	DP. ANT. N°: HP 301						
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.		
1	Roscado	Macho	M4 x 0.7	Tornillo 1.09.4.2.01	1/3		
PRO	PROX. OP.N°: HP 701						

PTA. PUNTO: Verificar velocidad de trabajo de la perforadora.

Seleccionar el macho a utilizar.

EJECUCION: Tomar la pieza.

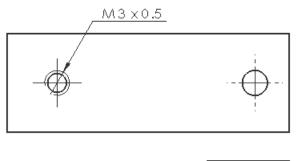
Posicionar el material en la morsa de la perforadora.

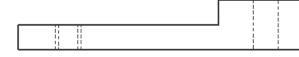
Lubricar el macho con grasa. Realizar el roscado del orificio.

Realizar inspección dimensional según corresponda.

OPERACION	DESCRIPCION	COD. PIEZA
HP 401	ROSCADO DEL TOPE Y FIJADOR	1.09.2.2.04

HP 401 ROSCADO DEL TOPE Y FIJADOR


MQ005 - Perforadora - HR001 Macho para roscado



ı	OP. ANT. N°: HP 603					
	Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.
	1	Roscado	Macho	M 3 x 0.5	Tornillo 1.09.4.2.06	1/3

PROX. OP.N°: HP 701

PTA. PUNTO: Verificar velocidad de trabajo de la perforadora.

Seleccionar el macho a utilizar.

EJECUCION: Tomar la pieza.

Posicionar el material en la morsa de la perforadora.

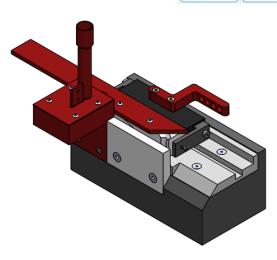
Lubricar el macho con grasa. Realizar el roscado del orificio.

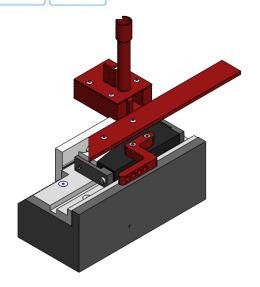
Realizar inspección dimensional según corresponda.

OPERACION	DESCRIPCION	COD. PIEZA
-----------	-------------	------------

HP 501 ENSAMBLE DEL CONJUNTO 1.09.2

MAQUINA O EQUIPO: ET004 – Mesa de armado





Varios

OP.	OP. ANT.N°: Varios -				
N°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.
1	Obtener los subconjuntos y herramientas de armado correspondientes	Llaves Allen	1.09.2.1 1.09.2.2 1.09.2.3	Visual	1/1
2	Montar el subconjunto 1.09.2.1 y el subconjunto 1.09.2.2 sobre el subconjunto 1.09.2.3 como se muestra en el a imagen superior.	Llaves Allen	Imagen superior	Visual	1/1

PROX. OP.N°: HE 101

PTA. PUNTO: Verificar tener los subconjuntos y las herramientas correspondientes.

EJECUCION: Colocar el subconjunto 1.09.2.3 en la plataforma de armado

Tomar el subconjunto 1.09.2.1 y mediante los tornillos 1.09.2.4.2.01 montarlo

sobre el subconjunto 1.09.2.3.

Colocar el subconjunto 1.09.2.2 en su correcta posición sobre el subconjunto

1.09.2.3

OPERACION	DESCRIPCION	COD. PIEZA

HP 502 **ENSAMBLE FINAL** **Varios**

ET004 - Mesa de armado

OP.	ANT.N°: HE 101 -				
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.
1	Obtener los subconjuntos y herramientas de armado correspondientes	Herramientas necesarias	1.09.3.3 1.09.2 1.09.1.1 Componentes eléctricos.	Visual	1/1
2	Montar el subconjunto 1.09.3.3	Llaves Allen	Plano 1.09.3.3.A	Visual	1/1
3	Montar el conjunto 1.09.2	Llaves Allen	Plano 1.09	Visual	1/1
4	Montar el subconjunto 1.09.1.1	Llaves Allen	Plano 1.09	Visual	1/1
5	Realizar la instalación eléctrica		Plano eléctrico	Visual	1/1
6	Colocación de protecciones		Plano 1.09	Visual	1/1

PROX. OP.N°: -

PTA. PUNTO: Verificar tener los subconjuntos, las piezas y las herramientas correspondientes.

EJECUCION: Obtener los conjuntos, subconjuntos y piezas necesarias para el ensamble.

Montar los soportes antideslizantes (1.09.4.3.01) a la base (1.09.3.3.01) mediante las tuercas correspondientes(1.09.4.2.12).

Montar el soporte de la caja receptora (1.09.3.3.03) sobre la base mediante los tornillos correspondientes (1.09.4.2.09)

Montar los soportes (1.09.3.3.02) y los switches de seguridad (1.09.4.1.02) a la base mediante los tornillos correspondientes (1.09.4.2.08)

Montar el conjunto 1.09.2 sobre la base de la maquina en los orificios correspondientes y ajustar.

Montar el accionamiento automático (1.09.1.1) en la base de la máquina y conectar con el conjunto 1.09.2

Realizar la instalación eléctrica según indica el plano eléctrico.

Colocar las protecciones exteriores

Colocar el accionamiento manual debajo de la base de la maquina y embalar con film protector.

OPERACION	DESCRIPCION	COD. PIEZA

QUINA O EQUIPO: MQ005 - Perforadora

HP 601

PERFORADO DE LOS ORIFICIOS DE LA MANIVELA 1.09.1.1.02

OP. A	OP. ANT. N°: HP 101							
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.			
1	Medición y marcado de centros.	Regla / marcador	Plano Nº: 1.09.1.1.02.2.A					
2	Ejecución del orificio 1.	Mecha HSS	Ø = 20 mm	Patrón	1/5			
3	Ejecución del orificio 2.	Mecha HSS /Calisuar	Ø = 8 mm H7	Calibre vernier 1/50	1/1			
4	Ejecución del orificio 3.	Mecha HSS	Ø = 4 mm	Tornillo 1.09.4.2.03	1/5			

PROX. OP.N°: HP 102

PTA. PUNTO: Verificar velocidad de trabajo de la perforadora.

Seleccionar mechas a utilizar.

EJECUCION: Tomar material.

Realizar la marcación de los centros según plano.

Realizar el marcado de los centros mediante un punzón y un martillo.

Posicionar el material en la morsa de la perforadora.

Realizar las perforaciones correspondientes de manera escalonada hasta

llegar a la medida final necesaria.

Repetir estas operaciones para realizar el resto de los orificios.

Eliminar rebarbas producidas en caso de ser necesario. Realizar inspección dimensional según corresponda.

OPERACION	DESCRIPCION	COD. PIEZA
HD 602	DEDECRADO DE LOS ODIFICIOS DE LA RIELA	1 00 1 1 03

EQUIPO: MQ005 - Perforadora

OP. A	OP. ANT. N°: HP 101							
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.			
1	Medición y marcado de centros.	Regla / marcador	Plano Nº: 1.09.1.1.03.2.A					
2	Ejecución del orificio 1.	Mecha HSS	Ø = 7 mm	Calibre	1/5			
3	Ejecución del orificio 2.	Mecha HSS/Calisuar	Ø = 8 mm H7	Calibre vernier 1/50	1/1			

PROX. OP.N°: -

PTA. PUNTO: Verificar velocidad de trabajo de la perforadora.

Seleccionar mechas a utilizar.

EJECUCION: Tomar material.

Realizar la marcación de los centros según plano.

Realizar el marcado de los centros mediante un punzón y un martillo.

Posicionar el material en la morsa de la perforadora.

Realizar las perforaciones correspondientes de manera escalonada hasta

llegar a la medida final necesaria.

Repetir estas operaciones para realizar el resto de los orificios.

Eliminar rebarbas producidas en caso de ser necesario.

Realizar inspección dimensional según corresponda.

OPERACION	DESCRIPCION	COD. PIEZA
HD 603	PERFORADO Y ROSCADO DEL TORE Y ELIADOR	1 09 2 2 04

QUINA O EQUIPO: MQ005 - Perforadora

OP. A	OP. ANT. N°: HP 101							
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.			
1	Medición y marcado de centros.	Regla / marcador	Plano Nº: 1.09.2.2.04.2.A					
2	Ejecución del orificio 1.	Mecha HSS	Ø = 2.5	Calibre	1/5			
3	Ejecución del orificio 2.	Mecha HSS	Ø = 4 mm	Calibre vernier 1/50	1/5			
				1700				

PROX. OP.N°: -

PTA. PUNTO: Verificar velocidad de trabajo de la perforadora.

Seleccionar mechas a utilizar.

EJECUCION: Tomar material.

Realizar la marcación de los centros según plano.

Realizar el marcado de los centros mediante un punzón y un martillo.

Posicionar el material en la morsa de la perforadora.

Realizar las perforaciones correspondientes de manera escalonada hasta

llegar a la medida final necesaria.

Repetir estas operaciones para realizar el resto de los orificios.

Eliminar rebarbas producidas en caso de ser necesario.

Realizar inspección dimensional según corresponda.

OPERACION	DESCRIPCION	COD. PIEZA
-----------	-------------	------------

HP 701 LAVADO DE PIEZAS Varios

IAQUINA O EQUIPO: ET003 – Batea de lavado

OP.	OP. ANT.N°: Varios -							
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.			
1	Verificar el nivel del desengrasante y el grado de limpieza de este.	Nivel / Patrón	Nivel superior al marcado y color similar al de la muestra.	Visual	Lote			
2	Lavar el lote de piezas							

PROX. OP.N°: Pintado

PTA. PUNTO: Controlar el nivel y la limpieza del desengrasante.

EJECUCION: Tomar las piezas terminadas.

Colocarlas en los canastos de la batea.

Introducir los canastos en la batea de limpieza.

Asegurarse que el desengrasante cubra por completa a las piezas.

Dejar reposar el tiempo necesario.

Extraer los canastos y colocar sobre la rejilla de escurrimiento.

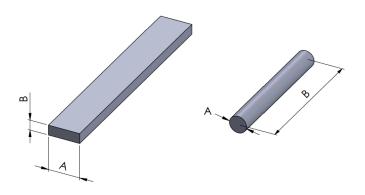
Enjuagar las piezas.

Dejar secar.

OPERACION DESCRIPCION	COD. PIEZA
-----------------------	------------

HI – 101 CONTROL DE MATERIA PRIMA

MAQUINA O EQUIFO.



Código del componente a fabricar	Proveedor	Dimensión A	Dimensión B	Material	Color identificatorio
1.09.1.1.02	Aymet SRL	38 mm ± 0.3	12.7 mm ± 0.2	Aluminio - A6063	Natural
1.09.1.1.03	Aymet SRL	32 mm ± 0.3	16 mm ± 0.3	Aluminio - A6063	Natural
1.09.2.2.04	Aymet SRL	15.8 ± 0.3	8 mm ± 0.3	Aluminio - A6063	Natural
1.09.1.1.04 / 1.09.1.2.02	Deels	Ø = 15 mm ± 0.2	300 mm	Bronce - Sae 64	Blanco y Azul

ОР	OP. ANT.N°: -							
N°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.			
1	Inspección general del lote.		Verificar que el lote este libre de oxido, fisuras e imperfecciones.	Visual	1/1			
2	Verificar certificado de colada		Verificar certificado del material	Visual	1/1			
II .S	Inspección del color identificatorio del material		Según tabla	Visual	1/1			
4	Inspección dimensional		Según tabla	Calibre / Cinta métrica	1/1			

PROX. OP.N°: Varias

OPERACION DESCRIPCION COD. PIEZA

INSPECCIÓN DE PIEZAS TERCERIZADAS HI - 201 FABRICADAS EN IMPRESIÓN 3D

1.09. Reconstructora de casquillos

ОР	OP. ANT. N°: -								
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.				
1	Inspección general de la pieza	Muestra	Verificar el aspecto general de la pieza	Visual	1/5				
2	Inspección dimensional según tabla.		Según tabla adjunta	Calibre / Cinta métrica	1/5				
3	Inspección del peso de la pieza según tabla.		Según tabla adjunta	Balanza de precisión	1/5				

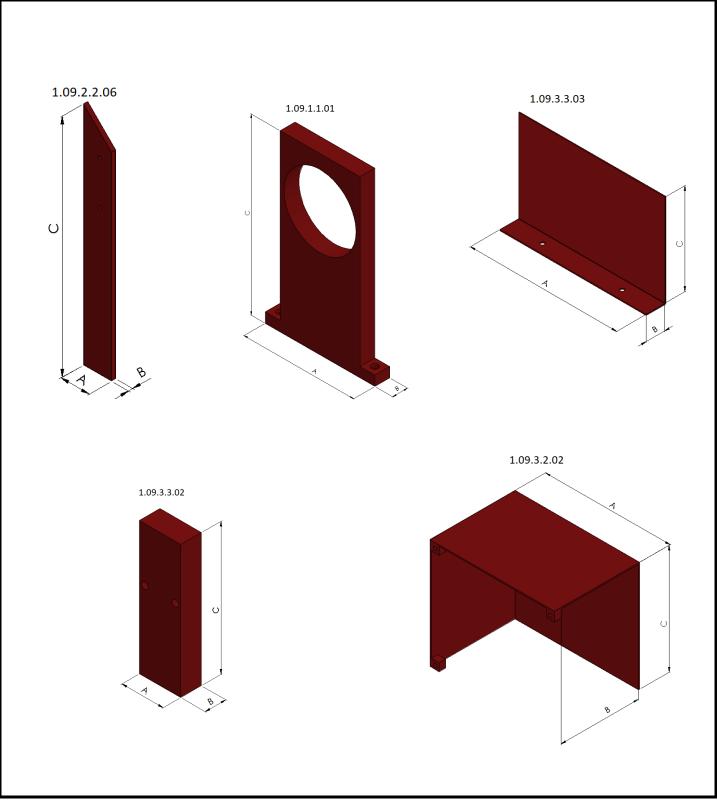
PROX. OP. N°:

Nº de pieza	Dimensión A [mm]	Dimensión B [mm]	Dimensión C [mm]	Peso [gr]
1.09.2.2.06	16	4	210	20.8
1.09.1.1.01	110	15	175	155.7
1.09.3.3.03	110	15	70	8.4
1.09.3.3.02	30	15	90.5	43.8
1.09.3.2.02	95	65	84	19.8
1.09.2.1.03	22	35.5	19	10.3
1.09.2.1.04	48	60	81	6.9
1.09.2.2.05	35	38	10	8.2
1.09.3.3.04	25	10	36	3.2
1.09.2.1.01	48	60	99	80.3
1.09.3.2.01	239	151	242	114.4

Tolerancias:

Medidas	Dimensionales [mm]
0 a 100	± 0.1
100.1 a 150	± 0.2
> 150.1	± 0.3

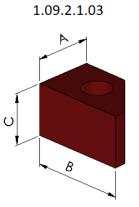
Peso [gr]	Peso [gr]
0 a 25	± 7 %
25.1 a 75	± 5%
+ de 75.1	± 2.5 %

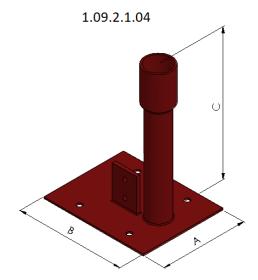

Varios

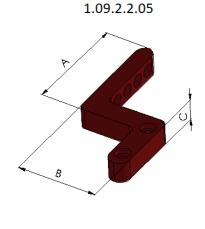
HOJA DE INSPECCIÓN	

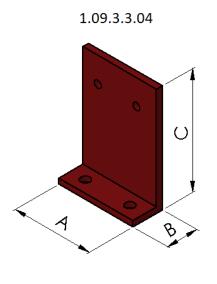
OPERACION DESCRIPCION COD. PIEZA INSPECCIÓN DE PIEZAS TERCERIZADAS HI - 201 **Varios**

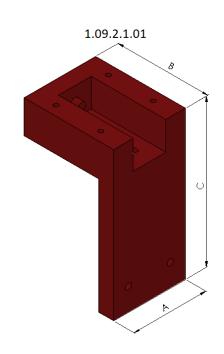
FABRICADAS EN IMPRESIÓN 3D

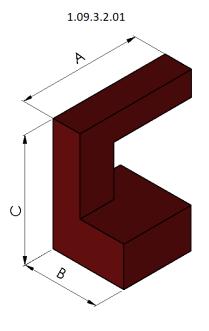





HOJA	DE INSPE	CCIÓN
1100/	DE 11101 E	00.0.1


OPERACION	DESCRIPCION	COD. PIEZA
HI - 201	INSPECCIÓN DE PIEZAS TERCERIZADAS FABRICADAS EN IMPRESIÓN 3D	Varios


1.09. Reconstructora de casquillos

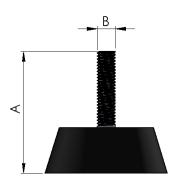


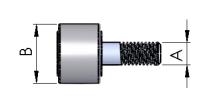
OPERACION	DESCRIPCION	COD. PIEZA
HI – 301	COMPONENTES ELECTRICOS	1.09.4.1.

MAQUINA O EQUIPO:

Nº de pieza	Codigo del fabricante		
1.09.4.1.01	MR20A-024150		
1.09.4.1.02	D4NS_1 CYC		
1.09.4.1.03	D4NS_1		
1.09.4.1.04	A22E-L-01		
1.09.4.1.05	CCM5D-10A		
1.09.4.1.06	FA02410C		
1.09.4.1.07	8161/8-M12-0601-L 0		
1.09.4.1.08	S8202-2		
1.09.4.1.09	6ASF1		
1.09.4.1.10	6AT10 - 32		
1.09.4.1.11	SBTN8B		
1.09.4.1.12	SS_01GL		
1.09.4.1.13	D4F-320-1R		
1.09.4.1.14	M22N-BN-TRA-RC		
1.09.4.1.15	M22N-BN-TGA-GC		
1.09.4.1.16	M22N-BN-TYA-YC		
1.09.4.1.17	H7EC_NFV_B		
1.09.4.1.18	A22NS-2RM-NWA-G102-NN		
1.09.4.1.19	M22N-BN-TYA-BC		
1.09.4.1.20	MY4N DC24 S		
1.09.4.1.21	G2R1SN DC24S		
1.09.4.1.22	PYFZ-08 - MY2N DC24 S		
1.09.4.1.23	P2RF-05-S - G2R1SN DC24S		
1.09.4.1.24	SS_01		
1.09.4.1.25	A22TK_2RL		
1.09.4.1.26	A22NZ_MN-G		
1.09.4.1.27	A22NZ_MN-R		

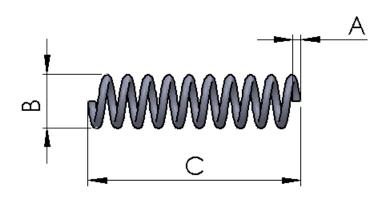
ОР	OP. ANT.N°: -							
N° DESCRIPCION: DISPOSITIVO: ESPECIFICACION I				INST. CNTR.	FREC.			
1	Inspección del código de pieza		Verificar el código del fabricante	Visual	1/1			
PRO	PROX. OP.N°:							


	HOJA DE INSPECCIÓN				
OPERACION	DESCRIPCION	COD. PIEZA			
HI – 302	RODAMIENTO Y SOPORTE ANTIDESLIZANTE	1.09.4.3.0 1.09.4.3.02			

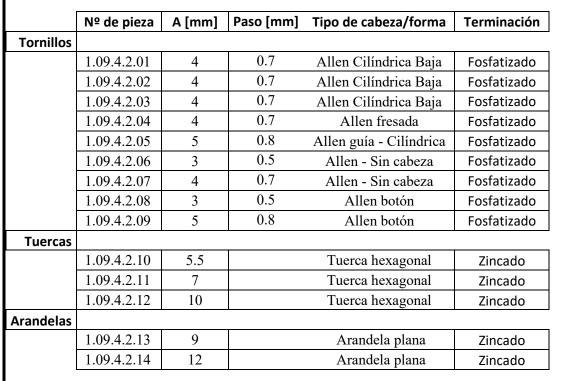


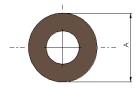
	Nº de pieza	Dimensión A [mm]	Dimensión B [mm]	Modelo
Rodamiento	1.09.4.3.02	6 ± 0.1	16 ± 0.1	KR16
Soporte antideslizante	1.09.4.3.01	40 ± 1	6 ± 0.1	PG.3.14.25

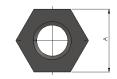
OP.	OP. ANT.N°: -						
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.		
1	Inspección general del lote.		Verificar el aspecto general de la pieza	Visual	Lote		
2	Inspección del número de modelo.		Según tabla	Visual	1/10		
3	Inspección dimensional del diámetro del alambre. "A"		Según tabla	Calibre Vernier 1/20	1/10		
4	Inspección dimensional del diámetro del alambre. "B"		Según tabla	Calibre Vernier 1/20	1/10		
PRO	DX. OP.N°:						


HOJA DE INSPECCIÓN					
OPERACION	DESCRIPCION	COD. PIEZA			
HI – 303	RESORTE	1.09.4.3.03			

OP.	. ANT.N°: -				
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.
1	Inspección general del lote.		Verificar el aspecto general de la pieza	Visual	Lote
2	Contabilizar el número total de espiras		13 espiras	Visual	1/10
3	Inspección dimensional del diámetro del alambre. "A"		A = 1 mm ± 0.1	Calibre Vernier 1/20	1/10
4	Inspección dimensional del diámetro del resorte. "B"		B = 7 mm ± 0.1	Calibre Vernier 1/20	1/10
5	Inspección dimensional del largo total del resorte. "C"		C = 40 mm ± 1	Calibre Vernier 1/20	1/10
PRO	DX. OP.N°:	•			


OPERACION	DESCRIPCION	COD. PIEZA
HI - 304	INSPECCIÓN DE LA TORNILLERÍA	1.09.4.2.



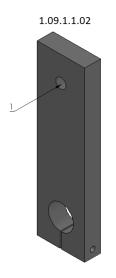


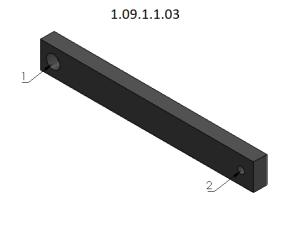
OPERACION	DESCRIPCION	COD. PIEZA
HI - 304	INSPECCIÓN DE LA TORNILLERÍA	1.09.4.2.

1.09. Reconstructora de casquillos

_					
ОР	. ANT.N°: -				
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.
1	Inspección general del lote.		Verificar el aspecto general de la pieza	Visual	Lote
2	Inspección dimensional		Verificar dimensión "A" según tabla	Calibre Vernier 1/20	5/lote
3	Comprobar el paso de los tornillos		Verificar el paso de según tabla	Tornillo o tuerca patrón	5/lote
4	Verificar tipo de cabeza o forma		Verificar el tipo de cabeza o forma según tabla	Visual	5/lote
5	Verificar terminación superficial		Comprobar terminación superficial según tabla	Visual	5/lote

PROX. OP.N°:


OPERACION	DESCRIPCION	COD. PIEZA
HI – 501	CONTROL DE PINTADO	Varios



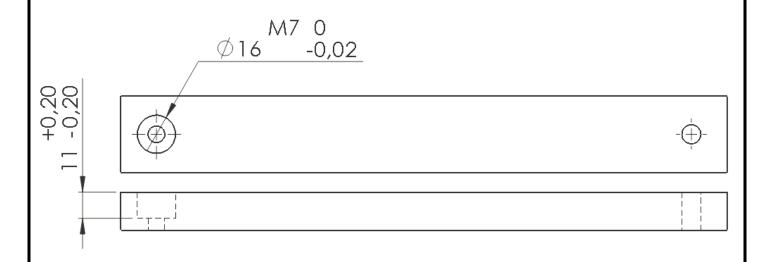
Pieza Nº:	Color:	Codigo de pintura	Superficies sin pintar
1.09.1.1.02	Gris Azulado	RAL 7031	1 (Imagen)
1.09.1.1.03	Gris Azulado	RAL 7031	1 y 2 (Imagen)
1.09.2.2.04	Gris Azulado	RAL 7031	Rosca (Imagen)

ОР	. ANT.N°: Varias				
N°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.
1	Inspección general del lote.		Verificar el aspecto general del material	Visual	Lote
2	Inspección del color de pintura	Muestra	Según tabla	Visual	1/3
3	Inspección de superficies sin pintar		Según tabla	Visual	1/3
PRO	DX. OP.N°:Varias				

HOJA	DE	INSPECCIÓN
IIOUA		

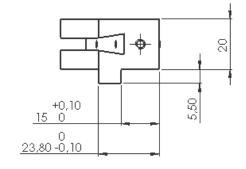
OPERACION	DESCRIPCION	COD. PIEZA
------------------	-------------	------------

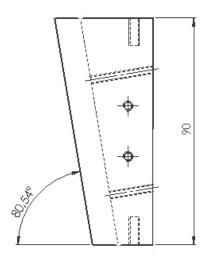
HI – 601 CONTROL DIMENSIONAL DEL TRABAJO DE FRESADO DE LA BIELA


1.09.1.1.03

1 Inspección dimensional del diámetro de la fresadura Cota de la imagen superior Cota de la imagen 1/3 Cota de la imagen Calibre Cota de la imagen Calibre Cota de la imagen Calibre	OP. ANT.N°: -						
1 Inspección dimensional del diámetro de la fresadura 2 Inspección dimensional de la profundidad de la fresadura Cota de la imagen superior Cota de la imagen vernier Cota de la imagen vernier Cota de la imagen vernier Vernier 1/3	Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION		FREC.	
2 Inspeccion dimensional de la la fresadura Cota de la imagen Vernier 1/3	1			<u> </u>	Vernier	1/3	
	2				Vernier	1/3	

PROX. OP.N°:HP 701


HOJA DE INSPECCIÓN					
OPERACION	DESCRIPCION	COD. PIEZA			
HI – 602	INSPECCIÓN DEL ELEMENTO DESLIZADOR	1.09.2.2.02			

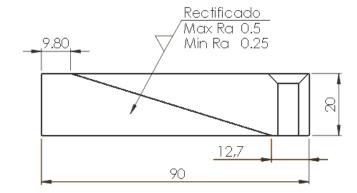


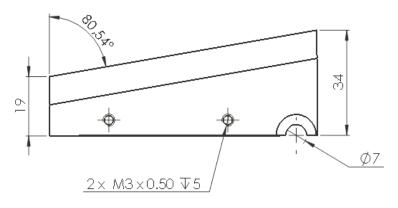
OP.	OP. ANT.N°: -						
N°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.		
1	Inspección dimensional de la pieza.		Cotas de la imagen superior	Calibre Vernier 1/20	1/1		
	Verificar el ángulo de inclinación de la pieza.		Patrón de medida ángulo: 80.54º	Soporte patrón	1/1		
3	Verificar la cola de milano.		Patrón macho	Cola de milano patrón	1/1		
4	Comprobar las roscas.		M 3 x 0.5 M 4 x 0.7	1.09.4.2.06 1.09.4.2.01	1/3		
PRO	PROX. OP.N°: -						

OPERACION	DESCRIPCION	COD. PIEZA

HI – 603 INSPECCIÓN DE LA PLACA DE RECONSTRUCCIÓN MOVIL

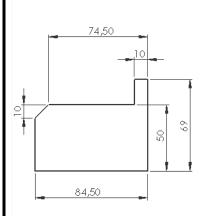
1.09.2.2.01

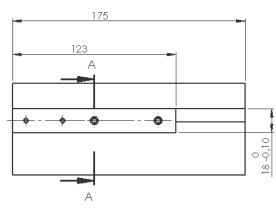

MAQUINA O EQUIPO:

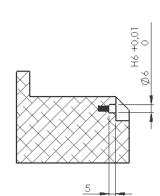


OP.	OP. ANT.N°: -						
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.		
1	Inspección dimensional de la pieza.		Cotas de la imagen superior	Calibre Vernier 1/20	1/1		
	Verificar el ángulo de inclinación de la pieza.	Patrón de medida	Angulo: 80.54°	Soporte patrón	1/1		
3	Verificar la cola de milano.	Patrón hembra		Cola de milano patrón	1/1		
4	Medir la rugosidad del área señalada		Max Ra 0.5 Min Ra 0.25	Medidor de rugosidad	1/1		
5	Comprobar las roscas.	Tornillos de muestra	3 x 0.5	1.09.4.2.08	1/3		

HOJA DE INSPECCIÓN					
OPERACION	DESCRIPCION	COD. PIEZA			
HI – 604	INSPECCIÓN DE LA BASE DE MONTAJE	1.09.2.3.01			



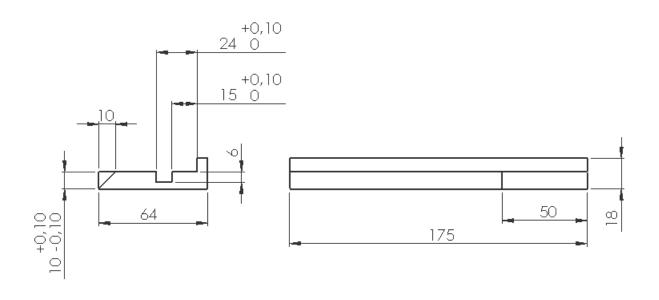



VISTA LATERAL DERECHA

VISTA FRONTAL

SECCIÓN A-A

OP.	. ANT.N°: -				
N°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.
1	Inspección dimensional de la pieza.		Cotas de la imagen superior	Calibre vernier 1/20	1/1
2	Verificar la posición de los orificios			Plantilla de perforaciones	1/1
3	Comprobar las roscas.	Tornillos de muestra	M4 x 0.7 M5 x 0.6 M4 x 0.7 M3 x 0.5	1.09.4.2.04 1.09.4.2.05 1.09.4.2.07 1.09.4.2.08	1/3
PROX. OP.N°: -					


HOJA DE INSPECCIÓN					
OPERACION	DESCRIPCION	COD. PIEZA			
HI – 605	INSPECCIÓN DE LA GUIA DEL DESLIZADOR	1.09.2.3.03			

OP.	. ANT.N°: -				
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.
1	Inspección dimensional de la pieza.		Cotas de la imagen superior	Calibre Vernier 1/20	1/1
2	Verificar la posición de los orificios			Plantilla de perforaciones	1/1
	Comprobar que las cabezas de los tornillos queden embutidas	Tornillos de muestra	M4 x 0.7 Cabeza fresada	1.09.4.2.04	1/1
	OV. OD NO.				

PROX. OP.N°: -

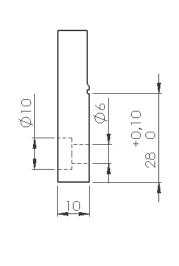
			,
$H() I \Delta$	1) -		CCIÓN
11007		11101 L	.001014

OPERACION DESCRIP	PCION	COD. PIEZA
-------------------	-------	------------

HI – 606 INSPECCIÓN DE LA PLACA DE RECONSTRUCCIÓN FIJA

1.09.2.3.02

MAQUINA O EQUIPO:

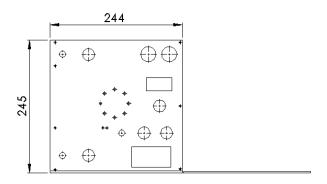


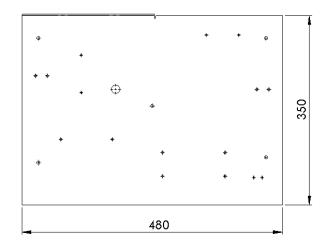
ОР	. ANT.N°: -				
N°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.
1	Inspección dimensional de la pieza.		Cotas de la imagen superior	Calibre Vernier 1/20	1/1
2	Verificar la posición de los orificios			Plantilla de perforaciones	1/1
3	Medir la rugosidad del área señalada		Max Ra 0.5 Min Ra 0.25	Medidor de rugosidad	1/1
4	Verificar Perfil de reconstrucción para casquillos 9 mm		Casquillo 9 mm	Casquillo de muestra	1/1
5	Comprobar que las cabezas de los tornillos queden embutidas	Tornillos de muestra	Allen Guia M5	1.09.4.2.05	1/1

PROX. OP.N°: -

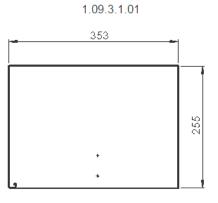
OPERACION	DESCRIPCION	COD. PIEZA

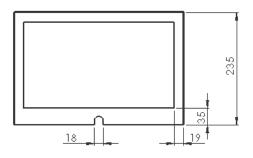
HI - 607 INSPECCIÓN DE LA BASE DE SOPORTE

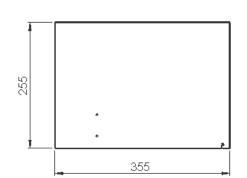

1.09.3.3.01

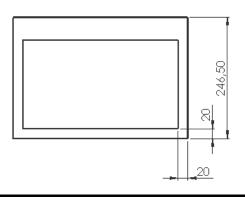


OP. ANT.N°: -									
Ν°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.				
1	Inspección dimensional de las dimensiones generales.		Cotas de la imagen superior	Calibre y cinta métrica	1/1				
2	Verificar la posición de los orificios.			Plantilla de perforaciones	1/1				
PROX OP N° -									


HOJA DE INSPECCIÓN								
OPERACION	DESCRIPCION	COD. PIEZA						
HI – 608	INSPECCIÓN DE LAS CHAPAS DE PROTECCIÓN	1.09.3.1.01 1.09.3.1.02						







1.09.3.1.02.

OP. ANT.N°: -								
N°	DESCRIPCION:	DISPOSITIVO:	ESPECIFICACION	INST. CNTR.	FREC.			
1	Inspección dimensional de la pieza.		Cotas de la imagen superior	Calibre y cinta métrica	1/1			
	Verificar el correcto deslizamiento por las guías		Comprobar que se deslice correctamente	Guía de deslizamiento	1/1			

PROX. OP.N°: -

3.6 Planta Industrial

Para llevar a cabo la fabricación de piezas y ensamblaje del producto, elegimos la empresa "Soldaduras Romitelli" ya existente en el mercado; la cual es una empresa familiar, que se mostró interesada en el proyecto y aceptó nuestra propuesta de formar parte de este, poniéndose a disposición para cualquier tipo de necesidad emergente. Esta empresa es una metalúrgica dedicada a la soldadura de aluminio en general, más específicamente a la reparación y terminación de tapas de cilindros y demás autopartes de aluminio.

El taller "Soldaduras Romitelli", se encuentra ubicado dentro de la zona urbana de Rafaela, departamento Castellanos, Provincia de Santa Fe, en calle Eduardo Oliber 22.

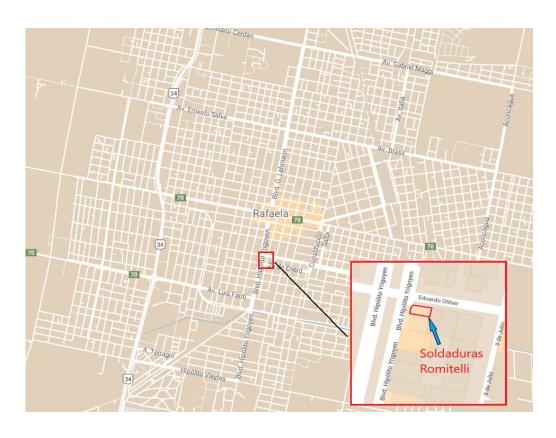


Fig. 41 - Ubicación geográfica de — Elaboración Propia

3.6.1 Nomenclatura Planos de la planta industrial.

Para designar y nombrar los planos de la planta industrial se utilizará una nomenclatura diferente a la utilizada hasta el momento, que será la siguiente:

TSR-XX-YY-PLZZ-R#

Donde:

• TSR: Taller soldaduras Romitelli

• XX: Rubro al que pertenece el plano:

AR: Arquitectónico EL: Eléctricos

LO: Lay Out NE: Neumáticos

HS: Higiene y seguridad IA: Instalación de agua

GN: Gas natural

• YY: Especificación del rubro perteneciente:

UBI: Ubicación UNI: Unifilar

PB: Planta baja DP: Distribución en Planta

EN: Entretecho TG: Topográfico

EV: Evacuación AG: Agua

DE: desagües

• PLZZ: Numeración del plano: PL01: Plano 1

• R#: Número de revisión

A continuación, se adjuntan los planos de la arquitectura de la empresa.

3.6.2 Maquinas existentes en la empresa.

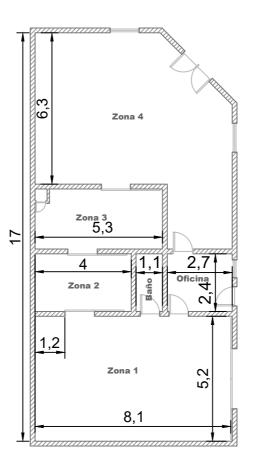
Como ya se mencionó anteriormente este proyecto busca expandir una empresa que se encuentra actualmente en funcionamiento produciendo otros productos. Las piezas por realizar en la empresa no son piezas que requieran de una gran cantidad de máquinas.

A continuación, se detalla cuáles son las las máquinas y herramientas existentes y estaciones de trabajo.

Tabla 12 - Máquinas existentes. Elaboración propia

CÓDIGO	DESCRIPCIÓN	MARCA	MODELO	POTENCIA	ESPECIFICACIÓN ADICIONAL
MQ001	Rectificadora	Kras	KR-1000	3,75 kW	plano de mesa: 900x210
MQ002	Limadora	Remac	R-500	1,5 kW	recorrido: 500mm
MQ003	Torno	Boffelli & Finazzi	M800R	1,5 kW	distancia entre puntas: 800mm
MQ004	Sierra sin Fin	Cutmac	S11	0,56 kW	máx capacidad de corte: 110mm
MQ005	Perforadora	Barbero	TMB20	0,56 kW	máx recorrido husillo: 85mm
MQ006	Soldadora TIG	Heliarc	352	19 kW	Corriente de salida: de 3A a 380A
MQ007	Compresor	Modenesi	T10	2 kW	Capacidad tanque: 200L
MQ008	Prensa Neumática	TOX	PFS 002	-	máx presión: 200Kgf

Tabla 13 - Estaciones de trabajo. Elaboración propia


ESTACIONES DE TRABAJO				
CÓDIGO	DESCRIPCIÓN			
ET001	Banco de trabajo			
ET002	Calentador			
ET003	Batea de lavado			
ET004	Mesa de armado			

3.6.3 Presentación de planos de la empresa:

A continuación, se presentan los planos de la empresa, los cuales incluyen: planos de arquitectura y ubicación, planos de layout de máquinas y elementos, plano de distribución de instalación eléctrica en planta, plano de instalación neumática, plano de gas natural, plano de instalación de agua, plano de desagües, plano de higiene y seguridad y evacuación. También se incluyen los planos unifilares y topográficos del tablero eléctrico de distribución de la empresa

E. Oliber

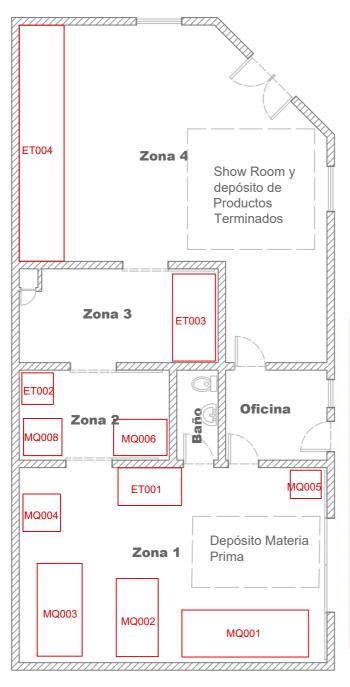
Hoja:

1/1

182

Dibujó: PABLO SENN Revisó: Alumnos: ROMITELLI - SENN		PROYECTO FINAL Máquina Reconstructora de Casquillos				
Normas: Escala:		Anotaciones Gen	nerales:	- Inaqama 1000m		
Formato:	<u></u>	Denominación:	Arquited	ctura y Ubicación	N°:	SR-AR-PB-PL01-R1

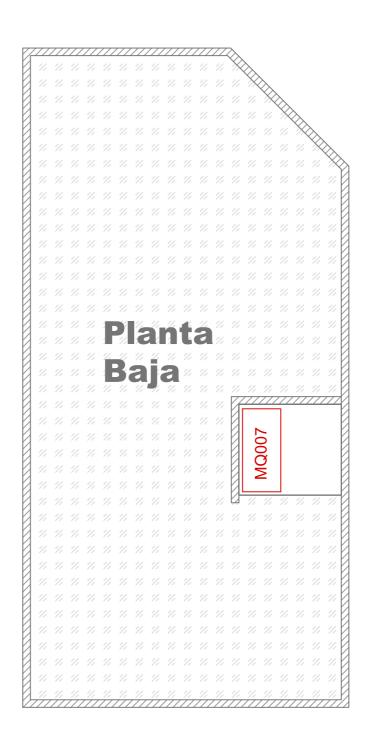
A4


ENTRETECHO

Referencias:

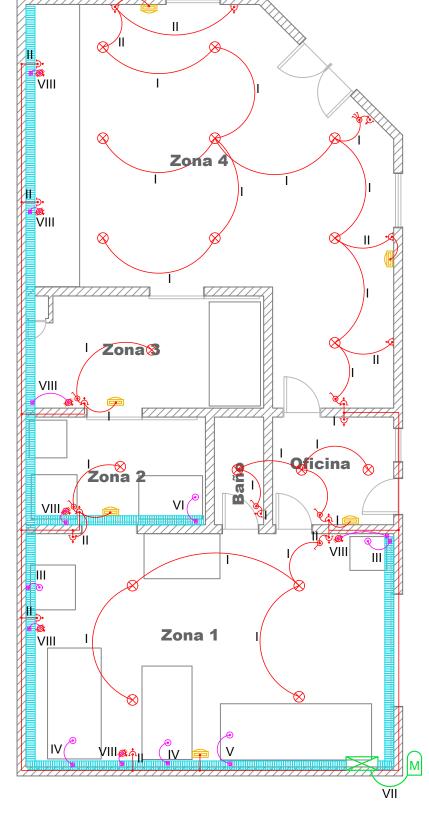
■ Escalera tipo Gato

Dibujó: Revisó: Alumnos: Normas:	PABLO SEN	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PROYECTO FINAL Máquina Reconstructora de Casquillos				
Escala:		Anotaciones Genera	ales:				
Formato:	4	Denominación:	Arquitectura Entretecho TSR-AR-EN-PL01-R1 183	Hoja:			


MÁQU	MÁQUINAS Y ELEMENTOS				
MQ001	RECTIFICADORA				
MQ002	LIMADORA				
MQ003	TORNO				
MQ004	SIERRA SIN FIN				
MQ005	PERFORADORA				
MQ006	SOLDADORA TIG				
MQ007	COMPRESOR				
MQ008	PRENSA NEUMÁTICA				
ET001	BANCO DE TRABAJO				
ET002	CALENTADOR				
ET003	BATEA DE LAVADO FRIO				
ET004	MESA DE ARMADO				

Dibujó:	PABLO SENN	
Revisó:		
Alumnos:	ROMITELLI - SENN	
Normas:		

PROYECTO FINAL


Máquina Reconstructora de Casquillos

Normas:				
Escala:		Anotaciones Generales:		
4	_	Layout Máquinas y Elementos	N°:	Hoja:
Formato:	Ψ	(Planta Baja)	TSR-LO-PB-PL01-R1	1/1
A4			184	

MQ007 COMPRESOR

Dibujó: Revisó: Alumnos: Normas:	PABLO SEN	Y	PROYECTO FINA quina Reconstructora de	
Escala:		Anotaciones Generales:		
Formato:	4	Layout Máquinas y (Entretecho)	ITOD I	D-EN-PL01-R1 1/1

C	CONDUCTORES					
1	3x1x2.5 mm2					
II	3x1x4 mm2					
III	1x3x2.5 mm2					
IV	1x4x2.5 mm2					
V	1x4x4 mm2					
VI	2x1x35 mm2					
VII	4x1x70 mm2					
VIII	1x5x2.5 mm2					

Referencias:

Tablero Eléctrico Bandeja Portcables Toma Monofásica LLave de 1 Punto Toma Trifásica Boca de Iluminación Artefacto Ilum. Emergencia Conexión de Potencia Lineas de Ilum y Tomas Monof. Lineas de Potencia Medidor y acometida

CALCULO DE CIRCUITOS Y PROTECCIONES MONOFÁSICOS

CIRCUITO	POTENCIA [W]	lp [A]	Lmax [m]	SECCIÓN [mm2]	VERIF. TERM. [mm2]	SECCIÓN ADOP. [mm2]	PROTECCIÓN TERMOMAG.
1 Tomas uso General - Zona 1, 2 y 3	3300	15	25	1,18	2,5	4	20
2 Tomas uso General - Zona 4	3300	15	35	1,65	2,5	4	20
3 Tomas uso General - Ofic. Y Baño	3300	15	20	0,95	2,5	2,5	16
4 Tomas uso Especial	4400	20	30	1,88	4	4	20
5 Iluminación - Zona 1, 2 y 3	2200	10	25	1,3	1,5	2,5	10
6 Iluminación - Zona 4	2200	10	35	1,82	1,5	2,5	10
7 Iluminación - Ofic. Y Baño	2200	10	20	1,05	1,5	2,5	10
8 MQ004 (Sierra sin Fin)	560	3,2	18	0,18	1,5	2,5	4
9 MQ005 (Perforadora)	560	3,2	10	0,1	1,5	2,5	4

CALCULO DE CIRCUITOS Y PROTECCIONES TRIFÁSICOS

CIRCUITO	POTENCIA [W]	lp [A]	Lmax [m]	SECCIÓN [mm2]	VERIF. TERM. [mm2]	SECCIÓN ADOP. [mm2]	PROTECCIÓN TERMOMAG.
1 Tomas Trifásicas	1500	3,04	35	0,17	1,5	2,5	10
2 MQ001 (Rectificadora)	3750	15,5	7	0,18	2,5	4	16
3 MQ002 (Limadora)	1500	3,04	10	0,05	1,5	2,5	4
4 MQ003 (Torno)	1500	3,04	14	0,07	1,5	2,5	4
5 MQ006 (Soldadora TIG)	19000	84	20	2,64	35	35	100
6 MQ008 (Compresor)	2000	4,6	20	0,15	1,5	2,5	6

NOTAS:

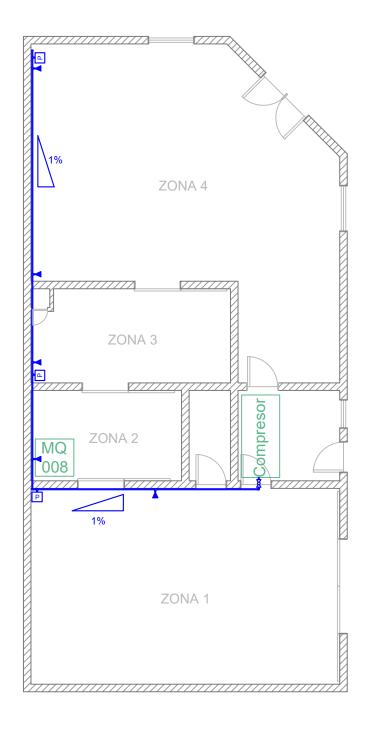
- LA SECCIÓN MÍNIMA DE CADA CONDUCTOR DE PUESTA A TIERRA ES IGUAL A LA SECCIÓN DE CADA FASE.
- TODA LA INSTALACIÓN ELÉCTRICA ESTÁ PROTEGIDA CON UN INTERRUPTOR DIFERENCIAL IΔn=30mA

DETALLE DE LA INSTALACIÓN:

ENTRADA: Subterranea - Trifásica - 1 medidor trifásico

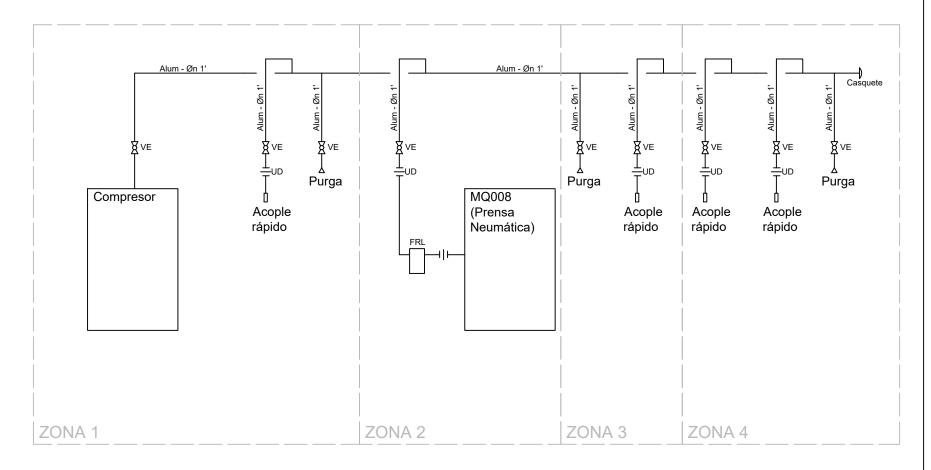
TABLEROS: 1 principal general

BOCAS DE ILUMINACIÓN:18
TOMACORRIENTES MONOFÁSICOS: 15

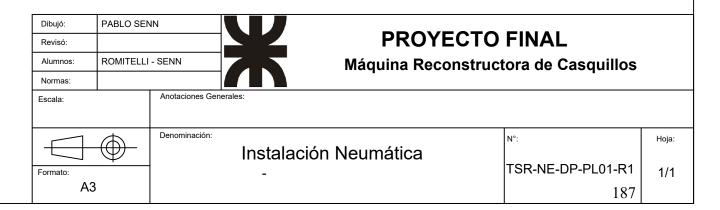

TOMACORRIENTES MONOFASICOS: 7

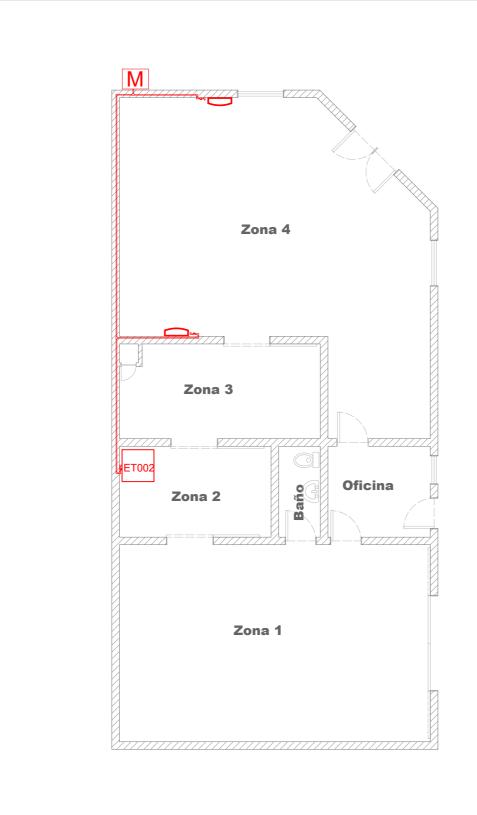
BOCAS DE POTENCIA: 7

POTENCIA MÁX. SUMINISTRADA APROX.: 65 KVA



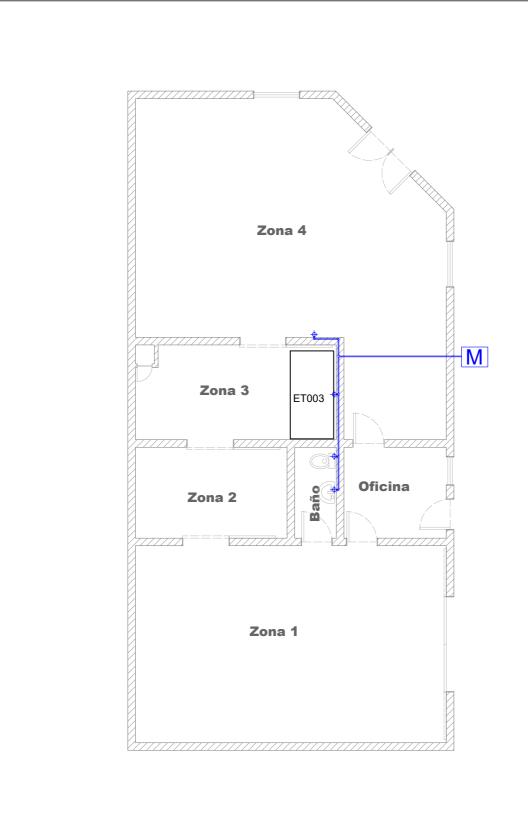
DISTRIBUCIÓN EN PLANTA

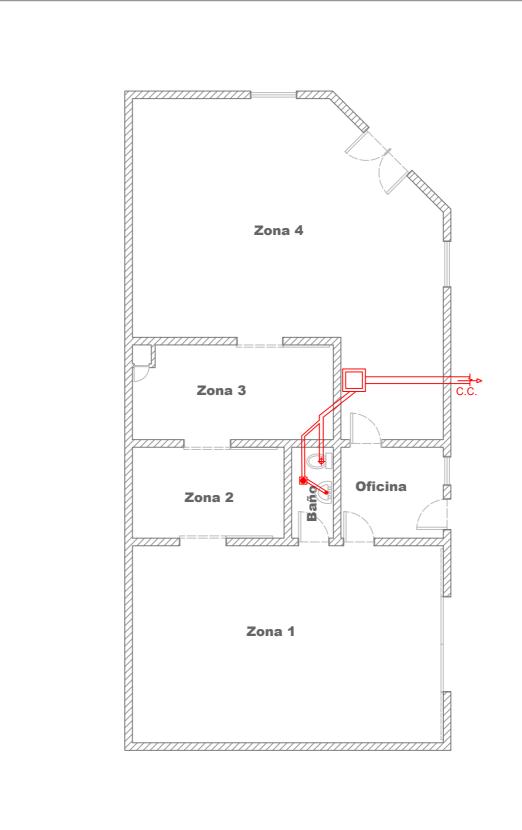

Lineas de Aire Comprimido→ Acometidas según detalle en unifilarPurgas de aguaMáquinas Neumáticas


UNIFILAR INSTALACION NEUMÁTICA

NOTAS:

- El depósito del compresor se utiliza como pulmón
- La tubería principal tiene una caída del 1%
- Las acometidas están unidas a la tubería principal mediante cuellos de cisne




Dibujó:	PABLO SEN	IN				
Revisó:				PROYECT	O FINAL	
Alumnos:	ROMITELLI	- SENN		Máguina Reconstr	uctora de Casquillos	
Normas:				•		
Escala:		Anotaciones Ger	nerales:			
	———	Denominación:	G	as Natural	N°:	Ноја:
Formato:	$\overline{}$			oución en Planta	TSR-GN-DP-PL01-R0	1/1

188

A4

Dibujó:	PABLO SE	NN					
Revisó:			PROYECTO FINAL				
Alumnos:	ROMITELL	I - SENN	Máquina Reconstructora de Casquillos				
Normas:							
Escala:		Anotaciones Gene	prales:				
	———	Denominación:	Instalación de Agua	Ноја:			
Formato:	4		Agua TSR-IA-AG-PL01-R0	1/1			

Dibujó:	PABLO SENN	
Revisó:		
Alumnos:	ROMITELLI - SENN	
Normas:		

PROYECTO FINAL

Máquina Reconstructora de Casquillos

Anotaciones Generales:

Denominación:

Instalación de Agua

Formato:

Desagües

N°:

TSR-IA-DE-PL01-R1

190

—

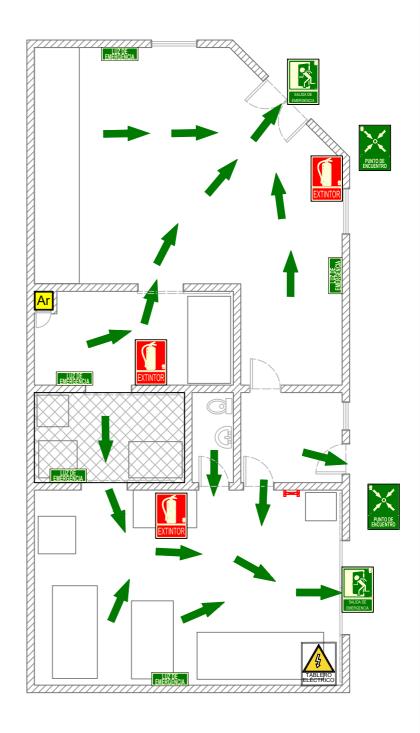
Recorrido de Evacuación

Salida de Emergencia

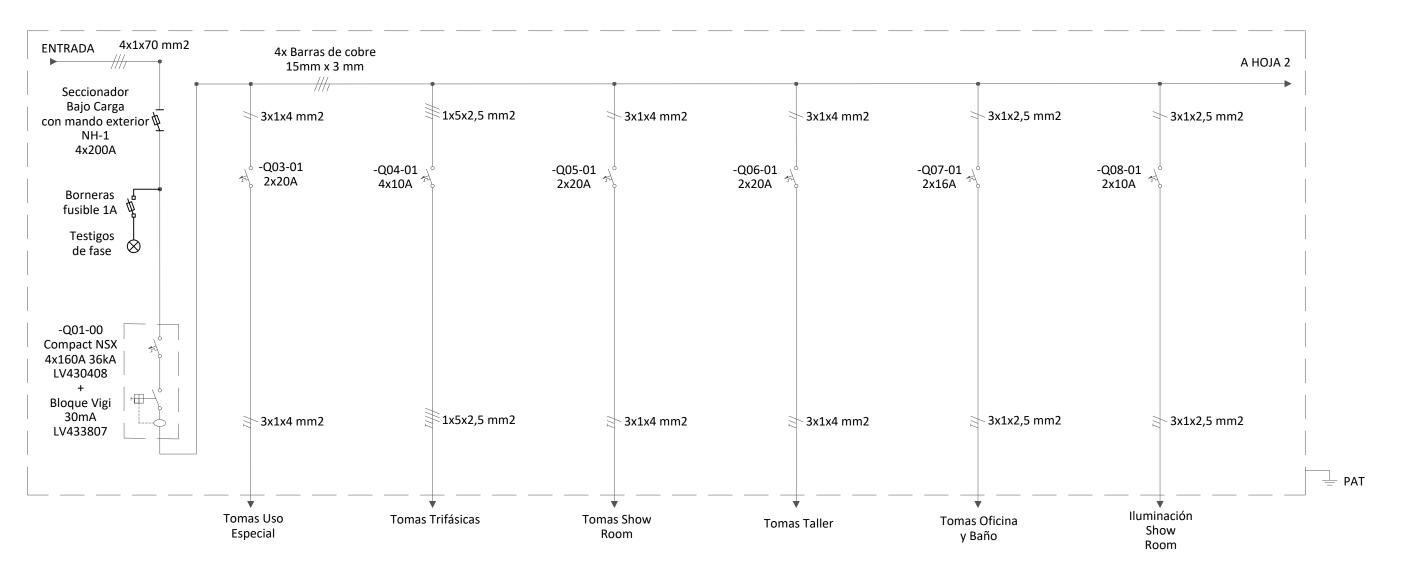
Extintor a base de prod. halogenados - HCFC (5kg)

Luz de Emergencia

Punto de Encuentro

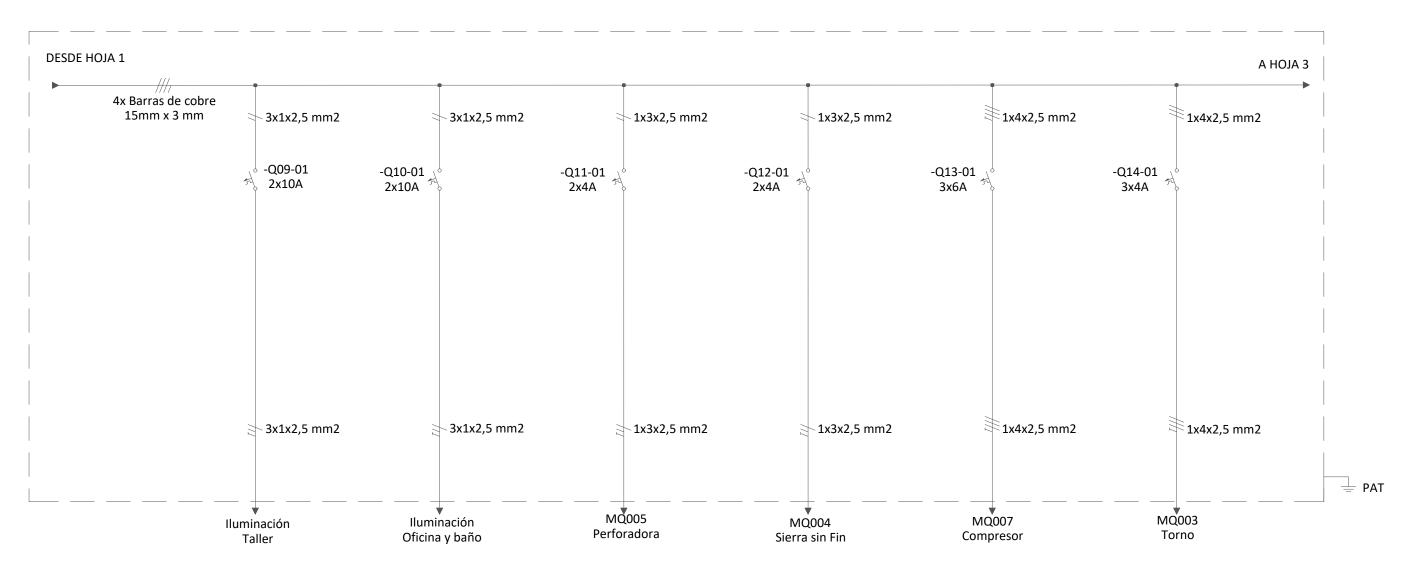

Tablero Eléctrico

Depósito tubos Argón


Habitáculo con campana de extracción de gases y humos

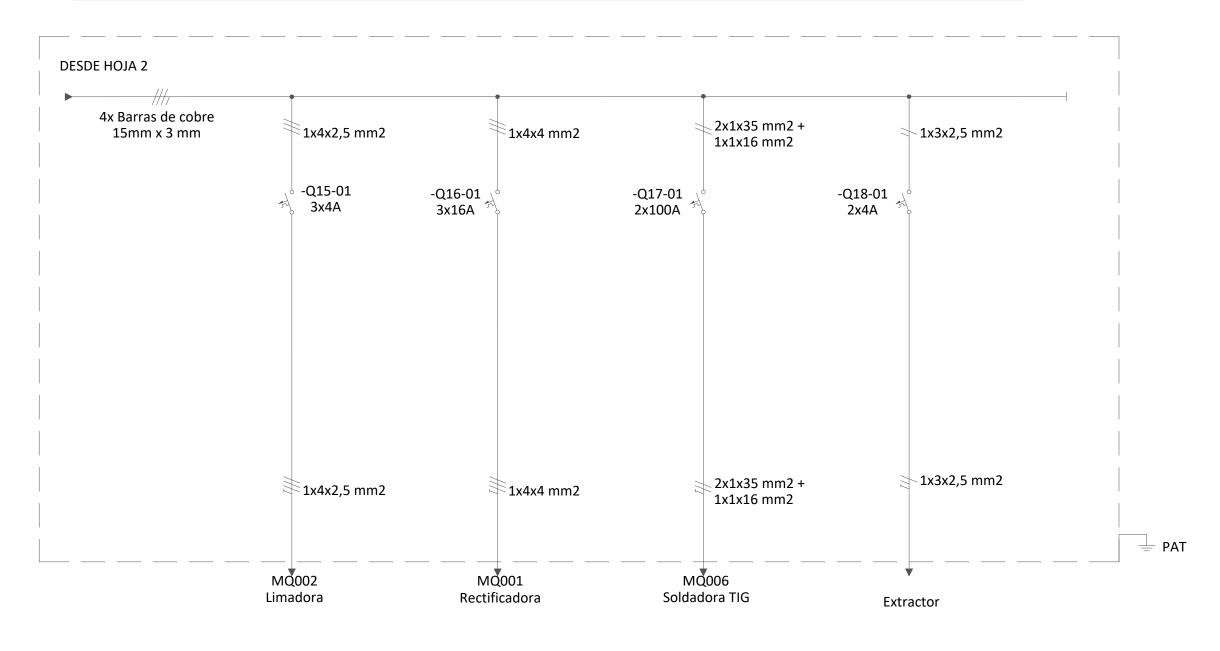
Dibujó: Revisó:	PABLO SEN	NN	PROYE	ЕСТО	FINAL		
Alumnos:	ROMITELLI	- SENN	Máquina Reconstructora de Casquillos				
Normas:							
Escala:		Anotaciones Genera	ales:				
Formato:	-	Denominación:	Higiene y Seguridad Plano de Evacuación		n°: TSR-HS-EV-PL01-R2	Hoja:	
A	\4				191		

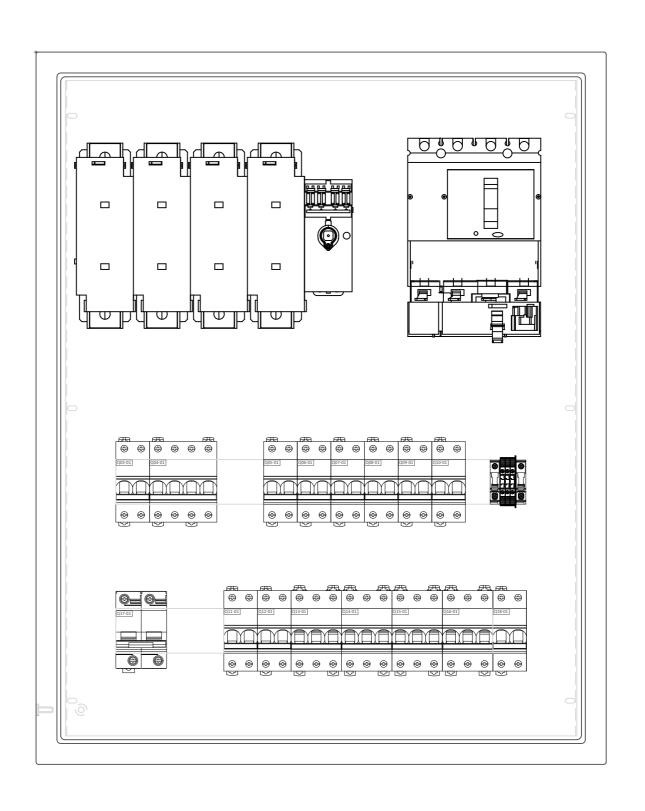
TABLERO GENERAL 1/3


CIRCUITO	TOMAS USO ESPECIAL	TOMAS TRIFÁSICAS	TOMAS SHOW ROOM	TOMAS TALLER	TOMAS OFIC. Y BAÑO	ILUM. SHOW ROOM
Un (V)	220 (V)	380 (V)	220 (V)	220 (V)	220 (V)	220 (V)
Potencia	4400 (VA)	2 (HP)	3300 (VA)	3300 (VA)	3300 (VA)	2200 (VA)
In (A)	20 (A)	3,04 (A)	15 (A)	15 (A)	15 (A)	10 (A)
LÍNEAS	R-N-PE	R-S-T-N-PE	S-N-PE	T-N-PE	R-N-PE	S-N-PE

Dibujó: Revisó:	PABLO SEN		PROYECTO F	INAL	
Alumnos:	ROMITELLI -	SENN Má	quina Reconstructo	ra de Casquillos	
Normas:					
Escala:		Anotaciones Generales:			
$\overline{\Box}$		Denominación: Unifilar Eléctric	N° Tollor	:	Hoja:
Formato:	Ψ -	Hoja 1/3		SR-EL-UNI-PL01-R2	1/3
Α	.3			192	

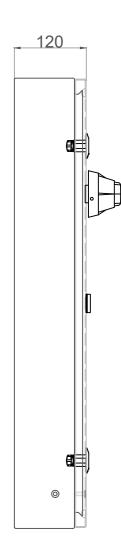
TABLERO GENERAL 2/3

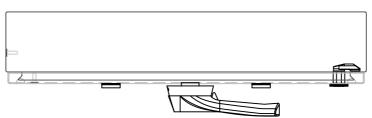

CIRCUITO	ILUM. TALLER	ILUM. OFIC. Y BAÑO	MQ005	MQ004	MQ007	MQ003
Un (V)	220 (V)	220 (V)	220 (V)	220 (V)	380 (V)	380 (V)
Potencia	2200 (VA)	2200 (VA)	0,75 (HP)	0,75 (HP)	3 (HP)	2 (HP)
In (A)	10 (A)	10 (A)	3,2 (A)	3,2 (A)	4,6 (A)	3,04 (A)
LÍNEAS	S-N-PE	T-N-PE	T-N-PE	T-N-PE	R-S-T-N-PE	R-S-T-N-PE


Dibujó: Revisó:	PABLO SEN	NN	PROYEC	CTO FINAL	
Alumnos:	ROMITELLI	- SENN	Máguina Recon	structora de Casquillos	
Normas:					
Escala:		Anotaciones Gener	ales:		
		Denominación:	Unifilar Eléctrico Taller	N°:	Hoja
Formato:		1	Hoja 2/3	TSR-EL-UNI-PL02-R1	2/
-	43	1		193	

TABLERO GENERAL 3/3

CIRCUITO	MQ002	MQ001	MQ006	EXTRACTOR
Un (V)	380 (V)	380 (V)	380 (V)	220 (V)
Potencia	2 (HP)	5 (HP)	19 (KW)	0,75 (HP)
In (A)	3,04 (A)	15,5 (A)	84 (A)	3,2 (A)
LÍNEAS	R-S-T-N-PE	R-S-T-N-PE	R-T-PE	T-N-PE




Dibujó: Revisó:	PABLO SEN	N	PROYE	CTO FINAL	
Alumnos:	ROMITELLI	- SENN		nstructora de Casquillos	
Normas:			•	•	
Escala:		Anotaciones Generales:			
	-	Denominación: Unifila	r Eléctrico Taller	N°:	Hoja
Formato:	\3		Hoja 3/3	TSR-EL-UNI-PL03-R2	3/:
1					

Dibujó: Revisó:	PABLO SEI	IN J	PROYECT	O FINAL			
Alumnos:	ROMITELLI	- SENN	Máquina Reconstructora de Casquillos				
Normas:							
Escala:		Anotaciones Generales:					
	-	Denominación: Table	ero Eléctrico Taller	N°:	Hoja:		
Formato:	.4	Τ	Topográfico Interior	TSR-EL-TG-PL02-R2	2/2		

- TABLERO CONSTRUIDO EN CHAPA DE ACERO DOBLE DECAPADA BWG Nº14 Y BWG Nº16.
- PUERTAS CON BURLETES DE NEOPRENE.
- BISAGRAS INTERIORES.
- GRADO DE PROTECCION IP 44.
- TRATAMIENTO SUPERFICIAL: DESENGRASADO, DESOXIDADO Y FOSFATIZADO.
- PINTURA TABLERO COMPLETO EPOXI-POLIESTER HORNEABLE 180°C COLOR AZUL RAL 5002 TEXTURADA.
- BARRA DE PAT PARTE INFERIOR SOLIDARIA A LA ESTRUCTURA 15x3mm.

Dibujó: Revisó: Alumnos: Normas:	PABLO SEN	PROYECTO FINAL Máquina Reconstructora de Casquillos			
Escala:		Anotaciones Gener	ales:		
Formato:		Denominación:	Tablero Eléctrico Taller Topográfico Exterior	N°: TSR-EL-TG-PL01-R1 196	Hoja:

3.6.4 Verificación de la instalación eléctrica.

Para verificar la caída de tensión en conductores y corroborar que tienen la sección adecuada, utilizamos la siguiente ecuación:

$$\Delta U = K * I * L * (R \cos \varphi + X \sin \varphi)$$
 (12)

Donde:

- $\Delta U = \text{Caida de tensión en el conductor (V)}$
- K = coeficiente de corrección. Líneas monofásicas =2. Líneas trifásicas=1.73
- I = Corriente consumida (A)
- L = longitud de conductores (km)
- R = Resistencia eléctrica del conductor (Ω /Km)
- $X = Reactancia inductiva del conductor (\Omega/Km)$

También hay que tener en cuenta para el cálculo, un factor por agrupación de conductores en canalización, que disminuye la capacidad para transportar corriente de estos.

Una vez calculada la caída de tensión entre los extremos de los conductores, se debe verificar que cumplen con el porcentaje de caída de tensión admisible según el circuito utilizado, donde el límite admisible es de un 3% para circuitos de iluminación y un 5% para circuitos de potencia.

Los datos necesarios para realizar el cálculo se obtienen del catálogo comercial de Prysmian, donde se detallan las características técnicas para los conductores IRAM 2178 como también para los conductores IRAM NM 247-3 utilizados en la instalación eléctrica de la empresa.

Para verificar y seleccionar el calibre necesario para las protecciones eléctricas de la instalación, se debe cumplir el siguiente postulado:

$$I_B \leq I_N \leq I_Z$$

Donde:

- $I_B = Corriente$ empleada en el circuito
- $I_N = Corriente$ nominal del dispositivo de protección
- ullet $I_Z=Corriente$ admisible en los conductores a proteger

A continuación, se presentan los planos de distribución en planta y unifilares de la instalación eléctrica.

3.6.5 Verificación lumínica.

Para la verificación de la iluminación existente en la empresa, se utilizó el software simulador Dialux Evo, que es una herramienta que simplifica y mejora el proceso de diseño y verificación de iluminación conforme a los estándares requeridos.

Según la norma IRAM AADL J 20-06, el nivel de iluminación mínimo requerido en talleres metalúrgicos, para trabajos de piezas pequeñas en banco o máquina, rectificación de piezas medianas, fabricación de herramientas, ajuste de máquinas es de 500 lux; y la iluminación mínima requerida para trabajo en general de oficinas, es de 500 lux.

En la siguiente tabla se muestran los datos básicos de las luminarias utilizadas en las diferentes zonas del taller. Los datos de las luminarias fueron recopilados de los catálogos del fabricante de las luminarias.

Tabla 14 - Luminarias utilizadas en planta. Elaboración propia

FABRICANTE	LUMINARIA	POTENCIA [W]	FLUJO LUMÍNICO [lúmenes]	RENDIMIENTO LUMÍNICO [lúmenes/W]
Ledvance	Panel Value 600 36W 4000K WT	36	3600	100
Leavance	Dali	30	3000	100
Ledvance	High Bay Dali Gen 3 93W 4000K 110Deg IP65	93	13000	139,8
Ledvance	High Bay Sensor Gen 4 87W 840 110Deg IP65	87	13000	149,4

La empresa se dividirá en distintas zonas para su verificación como se puede ver en la

Fig. 42. Zonas de verificación lumínica

A continuación, se presenta la verificación en la zona del baño:

Tabla 15 – Verificación iluminación baño. Elaboración propia

Resumen Verificación Iluminación Baño			
Plano útil	Área del local [m2]	2,64	
	Iluminancia promedio requerida [lux]	500	
	Iluminancia promedio calculada [lux]	623	
	Modelo	LEDVANCE - Panel Value 600 36W 4000K WT Dali	
Luminarias	Potencia eléctrica unitaria [W]	36	
Lummarias	Cantidad de luminarias	1	
	Potencia eléctrica total [W]	36	

A continuación, se presenta la verificación en la zona de oficina:

Tabla 16 - Verificación iluminación Oficina. Elaboración propia

Resumen Verificación Iluminación Oficina			
Plano útil	Area del local [m2]	6,48	
	Iluminancia promedio requerida [lux]	500	
	Iluminancia promedio calculada [lux]	627	
		LEDVANCE - Panel	
	Modelo	Value 600 36W 4000K	
		WT Dali	
Luminarias	Potencia eléctrica unitaria [W]	36	
	Cantidad de luminarias	2	
	Potencia eléctrica total [W]	72	

A continuación, se presenta la verificación en la zona 1:

Tabla 17 - Verificación iluminación Zona 1. Elaboración propia

Resumen Verificación Iluminación Zona 1			
Plano útil	Area del local [m2]	42,64	
	Iluminancia promedio requerida [lux]	500	
	Iluminancia promedio calculada [lux]	903	
		LEDVANCE - High Bay	
	Modelo	Dali Gen 3 93W 4000K	
Luminarias		110Deg IP65	
	Potencia eléctrica unitaria [W]	93	
	Cantidad de luminarias	4	
	Potencia eléctrica total [W]	372	

A continuación, se presenta la verificación en la zona 2:

Tabla 18 - Verificación iluminación Zona 2. Elaboración propia

Resumen Verificación Iluminación Zona 2			
Plano útil	Area del local [m2]	9,6	
	Iluminancia promedio requerida [lux]	500	
	Iluminancia promedio calculada [lux]	770	
		LEDVANCE - High Bay	
	Modelo	Sensor Gen 4 87W 840	
Luminavias		110Deg IP65	
Luminarias	Potencia eléctrica unitaria [W]	87	
	Cantidad de luminarias	1	
	Potencia eléctrica total [W]	87	

A continuación, se presenta la verificación en la zona 3:

Tabla 19 - Verificación iluminación Zona 3. Elaboración propia

Resumen Verificación Iluminación Zona 3			
Plano útil	Area del local [m2]	13,25	
	Iluminancia promedio requerida [lux]	500	
	Iluminancia promedio calculada [lux]	595	
		LEDVANCE - High Bay	
	Modelo	Sensor Gen 4 87W 840	
		110Deg IP65	
Luminarias	Potencia eléctrica unitaria [W]	87	
	Cantidad de luminarias	1	
	Potencia eléctrica total [W]	87	

A continuación, se presenta la verificación en la zona 4:

Tabla 20 - Verificación iluminación Zona 4. Elaboración propia

Resumen Verificación Iluminación Zona 4			
	Area del local [m2]	54,45	
Plano útil	Iluminancia promedio requerida [lux]	500	
	Iluminancia promedio calculada [lux]	616	
		LEDVANCE - Panel	
	Modelo	Value 600 36W 4000K	
Luminarias		WT Dali	
Lummarias	Potencia eléctrica unitaria [W]	36	
	Cantidad de luminarias	12	
	Potencia eléctrica total [W]	432	

3.6.6 Instalación Neumática

En este punto del proyecto, verificaremos si la instalación neumática existente en la empresa, cumple con las consignas de uso requeridas y para esto es necesario verificar que cumple con los requisitos de caudal y presión necesarios para el proceso.

a) Verificación del caudal:

Para verificar el caudal, debemos asegurarnos de que el compresor proporciona el caudal necesario para el proceso.

El compresor con el que cuenta la empresa es un compresor bicilíndrico de 3HP de potencia, capaz de generar 310 L/min a una presión de salida de 7 bar, y cuenta con un tanque depósito de 200 L.

La instalación neumática, cuenta con los siguientes consumos:

Tabla 21 - Herramientas neumáticas existentes. Elaboración propia

Cant.	Herramienta	Consumo unitario [l/min]	Factor de uso [%]	Consumo total [l/min]
1	Prensa neumática	180	25	45
4	Pistola de soplado	90	30	108
1			TOTAL	153

Podemos ver claramente como el caudal generado por el compresor, supera al caudal necesario para el funcionamiento de la instalación

b) Verificación de la presión:

Para verificar que contamos con la presión necesaria en toda la instalación, debemos comprobar que la sección de la cañería utilizada es igual o superior a la sección que es calculada mediante el cálculo de pérdida de carga de esta.

Para esto debemos conocer:

- Caudal circulante por la cañería.
- Presión de salida del compresor.
- Caída de presión admisible.
- Longitud total de la cañería.

Como caudal máximo utilizado, suponemos accionándose al mismo tiempo la prensa neumática y dos pistolas de soplado:

$$180 L/\min + (2*90 L/\min) = 360 L/\min = 21.6 m3/h$$
 (13)

Se sabe que la presión de salida en el compresor es de 7 bar, y se acepta una caída de presión máxima del 5%, es decir, 0,35 bar.

Para calcular la longitud total de cañería, debemos sumar la longitud de los tramos rectos y la suma de las longitudes equivalentes de los accesorios existentes. Se tomará como referencia el punto más lejano al compresor de la cañería, donde se supone que está la mayor pérdida de presión.

- Longitud de tramos rectos = 20 m
- Longitud de accesorios = 2 valvulas + 2 codos + 7 tees

$$long.accesorios = 2 * 0.31m + 2 * 3m + 7 * 2.1m = 21.32m$$
 (14)

$$Long.Total = 20m + 21.32m = 41.32m$$
 (15)

Para calcular la cantidad de metros de longitud equivalente, utilizamos el diámetro nominal de 25,4mm que es el existente en la instalación.

Utilizando el nomograma de la figura 42 determinamos el diámetro de cañería mínimo necesario para no superar la caída de presión permitida.

NOMOGRAMA "DETERMINACIÓN DE LONGITUDES EQUIVALENTES"

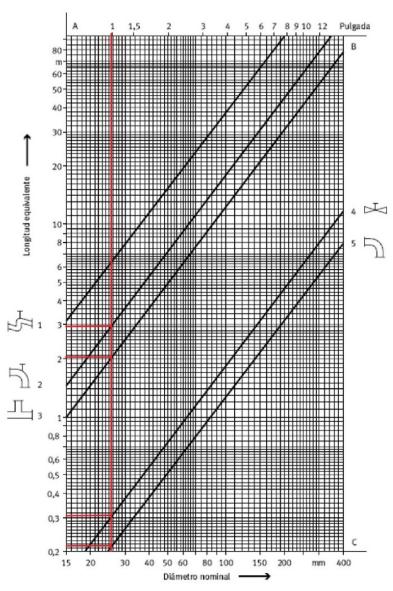


Fig. 43 - Nomograma "Determinación de longitudes equivalentes" - Manual de las técnicas del aire comprimido - Pokorny

Como podemos apreciar en la figura 43, el ábaco nos da una sección mínima de aproximadamente 15 mm, sección que es inferior a los 25,4 mm existentes en la instalación, por lo tanto, se puede decir que la sección de la cañería verifica a la perdida de carga.

NOMOGRAMA "DETERMINACIÓN DEL DIÁMETRO DE LA TUBERIA"

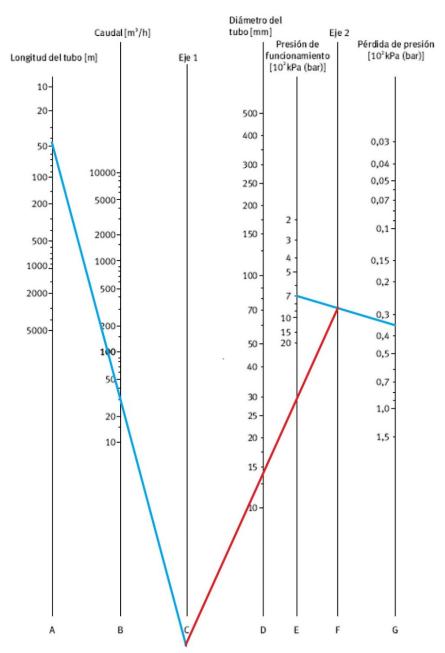


Fig. 44 - Nomograma" determinación de diámetro de la tubería" - Manual de las técnicas del aire comprimido - Pokorny

En el plano TSR-NE-DP-PL01-R1 expuesto anteriormente, podemos ver la distribución en layout y el unifilar de la instalación neumática.

3.6.7 Seguridad e Higiene.

La norma IRAM 3517-2 establece los niveles de calidad y los procesos a los que deben ser sometidos los matafuegos e indica la cantidad mínima a utilizar en industrias. La misma señala que, para sectores con áreas generales, debe colocarse 1 cada 200[m²] y con una distancia máxima de 15[m] entre cada uno. Además, establece que se debe utilizar un extintor A base de productos halogenados – HCFC y capacidad de 5[kg]. Se decide colocar 3 matafuegos en la empresa.

De acuerdo con la norma IRAM 10.005 - parte II, que reglamenta los colores de señalización de seguridad y de medios de escape, en su apartado 2.2, exige que la cartelería de evacuación sea de fondo verde, con letras y pictogramas blancos. También dicta, que la cartelería para matafuegos sea de color rojo con líneas blancas a 45°.

Según el Decreto 351/79 que regula la Ley 19.587 (Ley de Higiene y Seguridad en el Trabajo), la iluminación de emergencia para establecimientos que realicen tareas en horario nocturno debe ser de 80[lux] a 80[cm] del nivel del suelo. Por otro lado, la norma IRAM-AADL J 2027, que define el alumbrado de emergencia como el previsto para ser utilizado cuando falla el alumbrado normal, propone 1[lux] a nivel del suelo.

Los tubos de Argón utilizados para soldaduras están almacenados en su correspondiente casilla, cumpliendo el artículo 142 del capítulo 16 de la Reglamentación Ley Nº 19.587, aprobada por Decreto Nº 351/79.

La disposición final de residuos y efluentes industriales será entregada transportistas autorizados, los cuales se encargan de llevar a plantas autorizadas para tratamientos y disposición final. Este proceso se realiza bajo Ley 24.051 y la Ley 25612.

Las rutas de evacuación, distribución de matafuegos, salidas de emergencia y luces de emergencia se presentaron anteriormente en el plano TSR-HS-EV-PL01-R0.

3.7 Referencias bibliográficas.

- Pokorny (1969). MANUAL DE LAS TÉCNICAS DEL AIRE COMPRIMIDO.
 Alemania, Ed. Hermann Blume
- D. Waller, H. Werner (1997). NEUMÁTICA. LIBRO DE TRABAJO NIVEL BÁSICO. Alemania, Ed. Festo Didactic.
- Héctor N. Cosme (1977), ELEMENTOS DE MÁQUINAS MÉTODOS MODERNOS DE CÁLCULO Y DISEÑO. Buenos Aires Ed.Marymar.
- Informacion general de los productos Schneider Electric. [En línea]. Recuperado el día 25/08/2022, de https://www.se.com/ar/es/
- Catalogo general Ledvance. [En línea]. Recuperado el día 25/08/2022, de https://luminaires.dialux.com/es#0
- Lista de países con sus respectivos enchufes, voltajes (tensión eléctrica) y frecuencias. [En línea]. Recuperado el día 25/08/2022, de https://www.worldstandards.eu/es/electricidad/enchufes-por-pais/

Capítulo 4 – Manual de usuario.

4.1 Introducción.

Gracias por adquirir nuestra Máquina Reconstructora de Casquillos, su compra nos ayuda a seguir desarrollándola. Por favor leer con atención este manual, todos los capítulos contienen información valiosa para la correcta operación y mantenimiento, como también para su óptimo funcionamiento.

En caso de cualquier problema relacionado con la Maquina Reconstructora de Casquillos, no dude en contactarnos. Estamos felices de recibir todos sus comentarios y sugerencias.

4.2 Glosario.

Casquillo: Es el componente de una munición que se recupera luego de haber sido disparada para ser reutilizado. Este equipo se encarga de reconstruir sus medidas principales.

Placas de reconstrucción: Piezas de la maquina encargadas de estar en contacto con los casquillos y de producir su reconstrucción. Hay dos tipos de placas de reconstrucción: una de ellas es una placa fija, y otra una placa móvil, diferenciadas según su rol en el proceso de reconstrucción.

Alimentador: Sistema de la máquina encargado de insertar los casquillos en tiempo y forma dentro de la misma.

Sistema de calibración y regulación: Componentes del equipo encargado de generar el movimiento de las placas de reconstrucción, para lograr la calibración deseada.

Sistema de transmisión: Componentes del equipo encargados de transmitir el movimiento y transformarlo en un movimiento de vaivén en la placa de reconstrucción móvil.

4.3 Simbología utilizada.

Información importante, consejo o ayuda para mejor operación.

¡Leer cuidadosamente! Esto indica un área de texto de suma importancia.

Información relacionada solo con el equipo.

4.4 Instrucciones de seguridad

Por favor, sea muy cuidadoso durante cualquier interacción con la máquina reconstructora de casquillos, es un dispositivo eléctrico con partes móviles y su inadecuado uso puede provocar lesiones.

- Uso exclusivo en interiores. No exponer a la lluvia o a alta humedad. Siempre mantener la máquina en un lugar seco.
- Colocar siempre el equipo en un lugar estable donde no corra riesgo de caídas.
- El equipo está diseñado para funcionar con una tensión de alimentación de 220 V
 / 50 Hz. el uso de tensión inadecuada puede causar mal funcionamiento o daño irreversible en los componentes de la máquina.
- Colocar el cable de alimentación en una posición segura en la que no pueda ser dañado. Asegurarse que el cable no esté dañado. Si está dañado, no usar el equipo y reemplazar el cable inmediatamente.
- Al desconectar el cable del enchufe, hacerlo desde el conector y no desde el cable propiamente dicho para evitar daños en el mismo.
- Todas las reparaciones del equipo deben realizarse por un técnico capacitado.
- No usar el equipo sin la carcasa protectora, ya que las piezas en movimiento pueden causar daño en el operario.
- No dejar al alcance de niños.

4.5 Descripción de componentes.

La máquina reconstructora de casquillos y sus componentes son mostrados en las siguientes figuras. Información detallada de su funcionamiento y uso, son explicados en capítulos posteriores, si necesita ayuda, no dude en contactarnos. Generalmente podemos encontrar las dudas a tus preguntas en este manual, pero de no ser así, no dude en contactarse con nosotros.

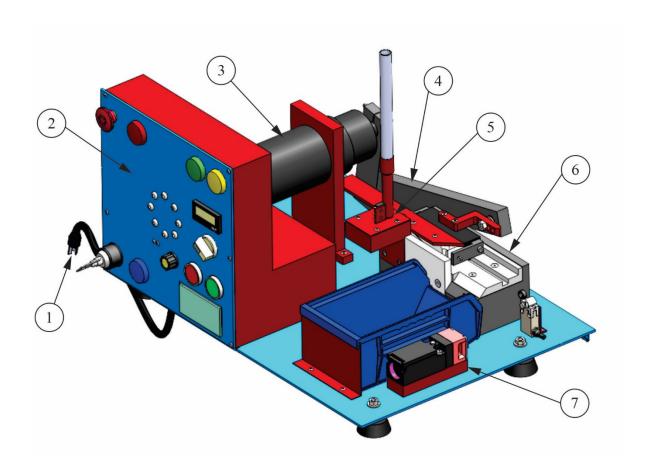


Fig. 45. Descripción de componentes sin carcasa protectora. Elaboración propia

- 1. Cable conexión eléctrica con clavija tipo I
- 2. Tablero de comandos
- 3. Motor

- 4. Conjunto accionamiento automático
- 5. Conjunto alimentación de casquillos
- 6. Conjunto Reconstructor de casquillos
- 7. Traba de seguridad de las carcasas protectoras

4.6 Tablero de comandos

En las siguientes figuras podrá observar los diferentes comandos que posee la máquina.

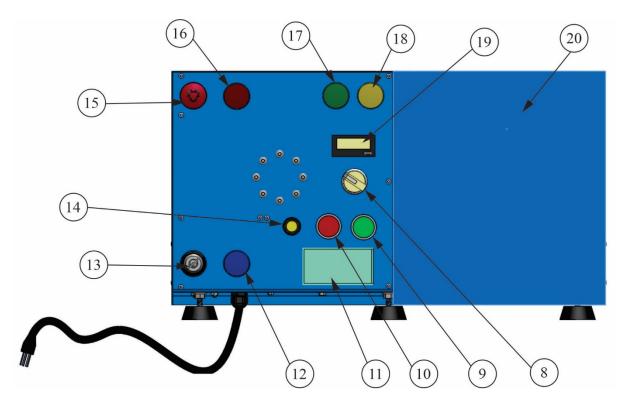


Fig. 46. Tablero de comando. elaboración propia.

4.7 Primeros pasos.

4.7.1 Nivelación.

Asegúrese de colocar la maquina sobre una superficie plana. Luego mediante el ajuste de los soportes estabilizadores regule la estabilidad de la máquina.

Siempre que se mueva de lugar la máquina, verificar que el equipo se encuentre estable.

No ubicar a la máquina reconstructora de casquillos en un lugar en donde pueda ser mojado o salpicado.

4.7.2 Calibración.

Es necesario calibrar las placas de la máquina reconstructora de casquillos antes de su puesta en marcha. Con una correcta calibración, se logrará una completa reconstrucción de los casquillos a sus medidas originales.

8. Llave de habilitación contador

9. Pulsador de marcha

10. Pulsador de parada

11. Indicador de velocidad

12. Luz indicadora piloto de fase

13. Llave seccionadora

14. Controlador de velocidad

15. Pulsador de emergencia

16. Luz indicadora de parada

17. Luz indicadora de marcha

18. Luz indicadora falta de casquillos

19. Contador

20. Carcasa protectora

Para lograr una correcta calibración de las placas reconstructoras, la máquina es provista con un casquillo patrón que será utilizado en la calibración de esta. Este casquillo es un casquillo macizo que cumple con las dimensiones normalizadas del mismo.

La calibración de la máquina es necesario realizarlo operando la misma en el modo manual. Ver apartado correspondiente.

Procedimiento de calibración:

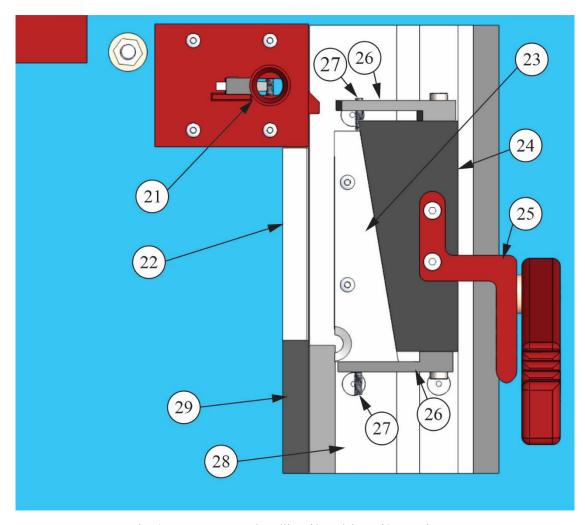


Fig. 47. Componentes de calibración. Elaboración propia

- 21. Alimentador de casquillos
- 22. Placa de reconstrucción fija
- 23. Placa de reconstrucción móvil
- 24. Elemento deslizador
- 25. Pieza de conexión

- 26. Tope y fijador de la placa móvil
- 27. Tornillos de regulación
- 28. Placa guía
- 29. Base de montaje

- a) Aflojar los tornillos de apriete final (1.09.4.2.07). (Fig. 48 (30))
- b) Mediante los tornillos de regulación (27) colocar la placa móvil en la posición más alejada de la placa fija. Aclaración: Por cada vuelta del tornillo de regulación se producirá un movimiento de 0.5 mm de la placa móvil.
- c) Colocar el casquillo patrón entre la placa móvil (23) y la placa fija (22). (Fig. 49)
- d) Calibrar la placa móvil mediante los tornillos de regulación (27) hasta entrar en contacto con el casquillo patrón. (Fig. 50)
- e) Fijar los tornillos de apriete final (30).
- f) Quitar el casquillo patrón, mediante el accionamiento manual de la máquina.
- g) Colocar un casquillo a reconstruir en la máquina y accionar la misma de manera manual.
- h) Verificar las dimensiones obtenidas en el casquillo reconstruido con un calibre. Si las medidas obtenidas cumplen con los requerimientos del usuario, cambiar el modo de funcionamiento a automático. Si la medición no cumple con los requerimientos del usuario repetir nuevamente el procedimiento de calibración desde el punto "c".

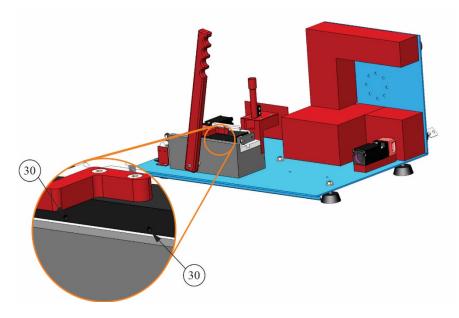


Fig. 48. Tornillos de apriete final. Elaboración propia

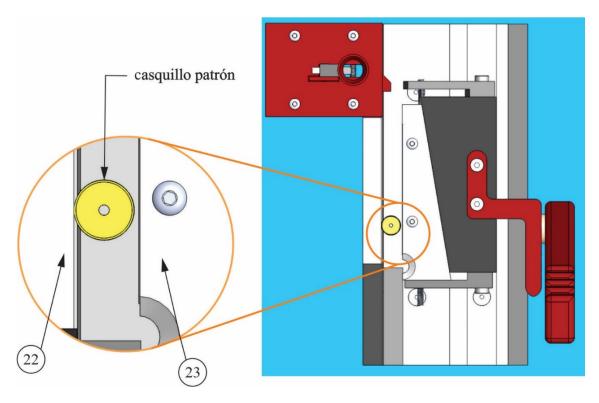


Fig. 49. regulación de la placa móvil. Elaboración propia.

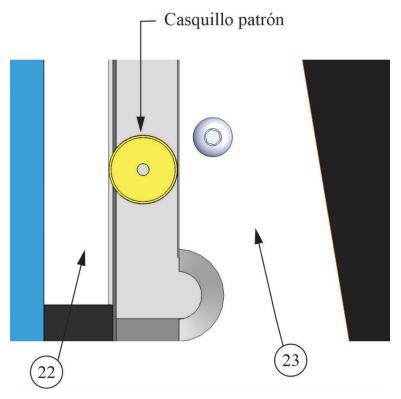


Fig. 50. Casquillo patrón entre placas de reconstrucción. Elaboración propia

4.7.3 Conexión eléctrica.

- Corroborar que se cumplan las condiciones de seguridad previamente mencionadas.
- Conectar la máquina a un tomacorriente tipo I de 3 clavijas.

La instalación eléctrica donde el equipo sea conectado debe contar con conductor de puesta a tierra y con protección diferencial de 30mA para la protección del operador y del equipo.

4.8 Funcionamiento.

a) Modo manual

Esta máquina permite su accionamiento de manera manual. Para esto se incluye un kit de accionamiento manual que incluye:

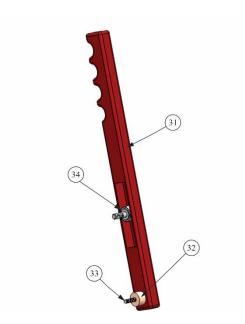


Fig. 51. Kit de accionamiento manual. Elaboración propia.

- 31. Palanca de accionamiento
- 32. Separador de la palanca
- 33. Tornillo de fijación
- 34. Rodamiento

La base de la máquina posee una perforación roscada que permite el montaje de la palanca de accionamiento mediante un separador y un tornillo de fijación.

Se recomienda la utilización de la máquina con este tipo de accionamiento para realizar la regulación y calibración de la misma o en caso de existir una falla en el suministro eléctrico.

Instalación del accionamiento manual.

Para realizar la instalación del accionamiento manual ejecutar el siguiente procedimiento:

- a) Asegurarse que el equipo se encuentro desconectado de la alimentación eléctrica.
- b) Retire las carcasas protectoras del equipo.
- c) En caso de encontrarse el accionamiento automático instalado (Fig. 45), desmontar la biela del accionamiento.
- d) Montar el rodamiento del kit de accionamiento manual en el elemento de unión de la máquina.
- e) Montar la palanca de accionamiento en la perforación roscada ubicada en la parte baja de la base utilizando el separador y el tornillo de fijación.

De esta manera, el equipo ya está preparado para funcionar en modo manual como se puede ver en las siguientes figuras.

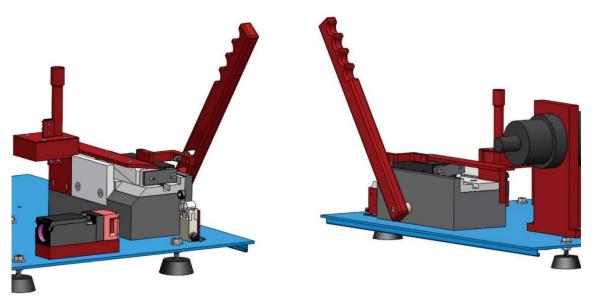


Fig. 52. Accionamiento manual instalado 1. Elaboración propia

Fig. 53. Accionamiento manual instalado 2. Elaboración propia

b) Modo automático.

Este equipo permite su funcionamiento de manera totalmente automática. Para esto se incluye un kit de accionamiento automático que incluye los componentes que se indican en la figura 55.

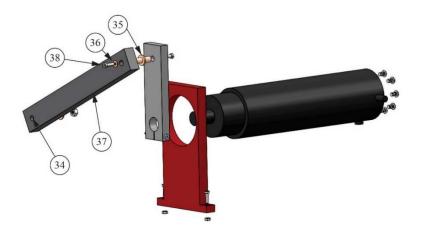


Fig. 54. kit de accionamiento automático. Elaboración propia

35. Buje 36. Arandelas 37. Biela 38. Tornillos de fijación

Instalación del accionamiento automático.

- a) Asegurarse que el equipo se encuentro desconectado de la alimentación eléctrica.
- b) Retire las carcasas protectoras del equipo.
- c) En caso de encontrarse montado el accionamiento manual, desmontarlo quitando el tornillo de fijación y todos los componentes indicados en la figura 51.
- d) Montar el buje mediante el uso de los tornillos de fijación y las arandelas a la manivela que se encuentra ya montada en el motor del equipo.
- e) Colocar la biela. De manera conjunta montar el eje del rodamiento en la pieza de conexión y el otro extremo de la biela en el buje.
- f) Ajustar los tornillos de fijación.

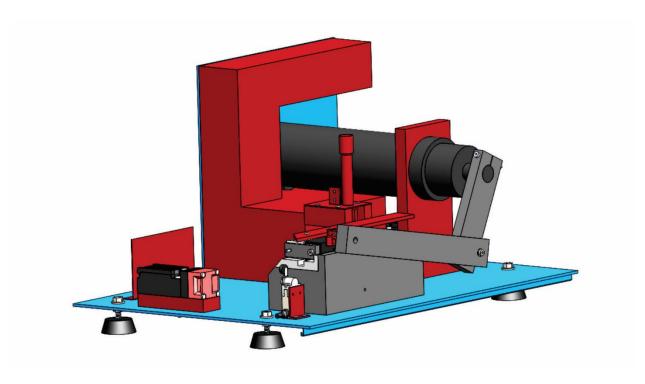


Fig. 55. Accionamiento automático instalado. Elaboración propia

Puesta en funcionamiento en modo automático:

- a) Conectar el equipo a la corriente eléctrica.
- b) Verificar el tablero de comandos, y corroborar que solo la luz azul esté encendida. Si alguna otra luz está encendida, el equipo no se pondrá en funcionamiento.
- c) Reiniciar el contador y habilitar el contador.
- d) Presionar el pulsador de marcha. El equipo se pondrá en marcha y se encenderá la luz verde indicadora de marcha.
- e) Si desea modificar la velocidad de trabajo, puede hacerlo desde el regulador que se encuentra en el tablero de comandos.
- f) Si desea detener el equipo, presionar el pulsador de parada, y el equipo se detendrá.
- g) En caso de desabastecerse de casquillos, la máquina se detendrá automáticamente encendiendo la luz amarilla en el tablero de comando.

En caso de emergencia, presione el pulsador de parada de emergencia, el cuál sacará de funcionamiento inmediatamente al equipo. Cuando el pulsador de emergencia esté presionado, se encenderá la luz roja.

Si se retira alguna de las carcasas protectoras del equipo durante el funcionamiento de la máquina, automáticamente se detendrá y se encenderá la luz roja de emergencia en el tablero de comando.

4.9 Mantenimiento.

Para cualquier tarea de mantenimiento, presione el pulsador de parada de emergencia, y desenchufe el equipo de la red eléctrica; esto asegurará que el equipo no se ponga en marcha en ninguna circunstancia, y evitará riesgos eléctricos.

4.9.1 Antes de poner en marcha el equipo.

- Asegurarse que el equipo esté limpio y sin ningún componente fuera de su lugar, evitando algún atascamiento de la máquina.
- En caso de reutilizar la máquina posterior a un prolongado tiempo sin utilización, limpiar y lubricar con un aceite lubricante tipo WD40 aquellas piezas que posean algún tipo de movimiento y rozamiento.
- Comprobar el ajuste de todos los tornillos de la máquina.
- Comprobar el estado y posición del rodamiento de la máquina (34).

4.9.2 Durante la marcha del equipo.

- Comprobar que todos los controles e indicadores en el tablero de control funcionan correctamente.
- Verificar periódicamente que la bandeja receptora de casquillos reconstruidos no supere su capacidad máxima.

4.9.3 Después de usar el equipo.

- Asegurarse haber desconectado la máquina de la conexión eléctrica.
- Limpiar cuidadosamente el equipo.
- Evitar que queden casquillos sueltos dentro del equipo.
- En caso de guardar la maquina por un prolongado tiempo sin ser utilizada utilizar un aceite lubricante tipo WD40 para lubricar y proteger aquellas piezas de metal que puedan que posean movimiento.

4.10 Posibles problemas y soluciones.

Tabla 22. Posibles fallas. Elaboración propia

FALLA	CAUSA POSIBLE	SOLUCIÓN
	Cable de alimentación dañado	Revisar el cable de alimentación y su enchufe terminal, y si es necesario reemplazarlo.
No enciende la luz azul piloto de fase	Luz testigo dañada	Comunicarse con el servicio técnico para el recambio de la misma.
	Fusible dañado	Comunicarse con el servicio técnico para el recambio del mismo.
	Carcasas protectoras mal colocadas	Controlar que las carcasas protectoras estén colocadas correctamente
Equipo no trabaja en modo automático	Parada de emergencia o llave seccionadora activada	Revisar que el botón de parada de emergencia o la llave seccionadora no estén activados.
	Falla en la alimentación de casquillos	Verificar la existencia de casquillos atascados que impidan la alimentación del equipo.

	Alarma activada	Verificar que ninguna alarma del tablero de comando se encuentre activada.
El equipo está en marcha, pero el motor no gira	Sistema de transmisión atascado	Detener el equipo y verificar la existencia de elementos que puedan atascar el movimiento del equipo
	Controlador de velocidad en 0	Verificar que el controlador de velocidad no se encuentre en 0.
	Calibración de placas de	Verificar la calibración de las
No se reconstruyen los	reconstrucción	placas de reconstrucción
casquillos en tolerancias requeridas	Elementos de fijación	Controlar que los tornillos de fijación del equipo estén bien ajustados.

4.11 Garantía

Soldaduras Romitelli se compromete a reparar o subsanar cualquier defecto de la maquina reconstructora de casquillos causado por materiales defectuosos o defectos constructivos.

No dude en comunicarse con nosotros ante cualquier falla ocurrida. Sus sugerencias y consultas serán utilizadas para mejorar nuestro producto y nuestro servicio.

4.12 Lista de componentes.

Con el fin de garantizar un procesamiento preciso y oportuno a continuación se presenta una lista de los componentes referenciados en este manual con el código de fabricación correspondiente para su solicitud ante el servicio técnico en caso de ser necesario.

- 1- Cable de conexión eléctrica con clavija tipo I . No posee código de reposición
- 2- Tablero de comandos 1.09.3.3.01
- 3- Motor 1.09.4.1.01
- 4- Conjunto accionamiento automático 1.09.1.1
- 5- Conjunto alimentación de casquillos 1.09.2.1
- 6- Conjunto reconstructor de casquillos 1.09.2.2
- 7- Traba de seguridad de las carcasas protectoras 1.09.4.1.02
- 8- Llave de habilitación del contador 1.09.4.1.18
- 9- Pulsador de marcha 1.09.4.1.26
- 10- Pulsador de parada -1.09.4.1.27
- 11- Indicador de velocidad 1.09.4.1.05
- 12. Luz indicadora piloto de fase 1.09.4.1.16
- 13-. Llave seccionadora 1.09.4.1.03
- 14- Controlador de velocidad 1.09.4.1.05
- 15- Pulsador de emergencia 1.09.4.1.04
- 16- Luz indicadora de parada -1.09.4.1.14
- 17- Luz indicadora de marcha 1.09.4.1.15
- 18- Luz indicadora falta de casquillos 1.09.4.1.19
- 19- Contador 1.09.4.1.17
- 20- Carcasa protectora Derecha: 1.09.3.1.01 Izquierda: 1.09.3.1.02
- 21. Alimentador de casquillos 1.09.2.1.02
- 22- Placa de reconstrucción fija 10.9.2.3.02
- 23- Placa de reconstrucción móvil 10.9.2.2.01
- 24- Elemento deslizador -1.09.2.2.02
- 25- Pieza de conexión 1.09.2.2.05
- 26- Tope y fijador de la placa móvil- 1.09.2.2.04
- 27- Tornillos de regulación (Gusano allen 12.9- M3 x 12 Fosf..) 1.09.4.2.06
- 28- Placa guía 1.09.2.3.03
- 29- Base de montaje 1.09.2.3.01

- 30- Tornillos de apriete final (Gusano allen 12.9- M3 x 12 Fosf..) 1.09.4.2.06
- 31- Palanca de accionamiento 1.09.1.2.01
- 32- Separador de la palanca 1.09.1.2.02
- 33- Tornillo de fijación (Tornillo allen Cabeza Cilindrica M4 x 35 DIN 7984) -
- 1.09.4.2.02
- 34- Rodamiento 1.09.4.3.02
- 35- Buje 1.09.1.1.04
- 36- Arandelas 1.09.4.2.13
- 37- Biela 1.09.1.1.03
- 38- Tornillos de fijación (Tornillo allen Cabeza Cilindrica M4 x 45 DIN 7984)-
- 1.09.4.2.03

4.13 Contacto

SOLDADURAS ROMITELLI

Dirección: Eduardo Oliber 22 – Rafaela (Santa Fe - Argentina)

Teléfono: (03492) 427514

e-mail: soldadurasromitelli@gmail.com

4.14 Referencias bibliográficas.

Norma UNE en ISO 12100. Seguridad de las máquinas. Principios generales para el diseño. Evaluación del riesgo y reducción del riesgo. (2012). [En línea]. Recuperado el día 24/11/2023, de https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0049405.

Capítulo 5 - Evaluación económica.

5.1 Análisis de costos.

La determinación del costo de producción de un nuevo producto conlleva la consideración de una serie de factores, y el análisis de costos directos e indirectos se erige como una herramienta esencial para esta tarea. Dicho análisis no solo contribuye a la evaluación del costo de producción, sino que también orienta las decisiones encaminadas a mejorar la eficiencia y reducir los costos operativos.

Con el fin de optimizar la producción y reducir costos, se le solicito a la empresa que realice un análisis de su capacidad productiva e improductiva actual, identificando características y potencial. Todas las acciones aquí propuestas se han verificado y adaptado a la realidad específica de la empresa, asegurando viabilidad y potencial impacto positivo. Con base en este análisis, se opta por: reasignar recursos, optimizar procesos internos, y explorar la implementación de nuevas estrategias, como es la incorporación de un nuevo producto innovador. El objetivo es: reducir costos fijos, aumentar la eficiencia, y en consecuencia, incrementar la rentabilidad de la empresa. Es importante destacar que este proceso de optimización es continuo y requiere de un monitoreo constante, con ajustes periódicos, para garantizar así su efectividad.

Para la evaluación económica del proyecto, tenemos en cuenta la siguiente información relevante perteneciente a la fecha que se realizó el análisis (05/01/2023):

- USD 1 =\$ARG 183,25
- Todo el capital aportado como inversión inicial para ejecutar el proyecto es 100% aportado por la empresa interesada.
- Las tasas utilizadas en este capítulo son Tasas Reales Efectivas Anuales (TREA), utilizando como moneda real el dólar.

5.1.1 Caracterización de costos.

En la tabla 23 se presentan todos los costos implicados en la fabricación de la máquina reconstructora de casquillos. Luego, se analizarán por separado todos los valores mostrados en la tabla, desdoblando entre costos fijos y costos variables, y mostrando la influencia de cada costo en sus correspondientes diagramas.

Tabla 23. Costos implicados en el proyecto. Elaboración

COSTOS	DIRECTOS		INDIRECTOS	S	TOTALES
	Materiales (componentes)	1448,67	Costos Indirectos en la Producción	80,10	Total costos
VARIABLES	Mano de Obra Directa	302,03	Comisiones por ventas	46,00	VARIABLES
[USD/maquina]	Energía Utilizada en Fabricación	2,30	Terciarizaciones	29,00	[USD/maquina]
	Subtotal de costos directos variables	1753,00	Subtotal de costos indirectos variables	155,10	1908,10
			Mano de obra indirecta	31560,46	
			Publicidad y Marketing	460,00	
			Energía Electrica Indirecta	270,69	Total costos FIJOS
FIJOS [USD/año]			Costos de Oficina	1253,00	[USD/año]
			Mantenimiento edilicio	650,00	
			Servicios jurídicos y contables	950,00	
	Subtotal de costos directos fijos	0	Subtotal de costos indirectos fijos	35144,14	35144,14

Los costos variables, son los costos que dependen de la cantidad de máquinas fabricadas y en la siguiente tabla se observa el resumen de estos para este proyecto.

Tabla 24. Costos variables. Elaboración propia.

COSTOS VARIABLES	CLASIFICACIÓN	MONTO (USD/máquina)
Materiales (componentes)	Directo	1448,67
Mano de Obra Directa	Directo	302,03
Energía Utilizada en Fabricación	Directo	2,30
Costos Indirectos en la		
Producción	Indirecto	80,10
Comisiones por ventas	Indirecto	46,00
Terciarizaciones	Indirecto	29,00
TOTAL COSTOS		
VARIABLES		1908,10

En la Figura 56 podemos ver el diagrama de correspondiente a los costos variables implicados en la fabricación. En el mismo, se observa que los materiales son los que tienen mayor preponderancia.

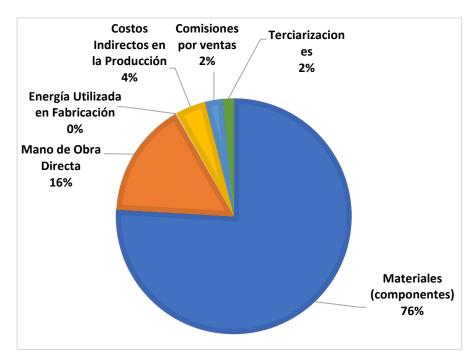


Fig. 56. Diagrama de costos variables. Elaboración propia.

Los costos fijos, no dependen de la cantidad de máquinas fabricadas, y se contabilizan anualmente. En la tabla 25 podemos ver el resumen de los costos fijos de la empresa utilizados para la fabricación de todos sus productos.

Tabla 25. Costos fijos. Elaboración propia.

COSTOS FIJOS	CLASIFICACIÓN	MONTO (USD /año)
Mano de obra indirecta	Indirecto	31560,46
Publicidad y Marketing	Indirecto	460,00
Energía Electrica Indirecta	Indirecto	270,69
Costos de Oficina	Indirecto	1253,00
Mantenimiento edilicio	Indirecto	650,00
Servicios jurídicos y contables	Indirecto	950,00
TOTAL COSTOS FIJOS	35144,14	

En la Figura 57 podemos ver el diagrama correspondiente a los costos fijos de la empresa. En el mismo, podemos ver que la mano de obra indirecta constituye el costo fijo de mayor peso.

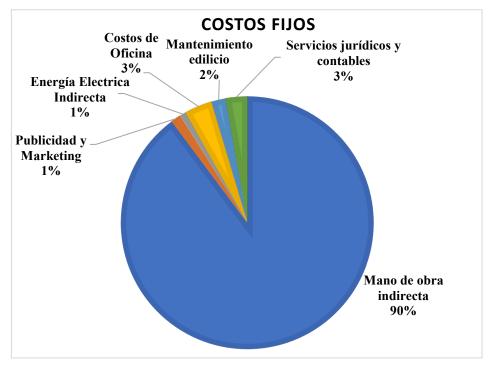


Fig. 57. Diagrama costos fijos. Elaboración propia

5.1.2 Determinación de costos variables.

A continuación, se desarrollarán todos los factores que determinan los costos variables.

a) Materiales (componentes) -costo directo-

Para la determinación de los costos de materiales, se pidieron cotizaciones por los elementos que serán realizados fuera de la empresa, y se consideró el costo de la materia prima necesaria para los elementos que se fabrican integramente dentro de la empresa.

Tabla 26. Costo de materiales. Elaboración propia.

Grupo de material componente	Costo [USD]	
Piezas fabricadas en empresa interesada	38,44	
Piezas de tornería y chapería	326,75	
Piezas plásticas	21,83	
Motor eléctrico	440,00	
Materiales y piezas eléctricas	446,15	
Piezas estandar y tornillería	175,50	
	TOTAL	1448,67

b) Mano de obra directa (MOD) -costo directo-

Para calcular el costo de mano de obra directa, primero debemos estimar cuantas horas hombre necesita la máquina reconstructora de casquillos para ser construida; una vez establecido ese tiempo, buscamos en el Convenio Colectivo de Trabajo y Acuerdos Salariales de la Unión Obrera Metalúrgica (UOM) de la República Argentina el monto que corresponde a la hora hombre para el personal destinado a la fabricación del producto.

Los empleados de la empresa están encuadrados dentro de la rama 17 de dicho convenio y si consideramos para la fabricación del producto, contratar obreros con categoría Oficial múltiple, y se tiene en cuenta en el costo de la hora hombre un recargo del 65% destinado a cargas sociales.

Tabla 27. Costo de mano de obra. Elaboración propia.

Mano de obra directa						
Cant.	Rango	Costo de MO [USD /h]	Horas Necesarias por máquina	Costo/máquina [USD /máq]		
1	Oficial Múltiple	6,71	45	302,03		

c) Energía eléctrica utilizada en la fabricación. -costo directo-

Para calcular el costo de la energía eléctrica utilizada en la fabricación, primero debemos estipular el tiempo de funcionamiento de las máquinas destinadas en la fabricación del producto, y a partir de su potencia podemos calcular la energía consumida por las mismas en kWh.

Tabla 28. diagrama de torta costos fijos. Elaboración propia.

Energia Eléctrica Utilizada en Fabricación					
Máquina		Potencia [kw]	Uso de Máquina [h]	Factor ciclo de trabajo [%]	Energía Consumida [kw-h]
Rectificadora (MQ001)		3,75	5	65	12,2
Torno (MQ003)		1,5	6	65	5,9
Perforadora (MQ004)		0,56	12	65	4,4
Sierra sin Fin (MQ005)		0,56	15	65	5,5
Otros (Amoladora, manual, etc)	Torno	0,25	5	65	0,8
Total Energia Activa consumida [kw-h] 28,7					28,7

Una vez conocido el total de energía consumida, podemos, a partir del costo unitario del kWh, calcular el costo total. La empresa se encuentra bajo el contrato ULC1 de la Empresa Provincial de la energía (EPE) de la provincia de Santa Fe, el cual no posee tarifa diferenciada por horario de consumo.

Tabla 29. Costo energía eléctrica utilizada en fabricación . Elaboración propia.

Costo de Energía Eléctrica Utilizada en Fabricación						
			Precio Unit. [USD/kw-h]	Consumo [kw-h]	Costo [USD/maq]	
Energía consumida	eléctrica	activa	0,080	28,7	2,30	

d) Costos indirectos en la producción (CIP) -costo indirecto-

Los costos indirectos de la producción, también conocidos como costos indirectos de fabricación, son aquellos costos que no se pueden atribuir directamente a un producto, y que son necesarios para la producción en general.

Para este proyecto, los costos indirectos de la producción se pueden referenciar a: lubricantes, elementos de seguridad, herramientas e insumos para las diferentes maquinas, etc.

Para determinar los costos indirectos de la producción, se recopiló información histórica de la empresa, donde se investigó el monto destinado en CIP durante el año 2022. También se investigó información sobre la cantidad de horas de mano de obra directa (HMOD) que tiene la misma durante un año.

A partir de estos dos datos, se puede calcular cual es el costo de CIP por cada hora de mano de obra directa.

Tabla 30. Costos indirectos en la producción. Elaboración propia.

Costos Indirectos en la Producción (CIP)						
CIP anuales	HMOD	CIP/HMOD				
[USD]	Anuales [h]	[USD/h]				
8544	4800	1,78				

Por otro lado, estimativamente, se determinó las HMOD necesarias para la fabricación de la maquina reconstructora de casquillos, y a partir de este dato podemos calcular el CIP por cada máquina fabricada.

Tabla 31. Costos indirectos en la producción por máquina fabricada. Elaboración propia.

Costos Indirectos en la Producción por Máquina Fabricada					
CIP/HMOD [USD/h]	HMOD por Máquina [h/máq]	CIP por Máquina [USD/máq]			
1,78	45	80,1			

e) Comisiones por ventas. -costo indirecto-

Se incluye dentro de este apartado, un monto destinado a los vendedores del producto, igual al 2% del valor de venta de este.

f) Tercerizaciones. -costo indirecto-

Dentro de los costos de tercerizaciones, consideramos a los costos extras que se producen por la tercerización de subproductos; podemos incluir dentro de esta categoría a los fletes de subproductos elaborados en otras empresas, también su seguimiento contable y logístico.

El monto destinado a tercerizaciones es un monto estimado que será suficiente para cubrir los costos mencionados.

5.1.3 Determinación de costos fijos indirectos

En este apartado del capítulo se desarrollarán los costos fijos anuales de la empresa para la fabricación de todos sus productos durante este período de tiempo.

a) Mano de obra indirecta (MOI).

Como MOI, consideramos todos los sueldos del personal que no interviene directamente en la fabricación del producto y para esto se recurre nuevamente al Convenio Colectivo de Trabajo y acuerdos salariales de la UOM.

Las personas implicadas son dos, un Administrativo de 4ta categoría dedicado a hacer todas las tareas administrativas de la empresa, y un técnico de 5ta categoría que es quien trabaja en oficina técnica.

Cabe destacar, que se consideran los doce sueldos anuales, un sueldo complementario por aguinaldo, y un 65% de recarga debido a cargas sociales.

Tabla 32. Costos mano de obra indirecta. Elaboración propia.

	Mano de obra indirecta						
cant	categoria	sueldo mensual [USD]	carga social [%]	total [USD/año]			
1	Admin. De 4ta	750,11	65	16089,88			
1	1 Técnico de 5ta 721,24		65	15470,57			
			TOTAL	31560,46			

b) Publicidad y márketing.

Para determinar este costo se recopiló información histórica de la empresa sobre lo que se destinó a publicidad y márketing anualmente.

c) Energía eléctrica indirecta.

La energía eléctrica indirecta, corresponde a la energía utilizada en iluminación y en cualquier tipo de accesorio eléctrico utilizado y que no haya sido tenido en cuenta en el cálculo de energía eléctrica directa, como, por ejemplo, el uso de una herramienta eléctrica manual.

Para esta determinación, se contabilizaron los gastos de energía eléctrica correspondientes al año 2022 en la empresa, y se pudo determinar un costo total de 270,69 USD.

d) Costos de oficina.

Los costos de oficina son costos necesarios para el funcionamiento de la misma, están incluidos dentro de estos costos insumos como papel, tinta para impresora, útiles y herramientas de oficina, etc, como así también está incluido dentro de este costo el servicio de Internet.

Para la determinación de este costo, se recurre a la información histórica de la empresa y se contabilizan los costos de oficina durante el año 2022.

e) Mantenimiento edilicio.

Dentro de este costo, están incluidos tanto los costos para mantener operativo el edificio del taller, como los costos por limpieza y sus productos.

f) Servicios jurídicos y contables

Este monto se determina con información histórica de la empresa de costos destinados a estudios contables y jurídicos.

5.2 Precio del producto.

Para la determinación del precio de venta de la máquina reconstructora de casquillos, se hacen las siguientes consideraciones:

- En la empresa interesada se trabajan 44 horas semanales, tiene un solo obrero destinado a la fabricación y armado de la maquina reconstructora de casquillos. Esto da como resultado que se tienen aproximadamente 2300 horas anuales destinadas a la fabricación del producto. Se estima un tiempo de fabricación por máquina de 45 horas totales. Como resultado se estima una capacidad máxima aproximada de 50 máquinas reconstructoras de casquillos anuales.
- La estimación de ventas anuales del producto se sitúa en 35 unidades.

 Dado que el proyecto es de envergadura reducida para la empresa interesada, la propuesta contempla que absorberá solamente el 30% de los costos fijos anuales totales calculados. El 70% restante será cubierto por el taller.

Costos fijos absorbidos = Costos fijos anuales totales $\times 0.3$

Costos fijos absorbidos = 35144,1 [USD] x 0,3

Costos fijos absorbidos = 10543,2 [USD]

• Como estrategia comercial, se define que el precio del producto supere en un 25% a los costos totales variables:

Precio del producto = Costos variables x 1,25

Precio del producto = 1908,1 [USD] x 1,25

Precio del producto = 2385,1 [USD]

5.2.1 Análisis de contribución marginal y punto de equilibrio

Para poder realizar una evaluación rápida de la rentabilidad del producto, se realiza un análisis de contribución marginal. Esta, representa la cantidad de ingresos que queda después de deducir los costos asociados a la producción o venta de producto.

Contribución Marginal = Ingreso por ventas – Costo Variable

La contribución marginal puede ser: igual, menor o mayor al costo fijo.

En consecuencia, se pueden dar las siguientes alternativas:

- Si la contribución marginal es "positiva", contribuye a absorber el costo fijo y a dejar un "margen" para la utilidad o ganancia.
- Cuando la contribución marginal es igual al costo fijo, y no deja margen para la ganancia, se dice que la empresa está en su "punto de equilibrio". No gana, ni pierde.
- Cuando la contribución marginal no alcanza para cubrir los costos fijos, la empresa puede seguir trabajando en el corto plazo, aunque la actividad de resultado negativo. Porque esa contribución marginal sirve para absorber parte de los costos fijos.
- La situación más crítica se da cuando el "precio de venta" no cubre los "costos variables", o sea que la "contribución marginal" es "negativa". En este caso extremo, es cuando se debe tomar la decisión de no continuar con la elaboración de un producto o servicio.

A continuación, en la tabla 33 y en la gráfica de la figura 58 se presenta el análisis de contribución marginal del producto, donde también puede observarse donde se produce el punto de equilibrio del proyecto.

Tabla 33. Contribución marginal y punto de equilibrio. Elaboración propia.

cantidad vendida [Unidades anuales]	Precio de venta por Unidad [USD]	Ingreso por ventas [USD]	Costos variables por unidad [USD/maquina]	Costos variables totales [USD]	Costos fijos anuales [USD]	Costos totales [USD]	Contribución Marginal [USD]	Resultado económico anual [USD]
1	2385,1	2385,1	1908,1	1908,1	10543,2	12451,3	477,0	-10066,2
2	2385,1	4770,3	1908,1	3816,2	10543,2	14359,4	954,1	-9589,1
3	2385,1	7155,4	1908,1	5724,3	10543,2	16267,5	1431,1	-9112,1
4	2385,1	9540,5	1908,1	7632,4	10543,2	18175,6	1908,1	-8635,1
5	2385,1	11925,7	1908,1	9540,5	10543,2	20083,7	2385,2	-8158,1
10	2385,1	23851,3	1908,1	19081,0	10543,2	29624,2	4770,3	-5772,9
15	2385,1	35777,0	1908,1	28621,5	10543,2	39164,7	7155,5	-3387,8
20	2385,1	47702,6	1908,1	38162,0	10543,2	48705,2	9540,6	-1002,6
22,1	2385,1	52715,6	1908,1	42172,4	10543,2	52715,6	10543,2	0,0
25	2385,1	59628,3	1908,1	47702,5	10543,2	58245,7	11925,8	1382,6
30	2385,1	71553,9	1908,1	57243,0	10543,2	67786,2	14310,9	3767,7
35	2385,1	83479,6	1908,1	66783,5	10543,2	77326,7	16696,1	6152,9
40	2385,1	95405,2	1908,1	76324,0	10543,2	86867,2	19081,2	8538,0
45	2385,1	107330,9	1908,1	85864,5	10543,2	96407,7	21466,4	10923,2
50	2385,1	119256,5	1908,1	95405,0	10543,2	105948,2	23851,5	13308,3

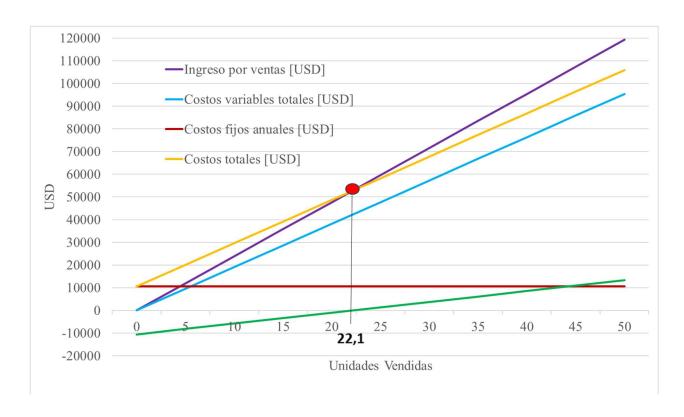


Fig. 58. Punto de equilibrio. Elaboración propia.

Como se puede ver, el punto de equilibrio es el nivel de actividad en el que los ingresos totales de una empresa son iguales a sus costos totales. En otras palabras, es el punto en el que la empresa no gana ni pierde dinero. Esto sucede al venderse 22,1 unidades anuales.

5.2.2 Flujo de fondos, valor actual neto y tasa interna de retorno.

Este análisis constituye una herramienta fundamental para evaluar la rentabilidad de un proyecto de inversión. El flujo de fondos representa el movimiento de dinero que ingresa y egresa de un negocio, y se utiliza para comparar el proyecto con una tasa de referencia, con el objetivo de determinar su viabilidad.

La tabla 35 proporciona detalles referidos a la inversión inicial requerida, la cual será financiada íntegramente por la empresa interesada mediante sus propios recursos disponibles.

Tabla 34. Costos de inversión inicial. Elaboración propia.

INVERSIÓN INICIAL						
Cotizacion maquinaria a adquirir						
Perforadora	Barbero TMB 20	USD 522,1				
Sierra Sin Fin	Cutmac S11	USD 693,0				
Adaptación y actua	alización de maquinaria	USD 3.000,0				
Repuestos y consul	nibles para maquinaria	USD 3.500,0				
Materia Prima pai	USD 4.000,0					
	TOTAL	USD 11.715,1				

Una vez determinada la inversión inicial y efectuadas las ventas proyectadas, se procede a calcular el flujo de fondos netos, considerando los ingresos y egresos durante cada año del análisis. Este flujo de fondos netos se utiliza como base para la determinación del Valor Actual Neto (VAN), costo de oportunidad, Tasa Interna de Retorno (TIR) y el período de "payback" acumulado que son indicadores clave para evaluar la rentabilidad del proyecto.

El análisis del flujo de fondos abarcará un período de 10 años, durante el cual no se anticipan necesidades de inversión adicionales. Transcurrido este lapso, se llevará a cabo una revisión del proyecto para evaluar su rentabilidad de nuevo.

Para evaluar el proyecto y contar con puntos de comparación, se realiza un análisis del mercado bursátil argentino. El objetivo es obtener referencias sobre las tasas de rendimientos de bonos y obligaciones negociables, que servirán como parámetros para el proyecto. El presente trabajo utiliza como referenciade tasa de piso el bono a 100 años emitido por el gobierno de la República Argentina en el año 2017, con código AC17D. A la fecha indicada, este bono tiene un interés real anual, en dólares, de aproximadamente 8%. Se trata de un bono de bajo riesgo, lo que lo convierte en una referencia confiable para el análisis. La tasa de referencia del bono AC17D, permite establecer un parámetro mínimo de rendimiento para el proyecto. Si la tasa interna de retorno (TIR) del proyecto se encuentra por debajo del 8%, significaría que este no ofrece la rentabilidad mínima esperada, y por el contrario, si la TIR del proyecto supera el 8%, se estaría ante una inversión potencialmente atractiva.

A continuación, en la tabla 35, se presenta el flujo de fondos de este proyecto.

Tabla 35. Flujo de fondos. Elaboración propia.

	Año										
	0	1	2	3	4	5	6	7	8	9	10
Ingresos											
Estimación de venta	0	35	35	35	35	35	35	35	35	35	35
Precio de venta	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1
Ingresos por ventas	0,0	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5
Ingresos operacionales	0,0	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5
Gastos											
Costos fijos	0,0	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2
Costos Variables	0,0	-66784,6	-66784,6	-66784,6	-66784,6	-66784,6	-66784,6	-66784,6	-66784,6	-66784,6	-66784,6
Costos de inversión	-11715,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Gastos operacionales	-11715,1	-77327,8	-77327,8	-77327,8	-77327,8	-77327,8	-77327,8	-77327,8	-77327,8	-77327,8	-77327,8
Utilidad antes de impuestos	-11715,1	6150,7	6150,7	6150,7	6150,7	6150,7	6150,7	6150,7	6150,7	6150,7	6150,7
Impuesto ganancias (35%)	0,0	-2152,7	-2152,7	-2152,7	-2152,7	-2152,7	-2152,7	-2152,7	-2152,7	-2152,7	-2152,7
Utilidad después de impuestos	-11715,1	3998,0	3998,0	3998,0	3998,0	3998,0	3998,0	3998,0	3998,0	3998,0	3998,0
VA del flujo de caja	-11715,1	3701,8	3427,6	3173,7	2938,6	2720,9	2519,4	2332,8	2160,0	2000,0	1851,8
VA del flujo de caja acumulado	-11715,1	-8013,3	-4585,7	-1412,0	1526,7	4247,6	6767,0	9099,8	11259,7	13259,7	15111,5

Tasa de referencia	8,00%			
Valor Actual Neto (VAN) acumulado	15111,5			
Tasa Interna de Retorno (TIR)	32%			
Período de payback acumulado	3 años y 5 meses			

Consideraciones hechas:	
Inversión inicial	11715,1
Precio de venta	2385,1
Absorción de costos fijos anuales	30%

Con el flujo de fondos presentado, se llega a la conclusión que el proyecto es atractivo para invertir en él, debido a que tiene una VAN superior a cero y una tasa interna de retorno superior a la tasa de referencia exigida. Esto nos indica que el costo de oportunidad al invertir en el proyecto es positivo, ya que es más rentable que invertir en bonos AC17D que son los que se usaron como tasa de referencia.

5.3 Análisis de sensibilidad.

En esta sección se presentarán análisis de diferentes escenarios posibles, donde podremos visualizar como cambian las diferentes variables económicas del proyecto

5.3.1 Análisis de sensibilidad n°1.

En este caso, se plantea la posibilidad de que la empresa interesada no esté teniendo un buen pasar y poco trabajo en actividades no relacionadas a este proyecto, por lo que se deberá absorber un porcentaje más alto de los costos fijos de la empresa.

Para este análisis:

- Se mantiene constante el precio del producto establecido
- El porcentaje de absorción de costos fijos pasa del 30% al 38%
- Se mantiene constante el volumen de ventas
- Se mantienen constantes la tasa de referencia y la inversión inicial

Los resultados a este escenario se representan en la tabla 36.

Invertir en el proyecto sigue siendo rentable, ya que se puede observar que la TIR está en un valor superior a la tasa de referencia, el VAN es positivo y el período de payback acumulado es menor a 10 años

Tabla 36. Análisis de sensibilidad nº 1. Elaboración propia.

	Año	Año 10									
Ingresos	0	1		3	4	5	6	/	8	9	10
Estimación de venta	0	35	35	35	35	35	35	35	35	35	35
Precio de venta	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1
Ingresos por ventas	0,0	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5
Ingresos operacionales	0,0	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5
Gastos											
Costos fijos	0,0	-13354,8	-13354,8	-13354,8	-13354,8	-13354,8	-13354,8	-13354,8	-13354,8	-13354,8	-13354,8
Costos Variables	0,0	-66784,6	-66784,6	-66784,6	-66784,6	-66784,6	-66784,6	-66784,6	-66784,6	-66784,6	-66784,6
Costos de inversión	-11715,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Gastos operacionales	-11715,1	-80139,3	-80139,3	-80139,3	-80139,3	-80139,3	-80139,3	-80139,3	-80139,3	-80139,3	-80139,3
Utilidad antes de impuestos	-11715,1	3339,2	3339,2	3339,2	3339,2	3339,2	3339,2	3339,2	3339,2	3339,2	3339,2
Impuesto ganancias (35%)	0,0	-1168,7	-1168,7	-1168,7	-1168,7	-1168,7	-1168,7	-1168,7	-1168,7	-1168,7	-1168,7
Utilidad después de impuestos	-11715,1	2170,5	2170,5	2170,5	2170,5	2170,5	2170,5	2170,5	2170,5	2170,5	2170,5
VA del flujo de caja	-11715,1	2009,7	1860,8	1723,0	1595,4	1477,2	1367,8	1266,4	1172,6	1085,8	1005,3
VA del flujo de caja acumulado	-11715,1	-9705,4	-7844,6	-6121,6	-4526,2	-3049,1	-1681,3	-414,9	757,8	1843,6	2848,9

Tasa de referencia	8,00%
Valor Actual Neto (VAN) acumulado	2848,9
Tasa Interna de Retorno (TIR)	13%
Período de payback acumulado	7 años y 4 meses

Consideraciones hechas:	
Inversión inicial	11715,1
Precio de venta	2385,1
Absorción de costos fijos anuales	38%

5.3.2 Análisis de sensibilidad n°2

En este caso, se plantea la posibilidad de que las ventas esperadas sean de menos cantidad de lo que se ha planteado inicialmente.

Para este análisis:

- Se mantiene constante el precio del producto establecido
- Se mantiene constante el porcentaje de absorción de costos fijos
- Disminuye el volumen de ventas esperado de 35 unidades anuales a 30 unidades anuales
- Se mantienen constantes la tasa de referencia y la inversión inicial

Los resultados a este escenario se representan en la tabla 37.

Se puede observar que el VAN da positivo, la TIR es mayor que la tasa de referencia y el período de payback acumulado ronda en 6 años y 3 meses. Se concluye que el proyecto será atractivo para invertir en él, y se puede apreciar que un pequeño cambio en el volumen de ventas varía mucho la rentabilidad.

Tabla 37. Análisis de sensibilidad nº 2. Elaboración propia.

	Año										
	0	1	2	3	4	5	6	7	8	9	10
Ingresos											
Estimación de venta	0	30	30	30	30	30	30	30	30	30	30
Precio de venta	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1
Ingresos por ventas	0,0	71553,0	71553,0	71553,0	71553,0	71553,0	71553,0	71553,0	71553,0	71553,0	71553,0
Ingresos operacionales	0,0	71553,0	71553,0	71553,0	71553,0	71553,0	71553,0	71553,0	71553,0	71553,0	71553,0
Gastos											
Costos fijos	0,0	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2
Costos Variables	0,0	-57243,9	-57243,9	-57243,9	-57243,9	-57243,9	-57243,9	-57243,9	-57243,9	-57243,9	-57243,9
Costos de inversión	-11715,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Gastos operacionales	-11715,1	-67787,1	-67787,1	-67787,1	-67787,1	-67787,1	-67787,1	-67787,1	-67787,1	-67787,1	-67787,1
Utilidad antes de impuestos	-11715,1	3765,9	3765,9	3765,9	3765,9	3765,9	3765,9	3765,9	3765,9	3765,9	3765,9
Impuesto ganancias (35%)	0,0	-1318,1	-1318,1	-1318,1	-1318,1	-1318,1	-1318,1	-1318,1	-1318,1	-1318,1	-1318,1
Utilidad después de impuestos	-11715,1	2447,8	2447,8	2447,8	2447,8	2447,8	2447,8	2447,8	2447,8	2447,8	2447,8
VA del flujo de caja	-11715,1	2266,5	2098,6	1943,1	1799,2	1665,9	1542,5	1428,3	1322,5	1224,5	1133,8
VA del flujo de caja acumulado	-11715,1	-9448,6	-7350,0	-5406,9	-3607,7	-1941,7	-399,2	1029,1	2351,6	3576,1	4709,9

Tasa de referencia	8,00%
Valor Actual Neto (VAN) acumulado	4709,9
Tasa Interna de Retorno (TIR)	16%
Período de payback acumulado	6 años y 3 meses

Consideraciones hechas:	
Inversión inicial	11715,1
Precio de venta	2385,1
Absorción de costos fijos anuales	30%

5.3.3 Análisis de sensibilidad nº3

En este caso, se plantea la posibilidad de invertir en una impresora 3D y de fabricar todas las piezas plásticas pertenecientes al proyecto.

Para este análisis:

- Se mantiene constante el precio del producto establecido
- Se mantiene constante el porcentaje de absorción de costos fijos
- Se mantiene constante el volumen de ventas esperado
- Se mantienen constantes la tasa de referencia y la inversión inicial
- Aumenta el monto de inversión inicial en USD 1500 en concepto de adquisición de una impresora 3D y sus consumibles
- Disminuye el costo de materiales para la fabricación en USD 13 por máquina fabricada en concepto de menor precio en piezas plásticas
- Aumenta la energía eléctrica consumida para la fabricación
- Aumenta la mano de obra directa por máquina fabricada debido a que aumentan las horas de fabricación por máquina de 45 horas/hombre a 65 horas/hombre

Los costos variables quedarían como se indica en la siguiente tabla.

Tabla 38. Costos variables de análisis de sensibilidad nº 3. Elaboración propia.

COSTOS VARIABLES	CLASIFICACIÓN	MONTO (USD/MAQUINA)
Materiales	Directo	1435,67
Mano de Obra Directa	Directo	436,27
Energía Utilizada en Fabricación	Directo	3,00
Costos Indirectos en la		
Producción	Indirecto	80,10
Comisiones por ventas	Indirecto	46,00
Terciarizaciones	Indirecto	29,00
TOTAL COSTOS		
VARIABLES		2030,04

Los resultados a este escenario se representan en la tabla 39.

Como puede verse en la tabla, no es rentable una inversión en una impresora 3D para fabricar las piezas plásticas del proyecto, ya que esto llevaría a que la TIR sea negativa, y a que el VAN también llegue a valores negativos.

Tabla 39. Análisis de sensibilidad n° 3 . Elaboración propia.

	Año										
	0	1	2	3	4	5	6	7	8	9	10
Ingresos											
Estimación de venta	0	35	35	35	35	35	35	35	35	35	35
Precio de venta	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1
Ingresos por ventas	0,0	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5
Ingresos operacionales	0,0	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5
Gastos											
Costos fijos	0,0	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2
Costos Variables	0,0	-71051,4	-71051,4	-71051,4	-71051,4	-71051,4	-71051,4	-71051,4	-71051,4	-71051,4	-71051,4
Costos de inversión	-13215,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Gastos operacionales	-13215,1	-81594,6	-81594,6	-81594,6	-81594,6	-81594,6	-81594,6	-81594,6	-81594,6	-81594,6	-81594,6
Utilidad antes de impuestos	-13215,1	1883,9	1883,9	1883,9	1883,9	1883,9	1883,9	1883,9	1883,9	1883,9	1883,9
Impuesto ganancias (35%)	0,0	-659,4	-659,4	-659,4	-659,4	-659,4	-659,4	-659,4	-659,4	-659,4	-659,4
Utilidad después de impuestos	-13215,1	1224,5	1224,5	1224,5	1224,5	1224,5	1224,5	1224,5	1224,5	1224,5	1224,5
VA del flujo de caja	-13215,1	1133,8	1049,8	972,1	900,0	833,4	771,6	714,5	661,6	612,6	567,2
VA del flujo de caja acumulado	-13215,1	-12081,3	-11031,5	-10059,4	-9159,4	-8326,0	-7554,3	-6839,9	-6178,3	-5565,7	-4998,6

Tasa de referencia	8,00%
Valor Actual Neto (VAN) acumulado	-4998,6
Tasa Interna de Retorno (TIR)	-1%
Período de payback acumulado	mayor a 10 años

Consideraciones hechas:				
Inversión inicial	13215,1			
Precio de venta	2385,1			
Absorción de costos fijos anuales	30%			

5.3.4 Análisis de sensibilidad nº4

Se plantea la posibilidad de que el costo promedio de los materiales aumente en un 5% y que esto haga más caro el costo de fabricación. Este aumento puede producirse por ejemplo debido a un cambio de proveedores de materiales.

Para este análisis:

- Se mantiene constante el precio del producto establecido
- Se mantiene constante el porcentaje de absorción de costos fijos
- Se mantiene constante el volumen de ventas anuales.
- Se mantienen constantes la tasa de referencia y la inversión inicial
- Aumentan los costos variables.

Los costos variables, quedarían como están en la tabla xx

Tabla 40. Costos variables de análisis de sensibilidad nº 4. Elaboración propia.

COSTOS VARIABLES	CLASIFICACIÓN	MONTO (USD/MAQUINA)
Materiales	Directo	1521,10
Mano de Obra Directa	Directo	302,03
Energía Utilizada en Fabricación	Directo	2,32
Costos Indirectos en la		
Producción	Indirecto	80,10
Comisiones por ventas	Indirecto	46,00
Terciarizaciones	Indirecto	29,00
TOTAL COSTOS		
VARIABLES		1980,56

Los resultados a este escenario se representan en la tabla 41.

Debido a que el VAN da positivo, la TIR es mayor que la tasa de referencia y el período de payback acumulado está dentro del período de análisis, se concluye que el proyecto sigue siendo atractivo para invertir en él ya que rinde al porcentaje exigido por inversores.

Tabla 41. Análisis de sensibilidad nº 4. Elaboración propia.

	Año										
	0	1		3	4	5	6	/	8	9	10
Ingresos											
Estimación de venta	0	35	35	35	35	35	35	35	35	35	35
Precio de venta	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1	2385,1
Ingresos por ventas	0,0	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5
Ingresos operacionales	0,0	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5	83478,5
Gastos											
Costos fijos	0,0	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2	-10543,2
Costos Variables	0,0	-69319,6	-69319,6	-69319,6	-69319,6	-69319,6	-69319,6	-69319,6	-69319,6	-69319,6	-69319,6
Costos de inversión	-11715,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Gastos operacionales	-11715,1	-79862,8	-79862,8	-79862,8	-79862,8	-79862,8	-79862,8	-79862,8	-79862,8	-79862,8	-79862,8
Utilidad antes de impuestos	-11715,1	3615,7	3615,7	3615,7	3615,7	3615,7	3615,7	3615,7	3615,7	3615,7	3615,7
Impuesto ganancias (35%)	0,0	-1265,5	-1265,5	-1265,5	-1265,5	-1265,5	-1265,5	-1265,5	-1265,5	-1265,5	-1265,5
Utilidad después de impuestos	-11715,1	2350,2	2350,2	2350,2	2350,2	2350,2	2350,2	2350,2	2350,2	2350,2	2350,2
VA del flujo de caja	-11715,1	2176,1	2014,9	1865,6	1727,5	1599,5	1481,0	1371,3	1269,7	1175,7	1088,6
VA del flujo de caja acumulado	-11715,1	-9539,0	-7524,1	-5658,5	-3931,0	-2331,5	-850,5	520,8	1790,5	2966,2	4054,8

Tasa de referencia	8,00%
Valor Actual Neto (VAN) acumulado	4054,8
Tasa Interna de Retorno (TIR)	15%
Período de payback acumulado	6 años y 7 meses

Consideraciones hechas:				
Inversión inicial	11715,1			
Precio de venta	2385,1			
Absorción de costos fijos anuales	30%			

5.4 Conclusión del análisis económico

A partir del análisis económico exhaustivo realizado, se puede concluir que el proyecto se presenta como una inversión viable y atractiva. No obstante, es importante destacar algunos puntos clave que se derivan de este análisis:

Viabilidad del Proyecto: El proyecto demuestra ser económicamente viable, respaldado por un análisis financiero que incluye un flujo de fondos, el Valor Actual Neto (VAN) Tasa Interna de Retorno (TIR) y período de payback acumulado. Estos indicadores sugieren que el proyecto tiene el potencial de generar un retorno financiero atractivo, superando la tasa de referencia establecida.

Sensibilidad al Contexto Económico: Dado que el proyecto no es de gran envergadura y ambicioso, se destaca su sensibilidad a cualquier cambio en el contexto económico. Esto significa que fluctuaciones en las condiciones del mercado, como variaciones en la demanda del producto o ajustes en los costos, pueden tener un impacto significativo en su rentabilidad.

Costos Fijos y Volumen de Ventas: El análisis revela que el pequeño volumen de ventas proyectado para el producto resulta en una proporción considerable de costos fijos en los costos totales de fabricación por unidad. Es importante señalar que un aumento en las ventas podría reducir la carga de los costos fijos por unidad producida, mejorando la rentabilidad del proyecto.

Cabe destacar, que la propuesta tiene un aporte real interesante, ya que ayuda a mitigar en un porcentaje considerable los costos fijos ya existentes de la empresa.

5.5 Referencias bibliográficas.

- Munier, Nolberto J (1979). PREPARACIÓN TÉCNICA, EVALUACIÓN ECONÓMICA Y PRESENTACIÓN DE PROYECTOS. Buenos Aires, Ed. Astrea
- Nassir, Sapag (2008). PREPARACIÓN Y EVALUACIÓN DE PROYECTOS.
 Mexico D.F., Ed Mc Graw Hill
- Juan Carlos Vázquez (1992), COSTOS, 2ª EDICIÓN. Buenos Aires, Ed. Aguilar
- Unión Obrera Metalúrgica. (Enero de 2023). Convenios y Salarios, de https://www.uom.org.ar/site/convenios-y-salarios/
- Melisa Reinhold (Septiembre de 2022) Las Inversiones que pagan hasta 12% anual en dólares. Recuperado de https://www.lanacion.com.ar/economia/dolar/las-inversiones-que-pagan-hasta-12-anual-en-dolares-nid29092022/
- Cotización de bonos y obligaciones negociables. Recuperado el día 20 de Enero de 2023 de https://bonistas.com/

Capítulo 6 - Conclusión.

El presente proyecto culmina con la concepción y desarrollo de una máquina automática/manual reconstructora de casquillos metálicos destinados a municiones calibre 9 mm con culote tipo ranura, cumplimentando ampliamente los objetivos propuestos para sus prestaciones.

Teniendo en cuenta lo planteado en el inicio de este proyecto a través del plan de proyecto y los objetivos propuestos podemos afirmar que mediante el desarrollo del proyecto, enmendando algunos aspectos en los que encontramos dificultades para poder desarrollar o calcular eficientemente, se consiguió generar una propuesta altamente viable de ser realizada en la vida real y que traiga una solución práctica y económica a un problema que hoy no tiene una solución viable para los deportistas que realizan alguna disciplina de tiro deportivo.

A lo largo de este proceso, hemos integrado los conocimientos adquiridos durante nuestra formación académica para abordar con éxito los desafíos inherentes a la creación de una máquina innovadora en nuestro país. Este proyecto no solo representa nuestro primer trabajo en el campo de la ingeniería de maquinaria, sino que también ha enriquecido nuestro conocimiento técnico y nos ha dotado de herramientas esenciales para la ejecución de proyectos industriales integrales.

La viabilidad técnica y económica de la máquina reconstructora de casquillos se ha demostrado sin la necesidad de una expansión significativa en la estructura empresarial seleccionada para llevar a cabo este proyecto. Aunque la inversión inicial es relativamente baja, ofrece un rendimiento sólido y la posibilidad de emprender sin correr riesgos significativos.

Por otra parte, de esta manera consideramos cumplimentados los requisitos para finalizar nuestra carrera universitaria.

Anexos.

ANEXO I: APROBACION DEL DIRECTOR

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL RAFAELA

Departamento Ingeniería Electromecánica

"Máquina reconstructora de casquillos metálicos para municiones calibre 9 mm con culote tipo ranura con un modo de trabajo manual-automático, orientado a la República Argentina".

Proyecto final realizado por:

Romitelli Germán¹, Senn Pablo Gaston²

Correo Electrónico:

Ing. MOREL, Agustín Director

morelagustin2@gmail.com

www.frra.utn.edu.ar
Rafaela (Santa Fe), Argentina
Julio de 2024

¹ germanromitelli@hotmail.com - ² pablosenn@gmail.com

ANEXO II: APROBACION DEL TRIBUNAL DE EVALUACION

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL RAFAELA

Departamento Ingeniería Electromecánica

"Máquina reconstructora de casquillos metálicos para municiones calibre 9 mm con culote tipo ranura con un modo de trabajo manual-automático, orientado a la República Argentina".

Proyecto final realizado por:

Romitelli Germán¹, Senn Pablo Gaston²

Correo Electrónico:

¹ germanromitelli@hotmail.com - ² pablosenn@gmail.com

Apellido, Nombre	Apellido, Nombre	Apellido, Nombre
Firma	Firma	Firma
Jurado	Jurado Presidente	Jurado

www.frra.utn.edu.ar
Rafaela (Santa Fe), Argentina
Julio de 2024