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Abstract—Recurrent Neural Networks (RNN) of the Long
Short Term Memory (LSTM) type provide high accuracy in
predicting sequential models in various application domains. As
in most process control problems, their dynamics include non-
manipulated variables that need to be predicted. This paper
proposes using an LSTM neural network for energy demand
forecasting, which applies to an Economic Model Predictive
Control (EMPC) as a forecasting tool. For the training, data
are taken from a three-phase intelligent power quality analyser
located at the National Technological University, Reconquista
Regional Faculty (Santa Fe, Argentina). A recursive strategy is
used to update the state of the neural network and forecast over
different prediction horizons. The accuracy achieved in training
the neural network is measured using the root mean square error
(RMSE) metric. Experimental results show that the proposed
LSTM neural network has excellent generalisation capability.

Index Terms—Recurrent neural network, Long short term
memory, Forecasting, Energy demand, Economic model predic-
tive control.

I. INTRODUCTION

In recent years, the main emphasis has been put on the
development and deployment of microgrids to meet energy
demand efficiently and cost-effectively [1]. The case for mi-
crogrids is reinforced by the increase in renewable energy
resources, such as wind and solar, as well as by the growing
number of small-scale distributed generation systems. The
control system plays a fundamental role in their implemen-
tation. Economic Model Predictive Control (EMPC) is a
powerful and useful tool to handle complex multivariable
systems, where the actions to achieve the objective are chosen
from a feasible set, based on minimising some pre-established
economic criterion over a finite time horizon. [2] proposes
a management strategy using this approach for a microgrid
connected to an electrical grid. In addition, allowing direct
consideration of the disturbances present in the system. Energy
demand is considered as a perturbation since there is no control
over it and it should be considered since it modifies the
behaviour of the system. Therefore, the planning and manage-
ment of microgrids, while integrating renewable energies and

distributed generation resources, require an accurate prediction
of energy demand at different time horizons [3].

The information extracted from our representative historical
energy demand data is an ordered sequence of values recorded
at equal time intervals; which is known as a time series.
Time series forecasting is a process that uses past values
of a dependent variable to predict its future values. In other
words, time series forecasting models attempt to understand
the patterns found in time series. These patterns may include
seasonality, trend and noise. The main drawback of forecasting
time series is its complexity, since they add the complexity of
a sequence dependence between the input variables.

Deep learning techniques, in particular neural networks, are
currently gaining relevance for solving a large number of
applications in multiple areas due to improvements in their
computational capabilities. A powerful type of neural network
designed to handle sequence dependence is called RNN (Re-
current Neural Networks), among which the most widespread
are the LSTM (Long Short Term Memory), BiLSTM (Bi-
directional long-short term memory) and the GRU (Gated
recurrent unit) networks.

LSTM networks are widely used in time series forecasting
problems because their design allows information to be re-
membered over long periods and facilitates the task of making
future estimates using periods of historical records. This type
of network is the one that yields the best results, given
that the GRU network is a simplified version of the LSTM,
improving only the computational burden of the network and
without obvious better prediction results. On the other hand,
the BiLSTM network hasn’t application in prediction time
series and it is largely used for image and data classification.

This work focuses on training an RNN-LSTM to serve
as an energy demand forecasting tool to be implemented in
an EMPC with different prediction horizons. The technique’s
performance is evaluated for the energy installation of the Na-
tional Technological University, Reconquista Regional Faculty
(Santa Fe, Argentina), using as input the data recorded by a
three-phase intelligent power quality analyser. In addition, a
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hyperparameter search is performed by applying a Bayesian
optimisation method, as opposed to [4] and [5], where the
selection of hyperparameters is performed by testing different
combinations and evaluated by validation methods.

The document is organized as follows. Section II presents
the implemented methodology, where the model used, the
processing and analysis of the database, and the learning
algorithm to train the neural network. Section III describes the
architecture of the implemented neural network and an alter-
native for the search for the hyperparameters with Bayesian
optimisation methods. Section IV discusses the results, and
Section V summarizes the main conclusions.

II. METHODOLOGY

A. Model description
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Figure 1. Basic architecture of the LSTM unit. xt is the input at time t, ht

is the predicted output at time t, ht−1 is the predicted output at time t− 1
(previous output), ct−1 is the information passed from the previous stage
(memory) and ct is the information passed to the next stage.

The LSTM neural network was first proposed by [6] and
is widely used today due to its superior performance in accu-
rately modelling both short- and long-term data dependencies.

Mathematically, suppose that there are h hidden units, the
batch size is n, and the number of inputs is d. Each memory
cell is equipped with an internal state and three multiplicative
units known as logic gates: (i) input it ∈ Rn×h, (ii) output
ot ∈ Rn×h and (iii) forget ft ∈ Rn×h. The operations
performed on these gates can be explained by:

it = σ (xt wxi + ht−1 whi + bi) (1)

ot = σ (xt wxo + ht−1 who + bo) (2)

ft = σ (xt wxf + ht−1 whf + bf ) (3)

where σ() is the sigmoid activation function, xt ∈ Rn×d refer
to the input variable at the time t, ht−1 ∈ Rn×h denotes
the prediction output at the time t − 1, wxi,wxo,wxf ∈
Rd×h and whi,who,whf ∈ Rh×h are weight parameters and
bi, bo, bf ∈ R1×h are bias parameters.

The output of the network is indicated by the variable ct ∈
Rn×h, which is the memory cell at the time t and ht ∈ Rn×h

is the predicted variable at the time t. The outputs are given
by:

ĉt = tanh (xt wxc + ht−1 whc + bc) (4)

ct = ft ⊙ ct−1 + it ⊙ ĉt (5)

ht = ot ⊙ tanh (ct) (6)

where ⊙ is the Hadamard product operator, tanh() is the
hyperbolic tangent activation function, wxc ∈ Rd×h and
whc ∈ Rh×h are weight parameters and bc ∈ R1×h bias
parameter; and ĉt ∈ Rn×h is the temporal memory cell at
time t. Figure 1 shows the architecture of the LSTM unit.

B. Acquisition and analysis of data

The database for training the network is built from repre-
sentative historical samples recorded by an intelligent three-
phase power quality analyser called ©Cloud Energy Meter,
located at the faculty. It is integrated within a single device, an
energy meter with harmonic analysis capability of the network
with Wi-Fi and Bluetooth LE wireless connectivity. The Wi-
Fi connectivity is used to access an internet connection, with
which the device is linked to an associated web platform
(called ©Field to Cloud) which allows the user to access
historical and real-time data.

From the web platform, we can extract historical data of
different electrical measurements, such as voltage, current,
power factor, active power, reactive power and apparent power.
Since the objective is to predict the energy demand, we extract
the active power data. The platform gives us instantaneous and
average power values, with sampling periods of 5 minutes.

Figure 2, at the top, shows the energy demand for a day
when the complex has regular activity. Most of the activity in
the Faculty, as seen in the figure in the areas where the greatest
demand occurs, takes place in the afternoon and evening, i.e.
from approximately 15:00 h until 23:00 h. On the other hand,
the lower part shows a day with no activity, where only the
indicated consumption of the different essential systems, such
as servers and lighting, is being measured.

C. Descriptive analysis of the series

The measured data is interpreted as a univariate time series,
where the study variable is the average active power computed
over approximately one year, specifically between 01/01/2022
and 23/12/2022.

Observing the records for November, in Figure 3 (lower
panel), a seasonal behaviour can be seen in the time series that
is repeated periodically every week. During active days, energy
consumption increases, contrary to the behaviour shows during
inactive days (weekends and public holidays) when there is
a notable drop in consumption. Analysing Figure 3 (upper
panel), corresponding to data for July, it can be seen that in
the intermediate region of the time series, there is reduced
consumption of the installation. This is a consequence of the
winter break, where the faculty is closed for two weeks. For
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Figure 2. Energy demand for an active day and an inactive day. The upper
part shows both the average active power (black line) and the instantaneous
power (red line) for a day with normal activity in the faculty. The same applies
to the lower part, but for a day without activity.

the remaining days, a similar behaviour to that presented for
November is observed, but with lower power measurements.
This is because air conditioning equipment are not used at this
time of the year.
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Figure 3. Graphical representation of the time series created with the average
active power data. The upper part shows the time series for the month of July.
The lower part shows the time series for the month of November.

D. Division of the data set

In general, the splitting of the dataset is done because the
training algorithm learns from the data. They try to find or
infer the pattern that allows them to predict the outcome for a
new case. In order to determine whether a model works, we
will need to test it on a different data set. Therefore, the data
must be divided into three parts:

• dataTrain: Data set used to train the neural network. In
other words, this is the set used for the neural network
to learn patterns about the data.

• dataValid: Data set that tests the generalisation ability
of the neural network at each training epoch. It serves
to monitor the training, but does not intervene in any
calculation.

• dataTest: Data set used to check how accurate the neural
network is after training. It gives us a measure of gen-
eralising with a different dataset than the one used for
training.

When dividing the data, it is necessary to ensure that the test
set is large enough to generate statistically significant results,
and that it is representative of the total set. In this case, 80 % of
the initial records are reserved for training and the remaining
20 % for testing. From the training set 15 % is set aside for
validation.

E. Pre-processing of data

To achieve a better fit and to prevent the training from
diverging, it is necessary to perform a data scaling or standard-
isation process. Standardisation is a modification of the range
of the original data so that all values are between 0 and 1. It
is performed before the training process begins and makes the
neural network less sensitive to the scale of the input values.
In other words, normalisation ensures faster learning and that
the convergence problem does not suffer from high variance,
which makes optimisation possible.

The most commonly used normalisation is ‘Linear function
normalisation’, which systematically changes the original data,
assigns the result to the range of [0, 1] and performs propor-
tional scaling of the original data. To modify the data:

Xstd =
X −Xmin

Xmax −Xmin
(7)

where X is the original data and Xmax and Xmin are the
maximum and minimum values in the data set, respectively.

F. Learning algorithm

The neural network is trained on a set of data in such a
way that characteristic parameters are determined. The correct
choice of parameters will make the predictions more or less
accurate. It is posed as a numerical optimisation problem, the
objective of which is to minimise a cost function responsible
for quantifying the distance between the actual value and the
value predicted by the neural network. The most commonly
used cost function is the mean square error (MSE):

L(w, b) =
1

NTrain

NTrain∑
i=1

(yi − ŷi)
2 (8)

where y is the actual value, ŷ is the predicted value, NTrain
is the number of elements in the training set and the notation
L(w, b) refers to the fact that its value depends on the synap-
tic weights and biases that characterise the neural network,
respectively. The optimisation problem is interpreting as the
search for the parameters that minimise the function L, while
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penalizing the errors made by the neural network when making
predictions.

A training algorithm is used to find the solution to the
optimisation problem. The most commonly used algorithms
are Stochastic Gradient Descent (SGD), Stochastic Gradient
Descent with Momentum (SGDM), Root Mean Square Prop-
agation (RMSProp), Adaptive Gradient Algorithm (AdaGrad)
and Adaptive Moment Estimation (ADAM). In this paper, we
use the ADAM algorithm, which was originally proposed by
[7]. ADAM is an extension of SGD and a natural successor to
AdaGrad and RMSProp that automatically adapts a learning
rate for each input variable to the objective function and
further smoothes the search process by using an exponentially
decreasing moving average of the gradient to make updates
of the variables. This algorithm was chosen because of its
fast convergence and excellent results. Algorithms such as
AdaGrad and RMSProp are similar to ADAM, and all perform
very well in similar scenarios. However, the bias correction of
the ADAM algorithm makes it faster and better than RMSProp
when the gradient becomes sparse.

III. IMPLEMENTATION

A. Hyper-parameter optimisation

All neural network models have a set of parameters that
cannot be learned from the data but have to be set after
training. These parameters are often referred to as hyper-
parameters. Since there is no way of knowing in advance what
the appropriate values are, the only way to identify them is to
try different combinations and evaluate them using resampling
validation methods.

A different alternative is the hyperparameter search by
means of Bayesian optimisation methods [8]. It belongs to
a class of sequential model-based optimisation algorithms that
allow us to use the results of our previous iteration to improve
our sampling method for the next experiment.

The hyper-parameters selected for the optimisation process,
with their corresponding ranges used for the experiment, are
described in Table I. To take full advantage of the power of
Bayesian optimisation, we perform 30 evaluations (maximum
number of trials to run) with a different dataset than the one
we will use for training. Once the trial is finished, we select
the evaluation (iteration) with the lowest ‘Training RMSE’
and ‘Validation RMSE’ values. This optimisation process was
performed with the app MATLAB® Experiment Manager®.

Based on the result obtained with Bayesian optimisation,
training is performed by adopting the hyper-parameters shows
in Table II.

B. Neural network architecture description

In order to predict future time step values of a sequence
(time series), a ’Sequence to Sequence’ regression LSTM neu-
ral network is trained. The responses are the training sequences
with values shifted by one time step; i.e., at each time step
of the input sequence, the neural network learns to predict
the value of the next time step. To create the LSTM neural
network architecture, MATLAB® Deep Network Designer®

Table I
DESCRIPTION OF THE HYPER-PARAMETERS ADOPTED FOR THE

OPTIMISATION. THE INTERVAL [∽,∽] OR CATEGORY [” ∽ ”, ” ∽ ”] OF
ANALYSIS IS SPECIFIED.

Hyper-parameters Range Description
InitialLearnRate [0.01, 0.0001] Initial learning rate

used for training
LearnRateDropPeriod [”25”, ”50”] Number of epochs for

dropping the learning
rate by a factor of 0.1.

NumHiddenUnits [50, 300] Number of neurons in
the hidden layer.

MaxEpoch [50, 150] Maximum number of
epochs to use for train-
ing.

MiniBatchSize [”64”, ”128”, ”256”] Size of the mini-batch
to use for each training
iteration.

Table II
VALUE OF THE HYPER-PARAMETERS ADOPTED FOR TRAINING.

Hyper-parameters Value
InitialLearnRate 0.01
LearnRateDropPeriod 50
NumHiddenUnits 98
MaxEpoch 59
MiniBatchSize 128

was used. This app allows us to create, visualise and edit all
types of neural networks.

s.I.L.

I.S.: 1

lstm.L.

N.H.U. : 98
S.A.F. : tanh
G.A.F. : σ

d.L.

P: 0.5

f.C.L.

O.S.: 1

r.L.

L.F.: M.S.E.

Figure 4. Architecture of the LSTM neural network used, designed for
’sequence to sequence’ regression tasks. The first layer is the sequential input,
the second is the LSTM unit, the third is the dropout layer, the fourth is the
multiple connection layer and the fifth is the regression layer.

Figure 4 shows the neural network architecture used. The
first block ‘sequencelInputLayer (s.I.L.)’ represents the se-
quential input layer, where the training data is stored. This
data has only one input feature, hence ‘InputSize (I.S.) = 1’.

The second block is the LSTM unit ‘lstmLayer (lstm.L.)’.
It is also known as the hidden unit of the neural network
to be modelled and is the one that will learn long term
dependencies between time steps in time series and sequence
data. In it, we can configure some features, such as the
number of hidden neurons ‘NumHiddenUnits (N.H.U.) = 98’,
the activation function to update the hidden cells and state
‘StateActivationFunction (S.A.F.) = hyperbolic tangent’; and
the activation function for logic gates ‘GateActivationFunction
(G.A.F.) = sigmoid’.

The third block ‘dropoutLayer (d.L.)’ is called the dropout
layer. Its function is to shut down some neurons during
training. This forces the neurons to be robust and not rely
on the activity of other specific neurons. The purpose of this
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block is to mitigate the possible occurrence of the phenomenon
known as overfitting. It is set with a probability of occurrence
of 0.5 ‘Probability (P) = 0.5’.

The fourth block is the multiple connection layer ‘fully-
ConnectedLayer (f.C.L.)’, which consists of a fully connected
layer that multiplies the input by a matrix of sympathetic
weights and then adds a bias vector. The output data, like the
input data, has a unique output characteristic, i.e. ‘OutputSize
(O.S.) = 1’.

In the fifth and last block is the regression layer ‘regres-
sionLayer (r.L.)’, which shows the value resulting from the
prediction at a given time. In addition, it uses to evaluate the
neural network performance, it uses a loss function (Mean
Square Error) ‘LossFunctions (L.F.) = M.S.E’.

C. Training Options

In order to achieve adequate training of the proposed neural
network, it is possible to create a set of training options [9].
These options are parameterised according to the characteris-
tics of the neural network, as shown next.

Training Options: Configurable options for LSTM
network training.

options=trainingOptions(’adam’, ...
’VerboseFrequency’,25, ...
’ValidationData’,{XValid,YValid}, ...
’ValidationFrequency’,10, ...
’InitialLearnRate’,0.01, ...
’MaxEpochs’,59, ...
’MiniBatchSize’,128, ...
’ExecutionEnvironment’,’cpu’, ...
’SequenceLenght’,’shortest’, ...
’GradientThreshold’,1, ...
’GradientThresholdMethod’,’l2norm’, ...
’LearnRateSchedule’,’piecewise’, ...
’LearnRateDropFactor’,0.1, ...
’LearnRateDropPeriod’,50, ...
’Plots’,’training-progress’);

IV. RESULTS

There are different techniques defined in [10] for the prob-
lem of multi-step prediction over time. The recursive strategy
involves adding the last prediction of the last time interval as
input to the next prediction; in this way we define a single
output model and a recursive prediction system up to the
fixed limit. In other words, it is necessary to update the state
of the network after each prediction. Since we have access
to the actual (observed) values, we can update the network
state with these values. This will allow us to prevent previous
predictions from affecting new predictions. Before making any
predictions, we must initialise the state of the neural network.
For this, we use the training data. To corroborate the level of
generalisation of the neural network, as explained above, we
use the dataTest set corresponding to 20 % of the total data
set.

For the first test of the neural network, we want to predict
the electricity consumption for a whole month. Figure 5 shows
the forecast made for October. The red curve shows the
prediction made by the neural network, while the grey curve
represents the observed values.

124 248 372 496 620

0

5

10

15

20

25

30

35

40

45

Figure 5. Prediction made for October. The red curve represents the prediction
made by the neural network and the grey curve the observed values.

A. Forecasting with different horizons

Since the objective is to train a neural network to serve
as an energy demand forecasting tool to be implemented in
an EMPC with different prediction horizons, simulations are
carried out for three possible scenarios.

The root means that square error (RMSE) metric is used for
measuring the neural network’s performance. In addition, box
and whisker plots are employed to improve the interpretation
and visualisation of the RMSE.

1) Predictions with 12 h horizon: Figure 6 shows the result
obtained considering a 12 h horizon. It can be seen that the
average RMSE error is 0.99 kW (green point), and it is above
the limit corresponding to the third quartile. This is because of
outliers (blue crosses), which disturb the mean. On the other
hand, if we focus on the values in the third quartile (75 % of
the data), we see that the RMSE values are below 0.86 kW.
Consequently, there is a close match between the observed
data (dataTest) and the prediction.

2) Predictions with 24 h horizon: Figure 7 shows the
prediction made considering a 24 h horizon. We can notice
that we only have a single outlier. In this context, the outliers
represent an erroneous prediction made by the neural network.
This can be due to false measurement in the observed data,
caused by an outlier event that may have taken place in the
faculty facilities. For this particular situation, we have an
average RMSE error of 1.82 kW and in 75 % of the cases
the error does not exceed 2.26 kW.

3) Predictions with 48 h horizon: Figure 8 shows the
prediction made for a 48 h horizon. In this case, the average
RMSE error is 1.82 kW and in 75 % of the cases the error
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Figure 6. Predictions with 12 h horizon. The upper part shows the prediction
made (red curve) compared to the test data (grey curve). The lower part shows
the box and whisker plot corresponding to the RMSE error.
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Figure 7. Predictions with 24 h horizon. The upper part shows the prediction
made (red curve) compared to the test data (grey curve). The lower part shows
the box and whisker plot corresponding to the RMSE error.

does not exceed 2.06 kW. Given the results obtained in the
previous scenarios, it is possible to infer that the prediction
horizon does not affect the quality of the forecast. This is
due to the way the neural network state is updated with the
observed values instead of the predicted values. Consequently,
predictions are more accurate and are not adversely affected
by a long prediction horizon.

V. CONCLUSIONS

In this paper, we propose a Recurrent Neural Network
(RNN) of the Long-Term Memory (LSTM) type for energy
demand forecasting over multiple prediction horizons, which
is applicable as a forecasting tool to be implemented in an
Economic Model Predictive Control (EMPC). A database was
built with historical samples recorded by an intelligent three-
phase power quality analyser located in the same facilities of
the National Technological University, Reconquista Regional
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Figure 8. Predictions with 48 h horizon. The upper part shows the prediction
made (red curve) compared to the test data (grey curve). The lower part shows
the box and whisker plot corresponding to the RMSE error.

Faculty. With MATLAB Deep Network Designer® we created
a LSTM neural network to predict values of future time steps
of a sequence. In addition, we performed a hyperparameter
search of the neural network by applying a Bayesian optimi-
sation method, using a dataset independent of the one used
for training, testing and validation. Finally, we use the Test
dataset to evaluate the predictions made by the neural network
with different prediction horizons (12 h, 24 h and 48 h).
The results obtained show a good performance of the trained
neural network. Depending on the prediction horizon adopted,
the average RMSE error may vary. In the three case studies
analysed the error does not exceed 2 kW.
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