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Abstract—Most industrial processes are nonlinear, which com-
plicates the application of conventional Model-based Predictive
Control (MPC) algorithms. Consequently, in this article, the
formulations of MPC methods for nonlinear processes rep-
resented through polytopic Linear Parameter-Varying models
are analysed. The compared methods are adaptive algorithm,
synthesised with a prediction model based on a scheduling
polytope. At each discrete sampling instant, they determine a
model, used for prediction purposes; and optimise the process
performances over a finite prediction horizon. These methods
are applied to control of a Heat Exchanger system, from
which the performance and effectiveness of each technique are
discussed. The simulation results are thoroughly analyzed, and
the advantages and disadvantages of each strategy are discussed.

Index Terms—model-based predictive control, linear
parameter-varying, nonlinear system, heat exchanger

I. INTRODUCTION

It is well known that Model-based Predictive Control (MPC)
utilize a model to predict future system behavior and determine
the optimal control action [1]. For this reason, the predictive
model assumes a crucial role in MPC formulations. While
Linear Time-Invariant (LTI) models are suitable for systems
operating close to their nominal point, as it allows for the
use of well-established linear control tools for analysis and
design [2], nonlinear systems are often represented using the
Linear Parameter-Varying (LPV) modeling approach. The LPV
framework enables more accurate representation of system
dynamics, considering the varying nature of the system and
its dependence on operating conditions. Therefore, by incor-
porating the LPV framework, control strategies can effectively
handle nonlinearity and achieve improved performance.

The control problem for systems with parametric uncer-
tainty has been addressed in many works in the specialized
literature. Several works have proposed predictive control
approaches using infinite prediction horizons and fixed lin-
ear control laws based on the state variable. Linear Matrix
Inequality (LMI) techniques are often employed to solve the
optimization problem in these cases, as seen in [3]–[5], and
others. Meanwhile, in [6], [7], among others, an explicit MPC
based on parametric programming is proposed for the same
purpose. In these works, the optimal inputs are computed
offline as a piecewise affine function of the states and stored

in a lookup table. Then, only the table needs to be evaluated,
allowing for the application of MPC to the system.

However, this article focuses on analyzing MPC control
methods that consider the properties and characteristics of
MPC for regulation found in the literature ([8]–[10], among
others), while also taking into account a nonlinear system
represented using the LPV approach as a predictive model.
This includes the MPC controllers presented in [11] and [12].

This paper is organised as follows. In Section II, the model
representation of a system is provided. In Section III a briefly
explanation of the MPC strategies is introduced. Subsequently,
in Section IV a numerical simulations is provided to show
the performance of the proposed approach. Finally, concluding
remarks are made in the last section.

II. MODEL STATEMENT

A. LPV Model

The uncertain system dynamics can be described by a
discrete state-space model with polytopic uncertainty using
the LPV approach:

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) ,
y(k) = C(ρ(k))x(k) +D(ρ(k))u(k) ,
x(0) = x0 ,

(1)

where the parameter ρ(k) is an scheduling parameter that
takes into account the minimum and maximum values that
each parameter can assume within the operating range under
consideration. Its purpose is to incorporate the maximum un-
certainty associated with these parameters, and it is determined
by a nonlinear function. It is important to highlight that the
considered uncertainty is always contained within a bounded
and closed set.

Subsequently, it is possible to incorporate the dynamics
of a nonlinear system within a convex polytope with nm

vertices through the Parametrized Jacobian Linearization (PJL)
technique [13], [14]. These vertices are obtained based on the
maximum uncertainty, although intermediate values in the sys-
tem parameters can be considered for improved performance.
In this way, the system is contained within a set of LTI models
at its nm vertices:

[A(ρ(k)), B(ρ(k)), C(ρ(k)), D(ρ(k))] ∈ Ω ,
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which is represented as:

Ω = Co{[A1, B1, C1, D1], [A2, B2, C2, D2], . . . ,

[Anm
, Bnm

, Cnm
, Dnm

]} ,

where Co{·} denotes a convex hull, and [Aj , Bj , Cj , Dj ] are
the matrices of each vertex LTI model of Ω. The number of
vertex models is given by nm = n

np

l , where np represents
the number of adjustment parameters and nl represents the
number of linearization points per parameter.

Utilizing interpolation techniques on the vertex LTI models,
it becomes feasible to derive a predictive model that encom-
passes not only the vertices but also the models contained
within Ω:

A(ρ(k)) =

nm∑
j=1

µj(ρ(k))Aj , B(ρ(k)) =

nm∑
j=1

µj(ρ(k))Bj

C(ρ(k)) =

nm∑
j=1

µj(ρ(k))Cj , D(ρ(k)) =

nm∑
j=1

µj(ρ(k))Dj

(2)

where it must be ensured that:
nm∑
j=1

µj(ρ(k)) = 1 , 0 ≤ µj(ρ(k)) ≤ 1 , ∀j ∈ Z1:nm . (3)

The weighting variable µ(·) ∈ Rnm represents the weight
of each vertex LTI model relative to the uncertain model. If
this variable is known at each time instant, the convex sum
defined by Eqs. (2) and (3) can be used to determine the LTI
model that represents the system at that instant.

However, µ(·) depends on ρ(k), which often exhibits non-
linear and unknown evolution. Thus, there are two main
alternatives for designing an MPC controller under the LPV
approach [15]. One option is to adopt a robust design, assum-
ing that the adjustment parameters are unknown throughout
the prediction horizon. These methods are therefore more
conservative and typically rely on min-max procedures or
offline formulations.

Another alternative is to determine a possible trajectory
of ρ(k) over future steps. In the case of nonlinear systems,
it should be noted that the resulting solution may deviate
slightly from the nonlinear optima, but good performances
are achieved with low computational effort. In many cases,
comparable results, meaning close to the optimum, can be
obtained.

B. Heat Exchanger

In practice, every chemical process involves the production
or absorption of energy in the form of heat. Heat Exchangers
(HE) are widely used in the process industry to transfer heat
from a hot fluid to a cold fluid through a solid wall [16].

The process model of a HE presented in Fig. 1 is ob-
tained based on the assumptions and conditions presented in
[17]. Then, the balance equations that describe the lumped-
parameter nonlinear model are:

θ1e

From
process

Hot 
fluid

θ2e

To
process

q1, θ1sTT

q2 , θ2s

TT MPC

Fig. 1: Heat exchanger process diagram.

dθ1s(t)

dt
=

q1ρ1Cp1(θ1e − θ1s(t))−Ah1(θ1s(t)− θp(t))

ρ1Cp1V1

dθ2s(t)

dt
=

q2ρ2Cp2(θ2e − θ2s(t)) +Ah2(θp(t)− θ2s(t))

ρ2Cp2V2

dθp(t)

dt
=

Ah1(θ1s(t)− θp(t))−Ah2(θp(t)− θ2s(t))

ρpCppVp

(4)

where θ1s (outlet temperature of fluid 1), θ2s (outlet temper-
ature of fluid 2), and θp (wall temperature) correspond to the
system states, and q1 (process fluid flow rate) and q2 (heating
fluid flow rate) are the control variables.

The corresponding physical and operational parameters are
summarized in Table I.

TABLE I: Parameters of the HE model.
Parameter Description Value
ρ1, ρ2 Density of fluid 1 and 2 1 kg L−1

ρp Density of the wall 7.874 kg L−1

Cp1 , Cp2 Specific heat capacity of fluid 1 and 2 1000 cal kg−1 K−1

Cpp Specific heat capacity of the wall 1075.53 cal kg−1 K−1

A Exchange area 0.881m2

h1 Heat transfer of fluid 1 32 374 calmin−1 K−1 m−2

h2 Heat transfer of fluid 2 14 716.6667 calmin−1 K−1 m−2

V1 Tube volume 16L
V2 Shell volume 2.11L
Vp Wall volume 1.19L
θ1e Inlet temperature of fluid 1 450K
θ2e Inlet temperature of fluid 2 900K

By applying the PJL technique, it is possible to rewrite the
system (4) as an LTI model around the j-th operating point
xj = {θ1sj , θ2sj , θpj

},

Aj =


−

Ah1+q1j ρ1Cp1

V1ρ1Cp1
0 Ah1

V1ρ1Cp1

0 −
Ah2+q2j ρ2Cp2

V2ρ2Cp2

Ah2
V2ρ2Cp2

Ah1
VpρpCpp

Ah2
VpρpCpp

−Ah1+Ah2
VpρpCpp

 ,

Bj =


θ1e−θ1sj

V1
0

0
θ2e−θ2sj

V2

0 0

 ,

(5)

meanwhile, the matrix C is the identity matrix and the matrix
D is zero, with appropriate dimensions.
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III. ADAPTIVE MPC METHODS

Based on the previous sections, in Adaptive MPC (AMPC)
methods using the LPV formalism, it is necessary to know,
calculate, or approximate the weighting parameter µ ∈ Rnm .
Therefore, µ is considered as a decision variable and the
conditions given in Eqs. (2) and (3) become constraints of
the optimization problem.

Thus, depending on how µ is determined, different formu-
lations arise.

A. Single-Stage Adaptive MPC
In this approach based on [12], it is considered a single

optimization problem over a prediction horizon of N steps,
where a predictive model, as indicated in Eq. (1), is used.
Additionally, the states and the control variable are subject to
constraints, given by:

x(k) ∈ X and u(k) ∈ U , (6)

where X and U are convex and compact subsets of Rnx and Rnu ,
respectively. Furthermore, the objective function is defined as:

VN (x;u, µ) =

N−1∑
k=0

∥x(k)∥2Q + ∥u(k)∥2R + ∥x(N)∥2P

+ ∥µ(N)− µs∥2Qµ
,

(7)

with Q ∈ Rnx×nx and Qµ ∈ Rnm×nm positive semidefinite,
and R ∈ Rnu×nu positive definite. µs specifies the combi-
nation of vertex models that best represent the system at the
established operating point. The decision variables correspond
to the control sequence u and the model sequence obtained
through µ. Thus, at each sampling instant, this technique seeks
the best sequences of LTI prediction models for the next N
steps.

In this way, the controller is derived from the solution of
the optimization problem:

min
u,µ

VN (x0;u, µ)

s.t. x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) ,
x(0) = x0

A(ρ(k)) =

nm∑
j=1

µj(k)Aj ,

B(ρ(k)) =

nm∑
j=1

µj(k)Bj ,

nm∑
j=1

µj(k) = 1 , 0 ≤ µj(k) ≤ 1 ,

x(k) ∈ X , u(k) ∈ U ,
x(N) ∈ X a

f .

(8)

where k ∈ Z0:N−1 and X a
f is a robust invariant set for the

LPV model, meaning that it satisfies the invariance condition
for every model belonging to Ω.

By considering µ as a varying variable throughout the pre-
diction horizon, results close to the optimum can be achieved.
However, this leads to a nonlinear optimization problem. If
computational burden needs to be reduced, a constant µ can
be considered within the horizon, which clearly leads to
suboptimal results. In this case, a constant weighting variable

can be obtained by optimizing the model in the control stage
or in a previous estimation stage, and then used for control as
discussed in the following section.

B. Two-Stages Adaptive MPC

Given the high computational cost associated with consider-
ing a sequence of models for prediction, this section presents
a two-stage design procedure for AMPC based on [11]. In this
approach, a constant LTI prediction model is used throughout
the prediction horizon, which is obtained previously using the
LPV model indicated in Eq. (1). The physical constraints given
in Eq. (6) are also taken into account.

In this way, at each sampling time, two Quadratic Pro-
gramming (QP) problems are solved: the first QP considers
a backward horizon to find the virtual adjustment variable
between model-system, denoted as µ. This variable defines
the LTI model that best describes the system at that instant,
based on data from the previous Ne steps and considering the
vertices of the polytopic model. Then, the second QP uses this
LTI model as the prediction model to optimize performance
over a future horizon.

The first problem is used to find a constant vector µ ∈ Rnm

that optimally adjusts the LPV model with the past real data.
In fact, this procedure minimizes the discrepancy between the
model and the data with respect to µ and the variance of µ (νµ)
over the backward estimation horizon (Ne) at each sampling
time.

min
µ

k0∑
k=k0+Ne−1

e(k)TQee(k) + νT
µ Qννµ

s.t. e(k + 1) = x(k + 1)− (Ax(k) +Bu(k)) ,

A =

nm∑
j=1

µjAj and B =

nm∑
j=1

µjBj ,

nm∑
j=1

µj = 1 , 0 ≤ µj ≤ 1 ,

µ = µ(k0 − 1) + νµ ,

(9)

with k ∈ Zk0−Ne:k0−1, j ∈ Z1:nm .
In this way, the MPC problem is formulated with the

following cost function, considering that µ represents the value
obtained from the problem (9):

VN (x0, µ;u) =
N−1∑
k=0

∥x(k)∥2Q + ∥u(k)∥2R + ∥x(N)∥2P , (10)

where N is the prediction horizon.
The optimal control sequence is obtained by solving the

following optimization problem:

min
u

VN (x0, µ; u)

s.t. x(k + 1) = Ax(k) +Bu(k) , ∀k ∈ Z0:N−1 ,
x(0) = x0 ,

A =

nm∑
j=1

µjAj and B =

nm∑
j=1

µjBj ,

x(k) ∈ X , u(k) ∈ U ,
x(N) ∈ X a

f ,

(11)
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where X a
f is a robust invariant terminal set, obtained using the

same approach as for the controller presented in the Section
III-A. The calculation of this set is detailed in Section III-C.

C. Stability and feasibility analysis
To guarantee asymptotic stability and recursive feasibility, it

is necessary to define the terminal cost as a control Lyapunov
function and the terminal set as a control robust positive
invariant set for all models belonging to Ω. In this way, to
define P and X a

f , a polytopic LQR without constraints is
considered as a local controller with the model given in Eq.
(1). Thus, a P ≻ 0 and a control law u(k) = κx(k) for the
LQR need to be found that satisfy

[A(ρ(k))−B(ρ(k))κ]T P [A(ρ(k))−B(ρ(k))κ]+

Q+ κT Rκ− P ≤ 0 .
(12)

Therefore, P is determined by solving the following prob-
lem:
min
γ,L,Y

γ

s.t. Y ≻ 0 ,
Y Y AT

j + LTBT
j Y Q1/2 LTR1/2

AjY +BjL Y 0 0

Q1/2Y 0 γI 0

R1/2L 0 0 γI

 ≻ 0 ,

(13)

for all j ∈ Z1:nm . Then, it is ensured that the terminal cost
is decreasing for all x ∈ X a

f . As a result, a region defined
by a robust invariant set X a

f needs to be defined, where the
decrease of the terminal cost is satisfied.

As mentioned in [18], [19], for the regulation purpose, the
largest invariant ellipsoidal set is considered as the terminal
constraint.

In this way, it is possible to determine a terminal invariant
ellipsoid for the terminal state x(N), centered at the origin.
The ellipsoid is given by:

X a
f =

{
x(N) : x(N)TWx(N) ≤ 1

}
. (14)

where this terminal set is a subset of the terminal cost
x(N)TPx(N).

Therefore, to find the largest invariant terminal set X a
f under

the control law u(k) = κx(k) for all k with admissible input, it
is possible to formulate a second maximization LMI problem:

max
Z

log det(Z)

s.t. Z ≻ 0 ,(
Z Z(Aj +Bjκ)

T

(Aj +Bjκ)Z Z

)
≻ 0 , ∀j ∈ Z1:nm ,

Z ≤ Xmax ,

κsZκT
s ≤ u2

smax
,

(15)

where W = Z−1, s ∈ Z1:nu
denotes each component of the

vector u(k), and κs are the rows of the matrix κ = LY −1

determined by the LMI problem presented in Eq. (13).
Thereby, a terminal cost and an invariant terminal set are

obtained for the nm vertex LTI models, and due to the con-
vexity of Ω, these properties extend to every model belonging
to the model polytope [12].

IV. SIMULATION RESULTS

The following results comprise the constrained regulation of
the outlet temperature x1, despite disturbances in the output
variables of 0.01 K. In addition, constraints are considered for
the states x1(t) = θ1s(t) ∈ [495, 500] K, x2(t) = θ2s(t) ∈
[650, 710] K and x3(t) = θp(t) ∈ [530, 580] K; and for
the control variables u1(t) = q1(t) ∈ [90, 110] Lmin−1 and
u2(t) = q2(t) ∈ [7, 9] Lmin−1.

To establish the LPV model (5), two adjustment parameters,
ρ(t) :=

[
θ1s(t) θ2s(t)

]
, are defined, with two linearization

points per parameter, nl = 2. Therefore, four vertex LTI
models are fixed. The linearization points for these models
are set to cover the possible operating range and are obtained
from the combination of values shown in Table II.

TABLE II: LPV model of a HE.

θ1s θ2s
Model 1 495K 680K
Model 2 500K 680K
Model 3 495K 710K
Model 4 500K 710K

At the same time, the sampling period is set to T =
0.05 min, the prediction horizon N = 8 steps is cho-
sen based on the observation of the system’s slow dynam-
ics and its ability to react to changes, the initial state is
x0 = [495; 710; 562.1913] K, the MPC weight matrices,
in accordance with traditional methods, are Q = I and
R = diag{1; 0.1} in relation to response time and con-
trol variable amplitudes, the estimator weight matrices are
Qe = 1 × 106I and Qν = I, and the AMPC model weight
matrix is Qµ = 1 × 106I. The operating point is fixed at
xs = [498; 680; 554.8782] K. It is important to note that
all the implemented MPC algorithms use the same set of
weighting matrices and prediction horizon. In the case of two-
stage AMPC, identify as MHE-MPC, the estimation horizon
is set to be equal to the prediction horizon.

The control methodologies proposed in Section III are
compared among themselves, but also with a linear MPC
(referred to as LTI-MPC), which solves the QP problem
given in Eq. (11) by setting all the weighting variables as
µj = 1/nm, which represents an LTI model for the analyzed
systems, considering the nm vertices of the polytope Ω.

The evolution of the system states is presented in Fig. 2,
which converges to the set operating point. Additionally, the
figure shows the state constraint set (in red) and the terminal
invariant set (in green). It is noteworthy that the terminal
invariant set is feasible as it is entirely contained within the
constraint set. The figure depicts the state evolution using the
AMPC (III-A) in blue line, the MHE-MPC (III-B) in red
line, and the LTI-MPC in green line. The response of each
controller is analyzed in detail in the subsequent figures.

Figure 3a shows the temporal evolution of the states when
the control variables (Fig. 3c) obtained by each of the analyzed
controllers are applied. It can be observed that during the first
1.25 min, the system evolves to reach the operating point, and
then the states remain in a steady-state. Figure 3b provides a

XX Reunión de Trabajo en Procesamiento de la Información y Control - RPIC 2023

ISBN: 978-950-766-230-0 Página 232



Fig. 2: Evolution of the HE system states for regulation to xs.

zoomed-in view of the temporal evolution of the states, where
the effect of noise in the output variables and the steady-state
error produced by the LTI-MPC can be noticed.

As discussed in this work, the adaptive MPC techniques aim
to adapt the prediction model through the weighting variables
µj . In relation to this, Fig. 4 shows the evolution of the
weighting variables over time. In Fig. 4a, the membership
of each vertex model to the prediction model is presented
when using the AMPC. It can be observed that, based on the
specified operating range and the nonlinearities of the system,
a linear model is sufficient to address the control problem, this
demonstrates that this controller is a generalization of the LTI-
MPC formulation. In this case, the optimal prediction model is
composed of 90.25% of model 2 and 9.75% of model 4. It is
important to highlight that, although in this example a linear
model allows for an approximate prediction of the system’s
behavior, the adaptability feature has the advantage that it can
reformulate the controller without the need for obtaining new
models when there is a change in the operating point, which
is often not a trivial task.

On the other hand, Fig. 4b illustrates the evolution of the
weighting variables obtained by the estimation stage of the
MHE-MPC. It can be observed in the figure the change of
prediction model that occurs over time, where initially model
3 is used, then models within Ω are employed, and finally
model 2 is applied. So it is very close to the model obtained
by the AMPC.

To highlight the results, Table III shows the Integral Abso-
lute Error (IAE) and Integral Time-weighted Absolute Error
(ITAE) indices for the transient regime, as well as the steady-
state results (with respect to x1). Additionally, Table III also
presents the Total Variance (TV) index for the three methods.
Higher values for the TV index indicate more variation in
control throughout the simulation. Therefore, values closer to
zero indicate better (smoother) control strategies in terms of
actuator usage. The analysis of the TV index is crucial from a
practical point of view, as it implies that the system’s actuators

(a) System states.

(b) Zoomed-in view of system states.

0 1 2 3 4 5
90

90.2

90.4

90.6

q
1
 [

l/
m

in
] AMPC

MHE-MPC
LTI-MPC
Constraints

0 1 2 3 4 5

t [min]

7

8

9

q
2
 [

l/
m

in
]

(c) Control variables.

Fig. 3: Temporal evolution of the HE system variables.

will have a longer lifespan. The table expresses the best value
for each index as a reference, and the remaining values are
expressed in terms of the percentage increase compared to the
best value.

TABLE III: Performance indices in a HE.

IAE trans. ITAE trans. IAE ss. ITAE ss. TV
AMPC +2, 534% +5, 862% 0,22433 0,64506 +0, 390%

MHE-MPC +2, 956% +6, 101% +1, 306% +2, 845% +0, 353%
LTI-MPC 0,6831 0,33452 +29, 786% +30, 735% 38.0155

In addition, Table IV presents the Online Computational
Effort (OCE) in terms of maximum, average and minimum
elapsed computational time as a percentage of the sampling
time.
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(a) AMPC.

(b) MHE-MPC.

Fig. 4: Evolution of the membership variables for obtaining
the predictive model.

TABLE IV: Online computational effort in a HE.

minimum average maximum
AMPC 14.4744% 24.428% 55.3617%

MHE-MPC 0.6338% 0.7092% 3.1255%
LTI-MPC 0.4183% 0.45863% 0.51357%

As a result, the quantitative results presented in Tables
III and IV, as well as the observations from the figures,
demonstrate that for the given operating range, a linear pre-
diction model is adequate. In this regard, the performance
indices for reference tracking and TV indicate a slightly
better performance for the LTI-MPC technique. However, the
adaptive techniques reduce the steady-state error and improve
disturbance rejection, as reflected in the corresponding perfor-
mance indices, where a significant difference is observed. On
the other hand, the LTI-MPC requires less OCE. However,
all methods can be implemented for real-time purposes, as
the maximum elapsed time is smaller than the sampling time,
which can be considered an acceptable computation time.
Nonetheless, the AMPC technique exhibits a significantly
higher computational effort, which may pose challenges for its
implementation in systems with a small sampling time. How-
ever, it is reasonable to use AMPC in real-time applications
with a sampling time in the range of a few seconds.

V. CONCLUSION

In conclusion, this work analyzed two adaptive predic-
tive control strategies for regulation, applicable to nonlinear
systems represented using the LPV model approach. These
techniques extend the formulation of traditional MPC for
regulation purpose to a multi-model representation of the plant.

To achieve this, the control of a HE was addressed. A
bounded operating range was considered, where an MPC with

an LTI prediction model was able to control the nonlinear
system. Under these conditions, it was observed that the three
analyzed techniques exhibited similar performance during the
transient regime. However, the adaptive techniques showed
improvements in disturbance rejection and offset reduction. It
is also worth noting that the adaptability of these techniques
provides the advantage that, in the case of a change in the
operating point, there is no need to obtain new models when
reformulating the controller, which can be a non-trivial task
for nonlinear industrial systems.

Thus, the analyzed adaptive MPC methods ensured the
regulation of nonlinear systems represented by a polytopic
model used for prediction, without the need to evaluate the
nonlinear differential equations describing the dynamics of
each system online.
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