

UNIVERSIDAD TECNOLOGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERIA ELECTROMECANICA

PROYECTO FINAL DE CARRERA (P F C)

Cálculo y Diseño de una planta para producir pellets de madera

Memorias de Cálculo

Proyecto Nº: 1408A

Autores: Ernst, Mariángeles Jessica

Montañana, Guillermo Manuel

Tutor: Turín Alberto

Dirección de Proyectos: Ing. Puente, Gustavo Ing. De Marco, Luis UTN - FRCU Dpto. Biblioteca
Proyecto final : Cáculo y diseño de una

14618

AÑO 2015

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

ÍNDICE

Consideraciones Generales	11
1. Recepción de materia prima	12
2. Balanza	12
3. Transporte a cadena	13
3.1. Capcidad del redler	13
3.2. Potencia absorbida por el redler	15
3.3. Potencia del motor eléctrico	16
3.4. Esfuerzo de la cadena	17
3.5. Reducción necesaria	17
3.6. Transmisión de potencia	18
3.6.1. Motor eléctrico	18
3.6.2. Reductor a engranajes	18
3.6.2.1. Potencia efectiva	18
3.6.2.2. Factor de servicio	18
3.6.2.3. Potencia equivalente	20
3.6.2.4. Relación de transmisión conseguida	20
3.6.2.5. Preselección del modelo	20
3.6.2.6. Factor de temperatura	21
3.6.2.7. Determinación de la potencia térmica	21
3.6.2.8. Verificación de cargas radiales	22
3.6.3. Transmisión por correas	23
3.6.3.1. Potencia de entrada	23
3.6.3.2. Factor de servicio	23
3.6.3.3. Potencia de diseño	24
3.6.3.4. Selección de la correa	24
3.6.3.5. Diámetros primitivos de las poleas	25
3.6.3.6. Distancia entre ejes de poleas	26
3.6.3.7. Longitud de la correa	26
3.6.3.8. Determinación del arco de contacto	27
3.6.3.9. Factor de arco	27
3.6.3.10. Factor de largo	
3.6.3.11. Número de correas necesarias	29
3.6.4. Acoplamiento motor-reductor	29
3.6.4.1. Potencia de entrada	30
3.6.4.2. Factor de servicio	30
3.6.4.3. Potencia de cálculo	30
3.6.4.4. Verificación del acoplamiento	31
3.6.4.4.1. Verificación por torque	31
3.6.4.4.2. Verificación por potencia de entrada	32
3.6.5. Verificaciones del eje	32

Ernst Mariángeles - Montañana Guillermo

2 de 234

FACULTAD REGIONAL CONCEPCION DEL URUGUAY UNIVERSIDAD TECNOLOGICA NACIONAL MONUMENTO HISTORICO NACIONAL

G-PFC-1408A- Memorias de Cálculo- Ver.01

3.6.5.1. Solicitaciones	32
3.6.5.2. Diámetro necesario	35
3.6.6. Rodamientos	37
3.6.6.1. Rodamiento en punto A	37
3.6.6.2. Rodamiento en punto B	38
3.6.7. Chavetas	38
3.6.7.1. Chaveta de la corona del redler	39
3.6.7.1.1. Verificación por corte	39
3.6.7.1.2. Verificación por aplastamiento	39
3.6.7.2. Chaveta de la corona de la transmisión por correas	40
3.6.7.2.1. Verificación por corte	40
3.6.7.2.2. Verificación por aplastamiento	40
3.6.7.3. Chaveta del piñón de la transmisión por correas	41
3.6.7.3.1. Verificación por corte	41
3.6.7.3.2. Verificación por aplastamiento	41
3.6.7.4. Chaveta del acoplamiento a la entrada del reductor	42
3.6.7.4.1. Verificación por corte	42
3.6.7.4.2. Verificación por aplastamiento	42
3.6.7.5. Chaveta del acoplamiento a la salida del motor	43
3.6.7.5.1. Verificación por corte	43
3.6.7.5.2. Verificación por aplastamiento	43
3.6.8. Verificaciones por fatiga	44
3.6.8.1. Verificación del chavetero del eje del redler	44
3.6.8.2. Verificación del chavetero de la corona de la transmisión a correas	48
3.6.8.3. Verificación del chavetero del acoplamiento con el motor	51
3.6.8.4. Verificación del chavetero a la salida del reductor a engranajes	53
3.6.8.5. Verificación cambio de sección: corona acoplamiento correas- corona del redler	55
4. Sector de secado	59
4.1. Secador	59
4.2. Ciclón 1	59
4.2.1. Material transportado	59
4.2.2. Volumen de aire	59
4.2.3. Velocidad del aire	60
4.2.4. Diámetro de la tubería	61
4.2.5. Verificación de la relación de secciones	61
4.2.6. Presión necesaria	
4.2.6.1. Pérdidas debidas al aire	62
4.2.6.1.1. Pérdidas para imprimirle velocidad al aire	
4.2.6.1.2. Pérdidas por ingreso de aire al circuito	62
4.2.6.1.3. Pérdidas por rozamiento en las tuberías	62
4.2.6.1.4. Pérdidas por altura	63
4.2.6.1.5. Pérdidas por curvas y seccionadores	63

Ernst Mariángeles - Montañana Guillermo

FACULTAD REGIONAL CONCEPCION DEL URUGUAY³ de 234 UNIVERSIDAD TECNOLOGICA NACIONAL MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803
Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY
ENTRE RIOS - REP. ARGENTINA

4.2.6.1.6. Pérdidas por ingreso del aire al ciclón	64
4.2.6.2. Pérdidas debidas a la resistencia por el movimiento del material	64
4.2.6.2.1. Pérdidas para imprimirle fuerza viva al material	
4.2.6.2.2. Pérdidas por resistencias en las cañerías	
4.2.6.2.3. Pérdidas para vencer alturas	
4.2.6.2.4. Pérdidas por ángulos y cambios de dirección	
4.2.6.2.5. Pérdidas por entrada al ciclón	
4.2.6.3. Pérdidas totales.	66
4.2.7. Potencia necesaria del ventilador	67
4.2.8. Corrección por temperatura del ciclón	67
4.2.9. Verificación ciclón 1	
4.2.9.1. Material transportado	69
4.2.9.2. Volumen de aire	70
4.2.9.3. Velocidad del aire	70
4.2.9.4. Diámetro de la tubería	71
4.2.10. Datos para la selección	71
5. Sector de molienda	71
5.1. Silo de aserrín y chips secos	71
5.2. Molino a martillos	72
5.3. Ciclón 2	72
5.3.1. Trayectoria 1	72
5.3.1.1. Material transportado	72
5.3.1.2. Volumen de aire	72
5.3.1.3. Velocidad del aire	73
5.3.1.4. Diámetro de la tubería	74
5.3.1.5. Verificación de la relación de secciones	74
5.3.1.6. Presión necesaria	75
5.3.1.6.1. Pérdidas debidas al aire	75
5.3.1.6.1.1. Pérdidas para imprimirle velocidad al aire	75
5.3.1.6.1.2. Pérdidas por ingreso del aire al circuito	
5.3.1.6.1.3. Pérdidas por rozamiento en las tuberías	
5.3.1.6.1.4. Pérdidas por altura	
5.3.1.6.1.5. Pérdidas por curvas y seccionadores	
5.3.1.6.2. Pérdidas debidas al material	
5.3.1.6.2.1. Pérdidas para imprimirle fuerza viva al material	
5.3.1.6.2.2. Pérdidas por resistencia en las cañerías	
5.3.1.6.2.3. Pérdidas para vencer alturas	
5.3.1.6.2.4. Pérdidas por ángulos y cambios de dirección	
5.3.1.6.2.5. Pérdidas por la entrada al ciclón	
5.3.2. Trayectoria 2	
5.3.2.1 Material transportado	
5.3.2.2. Volumen de aire	
Ernst Mariángeles - Montañana Guillermo	4 de 234

5.3.2.3. Velocidad del aire	. 79
5.3.2.4. Diámetro de la tubería	. 80
5.3.2.5. Verificación de la relación de secciones	. 80
5.3.2.6. Presión necesaria	. 81
5.3.2.6.1. Pérdidas debidas al aire	. 81
5.3.2.6.1.1. Pérdidas para imprimirle velocidad al aire	. 81
5.3.2.6.1.2. Pérdidas por ingreso de aire al circuito	. 81
5.3.2.6.1.3. Pérdidas por rozamiento en las tuberías	. 81
5.3.2.6.1.4. Pérdidas por altura	. 82
5.3.2.6.1.5. Pérdidas por curvas y seccionadores	. 82
5.3.2.6.1.6. Pérdidas por ingreso del aire al ciclón	
5.3.2.6.2. Pérdidas debidas al material	. 84
5.3.2.6.2.1. Pérdidas para imprimirle fuerza viva al material	. 84
5.3.2.6.2.2. Pérdidas por resistencias en las cañerías	. 84
5.3.2.6.2.3. Pérdidas para vencer alturas	. 85
5.3.2.6.2.4. Pérdidas por ángulos y cambios de dirección	
5.3.2.6.2.5. Pérdidas por la entrada al ciclón	. 85
5.3.3. Pérdidas totales	. 85
5.3.4. Potencia necesaria del ventilador	. 86
5.3.5. Datos para la selección	. 86
5. Sector pelletizado	. 86
5.1. Depósito sobre prensa	. 86
5.2. Alimentador de prensa	. 87
6.3. Acondicionador de prensa	. 87
5.4. Prensa pelletizadora	. 87
5.5. Caldera	. 87
6.6. Cuadro de regulación	. 88
5.7. Cinta transportadora 1	. 88
5.7.1. Ancho de la cinta	. 88
5.7.2. Potencia necesaria para el accionamiento	. 89
5.7.2.1. Fuerza necesaria para mover la cinta en vacío	. 90
5.7.2.2. Fuerza necesaria para mover el material en forma horizontal	. 91
5.7.2.3. Fuerza necesaria para elevar o descender el material	. 92
5.7.2.4. Fuerza necesaria para vencer los descargadores	. 92
5.7.3. Potencia necesaria según Zignoli	. 93
5.7.4. Potencia adicional	. 94
5.7.4.1. Cálculo de Ka	. 95
5.7.4.2. Cálculo de Kd	. 96
5.7.4.3. Cálculo de Ki	. 96
5.7.5. Tensión en los ramales	. 97
5.7.6. Selección de banda transportadora	. 97
5.7.7. Diámetro mínimo de poleas	

0	
Õ	
Ö	
0	
Ö	
0	
0	

5.7.8. Tension en el ramai flojo	99
5.7.9. Diámetro de tambor	99
5.7.10. Rodillos	99
5.7.10.1. Diámetro y distancias entre rodillos	99
5.7.10.2. Verificación de cargas sobre rodillos	100
5.7.11. Disposición de rodillos	102
5.7.12. Velocidad del eje de transmisión	102
5.7.13. Cálculo del motorreductor	103
5.7.13.1. Potencia efectiva	103
5.7.13.2. Factor de servicio	103
5.7.13.3. Potencia equivalente	
5.7.13.4. Preselección del modelo	103
5.7.14. Acoplamiento a cadena	104
5.7.14.1. Potencia efectiva	105
5.7.14.2. Factor de servicio	105
5.7.14.3. Potencia de cálculo	105
5.8. Cinta transportadora 2	105
5.8.1. Ancho de la cinta	105
5.8.2. Potencia necesaria para el accionamiento	107
6.8.2.1. Fuerza necesaria para mover la cinta en vacío	107
6.8.2.2. Fuerza necesaria para mover el material en forma horizontal	
6.8.2.3. Fuerza necesaria para elevar o descender el material	110
6.8.2.4. Fuerza necesaria para vencer los descargadores	110
5.8.3. Potencia necesaria según Zignoli	111
5.8.4. Potencia adicional	112
5.8.4.1. Cálculo de Ka	112
5.8.4.2. Cálculo de Kd	113
6.8.4.3. Cálculo de Ki	114
6.8.5. Tensión en los ramales	114
6.8.6. Selección de banda transportadora	
6.8.7. Diámetro mínimo de poleas	116
6.8.8. Tensión en el ramal flojo	117
5.8.9. Diámetro de tambores	117
5.8.10. Rodillos	117
5.8.10.1. Diámetro y distancias entre rodillos	117
5.8.10.2. Verificación de cargas sobre rodillos	
6.8.11. Disposición de rodillos	
6.8.12. Velocidad del eje de transmisión	120
6.8.13. Cálculo del motorreductor	121
6.8.13.1. Potencia efectiva	121
5.8.13.2. Factor de servicio	
5.8.13.3. Potencia equivalente	121

_	
_	

6.8.13.4. Preselección del modelo	121
6.8.14. Acoplamiento a cadena	122
6.8.14.1. Potencia efectiva	123
6.8.14.2. Factor de servicio	123
6.8.14.3. Potencia de cálculo	123
7. Sector de enfriado	123
7.1. enfriador	124
8. Sector de clasificación	124
8.1. Zaranda	124
8.2. Cinta transportadora 3	124
8.2.1. Ancho de la cinta	124
8.2.2. Potencia necesaria para el accionamiento	126
8.2.2.1. Fuerza necesaria para mover la cinta en vacío	
8.2.2.2. Fuerza necesaria para mover el material en forma horizontal	128
8.2.2.3. Fuerza necesaria para elevar o descender el material	129
8.2.2.4. Fuerza necesaria para vencer los descargadores	129
8.2.3. Potencia necesaria según Zignoli	
8.2.4. Potencia adicional.	131
8.2.4.1. Cálculo de Ka	131
8.2.4.2. Cálculo de Kd	132
8.2.4.3. Cálculo de Ki	133
8.2.5. Tensión en los ramales	133
8.2.6. Selección de banda transportadora	134
8.2.7. Diámetro mínimo de poleas	135
8.2.8. Tensión en el ramal flojo	135
8.2.9. Diámetro de tambor	135
8.2.10. Rodillos	136
8.2.10.1. Diámetro y distancias entre rodillos	136
8.2.10.2. Verificación de cargas sobre rodillos	136
8.2.11. Disposición de rodillos	139
8.2.12. Velocidad del eje de transmisión	139
8.2.13. Cálculo del motorreductor	
8.2.13.1. Potencia efectiva	139
8.2.13.2. Factor de servicio	139
8.2.13.3. Potencia equivalente	140
8.2.13.4. Preselección del modelo	140
8.2.14. Acoplamiento a cadena	141
8.2.14.1. Potencia efectiva	141
8.2.14.2. Factor de servicio	141
8.2.14.3. Potencia de cálculo	142
8.3. Elevadora a cangilones	142
8.3.1. Altura del elevador	142

G-PFC-1408A- Memorias de Cálculo- Ver.01	
8.3.2. Selección del cangilón	142
8.3.3. Ancho de la cinta	142
8.3.4. Paso	143
8.3.5. Velocidad del transporte	143
8.3.6. Diámetro de la polea motriz	143
8.3.7. Velocidad angular de la polea motriz	144
8.3.8. Tensión de la banda	
8.3.8.1. Tensión provocada por el peso de la cinta, cangilones y material	
8.3.8.2. Tensión provocada por rozamientos	
8.3.8.3. Tensión necesaria para el dragado	
8.3.8.4. Tensión previa de la cinta	
8.3.9. Potencia nominal	
8.3.10. Tensión en la banda descendente	
8.3.11. Verificación del número de telas	
8.3.12. Potencia necesaria	
8.3.12.1. Carga máxima del cangilón	
8.3.12.2. Rozamiento de la cinta	
8.3.12.3. Fuerza de dragado	
8.3.13. Motorreductor	
8.3.13.1. Potencia efectiva	149
8.3.13.2. Factor de servicio	
8.3.13.3. Potencia equivalente	150
8.3.13.4. Preselección del modelo	
8.3.14. Boca de descarga	
8.3.15. Acoplamiento para válvula de descarga	151
9. Sector de almacenamiento y embolsado	
9.1. Almacenaje en bolsas	152
9.1.1. Embolsadora	152
9.1.2. Cinta de la embolsadora	
9.2. Almacenaje en silos	
9.2.1. Silos	
9.2.2. Rosca transportadora	
9.2.2.1. Coeficiente de llenado	
9.2.2.2. Relación paso diámetro	
9.2.2.3. Diámetro de la rosca	
9.2.2.4. Potencia necesaria para el transporte	156
9.2.2.5. Correción por arranque con carga	
9.2.2.6. Distancia entre apoyos	
9.2.2.7. Selección de mando motriz	159
9.2.2.7.1. Motoreductor	159
9.2.2.7.1.1. Potencia efectiva	159
9.2.2.7.1.2. Factor de servicio	159
Ernst Mariángeles - Montañana Guillermo	8 de 234

Ö	
0	
Ċ	

9.2.2.7.1.3. Potencia equivalente	160
9.2.2.7.1.4. Preselección del modelo	160
9.2.2.8. Acoplamiento a cadena	160
9.2.2.8.1. Potencia efectiva	161
9.2.2.8.2. Factor de servicio	
9.2.2.8.3. Potencia de cálculo	
10. Equipamientos eléctricos de potencia y electromecánicos	162
10.1. Resumen de cargas	
10.1.1. Cálculo de consumo de potencia	163
10.1.1.1. Equipos	
10.1.1.2. Tomas e iluminación	
10.1.2. Corrientes de proyecto	165
10.2. Transformador	167
10.3. Tableros	
10.4. Barras de distribución	
10.4.1. Barras de fases R,S,T	
10.4.2. Barra de neutro	
10.4.3. Barra de distribución PE en TSG	172
10.4.4. Barra de distribución PE en TSE1, TSE2, TSE3, TSE4 y TSS	173
10.5. Conductores eléctricos	174
10.5.1. Preselección por corriente de carga	175
10.5.2. Verificación por caída de tensión	180
10.5.3. Verificación al cortocircuito	183
10.5.4. Resumen de conductores	
10.5.4.1. Conductores de alimentación	
10.5.4.2. Conductores de protección	189
10.6. Corrientes de cortocircuito	190
10.7. Protecciones	199
10.7.1. Introducción	199
10.7.2. Protecciones para la planta	201
10.7.2.1. Tablero principal	202
10.7.2.2. Tablero seccional general	202
10.7.2.3. Tableros de equipos e iluminación	203
10.7.2.4. Tableros de tomas	
10.7.2.5. Resumen de interruptores seleccionados	207
10.8. Canalizaciones	210
10.8.1. Conducto enterrado	210
10.8.2. Bandejas	211
10.8.3. Conductos	
10.8.4. Montantes	213
10.9. Protección contra descargas	213
10.9.1. Protección externa	

10.9.2. Cálculo del SPCR	214
10.9.2.1. Nivel de protección	214
10.9.2.1.1. Frecuencia esperada de rayos directos	214
10.9.2.1.2. Frecuencia aceptada de rayos	216
10.9.2.1.3. Nivel y radio de protección	217
10.9.2.2. Conductor de bajada	218
10.9.2.3. Sistema de protección	218
10.10. Puesta a tierra	218
10.10.1. Introducción	218
10.10.2. Sistema de puesta a tierra	219
10.10.3. Jabalinas	220
10.10.3.1. Resistencia de jabalinas	220
10.10.3.2. Jabalinas seleccionadas	221
10.10.4. Conductores de protección	222
10.11. Factor de potencia	224
10.11.1. Corrección en tablero seccional general	224
10.11.1.1. Cálculo de potencia	224
10.11.1.2. Selección de capacitores	225
10.11.2. Correción en tableros de iluminación	226
10.11.2.1. Iluminación en zona de mantenimiento	226
10.11.2.2. Iluminación en zona de caldera	227
10.11.2.3. Iluminacion en zona de materia prima	227
10.11.2.4. Iluminación en planta	227
10.11.3. Selección de capacitores	228
10.12. Arranque e motores	228
10.12.1. Arranque directo	228
10.12.2. Arranque estrella triángulo	229
10.12.3. Arranque suave	231
10.12.4. Variador de velocidad	232
Bibliografía	234

Consideraciones Generales

- El cálculo y el diseño de la planta se realiza en base a una capacidad de producción de 1tn/h de pellets de madera.
- Los equipos específicos de la producción de pellets, como los del sector de molienda, pelletizado, enfriado, clasificación y embolsado fueron recomendados por la firma *Giuliani* en base a la evaluación de la capacidad de producción, por lo que los mismos son adoptados y el proyecto no comprende sus cálculos, ni los referentes a las instalaciones de vapor y gas que puedan necesitar los mismos.
- El equipo de secado de pellet para una producción de 1tn/h fue recomendado por la firma Rotasec S.R.L.
- La materia prima son residuos de aserraderos y subproductos forestales en forma de aserrín, chips y virutas con humedades de hasta 100% para los cálculos.
- El horario de producción de la planta estará distribuido en dos turnos de 8 horas cada uno, por lo que la planta estará en funcionamiento 16 horas diarias.
- El dimensionamiento del predio donde se va a instalar la planta es función de la circulación de camiones que ingresan a la planta con materia prima y egresan cargados de pellets.
- La disposición de los equipos en planta y las dimensiones de la misma pueden verse en los planos PG-001 Rev.01 y PG-002 Rev.01.

FACULTAD REGIONAL CONCEPCION DEL URUGUAY UNIVERSIDAD TECNOLOGICA NACIONAL MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA

1. RECEPCIÓN DE MATERIA PRIMA

Para producir 1tn/h de pellets se necesita el doble de aserrín es decir 2tn/h debido a los contenidos de humedad existentes en el mismo.

El almacenaje de materia prima contempla un stock de una semana.

$$Stock = 2 \frac{tn}{h} \times 16 \frac{h}{dia} \times 5 dias = 160tn$$

El aserrín tiene una densidad de 160 Kg/m³ (0,16 tn/m³), por lo que 1tn de aserrín ocupa un espacio de:

$$\frac{1tn}{0.16 \frac{tn}{m^3}} = 6.25 \, m^3$$

Entonces el volumen de stock necesario es:

Volumen de Stock =
$$\frac{160tn}{1tn} \times 6,25 \, m^3 = 1000 \, m^3$$

2. BALANZA

La balanza debe poseer una capacidad que contemple el peso propio del camión y la carga de pellet que transporte el mismo. Se considera como carga más desfavorable la de pellets debido a que su densidad es mayor que la de la materia prima.

Por lo tanto:

Capacidad de la Balanza = Peso del camión + Carga de Pellets Capacidad de la Balanza = 15tn + 16tn = 31tn

Se toma como longitud de camión cisterna: 12m.

El sentido de circulación de los camiones, para el ingreso y egreso a la balanza se grafica los planos PG 003- Rev.01 y PG 004- Rev.01, y puede dividirse en dos recorridos: camiones de materia prima y camiones de pellets.

• Camiones de materia prima: los camiones cargados de materia prima entran al predio de la planta e ingresan a la balanza para registrar su peso.

Luego se dirigen a la zona de acopio donde descargan la materia prima.

Posteriormente se dirigen a la balanza para registrar su peso nuevamente y obtener así la cantidad de materia prima que proveen a la planta.

• Camiones de pellets: los camiones vacíos ingresan al predio de la planta y registran su peso en la halanza

Luego ingresan a la planta hasta la zona de silos donde se cargan de pellets. Salen de la planta y se dirigen nuevamente a la balanza para registrar su peso y así conocer la cantidad de pellets que cargaron.

3. TRANSPORTE A CADENA (REDLER)

3.1. CAPACIDAD DEL REDLER

La capacidad de las cadenas transportadoras trabajando inclinadas es igual a:

$$Q = 3600 \times A \times B \times V \times \gamma \times C \times \varphi \qquad (3.1)$$

Dónde:

Q: Capacidad del transporte [tn/h]

A: Altura de la sección del transportador [m]

B: Ancho de arrastre de la cadena [m]

V: Velocidad de la cadena [m/s]

 γ : Masa específica del viruta $[tn/m^3] = 90 tn/m^3$

C: Coeficiente de llenado [-], (varía de 0,75 a 0,85)

φ: Factor de reducción de la velocidad , según Cuadro N°1 de catálogo PowerChain (Fig.3.1)

Cuadro N°1

Inclinación en Grados	φ
5	0,90
10	0,80
15	0,75
20	0,70
30	0,55

Fig.3.1

De la ecuación (3.1) se despeja el ancho de arrastre (B) ya que el dato que se tiene es la capacidad de trasporte y una velocidad de transporte recomendada de $V=0.4\,m/s$.

$$B = \frac{Q}{3600 \times A \times V \times v \times C \times \varphi}$$
 (3.2)

Se trabaja con virutas y aserrín, pero el cálculo del ancho de arrastre se realiza con el peso específico del material más desfavorable, en este caso la viruta, el peso específico de la misma se obtuvo del "Manual de Combustibles de Madera" (AVEBIOM 2008), Fig. 3.2.

1.6 Densidad aparente de los principales biocombustibles sólidos⁽²⁾

labla 1.6	-	· AND PARTY AND PARTY AND PARTY.	
Combestibles de madera	24	Especie	Densicled aparente (kg/m² aparente)
Troncos	15	Haya	445*
(33 cm apilados)	1.3	Picea y abeto	304'
	30	Haya	328
Astillas	30	Picea y abeto	223
Corteza de coniferas			180
Serrin	15		160
Virutas			90
Pellets	8		620-650
Balas		Miscanthus	140
Biomasa desmenuzada	15	Miscanthus	110
Grano		Triticale	750
knimi aniladia			

Fig.3.2

La altura del redler (A) se halla considerando la altura del diámetro primitivo de la corona que es de 200mm más un margen de 30mm.

Del catálogo de *PowerChain*, pág.8 se adopta la corona de menor diámetro con el objeto de pre dimensionar la sección del transporte a cadena Fig.3.3.

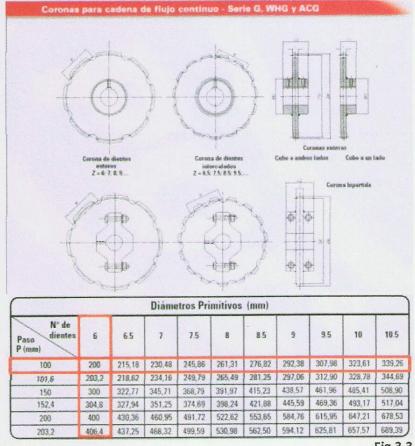


Fig.3.3

 ${\it C}=0.75$ (por ser un material fino va a tener poco arrastre) ${\it \phi}=0.55$ (${\it de Fig.}\,3.1$)

Reemplazando en (3.2):

$$B = \frac{1\frac{tn}{h}}{3600 \times 0,23m \times 0,4\frac{m}{s} \times 0,09\frac{tn}{m^3} \times 0,75 \times 0,55} = 0,0813m = 8,13cm$$

B = 0.0813m = 8.13cm

El ancho mínimo que poseen los redlers es de B=230mm como se ve en la Fig.3.4, por lo tanto, la sección neta de transporte que posee el transportador a cadena es de $230mm \times 230mm$.

or plac (mm)
.76
,35
,35
,76
35
.35
1.76
76

Fig.3.4

El redler se encuentra sobredimensionado, siendo la capacidad máxima de éste, para una velocidad de V=0,40m/s (se utiliza el peso específico del aserrín ya que el que genera mayor caudal):

$$Q = 3600 \times 0,23m \times 0,23m \times 0,4\frac{m}{s} \times 0,16\frac{tn}{m^3} \times 0,75 \times 0,55$$

$$Q = 5,02\frac{tn}{h}$$

3.2. POTENCIA ABSORBIDA POR EL REDLER

La potencia absorbida por el redler se calcula por la ecuación siguiente:

$$P = \left\{ \frac{[Q \times (L+3h)] + [7,2 \times g \times L \times V]}{540} \right\} \times f \quad (3.3)$$

P: Potencia absorbida por el redler [CV]

Q: Capacidad del transporte [tn/h]

L: Largo del redler [m]

h: Altura de elevación para el redler inclinado [m]

g: Peso de la cadena [Kg/m]

V: Velocidad de la cadena [m/s]

f: Factor de servicio [varía de 1,1 a 1,2]

f = 1,1 (porque el aserrín no realiza tanto esfuerzo)

Se reemplazan los valores de los parámetros mencionados en la ecuación (3.3):

$$P = \left\{ \frac{\left[1 \frac{tn}{h} \times (14m + 3 \times 7m)\right] + \left[7,2 \times 4,5 \frac{Kg}{m} \times 14m \times 0,4 \frac{m}{s}\right]}{540} \right\} \times 1,1$$

$$P = 0,44CV = 0,33KW$$

3.3. POTENCIA DEL MOTOR ELÉCTRICO

La potencia requerida por el motor eléctrico de accionamiento del redler se calcula por la siguiente ecuación:

$$P_m = \frac{P \times G}{E} \qquad (3.4)$$

Dónde:

 P_m : Potencia del motor eléctrico [CV]

P: Potencia absorbida por el redler [CV]

E: Rendimiento de la transmisión [E = 0.96 ver ecuación (3.5)]

G: Factor que varía con la potencia absorbida por el redler, segun Cuadro $N^{\circ}2$ de catálogo Power Chain (Fig.3.5)

Cuadro N°2

Potencia absorbida por el redler	G
<1	2,00
1 a 2	1,50
2 a 4	1,25
4 a 5	1,10
>5	1,00

Fig.3.5

$$E = \eta_{redutor} \times \eta_{Correas} = 0.98 \times 0.98 = 0.96 \quad (3.5)$$

Reemplazando los valores en la ecuación (3.4):

$$P_m = \frac{0.44CV \times 2}{0.96} = 0.916CV = 0.683KW$$

3.4. ESFUERZO DE LA CADENA

El esfuerzo al que está sujeta la cadena del redler, es calculado por la siguiente ecuación:

$$T = \frac{375 \times P}{V} \tag{3.6}$$

Dónde:

T: Esfuerzo de la cadena [Kg]

P: Potencia absorbida por el redler [CV]

V: Velocidad de la cadena [m/s]

Se calcula el esfuerzo al que está sometida la cadena y se contrasta con la carga de rotura que soporta:

$$T = \frac{375 \times 0.44CV}{0.4 \frac{m}{s}} = 412.5 Kg$$

La carga de rotura que soporta la cadena se muestra a continuación, de catálogo Power Chain, Fig.3.6:

	Cadenas serie G											
Cadena Poch N°	Paso (mm)	Carga rotura (Kg)	Peso x metro (Kg/mt)	Ancho interna W (mm)	Diametro huje B (mm)	Diámetro perno E (mm)	Altura placa H (mm)	Espesor placa T (mm)				
G-1000		6.000	4,50	25,4	17	11,1	38,1	4,76				
G-1100	101,6	10.000	7,00	31,7	19	12,7	38,1	6,35				
G-1200		13.000	8,10	31,7	20	14	44,4	6,35				
G-1300		6.000	4,60	25,4	17	11,1	38,1	4,76				
G-1400	100	10.000	7,20	31,7	19	12,7	38,1	6,35				
G-1500		13,000	8,30	31,7	20	14	44,4	6,35				
G-1600	152,4	6.000	3,75	25,4	17	11,1	38,1	4,76				
G-1650	150	6.000	3,75	25,4	17	11,1	38.1	4,76				

Fig.3.6

Como la tensión en la cadena es menor a la correspondiente carga de rotura de la misma, la cadena preseleccionada queda verificada.

3.5. REDUCCIÓN NECESARIA

Como se necesita una velocidad aproximada de la cadena de 0,4m/s, deben conocerse las revoluciones a proporcionar al eje para tal fin.

$$V = \omega \times r$$
 (3.7)

Siendo:

V:Velocidad de la cadena[m/s] ω:Velocidad angular del eje [rad/s] r:Radio de la corona del redler [m]

$$\omega = \frac{V}{r} = \frac{0.4 \frac{m}{s}}{0.10m} = 4 \frac{rad}{s} = 38.2 rpm$$

Como la capacidad máxima de transporte es de $5.02 \ tn/h$ para una velocidad de $v=0.4 \ m/s$, la velocidad de transporte no será significativa para alcanzar el caudal requerido de $1 \ tn/h$. Por este criterio se adopta una velocidad aproximada de 38,2rpm.

3.6. TRANSMISIÓN DE POTENCIA

La transmisión de potencia y las reducciones de velocidad se realizan mediante las siguientes etapas:

- 1. Motor eléctrico.
- 2. Reductor a engranajes.
- 3. Transmisión de correas.

3.6.1. Motor Eléctrico

Se adopta un motor de 1455rpm y 4 polos en base a la potencia absorbida por el redler y al rendimiento del sistema de transmisión propuesto, mencionando anteriormente en el apartado 3.3.

3.6.2. Reductor a Engranajes

Se adoptan los pasos de cálculo y tablas según fabricante de reductores Lentax.

3.6.2.1. Potencia Efectiva $\left(N_{ef}\right)$

La potencia efectiva en la entrada del reductor es igual a la salida del motor, es decir: $N_{ef}=N_{motor}=1,5HP$

3.6.2.2. Factor de Servicio (f)

La potencia equivalente (N_{eq}) para la cual debe estar preparado el reductor será igual a la potencia de entrada al reductor multiplicado por el factor de servicio (f) que considera las exigencias a la que va a estar expuesto.

El factor de servicio es el producto de tres factores, correspondientes a la máquina accionada, al tipo de motor de accionamiento y a la cantidad de arranques por hora:

Factor de Corrección en función de las Horas de Servicio (f_1), Fig.3.7: Calculado para 16hs de servicio para roscas transportadoras: $f_1 = 1,6$

MAQUINA ACCIONADA TIPO DE MAQUINA	fi hs.	FACT de Se ervice	OR	APPLICATIONS AND INDUSTRY DRIVEN MACHINE
	8	16	24	
TRANSPORTE Y ALMACENAJE				CONVEYORS
Montacargas	1,5	1.6	1,6	Hoists
Elevadores de personas	1.5	1.6	1,6	Passenger lifts
Elevadores inclinados	1,65	1,8	1,8	Inclined hoists
Elevadores de cangilones (rocas)	1,65	1,8	1,8	Bucket elevators (piece goods)
Elevadores de cangilones (granos)	1,5	1.6	1,6	Bucket elevators (bulk material)
Transportadores a cadena (rediers)	1,5	1.6	1,6	Chain conveyors
Transportadores de cangilones	1.5	1,6	1,6	Bucket conveyors
Transportadores circulares	1,5	1,6	1,6	Circular conveyors
Roscas transportadoras	1,15	1,4	1,5	Screw conveyors
Bandas transportadoras (granei)	1,15	1,4	1,5	Belt conveyors (bulk material)
Transportadores de banda (articulados)	1,3	1,5	1,7	Apron conveyors
Transportadores de cinta de acero	1,5	1,6	1,6	Steel belt conveyors
Bandas transportadoras (bultos grandes)	1,3	1,5	1,7	Belt conveyors (piece goods)
Transportadores de placas	1,5	1,6	1,6	Band pocket conveyors
Tornos de elevación	1,5	1,6	1,6	Ballast elevators

Fig.3.7

<u>Factor de Corrección en función del tipo de motor</u> (f_2) , tabla Nº2, Fig.3.8: Calculado para motor eléctrico: $f_2=1$

FACTORES DE SERVICIO SERVICE FACTORS

TABLE N° 2 TABLE N° 2 MOTOR DE MANDO DRIVE

Tipo de Motor	Factor (2 Correction factor (12)	Drive
Motores eléctricos	1	Electric motor
Turbinas Motores a pistón (4-6 cilindros)	1	Steam turbine Piston engine (4-6 cyl.)
(Grados de irregularidades; 1:100 a 1200) Motores a pistón (1-3 cilindros)	1,25	(Irregular grade ; 1:100 to 1200) Piston engine (1-3 cyl.)
(Grados de irregularidades hasta 1:100)	1,5	(Irregular grade ; up to 1:100)

Fig.3.8

Factor de Corrección en función de la Frecuencia de Maniobras (f₃), tabla Nº3, Fig.3.9: Calculado para un valor entre 2 y 20 maniobras por hora: $f_3=1,07$

TABLA N° 3
TABLE N° 3
FRECUENCIA DE MANIOBRAS
FREQUENCY OF OPERATION

	FACTOR DE MANIOBRAS 13 / OPERATING FACTOR 13 Factor de la maquina accionada (f1) / Service factor (f1) from table N° 1										
Arranques por hora											
Number of	>=	>=	>=	>=	>=	>=					
starts per hour	1,0	1,2	1,4	1,6	1,8	2,0					
<1	1,00	1,00	1,00	1,00	1,00	1,00					
2 20	1,20	1,10	1.08	1,07	1,07	1,06					
21 40	1,30	1,20	1,17	1,16	1,15	1,08					
41 80	1,50	1,40	1,25	1,23	1,18	1,10					
81 160	1,60	1,50	1,35	1,30	1,20	1,10					
161 <	2.00	1.80	1.70	1,60	1,30	1,10					

Fig.3.9

El factor de servicio real es:

$$f = f_1 \times f_2 \times f_3$$
 (3.8)
 $f = 1,6 \times 1 \times 1,07 = 1,712$
 $f = 1,712$

3.6.2.3. Potencia Equivalente $\left(N_{eq}\right)$

La potencia equivalente (N_{eq}) es:

$$\begin{split} N_{eq} &= f \times N_{ef.} \quad (3.9) \\ N_{eq} &= 1,712 \times 1,5HP \\ N_{eq} &= 2,568HP = 1,915KW = 2,567CV \end{split}$$

3.6.2.4. Relación de Transmisión Conseguida

Para una relación de transmisión (i_2) adoptada de 6,3 se tiene una velocidad a la salida del reductor de:

$$n_2 = \frac{n_1}{6.3} = \frac{1455 \ rpm}{6.3} = 230,95 rpm$$

3.6.2.5. Preselección del Modelo

El modelo preseleccionado es el SDP125 de simple reducción de ejes paralelos considerando una relación i = 6,3 y 1500rpm de entrada, Fig.3.10.

POTENCIAS MECANICAS (Kw) Y RELACIONES NOMINALES POWER RATING (kW) AND NOMINAL RATIO

Simple Reducción -Ejes Paralelos. Single Reduction -Helical Gear Units

Modelo Model	n1	Relaciones Nominales Nominal Ratio							-
	(r.p.m.)	1,2	1,5	2,5	3,15	4	4,5	5	6,3
	1800	188	167	137	104	72	60	55	33.4
	1500	163	144	118	90	62	52	47.8	28.9
SDP 125	1200	136	121	99	-75	52	43.5	39.4	24.3
	1000	119	106	87	66	45.6	38.0	33.8	21.2
	900	109	97	80	61	41.2	34.7	30.4	19.3
	750	95	84	70	53	34.6	29.8	25.3	16.4

Fig.3.10

El modelo preseleccionado debe verificar que: $N_{Nom} \ge N_{eq}$

Entonces:

 $28,9KW = 38,756HP \ge 2,568HP \implies queda verificado$

3.6.2.6. Factor de Temperatura (fw)

De tabla №4, Fig.3.11, considerando que el reductor va a estar el 80% del tiempo funcionando a una temperatura ambiente de 40° C y sin ventilación forzada: (fw) = 0.90

> TABLA Nº 4 TABLE N° 4
> CORRECCION POR TEMPERATURA TEMPERATURE CORRECTION

Tipo de	Temperatura					
Enfriamiento	ambiente		Towns	de operacion (%)	one hours \	
	Ambient			cy of operation (%		
Type of			Prostation and Property lies a		*	
cooling	Temperature	100%	80%	60%	40%	20%
	10°C	1,12	1,34	1,57	1,79	2,05
Sin enfriamiento	20°C	1,00	1,20	1,40	1,60	1,80
Without cooling	30°C	0,88	1,06	1,23	1,41	1,58
	40°C	0,75	0,90	1,05	1,20	1,35
	50°C	0,63	0,76	0,88	1,01	1,13
	10°C	1,15	1,38	1,61	1,84	2,07
Con ventilador	20°C	1,00	1,20	1,40	1,60	1,80
Cooling fan	30°C	0,90	1,08	1,26	1,44	1,62
	40°C	0,80	0,96	1,12	1,29	1,44
	50°C	0.70	0,84	0,98	1,12	1,26

Fig.3.11

3.6.2.7. Determinación de la Potencia Térmica

De Fig.3.12, con una velocidad de $1.4 \, m/s$, un tamaño 125 y para espacios cerrados normales:

 $N_t = 78 \text{KW} = 104,6 HP = 104,558 CV$

POTENCIAS TERMICAS (kW) THERMAL RATING (kW)

- a) Simple reduccion a) Single reduction

Tipo de Retrigeracion Type of cooling	Velocidad del aire Air velocity	aire Tamaño								
Ventilación natural Natural cooling		100	125	140	160	180	200			
Espacios cerrados muy reducidos Reduced ciearances	>=0,5 m/seg	31	56	72	107	138	171			
normales Normal clearances	>=1,4 m/seg	42	78	102	151	195	239			
A la intemperie In the open	>=3,7 m/seg	55	104	129	202	261	322			
Tipo de Refrigeración Type of cooling Ventilación forzada	Velocidad de entrada input speed	Tamaño Unit size								
Forced cooling		100	125	140	160	180	200			
	1800	67	127	153	239	316	396			
	1500	62	103	143	221	294	368			
Con ventilador	1200	57	109	134	212	276	340			
Cooling tan	1000	54	103	125	193	257	322			
	900	51	97	119	186	249	311			
	750	47	88	110	175	235	294			

Fig.3.12

El modelo preseleccionado debe verificar que: $N_t \times f_w \ge N_{ef}$ Entonces:

 $104,6HP\,\times\,0,90\geq1,5HP$

 $94,14HP \ge 1,5HP \implies queda\ verificado$

3.6.2.8. Verificación de Cargas Radiales

La carga radial provocada a la salida del reductor viene dada por la siguiente ecuación:

$$P_r = \frac{M.k.f}{D_p/2}$$
 (3.10)

Donde:

M: Momento Torsor [kgm]

 D_{p} : Diámetro Primitivo del elemento de reducción = 112mm (ver punto 3.6.3.5)

k: Cte. según el tipo de reducción = 1,8 correas en V

f: Factor de corrección para el caso de carga aplicada fuera del centro del extremo de eje standard [-]

El valor del momento torsor en el eje de salida es:

$$M_t = 71620 \times \frac{N_{entrada\ reductor}[CV]}{n_{salida\ reductor}[rpm]} \qquad (3.11)$$

La potencia de entrada considerando el rendimiento del reductor a engranajes (0,98) es:

$$N_{entrada\ reductor} = 1,5HP \times 0,98 = 1,47HP = 1,469CV$$

La velocidad del reductor a su salida es:

$$n_2 = \frac{n_1}{i_1} = \frac{1455rpm}{6.3} = 230.95rpm$$

Por lo tanto, reemplazando valores en (3.11):

$$M_t = 71620 \times \frac{1,469CV}{230,95rpm}$$

$$M_t = 455,56 Kg. cm$$

El factor f viene dado por la siguiente expresión:

$$f = 1 + \frac{e}{L}$$

Siendo:

e: Distancia del punto de aplicación al centro del eje. L: ver fig 3.13

Como el acoplamiento se realiza por poleas, las mismas van a estar en el centro del eje, por lo tanto, el coeficiente f=1.

Como se hace coincidir el centro de la fuerza del piñón en el centro del eje del reductor, reemplazando en (3.10) se cumple que:

$$Pr = \frac{455,55Kg.cm \times 1,8 \times 1}{\frac{11,2cm}{2}}$$

$$Pr = 146,42Kg$$

Se verifica por tabla, Fig.3.13 que las cargas radiales que actúan sobre el eje a la salida del reductor son inferiores a la máxima permitida para la cual está diseñado el mismo.

CARGAS RADIALES Y AXIALES ADMISIBLES EN EL EJE DE SALIDA " OUTPUT SHAFT OVERHUNG LOAD RATING"

TAM	AÑO *	VELOCIDAD EN EL EJE DE SALIDA (r.p.m.) / OUTPUT SPEED (r.p.m.)										
UNIT SIZE *		< 5	520	2140	4160	6180	81120	121150	151250	251500	500<	
	Carga radial (kg)	3139	2093	1575	1350	1238	1058	833	765	689	620	
100	Radial load (lb)	7216	4810	3621	3103	2845	2431	1914	1759	1583	1424	
	Carga axial (kg)	1256	837	630	540	495	423	333	306	275	248	
	Thrust (lb)	2886	1924	1448	1241	1138	972	766	703	633	570	

Fig.3.13

Carga radial Máx. \geq Carga transmisión acoplamiento 765 $Kg \geq$ 146,42 $Kg \implies$ queda verificado

3.6.3. Transmisión por Correas

El cálculo y diseño de la transmisión por correas se realiza en base al catálogo de correas Dunlop.

3.6.3.1. Potencia de Entrada (P_e)

La potencia de entrada en el piñón es igual a la potencia de salida del reductor, es decir: $P_e = P_{Salida\ del\ redutor} = 1,47HP$

3.6.3.2. Factor de Servicio (f_s)

De la tabla Nº3 del catálogo, Fig.3.14 considerando el sistema como una cinta transportadora y motores de corriente alterna con más de 16hs de trabajo diarios: $F_S = 1,3$

FACULTAD REGIONAL CONCEPCION DEL URUGUAY
UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA

abla Nº 3 - Coeficiente de corrección	de la patencia								
Tipo de mâquina conductora Tipo de mâquina conducida	ardilla, sincrònico continua, bobinad	ale alterna, forque e s, fase partida. Mol o en shuril. Maquin ma, cilindros multip	lores de comente sas de combustión	Motores de contente alternada, alto torque, alto destizamiento, bobinado en serie y amilado colect Motores de comiente continua, bobinado en serie y bobinado compound. Máquina a combustión inten monocilindrica. Ejes en línea. Arranque directo y con embraque					
	Servicio intermedio hasta 7 horas diarias	Servicio normal 8 a 15 horas dianas	Servicio continuo mas de 16 horas dianas	Servicio intermedio hasta 7 horas diamas	Servicio normal 8 a 15 horas diarias	Servicio continu mas de 16 hora diarias			
intas transportadoras para rena, granos, etc. Mezciadores e panaderia. Sopiadores de ná de 10 HP, generadores. Inea a ejes (ejes principales), náquinas de lavaderos, náquinas herramienta, unzadoras, prensa, uillotinas, bombas rotativas ositivas. Máquinas de imprenta, arandas vibradoras y giralorias.	1,1	1.2	1.3	1.2	1.3	1.4			

Fig.3.14

3.6.3.3. Potencia de Diseño

La potencia de diseño está dada por el producto de la potencia a la salida del reductor afectada por el factor de servicio.

 $P_{Salida\ del\ redutor} = 1,47HP$

La potencia de diseño es: $P_d = P \times F_s = 1,47HP \times 1,3 = 1,911HP$

3.6.3.4. Sección de la Correa

Del gráfico N°1 del catálogo, Fig.3.15, en función de la potencia a transmitir y las revoluciones de la polea menor (230,95rpm) se obtiene la sección de la correa:

GRAFICO Nº 1 PARA LA ELECCION DE LA SECCION DE LA CORREA

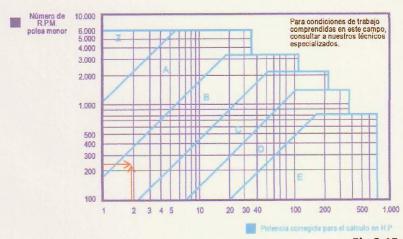


Fig.3.15

La sección que se debe adoptar es: Sección Correa Tipo B

3.6.3.5. Diámetros Primitivos de las Poleas

La velocidad deseada en el eje del redler se obtiene mediante una relación de transmisión equivalente al cociente de velocidades de la salida del reductor y la velocidad deseada en el eje del redler; para tal fin, se debe contar con poleas que permitan dicha relación o que sea muy próxima, la relación es:

$$i_2 = \frac{n_2}{n_3} = \frac{230,95rpm}{38,2rpm} = 6,04$$

De Tabla N°1, Fig.3.15, se obtienen los diámetros de las poleas aconsejadas:

Tabla Nº 1						Tabla N° 1									
						Ørum									
50			00000		Table State	315		8.0		0.0					
53						355					88				
53 56						375									
60	-					400		0.0	6.8	0.6	6.6				
63	0.0					425									
67						450				-	9.9				
67 71						475									
75						500			0.0						
80						530									
90						560					. 0	0.0			
95						600									
100	4.0	8.0				630		0.0	0.0		0.0				
106						670									
112		0.0				710		- 6							
118						750				. 00					
125		0.0				800					0.0				
132						900									
140						1000			9.0	0.0					
150		100				1060									
160	9.8					1120									
170						1250				94	0.0				
180	100		0.0			1400									
200	0.0		-			1500									
212						1600				0.0					
224	D					1800									
236						1900									
250						2000					00	0.0			
265						2240									
280						2500						0.0			
300		DAGE. IT		-		3000									

Fig.3.15

En primer lugar se adopta: $d_{p1} = 112mm$

El diámetro que debe tener la corona se obtiene mediante el producto del diámetro preseleccionado y la relación de transmisión obtenida anteriormente:

$$d_{p2} = d_{p1} \times i_2 = 112mm \times 6,04 = 676,48mm$$

Se adopta una polea de $d_{p2}=630mm$ que es la más próxima al valor hallado.

Se recalcula la relación de transmisión real (i_2) y la velocidad que se le proporciona al eje del redler, en función de los diámetros adoptados:

$$i_{2'} = \frac{d_{p2}}{d_{p1}} = \frac{630mm}{112mm} = 5,625$$

La velocidad final con estas poleas es:

$$v = \frac{1455rpm}{6.3 \times 5,625} = 41rpm$$

%Error = 6,82%

3.6.3.6. Distancia entre Ejes de Poleas

La distancia mínima entre ejes es:

$$C \ge \frac{d+D}{2} \qquad (3.12)$$

Donde:

C: Centro entre ejes de las poleas[mm]

d: Diámetro de la polea menor[mm]

D: Diámetro de la polea mayor[mm]

Reemplazando valores en (3.12):

$$C \ge \frac{112mm + 630mm}{2} = 371mm$$

Se considera un margen para tensar y se adopta una distancia de 420mm.

3.6.3.7. Longitud de la Correa

De tabla N°6, Fig.3.16, se elige la longitud primitiva nominal de la correa más próxima al valor calculado:

$$L = 2C + 1,57 \times (D+d) + \frac{(D-d)^2}{4C}$$
 (3.13)

Reemplazando valores en (3.13):

$$L = 2 \times 420mm + 1,57 \times (630mm + 112mm) + \frac{(630mm - 112mm)^2}{4 \times 420mm}$$

$$L = 2164,65mm = 85,22$$
"

Del catálogo: correa Nº84 de 2177mm.

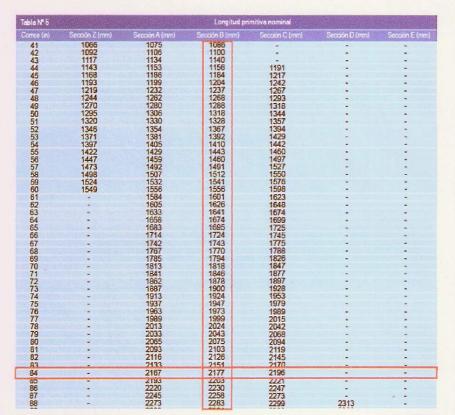


Fig.3.16

3.6.3.8. Determinación del Arco de Contacto

3.6.3.9. Factor de Arco (f_r)

Se obtiene el factor de arco de contacto de tabla N°5, Fig.3.17, para un arco de contacto de 109,8° y poleas acanaladas.

Interpolando: $f_r = 0.78$

Table Nº 5	Factor de corrección								
Arca de contucto sales poles menor	Polese aconolesias	Polinas acemaio dalptona							
180*	1.00	0.75							
175*	D.99	0.76							
170°	0.98	0.77							
107*	0.97	0.78							
164*	0.96	0.79							
160°	0.95	0.80							
157*	0.94	0.81							
154*	0.93	0.81							
150*	0.92	0.82							
147*	0.01	0.83							
144*	0.90	D.83							
140*	0.89	0.84							
137*	0.68	0.65							
134*	0.87	0.65							
130*	0.80	0.86							
127*	0.85	0.85							
124*	0.84	0.84							
120*	0.82	0.82							
118*	0.81	0.81							
115*	0.80	D.80							
113*	0.79	0.79							
110*	0.78	0.78							
108*	0.77	0.77							
100*	0.77	0.77							
104*	0.76	D.78							

Fig.3.17

3.6.3.10. Factor de Largo (f_l)

Se extrae de tabla N°4, Fig.3.18, con largo nominal de 84" y una sección de correa tipo B. $(f_l)=0.99$

Table Nº 4			Sección d	e la corree		
Longitud correa						
16	0.80			-	-	
24	0.83		- 31	- 1	Ministra	
26	0.84	0.81	- 1		* * * * * * * * * * * * * * * * * * * *	2
31	0.89	0.84	-			
35	0.92	0.87	0.81		A CONTRACTOR	e Tar
38	0.93	0.88	0.83			
42	0.95	0.90	0.85	1000		
46	0.97	0.92	0.87			
51	0.99	0.94	0.89	0.80	THE PERSON	7. Tile
55	1.00	0.96	0.90	0.81		
60	Berry - In the	0.98	0.92	0.82		
68	REGISTANCE.	1.00	0.95	0.85		
75		1.02	0.97	0.87		
80		1.04	0.98	0.89	-	
81		1.04	0.98	0.89	-	
85		1.05	0.99	0.90		-
90		1.06	1.00	0.91		
96		1.08	1.02	0.92	The section	-
97	Vanish Table	1.08	1.02	0.92		*
105	ALCO SARRIES	1.10	1.04	0.94		200
112		1.11	1.05	0.95		
120	The same of	1,13	1.07	0.97	0.86	

Fig.3.18

3.6.3.11. Número de Correas Necesarias

Conociendo el diámetro primitivo del piñón $(d_{p1}=112mm)$ y el número de revoluciones del mismo (230,95rpm), se obtiene interpolando de Tabla Nº 2-Sección B, Fig.3.19, las prestaciones por correa (HP).

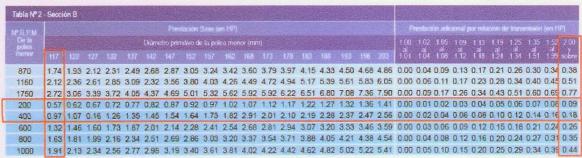


Fig.3.19

Hp por Correa = 0,632HP

El HP adicional para la relación de velocidad se determina según la relación de transmisión ($i_{2'} = 5,98$) y el Nº de revoluciones del piñón (230,95rpm).

HP adicional para la relación de velocidad = 0,104

HP total por correa = HP por correa + HP adicional para la relación de velocidad HP total por correa = 0.632 + 0.104 = 0.734HP

$$N^{\underline{o}} \; de \; correas = \frac{Potencia \; Diseño}{HP \; total \; por \; Correa \times F_r \times F_l}$$

$$N^{\underline{0}} \ de \ correas = \frac{1,911 HP}{0,734 HP \times 0,78 \times 0,99}$$

 N° de correas = 3,37

Se necesitan poleas de 4 canales.

3.6.4. Acoplamiento Motor-Reductor

Para el acoplamiento entre el motor y el reductor se utiliza un acoplamiento elástico.

Estos acoplamientos con banda de goma bipartida, consisten en una banda elástica que transmite el movimiento entre las masas a las cuales se encuentra vinculada a través de una brida exterior mediante bulones de aceros. Dicha banda posee el talón prolongado para asegurar su fijación y anular efectos indeseables por acción de la fuerza centrífuga.

- Absorbe desalineamientos.
- Amortiguación de vibraciones y choques.
- Simple instalación.
- Simetría-Seguridad-Balanceo.
- Diversos modelos.
- Sin lubricación.
- Economía.
- Calidad Asegurada.

3.6.4.1. Potencia de Entrada

Es la potencia a la cual se encuentra sometido el acoplamiento, en este caso, es igual a la potencia de salida del motor: P_E : Potencia de entrada = 1,5HP

3.6.4.2. Factor de Servicio

El factor de servicio es un factor de seguridad que depende de la aplicación del equipo, y que se determina de la Fig.3.20, para una aplicación correspondiente a aserraderos:

DRAGAS		ASERRADEROS	PETROLEO		
Bombas, enrollador		Transportadores.	1.50	Filtros de parafina.	1.25
de cable, quinche de		Sierras.	1.75	Equipos de bombeo.	2.00
maniobra, zaranda.	1.75	Descargadores de tambor.	2.00		
Cortador.	2.00	Rolos de transporte.	2.00		
		Mesa de transferencia:		SIDERURGICA	
INDUSTRIAS ALIMENTICIAS		Sin reserva.	2.00	Bobinadora	
Y DE BEBIDAS		Con reserva	2.50	y desbobinadora.	1.50
Énvasadores y				Formadora de espiras. Trefiladora.	1.75
embotelladoras.	1.00	CERÁMICA		Mesa de cilindros	2.00
Mezclador de masa, moledor		Extrusora.	1.50	S/ reversión.	
de carne, cortadores.	1.75	Molnos.	2.00	C/ reversion.	2.00
		Prensa.	2.25	Almentadora.	2.50
INDUSTRIA DEL CAUCHO				- Territorian Crain	3.00
Calandras.	2.00	CELULOSA Y PAPEL			
Molinos.	2.25	Bombas servicios.	1.00	INDUSTRIA DEL AZUCAR	
Mezcladores (Banbury).	2.50	Bobinadora y desbobinadora.	1.50	Mesa inclinada.	1.75
Conformadora de		Cilindros.	1.75	Molienda.	2.00
neumáticos	2.50	Tela.	1.75		
		Desfibradores.	1.75		
INDUSTRIA TEXTIL		Calandras.	2.00	MINERACION Y PUERTO	
Bobinadora.	1.50	Cortadores.	2.00	Desplazamiento máquina.	2.00
Cardas.	1.50	Refinadores.	2.00	Elevación de lanza.	2.50
Lavadora de ropa.	2.00	Prensas.	2.00	Giro de lanza.	2.50
Calandra.	2.00	Lavadores.	2.00	Rueda de descarga.	2.00
		Desecadores.	2.25		
		Picadores.	3.00		

Fig.3.20

3.6.4.3. Potencia de Cálculo

Para hallar el modelo correcto se afecta la potencia de entrada del acoplamiento por el factor de servicio: $P_C = P_E \times f_S$

Dónde:

 P_C : Potencia de Cálculo. P_E : Potencia de Entrada. f_s : Factor de Servicio.

$$P_C = P_E \times f_s = 1,5HP \times 1,5 = 2,25HP$$

3.6.4.4. Verificación del Acoplamiento

El acoplamiento debe verificar:

- 1) Torque nominal generado en el eje.
- 2) Potencia de Entrada.

3.6.4.4.1. Verificación por Torque

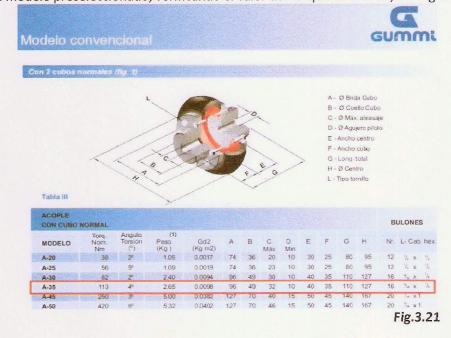
La magnitud del torque generado en el eje está dada por:

$$t_n[HP] = \frac{706,17 \times HP \times f_s}{R.P.M.}$$
 (3.16)

Dónde:

HP: Potencia de entrada.

 f_s : Factor de servicio.


R.P.M.: revoluciones del eje.

Reemplazando en (3.16):

$$t_n = \frac{706,\!17\,\times 1,\!5HP\,\times 1,\!5}{1455rpm} = 109,\!2N.\,m$$

$$t_n = 109,2N.m$$

Por lo tanto el modelo preseleccionado, verificando el valor del torque es el A-35, ver Fig.3.21:

El acoplamiento debe soportar una potencia de cálculo de 2,25HP y 1455rpm, en este caso, se verifica el acoplamiento preseleccionado, ver Fig.3.22.

MODELO	A	A	Α	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
RPM	20	25	30	35	45	50	60	70	80	90	95	105	120	140	155	165	170	200	240	300	350	400
100	0.5	0.8	1.1	1.5	2.9	6.0	8.9	16.3	22.5	30.0	33.8	43.8	70.0	120.0	136	170	207.5	356.3	610.0	1220.0	1581.3	2390.0
200	1.0	1.6	2.3	3.1	5.6	12.0	17.5	33.8	43.8	60.0	67.5	88.8	140.0	241.3	272	340	413.8	713.8	1220.0	2438.8	3363.8	4778.8
300	1.6	2.4	3.5	4.8	8.5	175	26.3	50.0	66.3	90.0	101.3	132.5	210.0	361.3	408	511	621.3	1070.0	1830.0	3658.8	5045.0	7168.8
400	2.1	3.1	4.6	5.4	11.3	23.6	35.0	66.3	87.5	120.0	135.0	177.5	280.0	481.3	545	682	828.8	1426.3	2438.8	4878.8	6726.3	9558.8
500	2.6	4.0	5.8	8.0	13.8	30.0	43.8	83.8	110.0	150.0	168.8	221.3	350.0	601.3	680	852	1035.0	1783.8	3048.8	6097.5	8407.5	11948.8
600	3.1	4.8	6.9	9.5	17.5	36.3	52.5	100.0	131.3	180.0	201.3	265.0	420.0	722.5	817	1022	1242.5	2140.0	3656.8	7317.5	10090.0	14337.5
700	38	5.6	8.0	11.1	20.0	425	62.5	116.3	153.8	211,3	235.0	310.0	490.0	842.5	953	1192	1450.0	2496.3	4268.8	8537.5	11771.3	16727.5
720	3.9	5.8	8.3	11.5	20.0	43.8	63.8	120.0	157.5	216.3	242.5	318.8	503.8	866.3	980	1226	1491.3	2567.5	4390.0	8781.3	12107.5	17205 6
800	43	6.4	9.3	125	22.5	48.8	71.3	1325	175.0	241.3	268.8	353.8	558.8	962.5	1090	1363	1656.3	2853.8	4878.8	9756.3	13452.5	19117.5
850	4.5	6.8	9,8	13.8	23.8	51.3	75.0	141.3	186,3	256.3	286.3	376.3	593.8	1022.5	1158	1448	1760.0	3031.3	5183.8	10386.3	14293.8	20312.5
900	4.8	7.1	10.4	13.8	25.0	53.8	80.0	150.0	197.5	271.3	302.5	398.8	628.8	1083.8	1225	1533	1863.8	3210.0	5488.8	10976.3	15135.0	21506.3
1000	5.3	8.0	11.5	16.3	28.8	60.0	88.8	166.3	220.0	301.3	336.3	442.5	5.899	1203.8	1361	1703	2071.3	3566.3	6097.5			
1100	5.9	6.8	12.5	17.5	31.3	66.3	97.5	1825	241.3	331.3	370.0	486.3	768.8	1323.8	1497	1874	2278.6	3923.8	6707.5			
1150	6.1	9.1	13.8	18.8	32.5	68.8	101.3	1913	252.5	346.3	386.3	508.8	803.8	1383.8	1565	1959	2381.3	4101.3				
1200	6.4	9,5	13.8	18.8	33.8	725	106.3	200.0	263.8	361.3	403.8	531.3	838.8	1445.0	1633	2044	2485.0	4280.0				
1300	6.9	10.4	15.0	213	36.3	78.8	115.0	216.3	285.0	391.3	437.5	575.0	908.8	1565.0	1770	2214	2692.5	4636.3				
tann	74	111	16.3	225	an n	REA	123.8	2325	307.5	421.3	471.3	620.0	978 B	1685 n	-1906	23.65	2900.0	4993.8				
1500	8.0	12.0	17.5	23.8	42.5	90.0	132.5	250.0	328,8	451.3	505.0	663.8	1048.8	1805.0	2045	2555						
1600	8.5	12.5	18.8	25.0	45.0	96.3	141.3	266.3	351.3	481.3	537.5	707.5	1118.8	1926.3								

Fig.3.22

Por lo tanto, el modelo preseleccionado de acoplamiento verifica bajo los dos criterios mencionados.

3.6.5. Verificaciones del Eje

El dimensionamiento del eje del redler se realiza por medio del "método del eje reducido". El método permite dimensionar el eje según el tipo de solicitaciones y la intensidad de las mismas.

3.6.5.1. Solicitaciones

La potencia transmitida por el eje, es la potencia del motor de accionamiento afectada por los rendimientos de los diferentes elementos de transmisión que hay hasta este punto:

$$N_{eje} = N_{motor} \times \eta_{Reductor} \times \eta_{correas}$$

 $N_{eje} = 1.5HP \times 0.98 \times 0.98 = 1.499CV \times 0.98 \times 0.98$
 $N_{eje} = 1.4396CV$

Donde:

 N_{eje} : potencia transmitida por el eje [CV] $\eta_{Reductor}$: rendimiento del reductor [-] $\eta_{correas}$: rendimiento de la transmisión por correas [-]

El momento torsor en este punto se calcula en función de la potencia transmitida y la velocidad angular de giro del eje:

$$M_t[Kg.cm] = 71620 \times \frac{N_{eje}[CV]}{n_{Redler}[rpm]}$$
 (3.17)

$$M_t = 71620 \, \times \, \frac{1,4396CV}{41 \, rpm} = 2.514,73 Kg. \, cm$$

Diagrama de Cuerpo Libre del Eje

En el diagrama de cuerpo libre(Fig.3.23) del eje estarán presentes la fuerza originada por la corona del redler (F), la fuerza de transmisión de las correas (P) y la de reacción de los apoyos en los puntos A y B (Ra Y Rb respectivamente).

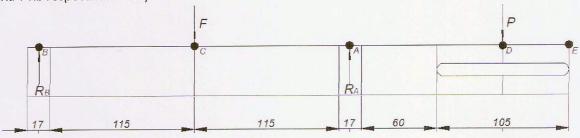


Fig.3.23

A continuación se determinan las magnitudes de las distintas fuerzas.

Se debe tener en cuenta que la fuerza debe estar afectada por el ángulo debido a la diferencia de diámetros entre piñón y corona de la transmisión a correas (ver Fig.3.24).

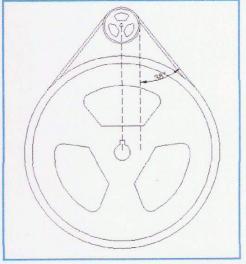


Fig.3.24

$$P' = \frac{M_t}{\frac{\emptyset_{Polea\ Corona}}{2}}$$

$$P' = \frac{2.514,73Kg.cm}{\frac{63cm}{2}} = 79,83Kg$$

La fuerza P debido a la transmisión de las correas será igual a la fuerza debida al momento torsor del eje (P') afectado por el ángulo de tracción de la correa con respecto a la horizontal.

$$P = P' \times \cos\alpha$$

$$P = 79,83Kg \times \cos 38^{\circ} = 62,9Kg$$

La fuerza F debido a la cadena del redler es:

$$F = \frac{M_t}{\frac{\emptyset_{Corona\ Redler}}{2}}$$

$$F = \frac{2.514,73Kg.\,cm}{\frac{20cm}{2}} = 251,473Kg$$

Para el cálculo del eje se obtienen las reacciones de apoyo y las verificaciones por diferentes tipos de cargas.

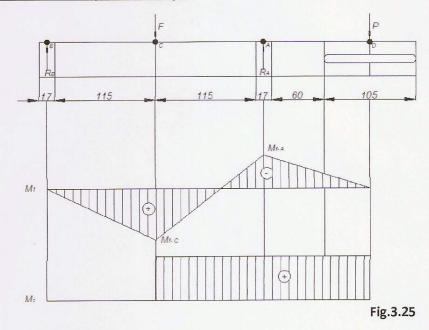
Reacciones en los Apoyos

• Realizando la sumatoria de momentos en el punto B, puede hallarse la reacción en el punto A:

$$\begin{array}{l} \sum M_B = 0 \\ R_A \times 24,7cm - F \times 12,35cm - P \times 36,8cm = 0 \\ R_A \times 24,7cm - 251,473Kg \times 12,35cm - 62,9Kg \times 36,8cm = 0 \\ R_A = 219,45Kg \end{array}$$

• Realizando la sumatoria de fuerzas en el eje vertical, se puede hallar la reacción en el punto B:

$$\sum_{R_A + R_B - F - P = 0} F_{A} = 0$$


$$219,45Kg + R_B - 251,473Kg - 62,9Kg = 0$$

$$R_B = 94,923Kg$$

FACULTAD REGIONAL CONCEPCION DEL URUGUAY
UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA

Diagrama de Momento Flector y Torsor del Eje

Los valores de los momentos en los puntos donde actúan las solicitaciones son, según Fig.3.25:

$$\begin{split} M_{f-A} &= -P \times 12,1cm = -62,9Kg \times 12,1cm \\ M_{f-A} &= -761,09Kg.cm \end{split}$$

$$M_{f-C} = -P \times 24,\!45cm + R_A \times 12,\!35cm = -62,\!9Kg.cm \times 24,\!45cm + 219,\!45Kg \times 12,\!35cm$$
 $M_{f-C} = +1.172,\!3Kg$

El momento flector en el punto B, será nulo en el centro del mismo pero habrá momento flector en el lateral del mismo:

$$\begin{aligned} M_{Lateral\,B} &= R_B \times \frac{Ancho\,del\,Rodamiento}{2} = 94,923Kg \times \frac{1,7cm}{2} \\ M_{Lateral\,B} &= +80,68Kg.\,cm \end{aligned}$$

El momento torsor será constante desde el punto D hasta el punto C y es igual a:

$$M_t = 2.514,30 Kg. cm$$

3.6.5.2. Diámetro Necesario

Se dimensiona el eje para el caso más desfavorable, que es el punto C, donde actúa la corona del redler: Se construye el eje con acero SAE 1045 laminado en caliente.

$$M_R = \sqrt{\left(M_f\right)^2 + (\alpha \times M_t)^2}$$
 (3.18)

Y el diámetro del eje se calculará por:

$$d \ge \sqrt[3]{\frac{M_R}{0.1 \times \sigma_{III}}} \tag{3.19}$$

Sabiendo que:

 σ_i : Ciclo Constante = 3,8

 σ_{II} : Ciclo Pulsante = 1,7

 σ_{III} : Ciclo Simétrico = 1

α: Coeficiente que depende del régimen de carga.

Se considera la flexión realizando un ciclo simétrico, y como la torsión sigue un ciclo pulsante se lleva a un ciclo simétrico con el valor de α . Este coeficiente se determina con:

$$\alpha = \frac{\sigma_{III}}{\sigma_{II}} = \frac{1}{1.7}$$

Se analiza el diámetro necesario en el punto C, para esto se reemplazan los valores de las solicitaciones en este punto en (3.18):

$$\begin{split} M_R &= \sqrt{\left(M_{f-C}\right)^2 + (\alpha \times M_{t-C})^2} = \sqrt{(1.172,3 \ Kg. \ cm)^2 + \left(\frac{1}{1,7} \times 2.514,73 \ Kg. \ cm\right)^2} \\ M_R &= +1.887,45 \ Kg. \ cm \end{split}$$

De tabla de aceros SAE se obtienen las siguientes características del acero elegido (SAE 1045 LC).

$$\sigma_{Rot} = 65 \; \frac{Kg}{mm^2} \; y \; \sigma_f = 39 \; \frac{Kg}{mm^2}$$

$$\sigma_{III} = \frac{\sigma_{Rot}/3}{3.8} = \frac{65 \frac{Kg}{mm^2}}{3 \times 3.8} = 5.7 \frac{Kg}{mm^2} = 570 \frac{Kg}{cm^2}$$

Reemplazando σ_{III} y M_R en la ecuación (3.19) se obtiene el diámetro mínimo de la sección:

$$d \ge \sqrt[3]{\frac{1.887,45 \, Kg. \, cm}{0.1 \times 570 \, \frac{Kg}{cm^2}}} = 3,21 cm = 32,1 mm$$

Por lo tanto, se construye el eje con un diámetro de 35mm, puesto que es una medida que posteriormente servirá para la selección del rodamiento.

3.6.6. Rodamientos

Del diagrama de cuerpo libre del eje (Fig.3.23), se obtienen las solicitaciones a las cuales son sometidos los apoyos donde se encuentran ubicados los rodamientos, siendo los mismos:

 $R_A = 219,45Kg$

 $\emptyset_A = 35mm$

 $R_B = 94,923Kg$

 $\emptyset_A = 35mm$

3.6.6.1. Rodamiento en el Punto A

Teniendo en cuenta el diámetro del eje (35mm), se selecciona un rodamiento rígido de bolas, con diámetro exterior de 55mm y una carga equivalente de 9560N, y se calcula la vida útil del mismo en base a la carga equivalente calculada en el punto 3.6.5.1 (reacciones en los apoyos).

La relación entre la capacidad básica de carga, la carga aplicada y la duración de un rodamiento es:

$$L_{10} = \left(\frac{C}{P}\right)^p \tag{3.20}$$

Dónde:

 L_{10} : Duración Nominal [Millones de Revoluciones]

C: Capacidad de Carga Dinámica [N]

P: Carga Equivalente [N]

p: rodamiento de bolas = 3

Para este caso, reemplazando valores en (3.20):

$$L_{10} = \left(\frac{C}{P}\right)^p = \left[\frac{9560N}{219,45Kg \times \left(\frac{9,81N}{1Kg}\right)}\right]^3 = 87,6 \text{ Millones de Revoluciones}$$

Para rodamientos que funcionan a velocidad constante, es conveniente expresar la duración nominal en horas de servicio usando para ello la ecuación:

$$L_{10h} = \frac{1 \times 10^6}{60 \times n} \times \left(\frac{C}{P}\right)^p = \frac{1 \times 10^6}{60 \times n} \times L_{10}$$
 (3.21)

Dónde:

 L_{10h} : Duración Nominal en Horas de Servicio [h]n: Velocidad de giro [rpm]

Reemplazando en (3.21):

$$L_{10h} = \frac{1\,\times\,10^6}{60\,\times\,41}\,\times\,87, \\ 6\,\textit{Millones de Revoluciones} = 356010\,\textit{horas} \cong 4\,\textit{a\~nos}$$

3.6.6.2. Rodamiento en el Punto B

Para el rodamiento en el punto B se selecciona el mismo rodamiento que el punto A, pero debido a que las solicitaciones en este punto son menores, la duración del rodamiento en el punto B será mayor. Reemplazando en (3.20):

$$L_{10} = \left(\frac{C}{P}\right)^p = \left[\frac{9560N}{94,923Kg \times \left(\frac{9,81N}{1Kg}\right)}\right]^3 = 1082 \; \textit{Millones de Revoluciones}$$

Y en horas de servicio será, reemplazando en (3.21):

$$L_{10h} = \frac{1 \times 10^6}{60 \times 41} \times 1082$$
 Millones de Revoluciones = 439863 horas $\cong 50$ años

3.6.7. Chavetas

Para las chavetas se utiliza acero SAE 1010 LC y el valor correspondiente de tensión de fluencia es $\sigma_f=25~Kg/mm^2$ y tensión de rotura $\sigma_{Rot}=39~Kg/mm^2$

Para el cálculo de las chavetas se utiliza la tabla de la Fig.3.26, en la cual se detalla la sección que debe poseer la chaveta en función del diámetro del eje en el que se desea instalar.

		Mei	didas del chav	etero en	el cubo	Medidas del chavetero		Medidas de los	
Ø Eje d (mm) desde- hasta b x h mm		Chaveta paralela S/DIN 6885/1		Chaveta de cuña S/DIN 6886 y 6887		en el eje para chavetas paralelas y de cuña			
	d + t ₂ m/m	Tol. Admisible (en altura) m/m	d + t ₂ m/m	Tol. admisible (en altura) m/m	t ₁ m/m	Tol. admisible (en altura) m/m	Ø m/m desde- hasta	Tol. H-7 m/m	
17-22	6x6	d+2,6		d+2,1		3,5		40.40	+0.018
22-30	8x7	d+3,0	+0,1	d+2,4	+0,1	4,1		10-18	0
30-38	10x8	d+3,4		d+2,8		4,7		20.50	+0.025
38-44	12x8	d+3,2		d+2,6		4,9		30-50	0
44-50	14x9	d+3,6		d+2,9		5,5		50.00	+0,030
50-58	16×10	d+3,9		d+3,2		6,2	+0,2	50-80	0
58-65	18x11	d+4,3		d+3,5		6,8		80-120	+0.035
65-75	20x12	d+4,7		d+3,9		7,4		00-120	0
75-85	22×14	d+5,6		d+4,8		8,5		120-180	+0,040
85-95	25×14	d+5,4	+0,2	d+4,6	+0,2	8,7		120-180	. 0

Fig.3.26

Las chavetas deben cumplir dos verificaciones: por corte y aplastamiento. Luego se adopta la mayor longitud para la chaveta según las verificaciones antes mencionadas.

3.6.7.1. Chaveta de la Corona del Redler

Para un eje de 35mm se adopta una chaveta de 10x8 mm (Fig.3.26).

3.6.7.1.1. Verificación por Corte

Según "Manual de Resistencia de Materiales" (PISARENKO y otros, 1979).

$$\tau_{Adm\;Corte} = \frac{\sigma_{Adm}}{2} = \frac{0.6 \, \times \, \sigma_f}{2}$$

$$\tau_{Adm\ Corte} = \frac{0.6 \times 25\ Kg/mm^2}{2} = 750\ Kg/cm^2$$

Por lo tanto la longitud mínima necesaria que debe tener la chaveta, para soportar los esfuerzos de corte

$$L_{Corte} = \frac{2 \, \times \, M_t}{b \, \times \, \emptyset_{Eje} \, \times \, \tau_{Adm \, Corte}}$$

$$L_{Corte} = \frac{2 \times 2.514,73 \, Kg. \, cm}{1 \, cm \times 3,5 cm \times 750 \, \frac{Kg}{cm^2}} = 1,91 cm$$

3.6.7.1.2. Verificación por Aplastamiento

Según "Manual de Resistencia de Materiales" (PISARENKO y otros, 1979).

$$\begin{split} &\sigma_{Adm\ Comp} = \frac{\sigma_{Rot}}{3} \\ &\sigma_{Adm\ Aplast} = 2.2 \times \sigma_{Adm\ Comp} = 2.2 \times \frac{\sigma_{Rot}}{3} \\ &\sigma_{Adm\ Aplast} = 2.2 \times \frac{39\ Kg/mm^2}{3} = 28.60 \frac{Kg}{mm^2} = 2.860 \frac{Kg}{cm^2} \end{split}$$

La longitud mínima necesaria que debe tener la chaveta para soportar los esfuerzos de aplastamiento es: $L_{Aplast} = \frac{4 \times M_t}{h \times \emptyset_{Eje} \times \sigma_{Adm\,Aplast}}$

$$L_{Aplast} = \frac{4 \times M_t}{h \times \emptyset_{Eje} \times \sigma_{Adm \, Aplast}}$$

$$L_{Aplast} = \frac{4 \times 2.514,73 \, Kg. \, cm}{0.8 cm \times 3.5 cm \times 2.860 \frac{Kg}{cm^2}} = 1,25 cm$$

La longitud mayor de la chaveta es de 1,91cm, pero se adopta una longitud de 4,50cm que es el ancho del cubo de la corona Redler.

3.6.7.2. Chaveta de la Corona de la Transmisión por Correas

Para un eje de 35mm se adopta una chaveta de 10x8 mm (Fig.3.26).

3.6.7.2.1. Verificación por Corte

Según "Manual de Resistencia de Materiales" (PISARENKO y otros, 1979).

$$\tau_{Adm\;Corte} = \frac{\sigma_{Adm}}{2} = \frac{0.6 \; \times \; \sigma_f}{2}$$

$$\tau_{Adm\ Corte} = \frac{0.6 \times 25\ Kg/mm^2}{2} = 750\ Kg/cm^2$$

Por lo tanto la longitud mínima necesaria que debe tener la chaveta, para soportar los esfuerzos de corte es:

$$L_{Corte} = \frac{2 \, \times \, M_t}{b \, \times \, \emptyset_{Eje} \, \times \, \tau_{Adm \, Corte}}$$

$$L_{Corte} = \frac{2 \times 2.514,73 \, Kg. \, cm}{1 \, cm \times 3,5 cm \times 750 \, \frac{Kg}{cm^2}} = 1,91 cm$$

3.6.7.2.2. Verificación por Aplastamiento

Según "Manual de Resistencia de Materiales" (PISARENKO y otros, 1979).

$$\begin{split} &\sigma_{Adm\ Comp} = \frac{\sigma_{Rot}}{3} \\ &\sigma_{Adm\ Aplast} = 2.2 \times \sigma_{Adm\ Comp} = 2.2 \times \frac{\sigma_{Rot}}{3} \\ &\sigma_{Adm\ Aplast} = 2.2 \times \frac{39\ Kg/mm^2}{3} = 28.60 \frac{Kg}{mm^2} = 2.860 \frac{Kg}{cm^2} \end{split}$$

La longitud mínima necesaria que debe tener la chaveta para soportar los esfuerzos de aplastamiento es:

$$L_{Aplast} = \frac{4 \, \times \, M_t}{h \, \times \, \emptyset_{Eje} \, \times \, \sigma_{Adm \, Aplast}}$$

$$L_{Aplast} = \frac{4 \times 2.514,73 \, Kg. \, cm}{0.8 cm \times 3.5 cm \times 2.860 \frac{Kg}{cm^2}} = 1,25 cm$$

La longitud mayor de la chaveta es de 1,91cm, pero se adopta una longitud de 12,8cm que es el ancho del cubo de la corona de la transmisión por correas.

3.6.7.3. Chaveta del Piñón de la Transmisión por Correas

Para un eje de 55mm se adopta una chaveta de 16x10 mm (Fig.3.26).

3.6.7.3.1. Verificación por Corte

Según "Manual de Resistencia de Materiales" (PISARENKO y otros, 1979).

$$\tau_{Adm\;Corte} = \frac{\sigma_{Adm}}{2} = \frac{0.6 \times \sigma_f}{2}$$

$$\tau_{Adm\ Corte} = \frac{0.6 \times 25\ Kg/mm^2}{2} = 750\ Kg/cm^2$$

Por lo tanto la longitud mínima necesaria que debe tener la chaveta, para soportar los esfuerzos de corte es:

$$L_{Corte} = \frac{2 \times M_t}{b \times \emptyset_{Eje} \times \tau_{Adm\;Corte}}$$

$$L_{Corte} = \frac{2 \times 455,56 \, Kg. \, cm}{1,6 \, cm \times 5,5 cm \times 750 \, \frac{Kg}{cm^2}} = 0,14 cm$$

3.6.7.3.2. Verificación por Aplastamiento

Según "Manual de Resistencia de Materiales" (PISARENKO y otros, 1979).

$$\begin{split} &\sigma_{Adm\ Comp} = \frac{\sigma_{Rot}}{3} \\ &\sigma_{Adm\ Aplast} = 2.2 \,\times\, \sigma_{Adm\ Comp} = 2.2 \,\times\, \frac{\sigma_{Rot}}{3} \\ &\sigma_{Adm\ Aplast} = 2.2 \,\times\, \frac{39\ Kg/mm^2}{3} = 28.60 \frac{Kg}{mm^2} = 2.860 \frac{Kg}{cm^2} \end{split}$$

La longitud mínima necesaria que debe tener la chaveta para soportar los esfuerzos de aplastamiento es:

$$L_{Aplast} = \frac{4 \times M_t}{h \times \emptyset_{Eje} \times \sigma_{Adm \; Aplast}}$$

$$L_{Aplast} = \frac{4 \times 455,56 \, Kg. \, cm}{1 cm \times 5,5 cm \times 2.860 \frac{Kg}{cm^2}} = 0,16 cm$$

La longitud mayor de la chaveta es de 0,16cm, pero se adopta una longitud de 7,5cm que es el ancho del cubo del piñón de la transmisión por correas.

3.6.7.4. Chaveta del Acoplamiento a la Entrada del Reductor

Para un eje de 38mm se adopta una chaveta de 12x8 mm (Fig.3.26).

3.6.7.4.1. Verificación por Corte

Según "Manual de Resistencia de Materiales" (PISARENKO y otros, 1979).

$$\tau_{Adm\;Corte} = \frac{\sigma_{Adm}}{2} = \frac{0.6 \; \times \; \sigma_f}{2}$$

$$\tau_{Adm\ Corte} = \frac{0.6 \times 25\ Kg/mm^2}{2} = 750\ Kg/cm^2$$

Por lo tanto la longitud mínima necesaria que debe tener la chaveta, para soportar los esfuerzos de corte es:

$$L_{Corte} = \frac{2 \times M_t}{b \times \emptyset_{Eje} \times \tau_{Adm\;Corte}}$$

$$L_{Corte} = \frac{2 \times 73,79 \ Kg.cm}{1,2 \ cm \times 3,8 cm \times 750 \ \frac{Kg}{cm^2}} = 0,043 cm$$

3.6.7.4.2. Verificación por Aplastamiento

Según "Manual de Resistencia de Materiales" (PISARENKO y otros, 1979).

$$\begin{split} &\sigma_{Adm\ Comp} = \frac{\sigma_{Rot}}{3} \\ &\sigma_{Adm\ Aplast} = 2,2 \times \sigma_{Adm\ Comp} = 2,2 \times \frac{\sigma_{Rot}}{3} \\ &\sigma_{Adm\ Aplast} = 2,2 \times \frac{39\ Kg/mm^2}{3} = 28,60 \frac{Kg}{mm^2} = 2.860 \frac{Kg}{cm^2} \end{split}$$

La longitud mínima necesaria que debe tener la chaveta para soportar los esfuerzos de aplastamiento es:

$$L_{Aplast} = \frac{4 \times M_t}{h \times \emptyset_{Eje} \times \sigma_{Adm \, Aplast}}$$

$$L_{Aplast} = \frac{4 \times 73,79 Kg. cm}{0,8 cm \times 3,8 cm \times 2.860 \frac{Kg}{cm^2}} = 0,03 cm$$

La longitud mayor de la chaveta es de 0,043cm, pero se adopta una longitud de 3,5cm que es el ancho del cubo del acoplamiento.

3.6.7.5. Chaveta del Acoplamiento a la Salida del Motor

Para un eje de 24mm se adopta una chaveta de 8x7 mm (Fig.3.26).

3.6.7.5.1. Verificación por Corte

Según "Manual de Resistencia de Materiales" (PISARENKO y otros, 1979).

$$\tau_{Adm\;Corte} = \frac{\sigma_{Adm}}{2} = \frac{0.6 \, \times \, \sigma_f}{2}$$

$$\tau_{Adm\ Corte} = \frac{0.6 \times 25\ Kg/mm^2}{2} = 750\ Kg/cm^2$$

Por lo tanto la longitud mínima necesaria que debe tener la chaveta, para soportar los esfuerzos de corte es:

$$L_{Corte} = \frac{2 \, \times \, M_t}{b \, \times \, \emptyset_{Eje} \, \times \, \tau_{Adm \, Corte}}$$

$$L_{Corte} = \frac{2 \times 73,79 \ Kg. cm}{0.8 \ cm \times 2,4 cm \times 750 \ \frac{Kg}{cm^2}} = 0.1 cm$$

3.6.7.5.2. Verificación por Aplastamiento

Según "Manual de Resistencia de Materiales" (PISARENKO y otros, 1979).

$$\begin{split} &\sigma_{Adm\ Comp} = \frac{\sigma_{Rot}}{3} \\ &\sigma_{Adm\ Aplast} = 2,2 \ \times \ \sigma_{Adm\ Comp} = 2,2 \ \times \frac{\sigma_{Rot}}{3} \\ &\sigma_{Adm\ Aplast} = 2,2 \ \times \frac{39\ Kg/mm^2}{3} = 28,60 \frac{Kg}{mm^2} = 2.860 \frac{Kg}{cm^2} \end{split}$$

La longitud mínima necesaria que debe tener la chaveta para soportar los esfuerzos de aplastamiento es:

$$L_{Aplast} = \frac{4 \, \times \, M_t}{h \, \times \, \emptyset_{Eje} \, \times \, \sigma_{Adm \, Aplast}}$$

$$L_{Aplast} = \frac{4 \times 73,79 \ Kg. \, cm}{0,7 cm \times 2,4 cm \times 2.860 \frac{Kg}{cm^2}} = 0,06 cm$$

La longitud mayor de la chaveta es de 0,1cm, pero se adopta una longitud de 3,5cm que es el ancho del cubo del acoplamiento.

3.6.8. Verificaciones por Fatiga

Las verificaciones de los distintos ejes del transporte se realizan en base a la teoría dada en "Resistencia de Materiales" (STIOPIN, 1968).

Para el cálculo de fatiga del eje se introduce un coeficiente de seguridad (n) para conseguir un funcionamiento sólido y seguro de la estructura y de sus partes a pesar de las posibles desviaciones desfavorables de las condiciones reales de trabajo, en comparación de las que se consideran para el cálculo.

El coeficiente normativo "n", se calcula adoptando una serie de coeficientes parciales. Cada uno de estos coeficientes considera la influencia de un determinado factor o grupos de factores sobre la resistencia del elemento en la construcción, los mismos se explican a continuación:

 n_1 : Coeficiente que tiene en cuenta el posible error al determinar las cargas y las tensiones a utilizar en los cálculos. Su valor puede variar entre 1,2 y 1,5. Para este caso no se considera mucho error en los cálculos de las fuerzas, debido a que se partió de la potencia del motor.

Se adopta $n_1 = 1,2$

 n_2 : Coeficiente que tiene en cuenta la heterogeneidad del material y su sensibilidad a los posibles defectos de maquinado de la pieza. Este coeficiente varía entre 1,5 y 2 para aceros en donde la relación entre las tensiones de fluencia y rotura es entre 0,55 y 0,7. En este caso para el Acero SAE 1045 LC dicha relación es de 0,6. Debido a que es un acero normalizado se garantiza que sea homogéneo.

Se adoptará $n_2 = 1,5$

 n_3 : Coeficiente que tiene en cuenta las condiciones de trabajo y el grado de responsabilidad de la pieza. Su valor se admite entre 1 y 1,5. En este caso el grado de responsabilidad de la pieza es de vital importancia para esta máquina, ya que al tener algún problema existente en dicho eje y provocar una rotura se detendrá todo el movimiento de material, involucrando así, una pérdida económica importante. Se tiene pequeña consideración debido a que el eje es pequeño y de fácil intercambio. Se adoptará $n_3=1,5$

Por lo tanto el coeficiente normativo (n) es:

$$n = n_1 \times n_2 \times n_3$$

 $n = 1,2 \times 1,5 \times 1,5 = 2,7$

3.6.8.1. Verificación del Chavetero del Eje del Redler

En los casos de estados tensionales compuestos, por ejemplo en el de la torsión y flexión combinadas, el coeficiente de seguridad se calcula mediante la siguiente expresión:

$$n = \frac{n_{\sigma} \times n_{\tau}}{\sqrt{(n_{\sigma})^2 + (n_{\tau})^2}}$$
 (3.27)

Donde:

 n_{σ} : Coeficiente de seguridad para elementos sometidos a flexión [-] n_{τ} : Coeficiente de seguridad para elementos sometidos a torsión[-]

Que se hallan según:

$$n_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma} \times \sigma_{a}}{\varepsilon \times \beta} + \sigma_{m} \times \psi_{\sigma}}$$
 (3.28)

$$n_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau} \times \tau_{a}}{\varepsilon \times \beta} + \tau_{m} \times \psi_{\tau}}$$
 (3.29)

Para el sistema se toma una carga simétrica para el caso del momento flector, y una carga pulsante en el caso del momento torsor, ya que éste último varía de acuerdo a la carga que posea el redler, por lo tanto, las solicitaciones son:

Ciclo Simétrico:

$$\sigma_a = \sigma_{M\acute{a}x}$$
$$\sigma_m = 0$$

Ciclo Pulsante:

$$\tau_a = \tau_{M\acute{a}x}/2$$

$$\tau_m = \tau_{M\acute{a}x}/2$$

Donde:

 σ_a : Amplitud de la tensión longitudinal [Kg/cm²] σ_m : Tensión media longitudinal [Kg/cm²] τ_a : Amplitud de la tensión de corte [Kg/cm²] τ_m : Tensión de corte media [Kg/cm²]

Siendo:

$$\sigma_{M\dot{a}x} = \sigma_{a} = \frac{M_{f}}{W_{x}} = \frac{M_{f}}{\frac{\pi \times d^{3}}{32}} = \frac{1.172,30 \ Kg. \ cm}{\frac{\pi \times (3,5cm)^{3}}{32}}$$

$$\sigma_{\text{Máx}} = \sigma_a = 278,5 \ \frac{Kg}{cm^2}$$

$$\tau_{M\acute{a}x} = \frac{M_{\tau}}{W_{p}} = \frac{M_{\tau}}{\frac{\pi \times d^{3}}{16}} = \frac{2.514,73 \; Kg. \, cm}{\frac{\pi \times (3,5cm)^{3}}{16}}$$

$$\tau_{M\acute{a}x} = 298,7 \ \frac{Kg}{cm^2}$$

$$\tau_a = \tau_m = \frac{\tau_{M\acute{a}x}}{2} = \frac{298.7}{2} \frac{Kg}{cm^2}$$

$$\tau_a=\tau_m=149{,}35\ \frac{Kg}{cm^2}$$

TEL./FAX: (03442) 425541 / 423803
Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY
ENTRE RIOS - REP. ARGENTINA

FACULTAD REGIONAL CONCEPCION DEL URUGUAY

UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

Ernst Mariángeles - Montañana Guillermo

Se procede a calcular los valores de tensiones admisibles a la fatiga, según "Problemas de Resistencia de Materiales" (MIROLIUBOV y otros):

$$\sigma_{-1} = (0.4 \text{ a } 0.6) \times \sigma_{Rot} = 0.6 \times 65 \text{ Kg/mm}^2$$

 $\sigma_{-1} = 39 \text{ Kg/mm}^2 = 3900 \text{ Kg/cm}^2$

$$\tau_{-1} = (0.4 \ a \ 0.7) \times \sigma_{-1} = 0.7 \times 39 \ Kg/mm^2$$

 $\tau_{-1} = 27.3 \ Kg/mm^2 = 2730 \ Kg/cm^2$

De Tabla 12.1, Fig.3.27, se obtienen los valores de coeficientes responsables a la sensibilidad del material a las asimetrías del ciclo con la tensión de rotura del material, en este caso para $\sigma_{Rot}=65\,Kg/mm^2$:

 ψ_{σ} : Coeficiente de la sensibilidad del material a la asimetria del ciclo a la flexión. ψ_{τ} : Coeficiente de la sensibilidad del material a la asimetria del ciclo a la torsión.

Coeficientes	σ _{r.t} , kgf/mm ³						
Coefficientes	32-42	40-50	50-7	70-105	105-125		
ψο(flexión, tracción, com-	0	0	0,05	0,10	0,20		
ψτ (torsion)	0	0	0	0,05	0,10		

Fig.3.27

$$\psi_{\sigma} = 0.05$$

$$\psi_{\tau} = 0$$

La variación súbita de la forma de la pieza, los agujeros, las ranuras, cortes, etc., disminuyen considerablemente el límite de la resistencia a la fatiga en comparación con el límite de resistencia para probetas cilíndricas lisas.

Esta disminución se tiene en cuenta por el coeficiente efectivo de la concentración de tensiones, determinadas experimentalmente.

Los coeficientes de la concentración de tensiones debido a la solicitación de flexión y torsión, respectivamente k_{σ} y k_{τ} para árboles con ranuras de chavetas se dan en las tablas 12.2 y 12.3 respectivamente (Fig.3.28), y se determinan interpolando para un valor de $\sigma_{Rot}=65\,Kg/mm^2$:

k_{σ}		TABLA	12.2
σ _{rt} ; kgf/mm²	50	75	100
	1,5	1,75	2,0

k_{τ}				TABLA	12.3
σ _{rf} ; kgf/mm²	60	70	80	90	100
	1,5	1,6	1,7	1,8	1,9

Fig.3.28

$$k_{\sigma} = 1,65$$

 $k_{\tau} = 1,55$

Los coeficientes de influencia de las dimensiones absolutas de la sección del eje se obtienen del gráfico 12.12 (Fig.3.29), con el $\sigma_{Rot} = 65 \, Kg/mm^2$ del material del eje y con el diámetro del mismo, que es de 35mm:

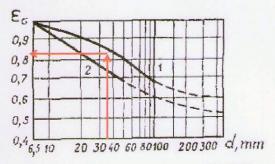


Fig.3.29

$$\varepsilon_{\sigma} = 0.83$$
 $\varepsilon_{\tau} = 0.83$

El coeficiente de terminado superficial (β) se obtiene del gráfico 12.13 (Fig.3.30) con el $\sigma_{Rot} = 65 \, Kg/mm^2$ del material del eje y con la terminación deseada del material, que en este caso es torneado fino (curva 3): $\beta = 0.9$

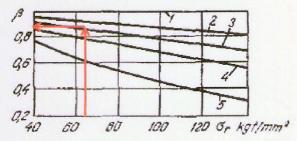


Fig.3.30

Una vez obtenidos todos los coeficientes se procede al cálculo por fatiga, reemplazando valores en (3.27), (3.28) y (3.29):

$$n_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma} \times \sigma_{a}}{\varepsilon \times \beta} + \sigma_{m} \times \psi_{\sigma}} = \frac{3900 \, Kg/cm^{2}}{\frac{1,65 \times 278,5 \, Kg/cm^{2}}{0,83 \times 0,9} + 0 \times 0,05} = 6,34$$

$$n_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau} \times \tau_{a}}{\varepsilon \times \beta} + \tau_{m} \times \psi_{\tau}} = \frac{2730 \, Kg/cm^{2}}{\frac{1,55 \times 149,35 \, Kg/cm^{2}}{0,83 \times 0,9} + 149,35 \, Kg/cm^{2} \times 0} = 8,81$$

$$n = \frac{6,34 \times 8,81}{\sqrt{(6,34)^2 + (8,81)^2}} = 5,14$$

Como el valor de este coeficiente es mayor al normativo de 2,7 obtenido al comienzo del cálculo por fatiga, se verifica la resistencia del eje.

3.6.8.2. Verificación del Chavetero de la Corona de la Transmisión a Correas

En este punto, el eje está sometido a un estado de flexo torsión, por lo tanto se procede del mismo modo que en el punto anterior.

Primero se halla el valor del momento flector que se origina en el punto E, según se observa en el diagrama característico a continuación (Fig.3.31).

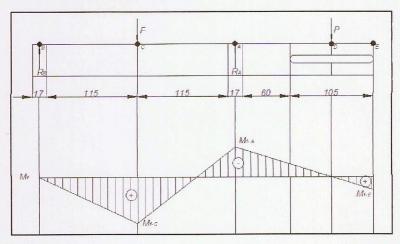


Fig.3.31

$$\begin{split} M_{f-E} &= P \times d_{D-E} = 62,9 Kg \times 5,25 cm \\ M_{f-E} &= +330,22 Kg. \, cm \end{split}$$

$$\sigma_{M\acute{a}x} = \sigma_a = \frac{M_f}{W_x} = \frac{M_f}{\frac{\pi \times d^3}{32}} = \frac{330,22 \ Kg. \ cm}{\frac{\pi \times (3,5 \ cm)^3}{32}}$$

$$\sigma_{\rm M\acute{a}x}=\sigma_a=78{,}45~\frac{Kg}{cm^2}$$

$$\tau_{M\acute{a}x} = \frac{M_{\tau}}{W_{p}} = \frac{M_{\tau}}{\frac{\pi \times d^{3}}{16}} = \frac{330,22 \ Kg. \ cm}{\frac{\pi \times (3,5cm)^{3}}{16}}$$

$$\tau_{\text{Máx}} = 39,22 \; \frac{Kg}{cm^2}$$

$$\tau_a = \tau_m = \frac{\tau_{M\acute{a}x}}{2} = \frac{39,22}{2} \frac{Kg}{cm^2}$$

$$\tau_a = \tau_m = 19,61 \; \frac{Kg}{cm^2}$$

Se procede a calcular los valores de tensiones admisibles a la fatiga, según "Problemas de Resistencia de Materiales" (MIROLIUBOV y otros):

$$\sigma_{-1} = (0.4 \ a \ 0.6) \times \sigma_{Rot} = 0.6 \times 65 \ Kg/mm^2$$

 $\sigma_{-1} = 39 \ Kg/mm^2 = 3900 \ Kg/cm^2$

$$\tau_{-1} = (0.4 \ a \ 0.7) \times \sigma_{-1} = 0.7 \times 39 \ Kg/mm^2$$

 $\tau_{-1} = 27.3 \ Kg/mm^2 = 2730 \ Kg/cm^2$

De Tabla 12.1, Fig.3.32, se obtienen los valores de los coeficientes responsables a la sensibilidad del material a las asimetrías del ciclo, con la tensión de rotura del material $\sigma_{Rot} = 65 \, Kg/mm^2$:

 ψ_{σ} : Coeficiente de la sensibilidad del material a la asimetria del ciclo a la flexión[-] ψ_{τ} : Coeficiente de la sensibilidad del material a la asimetria del ciclo a la torsión[-]

Cartislands	$\sigma_{r,t}, \; kgt/mm^2$					
Coeficientes	32-42	40-50	50-7 0	70-105	105-125	
ψα(flexión, tracción, com- presión)	0	0	0,05	0,10	0,20	
ψτ (torsión)	0	0	0	0,05	0,10	

Fig.3.32

$$\psi_{\sigma} = 0.05$$

$$\psi_{\tau} = 0$$

Los valores de los coeficientes de la concentración de tensiones debido a la solicitación de flexión y torsión, respectivamente k_{σ} y k_{τ} para árboles con ranuras de chavetas se dan en las tablas 12.2 y 12.3 respectivamente, Fig.3.33, y se determinan interpolando para un valor de $\sigma_{Rot} = 65 \, Kg/mm^2$:

k_{σ}		TABLA	12.2
σ _{rt} ; kgf/mm²	50	75	100
	1,5	1,75	2,0

k_{τ}				TABLA	12.3
σ _{rt} ; kgf/mm²	60	70	80	90	100
	1.5	1,6	1,7	1,8	1,9

Fig.3.33

$$k_{\sigma} = 1,65$$

 $k_{\tau} = 1,55$

Los coeficientes de influencia de las dimensiones absolutas de la sección del eje se obtienen del gráfico 12.12, Fig.3.34, con el $\sigma_{Rot} = 65\,Kg/mm^2$ del material del eje y con el diámetro del mismo que es de 35mm:

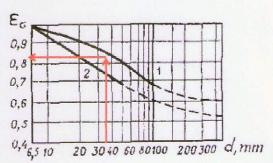


Fig.3.34

$$\varepsilon_{\sigma} = 0.83$$

 $\varepsilon_{\tau} = 0.83$

El coeficiente de terminado superficial (β) se obtiene del gráfico 12.13, Fig.3.35, con el $\sigma_{Rot} = 65 \, Kg/mm^2$ del material del eje y con la terminación deseada del material, que en este caso es torneado fino (curva 3): $\beta = 0.9$

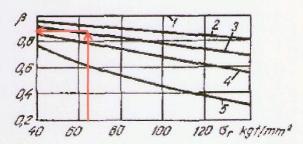


Fig.3.35

Una vez obtenidos todos los coeficientes se procede al cálculo por fatiga, reemplazando valores en (3.27), (3.28) y (3.29):

$$n_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma} \times \sigma_{a}}{\varepsilon \times \beta} + \sigma_{m} \times \psi_{\sigma}} = \frac{3900 \, Kg/cm^{2}}{\frac{1,65 \times 78,45 \, Kg/cm^{2}}{0,83 \times 0,9} + 0 \times 0,05} = 22,5$$

$$n_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau} \times \tau_{a}}{\varepsilon \times \beta} + \tau_{m} \times \psi_{\tau}} = \frac{2730 \, Kg/cm^{2}}{\frac{1,55 \times 19,61 \, Kg/cm^{2}}{0,83 \times 0,9} + 149,35 \, Kg/cm^{2} \times 0} = 67,1$$

$$n = \frac{22,5 \times 67,1}{\sqrt{(22,5)^2 + (67,1)^2}} = 21,33$$

Como el valor de este coeficiente es mayor al normativo de 2,7 obtenido al comienzo del cálculo por fatiga se verifica la resistencia del eje.

3.6.8.3. Verificación del Chavetero del Acoplamiento con el Motor

Como en el acoplamiento elástico no existe momento flector no habrá estados tensionales de flexión (n_σ) .

Se verifica el diámetro del eje a la fatiga en el chavetero según el siguiente desarrollo:

$$n_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau} \times \tau_{a}}{\varepsilon \times \beta} + \tau_{m} \times \psi_{\tau}}$$
 (3.30)

Se considera una carga pulsante en el caso del momento torsor, ya que éste varía de acuerdo a la carga que posea el redler.

Ciclo Pulsante:

$$\tau_a = \, \tau_{M\acute{a}x}/2$$

$$\tau_m = \tau_{M\acute{a}x}/2$$

El momento torsor en este punto está dado por:

$$M_t[Kg.cm] = 71620 \times \frac{N_{eje}[CV]}{n_{Redler}[rpm]}$$

$$M_t = 71620 \, \times \, \frac{1,499CV}{1455 \, rpm} = 73,78 Kg. \, cm$$

$$\tau_{M\acute{a}x} = \frac{M_{\tau}}{W_{p}} = \frac{M_{\tau}}{\frac{\pi \times d^{3}}{16}} = \frac{73,78 \ Kg. \ cm}{\frac{\pi \times (2,4cm)^{3}}{16}}$$

$$\tau_{M\acute{a}x}=27{,}18\;\frac{Kg}{cm^2}$$

$$\tau_a = \tau_m = \frac{\tau_{M\acute{a}x}}{2} = \frac{27,18}{2} \frac{Kg}{cm^2}$$

$$\tau_a = \tau_m = 13,59 \; \frac{Kg}{cm^2}$$

Se procede a calcular los valores de tensiones admisibles a la fatiga, según "Problemas de Resistencia de Materiales" (MIROLIUBOV y otros):

$$\sigma_{-1} = (0.4 \ a \ 0.6) \times \sigma_{Rot} = 0.6 \times 65 \ Kg/mm^2$$

$$\sigma_{-1} = 39 \, Kg/mm^2 = 3900 \, Kg/cm^2$$

$$\tau_{-1} = \, (0.4\,\alpha\,0.7) \, \times \, \sigma_{-1} = 0.7 \, \times 39 \, Kg/mm^2$$

$$\tau_{-1} = 27.3 \, Kg/mm^2 = 2730 \, Kg/cm^2$$

De Tabla 12.1, Fig.3.36, se obtiene el coeficiente responsable a la sensibilidad del material a las asimetrías del ciclo con la tensión de rotura del material: $\psi_{\tau}=0$

 ψ_{τ} : Coeficiente de la sensibilidad del material a la asimetría del ciclo a la torsión [-]

Callant	σ _{r.t} , kgf/mm ²					
Coeficientes	32-42	40-50	50-70	70-105	105-125	
ψ _θ (flexión, tracción, com-	0	0	0,05	0,10	0,20	
þτ (torsión)	0	0	0 '	0,05	0,10	

Fig.3.36

El valor del coeficiente de la concentración de tensiones debido a la solicitación torsión k_{τ} para árboles con ranuras de chavetas se dan en la tabla 12.3, Fig3.37 y se determina interpolando para un valor de $\sigma_{Rot}=65\,Kg/mm^2$:

k_{τ}				TABLA	12.3
σ _{rf} ; kgf/mm²	60	70	80	90	100
	1,5	1,6	1,7	1,8	1,9

Fig.3.37

 $k_{\tau} = 1,55$

El coeficiente de influencia de la dimensión absoluta de la sección del eje se obtiene del gráfico 12.12, Fig. 3.38, con el $\sigma_{Rot} = 65 \, Kg/mm^2$ del material del eje y con el diámetro del mismo que es de 35mm:

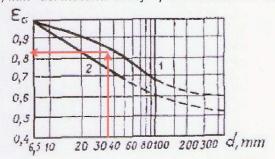
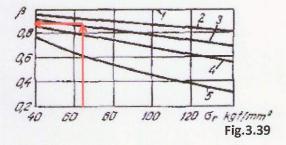



Fig.3.38

 $\varepsilon_{\sigma} = \varepsilon_{\tau} = 0.83$

El coeficiente de terminado superficial (β) se obtiene del gráfico 12.13, Fig.3.39, con el $\sigma_{Rot} = 65 \, Kg/mm^2$ del material del eje y con la terminación deseada del material, que en este caso es torneado fino (curva 3): $\beta = 0.9$

52 de 234

$$n = n_{\tau} = \frac{2730 \, Kg/cm^2}{\frac{1,55 \times 19,61 \, Kg/cm^2}{0,83 \times 0,9} + 19,61 \, Kg/cm^2 \times 0} = 67,1$$

Como el valor de este coeficiente es mayor al normativo de 2,7 obtenido al comienzo del cálculo por fatiga se verifica la resistencia del eje.

3.6.8.4. Verificación del Chavetero a la Salida del Reductor a Engranajes

En este punto, el eje se encuentra sometido a un estado de flexo torsión.

Primero se halla el valor del momento flector que se origina en el chavetero, éste va a estar dado por el producto de la carga radial (P_r) calculado anteriormente, y de la distancia entre el centro del chavetero y la salida del reductor:

$$P_r = 81,35Kg$$

$$\begin{aligned} M_{f-Salida~del~reductor} &= P_r \times 4,5cm = 81,35Kg \times 4,5cm \\ M_{f-Salida~del~reductor} &= +366~Kg.~cm \end{aligned}$$

$$\sigma_{M \pm x} = \sigma_a = \frac{M_f}{W_x} = \frac{M_f}{\frac{\pi \times d^3}{32}} = \frac{366 \, Kg. \, cm}{\frac{\pi \times (5,5 cm)^3}{32}}$$

$$\sigma_{M\acute{a}x} = \sigma_a = 22,4 \ \frac{Kg}{cm^2}$$

$$\tau_{M\acute{a}x} = \frac{M_{\tau}}{W_{p}} = \frac{M_{\tau}}{\frac{\pi \times d^{3}}{16}} = \frac{455,55 Kg. cm}{\frac{\pi \times (5,5 cm)^{3}}{16}}$$

$$\tau_{M\acute{a}x} = 13,95 \; \frac{Kg}{cm^2}$$

$$\tau_a = \tau_m = \frac{\tau_{M\acute{a}x}}{2} = \frac{13,95 \ \frac{Kg}{cm^2}}{2}$$

$$\tau_a = \tau_m = 6,975 \ \frac{Kg}{cm^2}$$

Se procede a calcular los valores de tensiones admisibles a la fatiga, según "Problemas de Resistencia de Materiales" (MIROLIUBOV y otros):

$$\sigma_{-1} = (0.4 \, a \, 0.6) \times \sigma_{Rot} = 0.6 \times 65 \, Kg/mm^2$$

 $\sigma_{-1} = 39 \, Kg/mm^2 = 3900 \, Kg/cm^2$

$$\tau_{-1} = (0.4 \text{ a } 0.7) \times \sigma_{-1} = 0.7 \times 39 \text{ Kg/mm}^2$$

 $\tau_{-1} = 27.3 \text{ Kg/mm}^2 = 2730 \text{ Kg/cm}^2$

De Tabla 12.1, Fig.3.40, se obtienen los valores de coeficientes responsables a la sensibilidad del material a las asimetrías del ciclo con la tensión de rotura del material:

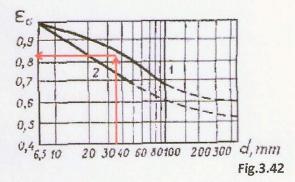
 ψ_{σ} : Coeficiente de la sensibilidad del material a la asimetria del ciclo a la flexión[-] ψ_{τ} : Coeficiente de la sensibilidad del material a la asimetria del ciclo a la torsión[-]

Coeficientes	σ _{r.t} , kgf/mm²					
Coefficientes	32-42	40-50	50-7 0	70-105	105-125	
ψg(flexión, tracción, com-	0	0	0,05	0,10	0,20	
ψτ (torsion)	0	0	0 '	0,05	0,10	

Fig.3.40

$$\psi_{\sigma} = 0.05$$
$$\psi_{\tau} = 0$$

Los valores de los coeficientes de la concentración de tensiones debido a la solicitación de flexión y torsión, respectivamente k_{σ} y k_{τ} para árboles con ranuras de chavetas se dan en las tablas 12.2 y 12.3 respectivamente, Fig.3.41, y se determinan interpolando para un valor de $\sigma_{Rot}=65\,Kg/mm^2$:


k_{σ}		TABLA	12.2
σ _{rt} ; kgf/mm ²	50	75	100
	1,5	1,75	2,0

k_{τ}				TABLA	12.3
σ _{rt} ; kgf/mm²	60	70	80	90	100
	1,5	1,6	1,7	1,8	1,9

Fig.3.41

$$k_{\sigma} = 1,65$$

 $k_{\tau} = 1,55$

Los coeficientes de influencia de las dimensiones absolutas de la sección del eje se obtienen del gráfico 12.12, Fig.3.42, con el $\sigma_{Rot}=65\,Kg/mm^2$ del material del eje y con el diámetro del mismo que es de 35mm:

$$\varepsilon_{\sigma} = 0.83$$

$$\varepsilon_{\tau} = 0.83$$

El coeficiente de terminado superficial (β) se obtiene del gráfico 12.13, Fig.3.43, con el $\sigma_{Rot}=65\,Kg/mm^2$ del material del eje y con la terminación deseada del material, que en este caso es torneado fino (curva 3): $\beta=0.9$

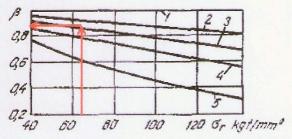


Fig.3.43

Una vez obtenidos todos los coeficientes se procede al cálculo por fatiga, reemplazando valores en (3.27), (3.28) y (3.29):

$$n_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma} \times \sigma_{a}}{\varepsilon \times \beta} + \sigma_{m} \times \psi_{\sigma}} = \frac{3900 \, Kg/cm^{2}}{\frac{1,65 \times 22,4 \, Kg/cm^{2}}{0,83 \times 0,9} + 0 \times 0,05} = 78,82$$

$$n_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau} \times \tau_{a}}{\varepsilon \times \beta} + \tau_{m} \times \psi_{\tau}} = \frac{2730 \, Kg/cm^{2}}{\frac{1,55 \times 6,975 \, Kg/cm^{2}}{0,83 \times 0,9} + 6,975 \, Kg/cm^{2} \times 0} = 188,62$$

$$n = \frac{78,82 \times 188,62}{\sqrt{(78,82)^2 + (188,62)^2}} = 72,72$$

Como el valor de este coeficiente es mayor al normativo de 2,7 obtenido al comienzo del cálculo por fatiga se verifica la resistencia del eje.

3.6.8.5. Verificación Cambio de Sección: Corona Acoplamiento Correas - Corona del Redler

Primero se verifican las dimensiones del eje a la fatiga, tomando un diámetro de 34 mm para la sección comprendida entre la corona de la transmisión por correas y un diámetro de 35mm para la sección comprendida entre la corona del redler. Se considera un radio de encuentro entre ambos diámetros de 5mm.

La verificación por fatiga se realiza de igual forma que para el punto 3.6.8.

Para el sistema se considera una carga simétrica para el caso del momento flector y una carga pulsante en el caso del momento torsor, ya que éste último varía de acuerdo a la carga que posea el redler, por lo tanto, las solicitaciones son:

Ciclo Simétrico:

$$\sigma_{\alpha} = \sigma_{M\acute{a}x}$$

$$\sigma_m = 0$$

Ciclo Pulsante:

$$\tau_a = \tau_{Max}/2$$

$$\tau_m = \tau_{M\acute{a}x}/2$$

Se analiza el cambio de sección que se origina en el punto A, ya que es el cambio de sección con la solicitación más desfavorable porque posee tanto flexión como torsión, a diferencia del punto B que solo está sometido a flexión.

El momento flector en este punto se lo toma en el extremo izquierdo del rodamiento.

$$M_{f-Izq.Rod\ A} = -P \times 64,75cm + R_A \times 0,85cm$$

$$M_{f-1zq,Rod\,A} = -62.9\,Kg\,\times 12.95cm + 219.45\,Kg\,\times 0.85cm$$

$$M_{f-Izq.Rod\ A} = -628Kg.cm$$

$$\sigma_{M\acute{a}x} = \sigma_a = \frac{M_f}{W_x} = \frac{M_f}{\frac{\pi \times d^3}{32}} = \frac{628 \, Kg. \, cm}{\frac{\pi \times (3.4 cm)^3}{32}}$$

$$\sigma_{M\acute{a}x} = \sigma_a = 162,75 \; \frac{Kg}{cm^2}$$

$$\tau_{M\acute{a}x} = \frac{M_{\tau}}{W_{p}} = \frac{M_{\tau}}{\frac{\pi \times d^{3}}{16}} = \frac{455,55 Kg. cm}{\frac{\pi \times (3,4 cm)^{3}}{16}}$$

$$\tau_{M\acute{a}x} = 59 \frac{Kg}{cm^2}$$

$$\tau_a = \tau_m = \frac{\tau_{M\acute{a}x}}{2} = \frac{59 \; \frac{Kg}{cm^2}}{2}$$

$$\tau_a = \tau_m = 29,5 \ \frac{Kg}{cm^2}$$

Se procede a calcular los valores de tensiones admisibles a la fatiga, según "Problemas de Resistencia de Materiales" (MIROLIUBOV y otros):

$$\sigma_{-1} = (0.4 \text{ a } 0.6) \times \sigma_{Rot} = 0.6 \times 65 \text{ Kg/mm}^2 = 39 \text{ Kg/mm}^2 = 3900 \text{ Kg/cm}^2$$

 $\tau_{-1} = (0.4 \text{ a } 0.7) \times \sigma_{-1} = 0.7 \times 39 \text{ Kg/mm}^2 = 27.3 \text{ Kg/mm}^2 = 2730 \text{ Kg/cm}^2$

De Tabla 12.1, Fig.3.44, se obtienen los valores de coeficientes responsables a la sensibilidad del material a las asimetrías del ciclo con la tensión de rotura del material:

 ψ_σ : Coeficiente de la sensibilidad del material a la asimetria del ciclo a la flexión [-]

 ψ_{τ} : Coeficiente de la sensibilidad del material a la asimetria del ciclo a la torsión [-]

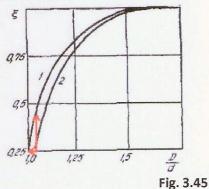
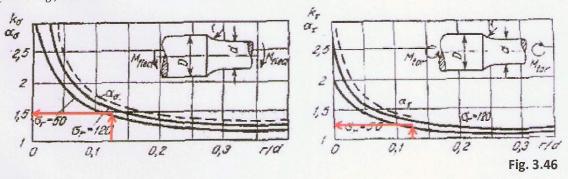

Coeficientes	σ _{r.t} , kgf/mm ²					
Gentientes	32-42	40-50 50-7	70-105	105-128		
ψ ₀ (flexión, tracción, com-	0	0	0,05	0,10	0,20	
ψτ (torsión)	0	0	0	0,05	0,10	

Fig. 3.44

$$\psi_{\sigma} = 0.05$$

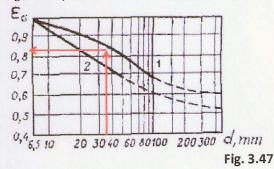
$$\psi_{\tau} = 0$$


El coeficiente que indica la influencia de las dimensiones absolutas de la sección (ε) se obtiene del gráfico 12.11, Fig.3.45, considerando la relación D/d=35/34=1,029 e intersectando la curva 1 para el estado de flexión y en 2 para el estado de torsión:

$$\xi_{\sigma} = 0.45$$

 $\xi_{\tau} = 0.25$

Para una relación dada de D/d=35/34=1,029, la curva de torsión no es intersectada, por lo que se adopta el mínimo valor de ϵ .


El coeficiente $(k_\sigma)_0$ y $(k_\tau)_0$ que indica la influencia de la concentración de tensiones se obtiene de los gráficos 12.8 y 12.9 respectivamente, Fig.3.46, considerando la relación r/d=5/34=0,147 y $\sigma_{Rot}=65\,Kg/mm^2$.

$$k_{\sigma} = 1,5$$
$$k_{\tau} = 1,3$$

$$\begin{aligned} k_{\sigma} &= 1 + \xi_{\sigma} \times [(k_{\sigma})_{o} - 1] = 1 + 0.45 \times [1.5 - 1] = 1.225 \\ k_{\sigma} &= 1 + \xi_{\tau} \times [(k_{\tau})_{o} - 1] = 1 + 0.25 \times [1.3 - 1] = 1.075 \end{aligned}$$

Los coeficientes de influencia de las dimensiones absolutas de la sección del eje se obtienen del gráfico 12.12, Fig.3.47, con $\sigma_{Rot} = 65 \, Kg/mm^2$ y con el diámetro del mismo que es de 35mm:

$$\varepsilon_{\sigma} = 0.83$$
 $\varepsilon_{\tau} = 0.83$

El coeficiente de terminado superficial (β) se obtiene del gráfico 12.13, Fig.3.48, conociendo el $\sigma_{Rot}=65\,Kg/mm^2$ del material del eje y la terminación deseada del material, que en este caso es torneado fino (curva 3): $\beta=0.9$

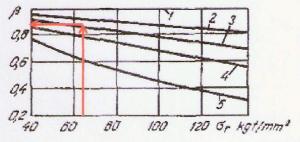


Fig. 3.48

Una vez obtenidos todos los coeficientes se procede al cálculo por fatiga, reemplazando valores en (3.27), (3.28) y (3.29):

$$n_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma} \times \sigma_{\alpha}}{\varepsilon \times \beta} + \sigma_{m} \times \psi_{\sigma}} = \frac{3900 \, Kg/cm^{2}}{\frac{1,5 \times 162,75 \, Kg/cm^{2}}{0,83 \times 0,9} + 0 \times 0,05} = 11,93$$

$$n_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau} \times \tau_{a}}{\varepsilon \times \beta} + \tau_{m} \times \psi_{\tau}} = \frac{2730 \, Kg/cm^{2}}{\frac{1,3 \times 29,5 \, Kg/cm^{2}}{0,83 \times 0,9} + 29,5 \, Kg/cm^{2} \times 0} = 53,17$$

$$n = \frac{11,93 \times 53,17}{\sqrt{(11,93)^2 + (53,17)^2}} = 11,64$$

Como el valor de este coeficiente es mayor al normativo de 2,7 obtenido al comienzo del cálculo por fatiga se verifica la resistencia del eje.

4. SECTOR DE SECADO

4.1. SECADOR

Características de Operación del Secador

Producción: 1tn/h Humedad inicial: 100% Humedad final: 8-12%

Materia prima: Chips y aserrín de madera.

En base a los puntos mencionados el secador a instalar en la planta fue recomendado por el fabricante, por lo que su cálculo y dimensionamiento no se contempló en el presente proyecto.

4.2. CICLÓN 1

4.2.1. Material Transportado

El material transportado está dado por la siguiente expresión:

$$P_m = \frac{Q}{3.6}$$
 (4.1)

Donde:

 P_m : Material transportado por segundo [Kg/s] Q: Caudal de material transportado [Kg/h]

Reemplazando en (4.1):

$$P_m = \frac{Q}{3.6} = \frac{1}{3.6} \frac{tn}{h} = 0.277 \frac{Kg}{s}$$

4.2.2. Volumen de Aire

Utilizando las ecuaciones de dilución y relación de peso Aire-Material (d_V) puede calcularse el volumen de aire necesario (V_a) para la instalación.

La relación de peso aire-material está dada por la ecuación:

$$r_p = \frac{P_m}{1.2 \times V_a} \qquad (4.2)$$

Donde:

 V_a : Volumen de aire $[m^3/h]$ r_p : Relación de Peso [-]

$$V_a = \frac{0,277 \frac{Kg}{s}}{1,2 \times 1 \frac{Kg}{m^3}} = 0,231 \frac{m^3}{s} = 13,88 \frac{m^3}{min}$$

$$V_a = 833,33 \frac{m^3}{h}$$

Los litros de aire por unidad de peso del material transportado (l_a) son:

$$l_a = 1000 \times \frac{V_a}{P_m} \qquad (4.3)$$

$$l_a = 1000 \times \frac{0.231 \frac{m^3}{s}}{0.277 \frac{Kg}{s}} = 833,93 \frac{litros\ de\ aire}{Kg\ material}$$

4.2.3. Velocidad del Aire

Según "Transporti Meccanici" (ZIGNOLI, 1970), de Tabla *CCCXXXI*, Fig.4.1, se obtiene la ecuación que determina la velocidad del aire en función del material transportado y el tipo de recorrido que debe desarrollar el mismo en la instalación.

TAB. CCCXXXI - Velocità in m/sec consigliata in sede di progetto in funzione di γ_m densità dei materiali da trasportare in kg/dm³.

	Percorso orizzontale		Percorso misto con tratti verticali	
Tipo del materiale	in linea	nella succhiante	in linea	pella succhiante
Materiali in polvere	25 √ Ym	40 √ Ym	30 √ Ym	50 √ Y m
Materiali in piccoli grani e cercali .	30 √ γ _m	50 √ γ _m	36 √ γ _m	58 \ Ym
Materiali in pezzatura irregolare	36 √ Ym	58 √ Y _m	45 V Ym	72 V Ym

Fig.4.1

En este caso, como se transporta material en polvo en un recorrido mixto:

$$v_a = 30 \times \sqrt{\gamma_m} \quad (4.4)$$

Donde:

 v_a : Velocidad del Aire [m/s] γ_m : Peso específico del Material [Kg/dm³]

Entonces, reemplazando en (4.4):

$$v_a = 30 \times \sqrt{0.09 \frac{kg}{dm^3}} = 9 \frac{m}{s}$$

4.2.4. Diámetro de la Tubería

Conociendo la velocidad del aire se determina el diámetro de la tubería según la siguiente expresión:

$$S_T = \frac{V_a}{v_a} = \frac{\pi \times D^2}{4} \rightarrow D = \sqrt{\frac{4 \times V_a}{v_a \times \pi}}$$
 (4.5)

Donde: S_T : Sección de la Tubería $[m^2]$

Reemplazando en (4.5):

$$D = \sqrt{\frac{4 \times V_a}{v_a \times \pi}} = \sqrt{\frac{4 \times 0.231 \frac{m^3}{s}}{9 \frac{m}{s} \times \pi}} = 0.18m$$

Se adopta un diámetro comercial de 200mm y se recalcula la velocidad del aire en función del diámetro adoptado.

$$v_a = \frac{4 \times V_a}{\pi \times D^2} = \frac{4 \times 0.231 \frac{m^3}{s}}{\pi \times (0.200m)^2} = 7.35 \frac{m}{s}$$

4.2.5. Verificación de la Relación de Secciones

La condición que debe cumplir el sistema para que no existan inconvenientes en el transporte es:

$$S_T \ge 10.S_m \qquad (4.6)$$

Donde:

 S_T : Sección de la Tubería $[m^2]$ S_m : Sección del Material $[m^2]$

$$S_T = \frac{\pi \times D^2}{4} = \frac{\pi \times (0.200m)^2}{4} = 0.0314 \, m^2$$

$$S_m = \frac{P_m}{\gamma_m \times 0.75 \times v_a} = \frac{0.277 \frac{Kg}{s}}{90 \frac{Kg}{m^3} \times 0.75 \times 7.35 \frac{m}{s}} = 0.000558m^2$$

$$S_T \ge 10.S_m$$

 $0.314~m^2 \ge 0.00558m^2 \implies queda verificada$

Como la relación de secciones queda verificada, se debe calcular la presión necesaria de la instalación.

4.2.6. Presión Necesaria

La presión necesaria está dada por las pérdidas debido a las resistencias del aire y del material. La suma de ambas caídas determina la presión que debe el vencer el ventilador.

4.2.6.1. Pérdidas debidas al Aire

4.2.6.1.1. Pérdidas para Imprimir Velocidad al Aire $(m{h}_d)$

La pérdida está dada por la siguiente ecuación:

$$h_d = \frac{\gamma_a \times v_a^2}{2g} \qquad (4.7)$$

Donde:

 γ_a : Peso específico del aire $[kg/m^3]$ g: aceleración de la gravedad $[m/s^2]$

Reemplazando el (4.7):

$$h_d = \frac{1.2 \frac{Kg}{m^3} \times \left(7.35 \frac{m}{s}\right)^2}{2 \times 9.81 \frac{m}{s^2}} = 3.304 \text{ mmca}$$

4.2.6.1.2. Pérdidas por Ingreso del Aire al Circuito (h_{ia})

La pérdida está dada por la siguiente ecuación:

$$h_{ia} = 2 h_d$$
 (4.8)

$$h_{ia} = 2 \times 3,304 \, mmca = 6,608 \, mmca$$

4.2.6.1.3. Pérdidas por Rozamiento en las Tuberías $(m{h}_t)$

La pérdida está dada por la siguiente ecuación:

$$h_t = \frac{f.L. \gamma_a. v_a^2}{2g.D}$$
 (4.9)

Donde:

f: factor de fricción [-] (Se lo considera $\cong 0,02$) L: Longitud de tramos rectos de la tubería [m]

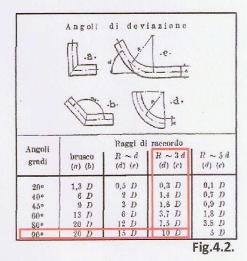
Reemplazando en (4.9):

$$h_t = \frac{0.02 \times 5.49m \times 1.2 \frac{Kg}{m^3} \times \left(7.35 \frac{m}{s}\right)^2}{2 \times 9.81 \frac{m}{s^2} \times 0.200m} = 1.814 \, mmca$$

4.2.6.1.4. Pérdidas por Altura (h_h)

La pérdida está dada por la siguiente ecuación:

$$h_h = \gamma_a \times H \qquad (4.10)$$


Donde: H: Altura total [m]

$$H = 2,13m$$

$$h_h = 1.2 \frac{Kg}{m^3} \times 2.13m = 2.56mmca$$

4.2.6.1.5. Pérdidas por Curvas y Seccionadores (h_{da})

La pérdida para los distintos accesorios se extraen de "Transporti Meccanici" (ZIGNOLI, 1970) Tabla CCCXXXII, Fig.4.2 y Fig.4.3.

Allargamento di sezione (m) (n)

Allargamento di sezione (m) (n)

Rapporto diametri d,:d.

Angolo
di raccordo
di raccordo
uscita
all'aria
libera

brusco (n) 50 D 40 D 25 D 16 D 10 D
40 C 25 D 5 D 3 D 1 D
20 | (m) 40 D 20 D 5 D 3 D 1 D
20 | 35 D 14 D 3.5 D 2 D 0.5 D
10 | 25 D 7 D 1.5 D 1 D 0.5 D

Fig.4.3

- 2 codos 90°: adoptando un radio de curvatura de tres veces el diámetro de la tubería (R=10D) se tiene que la longitud equivalente del accesorio es diez veces el diámetro de la tubería de transporte. $L_0=10\times D=10\times 0, 2m=2m$ (Long. Equivalente por codo) $L=2\times L_0=2\times 2m=4m$
- Las pérdidas debidas a la entrada al ciclón se consideran como una pérdida debido a un ensanchamiento brusco de sección a la intemperie. $L = 50 \times D = 50 \times 0,2m = 10m$

La longitud total equivalente (L_{Teq}) en los accesorios de la instalación es la suma de las longitudes halladas anteriormente: $L_{Teq}=14m$

La pérdida está dada por:

$$h_{da} = \frac{f. L_{Teq}. \gamma_a. v_a^2}{2g. D}$$
 (4.11)

Reemplazando en (4.11):

$$h_{da} = \frac{0.02 \times 14m \times 1.2 \frac{Kg}{m^3} \times \left(7.35 \frac{m}{s}\right)^2}{2 \times 9.81 \frac{m}{s^2} \times 0.2m} = 4.625mmca$$

4.2.6.1.6. Pérdidas por Ingreso del Aire al Ciclón $(m{h}_c)$

Antes de establecer las pérdidas que provoca el ciclón se debe seleccionar un ciclón que maneje el caudal de aire de la planta.

Las gráficas de selección del proveedor (Fig.4.4), están diseñadas para ingresar en el eje de abscisas con el caudal de aire necesario $\left(833,33\,\frac{m^3}{h}\right)$ y en el eje de ordenadas se obtiene la pérdida de carga que posee el mismo.

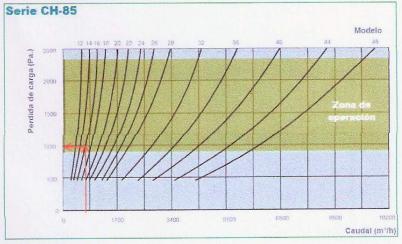


Fig.4.4

Para este caso el modelo preseleccionado es la Serie CH-85 modelo 16, la cual posee una pérdida de carga de $h_c=1000Pa=102mmca$.

4.2.6.2. Pérdidas debidas a la Resistencia por el Movimiento del Material

4.2.6.2.1. Pérdidas para Imprimirle Fuerza Viva al Material (h_{im})

Para el cálculo se considera que la velocidad del material es 0,75 veces la velocidad del aire, por lo que la pérdida para imprimirle fuerza viva al material está dada por:

$$h_{im} = \frac{0,008 \times Q \times v_{material}^2}{V_a} = \frac{0,008 \times Q \times (0,75 \times v_{aire})^2}{V_a}$$
(4.12)

$$h_{im} = \frac{0,008 \times 1 \frac{tn}{h} \times \left(0,75 \times 7,35 \frac{m}{s}\right)^{2}}{0,231 \frac{m^{3}}{s}} = 1,052 \text{ mmca}$$

4.2.6.2.2. Pérdidas por Resistencias en las Cañerías (h_{tm})

La pérdida está dada por la siguiente ecuación:

$$h_{tm} = 0.06 \times tg\varphi \times L \times \frac{Q}{V_a}$$
 (4.13)

Donde:

L: Longitud de tramos rectos de la tubería [m] $tg\varphi$: representa el roce del material transportado con la pared del recipiente [-] V_a : Caudal Volumétrico $[m^3/s]$

Reemplazando en (4.13):

$$h_{tm} = 0.06 \times 0.7 \times 5.49m \times \frac{1 \frac{tn}{h}}{0.231 \frac{m^3}{s}} = 0.998mmca$$

4.2.6.2.3. Pérdidas para Vencer Alturas (h_{hm})

La pérdida está dada por la siguiente ecuación:

$$h_{hm} = \frac{0.278 \times Q \times H}{V_a} \qquad (4.14)$$

$$h_{hm} = \frac{0,278 \times 1 \frac{tn}{h} \times 2,13m}{0,231 \frac{m^3}{s}} = 2,563mmca$$

4.2.6.2.4. Pérdidas por Ángulos y Cambios de Dirección (h_{dm})

La pérdida (h_{dm}) está dada por la pérdida (h_{da}) multiplicada por la relación de pesos (r_p) :

$$h_{dm} = h_{da} \times r_p \qquad (4.15)$$

$$h_{dm} = h_{da} \times r_p = 4,625mmca \times 1 = 4,625mmca$$

4.2.6.2.5. Pérdidas por Entrada al Ciclón $(m{h}_{dc})$

Las pérdidas debidas a la entrada al ciclón se dan en la ecuación (4.16) y son función de la longitud equivalente dada por:

$$\begin{split} L_{Teq} &= 50 \times D \\ L_{Teq} &= 50 \times 0.2m = 10m \end{split}$$

Y la pérdida es:

$$h_{dc} = \frac{f \cdot L_{Teq} \cdot \gamma_a \cdot v_a^2}{2g \cdot D} \quad (4.16)$$

$$h_{dc} = \frac{0,02 \times 10m \times 1,2 \frac{Kg}{m^3} \times \left(7,35 \frac{m}{seg}\right)^2}{2 \times 9,81 \frac{m}{s^2} \times 0,2m} = 3,304mmca$$

4.2.6.3. Pérdidas Totales

Las pérdidas totales son:

$$h_T = \sum h_m + \sum h_a \quad (4.17)$$

Pérdidas debidas al aire: $(h_a)=120,911\ mmca$ Pérdidas debidas al Material: $(h_m)=12,542\ mmca$ Pérdidas Totales: $(h_T)=h_a+h_m=133,453\ mmca=13,087\ mbar$

A continuación se presenta la tabla resumiendo los valores de las pérdidas halladas anteriormente, ver Tabla 4.1.

FACULTAD REGIONAL CONCEPCION DEL URUGUAY
UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803
Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY
ENTRE RIOS - REP. ARGENTINA

Pérdidas debidas al aire	[mmca]
A1 - Pérdidas debidas al aire (hd)	3,304
Az - Pérdidas por ingreso del aire al circuito (hia)	6,608
A3 - Pérdidas por rozamiento en las tuberías (ht)	1,814
A4 - Pérdidas por altura (hh)	2,56
As - Pérdidas por curvas y seccionadores (hda)	4,625
A6 - Pérdidas por ingreso del aire al ciclón (hc)	102
A7 - Pérdidas debidas al filtro (hf)	0
	120,911

Pérdidas debidas a la resistencia por el movimiento del material	[mmca]
B1 - Pérdidas para imprimirle fuerza viva al material (him)	1,052
B2 - Pérdidas porresistencias en las cañerias (htm)	0,998
Ba - Pérdidas para vencer alturas (hhm)	2,563
B4 - Pérdidas por ángulos y cambios de dirección (hdm)	4,625
Bs - Pérdidas por entrada al ciclón (hdc)	3,304
	12,542

	[mmca]	[Pa]	[mbar]
Pérdidas Totales (hT)	133,453	1308,363	13,087

Tabla 4.1

4.2.7. Potencia Necesaria del Ventilador (N_a)

Para este caso se trabaja con dos temperaturas, con una temperatura ambiente mínima de 21°C para la cual la densidad será la más alta y traerá aparejada el mayor consumo de potencia, menor caudal y menor presión estática y una temperatura máxima de trabajo de 110°C para la cual se conseguirá el menor consumo de potencia pero se tendrá mayor presión estática de trabajo y mayor caudal a transportar.

La potencia necesaria del ventilador para una instalación neumática del tipo de aspiración viene dado por la siguiente expresión:

$$N_a = \frac{V_a \times h_T}{75 \left(\frac{Kg.m}{s.CV}\right) \times \eta} \times \left(\frac{1000 + h_T}{1000}\right) \tag{4.18}$$

Donde: η: Rendimiento del Ventilador [-]

Se adopta un rendimiento del ventilador centrifugo de $\eta=0.5$ según "Libro de Transportes Neumáticos" (C.E.I.L.P.) y reemplazando en (4.18):

$$N_a = \frac{0,231 \frac{m^3}{s} \times 133,453 \, mmca}{75 \left(\frac{kg \, m}{s \cdot CV}\right) \times 0,5} \times \left(\frac{1000 + 133,453 mmca}{1000}\right) = 0,93 \, CV = 0,69 KW$$

4.2.8. Corrección por Temperatura del Ciclón

Las tablas y curvas características publicadas por los fabricantes están basadas en el aire estándar, y las magnitudes de los parámetros a seleccionar están referidas a las condiciones imperantes en la entrada del ventilador, que pueden o no ser coincidentes con las condiciones estándares.

El Caudal (Q) es constante si el ventilador opera a una velocidad de giro constante (rpm=cte) y sobre un sistema que no implique cambios de resistencia (sin modificación de conductos, campanas, etc.), o sea que no es afectado por los cambios en la densidad.

Funcionando el ventilador con densidades diferentes δ_1 y δ_2 resulta entonces que: $Q_1 = Q_2$

Pero tanto la presión (Δh) desarrollada como la potencia (Pot) consumida son proporcionales a la densidad, y para dos densidades diferentes, δ_1 y δ_2 resulta:

$$\frac{\Delta h_2}{\Delta h_1} = \frac{\delta_2}{\delta_1} \qquad y \qquad \frac{Pot_2}{Pot_1} = \frac{\delta_2}{\delta_1}$$

Las variaciones de la densidad, debidas a cambios normales de temperatura, presión atmosférica y humedad, son pequeñas y no se las considera. Cuando la variación de la densidad es mayor que un 5% del valor estándar $(1,2\ Kg/m^3)$ se deben considerar las correcciones indicada para la presión y la potencia.

La llamada *presión equivalente* es la presión que corresponde a la densidad estándar y se la determina mediante la siguiente ecuación:

$$\Delta h_e = \Delta h_r \times \frac{1,2}{\delta_r} \ [mmca] \ \ (4.19)$$

Donde:

 Δh_e : Presión Equivalente $[N/m^3]$ Δh_r : Presión Real $[N/m^3]$

 δ_r : Densidad Real [Kg/m³]

Las presiones Δh_e y Δh_r pueden representar tanto a la presión total del ventilador como la presión estática del ventilador, según sea la variable usada por el fabricante.

El ventilador seleccionado con el caudal constante y la presión equivalente, debe operar a una velocidad de giro (rpm) indicada en la tabla del fabricante.

Sin embargo el ventilador no desarrolla la presión equivalente, sino la presión real dada por las condiciones de operación.

De la misma forma, la potencia requerida no es la indicada por la tabla, sino que varía, según la densidad del material que se está transportando.

Así la potencia real será:

$$Pot_r = Pot_{Tabla} \times \frac{\delta_r}{1.2} [W]$$

Dónde:

 Pot_r : Potencia real consumida [W] Pot_{Tabla} : Potencia entregada al eje según la tabla [W]

Primero se expresa el caudal en unidades del sistema inglés:

$$Q = 0.231 \frac{m^3}{s} = 0.231 \frac{m^3}{s} \times \left(\frac{2.118.9 \ CFM}{1 \ \frac{m^3}{s}}\right) = 489.5 \ CFM$$

La presión real hallada en el punto 4.2.6.3 es:

 $\Delta h_r = 133,453 \ mmca = 5,25 \ puldagasca = 5,25"SP$

Para obtener la presión equivalente se debe conocer la densidad para la condición real de funcionamiento del ventilador; a una temperatura de 110° C y una altitud de 0m, que es $\delta_r=0.924~Kg/m^3$

La presión equivalente, reemplazando en (4.19) es:

$$\Delta h_e = \Delta h_r \times \frac{1.2}{\delta_r} = 5.25"SP \times \frac{1.2}{0.924 \frac{Kg}{m^3}} = 6.82"SP$$

4.2.9. Verificación Ciclón 1

Antes de seleccionar el ventilador, se debe verificar que éste pueda ser utilizado también para el transporte de chips, variando solamente el caudal del ventilador mediante la utilización de un variador de velocidad. Se comprobará que el ventilador es capaz de vencer las pérdidas de carga que este material origina en el sistema.

4.2.9.1. Material Transportado

El material transportado está dado por la siguiente expresión:

$$P_m = \frac{Q}{3.6}$$
 (4.20)

Donde:

 P_m : Material transportado por segundo [Kg/s] Q: Caudal de material transportado [Kg/h]

Reemplazado en (4.20):

$$P_m = \frac{Q}{3.6} = \frac{1 \frac{tn}{h}}{3.6 \left(\frac{s \cdot tn}{h \cdot Kg}\right)} = 0.277 \frac{Kg}{s}$$

4.2.9.2. Volumen de Aire

Utilizando las ecuaciones de dilución y relación de peso Aire-Material (d_V) puede calcularse el volumen de aire necesario (V_a) para la instalación.

La relación de peso aire-material está dada por:

$$r_p = \frac{P_m}{1.2 \times V_a}$$
 (4.21)

Donde:

 V_a : Volumen de aire $[m^3/h]$ r_p : Relación de Peso [-]

Despejando el volumen de aire de la ecuación (4.21) y considerando una relación de peso igual a 1 (relación utilizada para los transportes de baja presión):

$$V_a = \frac{0,277 \frac{Kg}{s}}{1,2 \times 1 \frac{Kg}{m^3}} = 0,231$$

$$V_a = 13,88 \frac{m^3}{min} = 833,33 \frac{m^3}{h}$$

Los litros de aire por unidad de peso del material transportado (l_a) son:

$$l_a = 1000 \times \frac{V_a}{P_m}$$
 (4.22)

$$l_a = 1000 \times \frac{0.231 \frac{m^3}{s}}{0.277 \frac{Kg}{s}} = 833.93 \frac{litros\ de\ aire}{Kg\ material}$$

4.2.9.3. Velocidad del Aire

Según "Transporti Meccanici" (ZIGNOLI, 1970), de Tabla *CCCXXXI*, Fig.4.1, se obtiene la ecuación que determina la velocidad del aire en función del material transportado y el tipo de recorrido que debe desarrollar el mismo en la instalación.

$$v_a = 30 \times \sqrt{\gamma_m} \quad (4.23)$$

Donde:

 v_a : Velocidad del Aire [m/s] γ_m : Peso específico del Material (Chips) $[Kg/dm^3]$ Entonces, reemplazando valores:

$$v_a = 30 \times \sqrt{0.16 \frac{kg}{dm^3}} = 12 \frac{m}{s}$$

4.2.9.4. Diámetro de la Tubería

Conociendo la velocidad del aire se determina el diámetro de la tubería según la siguiente expresión:

$$S_T = \frac{V_a}{v_a} = \frac{\pi \times D^2}{4} \rightarrow D = \sqrt{\frac{4 \times V_a}{v_a \times \pi}} \quad (4.24)$$

Donde: S_T : Sección de la Tubería $[m^2]$

$$D = \sqrt{\frac{4 \times V_a}{v_a \times \pi}} = \sqrt{\frac{4 \times 0.231 \frac{m^3}{s}}{12 \frac{m}{s} \times \pi}} = 0.156m$$

Se adopta un diámetro comercial de 200mm.

Como el diámetro para transportar chips es igual al diámetro calculado en el punto 4.2.4. para transportar aserrín, las caídas de presión originadas en el sistema serán las mismas, y por lo tanto los requerimientos para el ventilador serán iguales.

4.2.10. Datos para la Selección

Según las condiciones de operación se debe emplear un ventilador del tipo centrífugo. Los requerimientos a cumplir por el ventilador del ciclón 1 son:

$$Q = 489,5 \ CFM$$

 $\Delta h_e = 6,82"SP$
 $N_a = 0,93 \ CV = 0,69KW$

5. SECTOR DE MOLIENDA

5.1. SILO DE ASERRIN Y CHIPS SECOS

Ver Plano PM-SAC-001 Rev.01

5.2. MOLINO A MARTILLOS

Características de Operación del Molino a Martillos

Producción: 1tn/h

Materia prima: Chips y aserrín de madera.

En base a los puntos mencionados el molino a martillos a instalar en la planta fue recomendado por el fabricante, por lo que su cálculo y dimensionamiento no se contempló en el presente proyecto.

5.3. CICLÓN 2

El ciclón 2 transporta dos caudales, por un lado está en comunicación con el equipo de molienda y por el otro con el recupero de finos de la zaranda.

El caudal de aire que debe manejar la conexión Equipo de molienda-Ciclón 2 (trayectoria 1) debe estar preparado para conducir 1 tonelada de aserrín por hora mientras que la conexión Zaranda-Ciclón 2 (trayectoria 2) recupera aproximadamente un 5% de la producción.

Se deben determinar las caídas de presión que habrá en ambas trayectorias (1 y 2) y los requerimientos necesarios para la selección del ciclón y el ventilador apto para el transporte.

5.3.1. Trayectoria 1

5.3.1.1. Material Transportado

El material transportado está dado por la siguiente expresión:

$$P_m = \frac{Q}{3.6}$$
 (5.1)

Donde:

 P_m : Material transportado por segundo [Kg/s] Q: Caudal de material transportado [Kg/h]

$$P_m = \frac{Q}{3.6} = \frac{1 \frac{tn}{h}}{3.6 \left(\frac{s \cdot tn}{h \cdot Kg}\right)} = 0.277 \frac{Kg}{s}$$

5.3.1.2. Volumen de Aire

Utilizando las ecuaciones de dilución y relación de peso Aire-Material (d_v) puede calcularse el volumen de aire necesario (V_a) para la instalación.

La relación de peso aire-material está dada por la ecuación (5.2):

$$r_p = \frac{P_m}{1.2 \times V_a}$$
 (5.2)

 V_a : Volumen de aire $[m^3/h]$ r_n : Relación de Peso [-]

Despejando el volumen de aire de la ecuación (5.2) y considerando una relación de peso igual a 1 (relación utilizada para los transportes de baja presión):

$$V_a = \frac{0.277 \frac{Kg}{s}}{1.2 \times 1 \frac{Kg}{m^3}} = 0.231 \frac{m^3}{s}$$

$$V_a = 13,88 \frac{m^3}{min} = 833,33 \frac{m^3}{h}$$

Los litros de aire por unidad de peso del material transportado (l_a) son:

$$l_a = 1000 \times \frac{V_a}{P_m} \qquad (5.3)$$

Donde: l_a : volumen de aire $\left[\frac{litros\ de\ aire}{Kg\ de\ material}\right]$

$$l_a = 1000 \times \frac{0.231 \frac{m^3}{s}}{0.277 \frac{Kg}{s}} = 833.93 \frac{litros\ de\ aire}{Kg\ material}$$

5.3.1.3. Velocidad del Aire

Según "Transporti Meccanici" (ZIGNOLI, 1970), de Tabla *CCCXXXI*, Fig.4.1, se obtiene la ecuación que determina la velocidad del aire en función del material transportado y el tipo de recorrido que debe desarrollar el mismo en la instalación.

$$v_a = 30 \times \sqrt{\gamma_m} \qquad (5.4)$$

Donde:

 v_a : Velocidad del Aire [m/s] γ_m : Peso específico del Material $[Kg/dm^3]$

Entonces, reemplazando en (5.4):

$$v_a = 30 \times \sqrt{0.09 \frac{kg}{dm^3}} = 9 \frac{m}{s}$$

5.3.1.4. Diámetro de la Tubería

Conociendo la velocidad del aire se determina el diámetro de la tubería según la siguiente expresión:

$$S_T = \frac{V_a}{v_a} = \frac{\pi \times D^2}{4} \rightarrow D = \sqrt{\frac{4 \times V_a}{v_a \times \pi}} \quad (5.5)$$

Donde: S_T : Sección de la Tubería $[m^2]$

$$D = \sqrt{\frac{4 \times V_a}{v_a \times \pi}} = \sqrt{\frac{4 \times 0.231 \frac{m^3}{s}}{9 \frac{m}{s} \times \pi}} = 0.18m$$

Se adopta un diámetro comercial de 200mm y se recalcula la velocidad del aire en función del diámetro adoptado.

$$v_a = \frac{4 \times V_a}{\pi \times D^2} = \frac{4 \times 0.231 \frac{m^3}{s}}{\pi \times (0.200m)^2} = 7.35 \frac{m}{s}$$

5.3.1.5. Verificación de la Relación de Secciones

La condición que debe cumplir el sistema para que no existan inconvenientes en el transporte es:

$$S_T \ge 10.S_m \quad (5.6)$$

Donde:

 S_T : Sección de la Tubería $[m^2]$ S_m : Sección del Material $[m^2]$

$$S_T = \frac{\pi \times D^2}{4} = \frac{\pi \times (0.200m)^2}{4} = 0.0314 \, m^2$$

$$S_m = \frac{P_m}{\gamma_m \times 0.75 \times v_a} = \frac{0.277 \frac{Kg}{s}}{90 \frac{Kg}{m^3} \times 0.75 \times 7.35 \frac{m}{s}} = 0.000558m^2$$

Se reemplazan los resultados en la ecuación (5.6):

$$S_T \ge 10. S_m$$

 $0.314 \, m^2 \ge 0.00558 m^2$

Como la relación de secciones queda verificada, el siguiente punto es calcular la presión necesaria de la instalación.

5.3.1.6. Presión Necesaria

La presión necesaria está dada por las pérdidas debido a las resistencias del aire y del material. La suma de ambas caídas determina la presión que debe el vencer el ventilador.

5.3.1.6.1. Pérdidas debidas al Aire

5.3.1.6.1.1. Pérdidas para Imprimir Velocidad al Aire (h_d)

La pérdida está dada por la siguiente ecuación:

$$h_d = \frac{\gamma_a \times v_a^2}{2g} \quad (5.7)$$

Donde:

 γ_a : Peso específico del aire $[kg/m^3]$ g: aceleración de la gravedad $[m/s^2]$

$$h_d = \frac{1.2 \frac{Kg}{m^3} \times \left(7.35 \frac{m}{s}\right)^2}{2 \times 9.81 \frac{m}{s^2}} = 3.304 \ mmca$$

5.3.1.6.1.2. Pérdidas por Ingreso del aire al Circuito (h_{ia})

La pérdida está dada por la siguiente ecuación:

$$h_{ia} = 2 h_d$$
 (5.8)

$$h_{ia} = 2 \times 3,304 \, mmca = 6,608 \, mmca$$

5.3.1.6.1.3. Pérdidas por Rozamiento en las Tuberías $(m{h}_t)$

La pérdida está dada por la siguiente ecuación:

$$h_t = \frac{f.L.\gamma_a.v_a^2}{2a.D}$$
 (5.9)

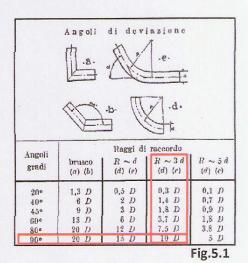
Donde:

f: factor de fricción [-]. Se lo considera $\cong 0,02$ L: Longitud de tramos rectos de la tubería [m]

$$h_t = \frac{0.02 \times 6.5m \times 1.2 \frac{Kg}{m^3} \times \left(7.35 \frac{m}{s}\right)^2}{2 \times 9.81 \frac{m}{s^2} \times 0.200m} = 2.15 \text{ mmca}$$

5.3.1.6.1.4. Pérdidas por Altura (h_h)

La pérdida está dada por la siguiente ecuación:


$$h_h = \gamma_a \times H \quad (5.10)$$

Dónde: H: Altura total [m]

$$H = 4m$$

$$h_h = 1.2 \frac{Kg}{m^3} \times 4m = 4.8mmca$$

5.3.1.6.1.5. Pérdidas por Curvas y Seccionadores $(m{h}_{da})$

La pérdida para los distintos accesorios se extraen de "Transporti Meccanici" (ZIGNOLI, 1970) Tabla CCCXXXII, Fig.5.1 y Fig.5.2.

Allargamento di sezione (m) (n) Rapporto diametri Angolo uscita di raccordo 0,5 0.7 0,8 all'aria libera 25 D 16 D 10 D 50 D 40 D bruseo (n) 25 D 20 D 14 D 4 D 3 D 40 D 35 D 30° 0,5 D 0,5 D

Fig.5.2

- Codos 90°: se adopta un radio de curvatura de tres veces el diámetro de la tubería (R=10D) y se tiene que la longitud equivalente del accesorio es diez veces el diámetro de la tubería de transporte. $L_0=10\times D=10\times 0, 2m=2m$ (Long. Equivalente por codo) $L=3\times L_0=3\times 2m=6m$
- Las pérdidas debidas a la entrada al ciclón se consideran como una pérdida debido a un ensanchamiento brusco de sección a la intemperie.

$$L = 50 \times D = 50 \times 0.2m = 10m$$

La longitud total equivalente (L_{Teq}) en los accesorios de la instalación es la suma de las longitudes halladas anteriormente: $L_{Teq}=16m$

La pérdida está dada por:

$$h_{da} = \frac{f.L_{Teq}.\gamma_a.v_a^2}{2g.D}$$
 (5.11)

$$h_{da} = \frac{0.02 \times 16m \times 1.2 \frac{Kg}{m^3} \times \left(7.35 \frac{m}{s}\right)^2}{2 \times 9.81 \frac{m}{s^2} \times 0.2m} = 5.29mmca$$

5.3.1.6.2. Pérdidas debidas al Material

5.3.1.6.2.1. Pérdidas para Imprimirle Fuerza Viva al Material $(m{h}_{im})$

Para el cálculo se considera que la velocidad del material es 0,75 veces la velocidad del aire, por lo que la pérdida para imprimirle fuerza viva al material está dada por:

$$h_{im} = \frac{0.008 \times Q \times v_{material}^{2}}{V_{a}} = \frac{0.008 \times Q \times (0.75 \times v_{aire})^{2}}{V_{a}}$$
(5.12)

$$h_{im} = \frac{0,008 \times 1 \frac{tn}{h} \times \left(0,75 \times 7,35 \frac{m}{s}\right)^{2}}{0,231 \frac{m^{3}}{s}} = 1,052 \, mmca$$

5.3.1.6.2.2. Pérdidas por Resistencias en las Cañerías (h_{tm})

La pérdida está dada por la siguiente ecuación:

$$h_{tm} = 0.06 \times tg\varphi \times L \times \frac{Q}{V_a} \quad (5.13)$$

Donde:

L: Longitud de tramos rectos de la tubería [m] $tg\varphi$: representa el roce del material transportado con la pared del recipiente [-] V_a : Caudal Volumétrico $[m^3/s]$

Reemplazando en (5.13):

$$h_{tm} = 0.06 \times 0.7 \times 6m \times \frac{1 \frac{tn}{h}}{0.231 \frac{m^3}{s}} = 1.101 mmca$$

5.3.1.6.2.3. Pérdidas para Vencer Alturas (h_{hm})

La pérdida está dada por la siguiente ecuación:

$$h_{hm} = \frac{0.278 \times Q \times H}{V_a} \qquad (5.14)$$

$$h_{hm} = \frac{0,278 \times 1 \frac{tn}{h} \times 4m}{0,231 \frac{m^3}{s}} = 4,81 mmca$$

5.3.1.6.2.4. Pérdidas por Ángulos y Cambios de Dirección $(h_{\it dm})$

La pérdida (h_{dm}) está dada por la pérdida (h_{da}) multiplicada por la relación de pesos (r_p) :

$$h_{dm} = h_{da} \times r_p \qquad (5.15)$$

$$h_{dm} = h_{da} \times r_p = 5,29mmca \times 1 = 5,29mmca$$

5.3.1.6.2.5. Pérdidas por la Entrada al Ciclón (h_{dc})

Las pérdidas debidas a la entrada al ciclón se dan en la ecuación (5.16) y son función de la longitud equivalente dada por:

$$L_{Teq} = 50 \times D$$

$$L_{Teq} = 50 \times 0.2m = 10m$$

Y la pérdida es:

$$h_{dc} = \frac{f.L_{Teq}.\gamma_{a}.v_{a}^{2}}{2g.D}$$
 (5.16)

$$h_{dc} = \frac{0.02 \times 10m \times 1.2 \frac{Kg}{m^3} \times \left(7.35 \frac{m}{seg}\right)^2}{2 \times 9.81 \frac{m}{s^2} \times 0.2m} = 3.304mmca$$

5.3.2. Trayectoria 2

5.3.2.1. Material Transportado

En este tramo del sistema, el material transportado será el 5% de la producción de pellets. El material transportado está dado por la siguiente expresión:

$$P_m = \frac{Q}{3.6}$$
 (5.17)

Donde:

 P_m : Material transportado por segundo [Kg/s]Q: Caudal de material transportado [Kg/h]

$$P_m = \frac{Q}{3.6} = \frac{0.05 \times 1 \, tn/h}{3.6 \left(\frac{s \cdot tn}{h \cdot Kg}\right)} = 0.01385 \, \frac{Kg}{s}$$

5.3.2.2. Volumen de Aire

Utilizando las ecuaciones de dilución y relación de peso Aire-Material (d_V) puede calcularse el volumen de aire necesario (V_a) para la instalación.

La relación de peso aire-material está dada por la ecuación (5.18):

$$r_p = \frac{P_m}{1.2 \times V_a}$$
 (5.18)

Donde:

 V_{α} : Volumen de aire $[m^3/h]$ r_p : Relación de Peso [-]

Despejando el volumen de aire de la ecuación (5.18) y considerando una relación de peso igual a 1 (relación utilizada para los transportes de baja presión):

$$V_a = \frac{0.01385 \frac{Kg}{s}}{1.2 \times 1 \frac{Kg}{m^3}} = 0.01154 \frac{m^3}{s}$$

$$V_a = 0.6924 \frac{m^3}{min} = 41.544 \frac{m^3}{h}$$

Los litros de aire por unidad de peso del material transportado son (l_a) :

$$l_a = 1000 \times \frac{V_a}{P_m}$$
 (5.19)

Donde: l_a : volumen de aire $\left[\frac{litros de aire}{Kg de material}\right]$

$$l_a = 1000 \times \frac{0,01154 \frac{m^3}{s}}{0,01385 \frac{Kg}{s}} = 833,21 \frac{litros\ de\ aire}{Kg\ material}$$

5.3.2.3. Velocidad del Aire

Según "Transporti Meccanici" (ZIGNOLI, 1970), de Tabla *CCCXXXI*, Fig.4.1, se obtiene la ecuación que determina la velocidad del aire en función del material transportado y el tipo de recorrido que debe desarrollar el mismo en la instalación.

$$v_a = 30 \times \sqrt{\gamma_m} \qquad (5.20)$$

Donde:

 v_a : Velocidad del Aire [m/s]

 γ_m : Peso específico del Material [Kg/dm³]

Entonces, reemplazando en (5.20):

$$v_a = 30 \times \sqrt{0.09 \frac{Kg}{dm^3}} = 9 \frac{m}{s}$$

5.3.2.4. Diámetro de la Tubería

Conociendo la velocidad del aire se determina el diámetro de la tubería según la siguiente expresión:

$$S_T = \frac{V_a}{v_a} = \frac{\pi \times D^2}{4} \rightarrow D = \sqrt{\frac{4 \times V_a}{v_a \times \pi}} \quad (5.21)$$

Donde: S_T : Sección de la Tubería $[m^2]$

$$D = \sqrt{\frac{4 \times V_a}{v_a \times \pi}} = \sqrt{\frac{4 \times 0.01154 \frac{m^3}{s}}{9 \frac{m}{s} \times \pi}} = 0.04m = 40mm$$

Se adopta un diámetro comercial de 80mm y se recalcula la velocidad del aire en función del diámetro adoptado.

$$v_a = \frac{4 \times V_a}{\pi \times D^2} = \frac{0.01154 \frac{m^3}{s}}{\pi \times (0.080m)^2} = 2.296 \frac{m}{s}$$

5.3.2.5. Verificación de la Relación de Secciones

La condición que debe cumplir el sistema para que no existan inconvenientes en el transporte es:

$$S_T \ge 10.S_m \quad (5.22)$$

Donde:

 S_T : Sección de la Tubería $[m^2]$

 S_m : Sección del Material $[m^2]$

$$S_T = \frac{\pi \times D^2}{4} = \frac{\pi \times (0.080m)^2}{4} = 0.005 m^2$$

$$S_m = \frac{P_m}{\gamma_m \times 0.75 \times v_a} = \frac{0.01385 \frac{Kg}{s}}{90 \frac{Kg}{m^3} \times 0.75 \times 2.296 \frac{m}{s}} = 0.000089m^2$$

Se reemplazan los resultados en la ecuación (5.22):

$$S_T \ge 10. S_m$$

 $0.005 \ m^2 \ge 0.00089 m^2$

Como la relación de secciones queda verificada, el siguiente punto es calcular la presión necesaria de la instalación.

5.3.2.6. Presión Necesaria

5.3.2.6.1. Pérdidas Debidas al Aire

5.3.2.6.1.1. Pérdidas para Imprimir Velocidad al Aire $(m{h}_d)$

La pérdida está dada por la siguiente ecuación:

$$h_d = \frac{\gamma_a \times v_a^2}{2g} \quad (5.23)$$

Donde:

 γ_a : Peso específico del aire $[kg/m^3]$ g: aceleración de la gravedad $[m/s^2]$

$$h_d = \frac{1.2 \frac{Kg}{m^3} \times \left(2.296 \frac{m}{s}\right)^2}{2 \times 9.81 \frac{m}{s^2}} = 0.322 \ mmca$$

5.3.2.6.1.2. Pérdidas por Ingreso del Aire al Circuito (h_{ia})

La pérdida está dada por la siguiente ecuación:

$$h_{ia} = 2 h_d$$
 (5.24)

$$h_{ia} = 2 \times 0,322 \ mmca = 0,644 \ mmca$$

5.3.2.6.1.3. Pérdidas por Rozamiento en las Tuberías (\boldsymbol{h}_t)

La pérdida está dada por la siguiente ecuación:

$$h_t = \frac{f.L.\gamma_a.v_a^2}{2g.D}$$
 (5.25)

Donde:

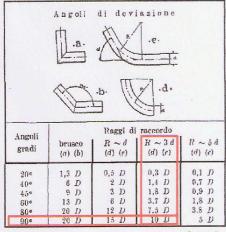
f: factor de fricción [-]. Se lo considera $\cong 0,02$ L: Longitud de tramos rectos de la tubería [m]

$$h_t = \frac{0.02 \times 11m \times 1.2 \frac{Kg}{m^3} \times \left(2.296 \frac{m}{s}\right)^2}{2 \times 9.81 \frac{m}{s^2} \times 0.080m} = 0.886 \, mmca$$

5.3.2.6.1.4. Pérdidas por Altura (h_h)

La pérdida está dada por la siguiente ecuación:

$$h_h = \gamma_a \times H \quad (5.26)$$


Donde: H: Altura total [m]

H = 9.48m

$$h_h = 1.2 \frac{Kg}{m^3} \times 9.48m = 11.376mmca$$

5.3.2.6.1.5. Pérdidas por Curvas y Seccionadores (h_{da})

La pérdida para los distintos accesorios se extraen de "Transporti Meccanici" (ZIGNOLI, 1970) Tabla CCCXXXII, Fig.5.3 y Fig.5.4.

Allargamento di sezione (m) (n) m Rapporto diametri d.:d. Angolo di raccordo uscita 0.7 0,8 0.3 0,5 all'aria libera 25 D 6,5 D 5 D 50 D 45 *D* 40 *D* $\begin{array}{ccc} 25 & D \\ 20 & D \end{array}$ 4 *D* 3 *D* 1 D 0,5 D 0,5 D 30° 35 D 25 D 11 D 7 D

Fig.5.3

Fig.5.4

 3 codos 90°: se adopta un radio de curvatura brusco y se tiene que la longitud equivalente del accesorio es veinte veces el diámetro de la tubería de transporte.

$$L_0=20\times D=20\times 0,\!08m=1,\!6m$$
 (Long .Equivalente por codo)
 $L=3\times L_0=3\times 1,\!6m=4,\!8m$

$$L = 50 \times D = 50 \times 0,08m = 4m$$

La longitud total equivalente (L_{Teq}) en los accesorios de la instalación es la suma de las longitudes halladas anteriormente: $L_{Teq}=8.8m$

La pérdida estará dada por:

$$h_{da} = \frac{f. L_{Teq}. \gamma_a. v_a^2}{2g. D}$$
 (5.27)

$$h_{da} = \frac{0,02 \times 8,8m \times 1,2 \frac{Kg}{m^3} \times \left(2,296 \frac{m}{s}\right)^2}{2 \times 9,81 \frac{m}{s^2} \times 0,08 m} = 0,709 \text{ mmca}$$

5.3.2.6.1.6. Pérdidas por Ingreso del Aire al Ciclón (\boldsymbol{h}_c)

Antes de establecer las pérdidas que provoca el ciclón se debe seleccionar un ciclón que maneje el caudal de aire de las trayectorias 1 y 2. Las gráficas de selección del proveedor (Fig.5.5), están diseñadas para ingresar en el eje de abscisas con el caudal de aire necesario y en el eje de ordenadas se obtiene la pérdida de carga que posee el mismo. En este caso el caudal necesario será:

$$P_m = \frac{Q}{3.6} = \frac{1.05 \frac{tn}{h}}{3.6 \left(\frac{s \cdot tn}{h \cdot Kg}\right)} = 0.2916 \frac{Kg}{s}$$

$$V_a = \frac{P_m}{1.2 \times r_p} = \frac{0.2916 \frac{Kg}{s}}{1.2 \times 1 \frac{Kg}{m^3}} = 0.243 \frac{m^3}{s} = 14.58 \frac{m^3}{min} = 875 \frac{m^3}{h}$$

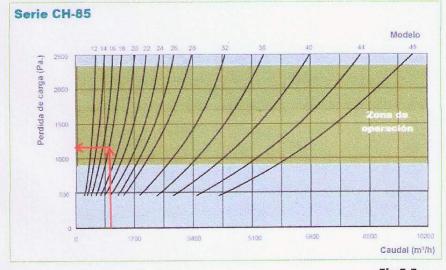


Fig.5.5

Para este caso el modelo seleccionado es la Serie CH-85 modelo 18, la cual posee una pérdida de carga de $h_c=1200Pa=122,4mmca$ y las dimensiones del mismo se pueden observar en la Fig.5.6.

□ Dimensiones generales

□ Un ciclón

	CL	-45	CH	1-85	c	D E	F G
Tamaño	Α	В	A	8			
12	290	1105	240	1245	455	305	185
14	325	1285	265	1450	535	355	215
16	355	1460	290	1650	610	405	250
18	385	1640	315	1855	685	455	280
20	420	1815	345	2055	760	510	310
22	450	1095	355	2260	840	560	349
24	480	2185	280	2485	915	610	375
26	515	2360	405	2865	990	660	405
28	545	2540	430	2870	1065	7.10	445
32	610	2895	480	3250	1220	815	480
36	675	3250	535	3630	1370	915	545
40	735	3605	585	4040	1525	1015	510
44	800	3960	635	4445	1975	1120	675
48	865	4320	685	4825	1830	1220	735

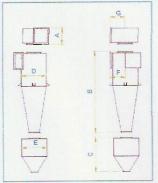


Fig.5.6

5.3.2.6.2. Pérdidas Debidas al Material

5.3.2.6.2.1. Pérdidas para Imprimirle Fuerza Viva al Material $\left(h_{im} ight)$

Para el cálculo se considera que la velocidad del material es 0,75 veces la velocidad del aire, por lo que la pérdida para imprimirle fuerza viva al material está dada por:

$$h_{im} = \frac{0,008 \times Q \times v_{material}^{2}}{V_{a}} = \frac{0,008 \times Q \times (0,75 \times v_{aire})^{2}}{V_{a}}$$
(5.28)

$$h_{im} = \frac{0,008 \times 1 \frac{tn}{h} \times \left(0,75 \times 2,296 \frac{m}{s}\right)^{2}}{0,01154 \frac{m^{3}}{s}} = 2,055 mmca$$

5.3.2.6.2.2. Pérdidas por Resistencias en las Cañerías $(m{h}_{tm})$

La pérdida está dada por la siguiente ecuación:

$$h_{tm} = 0.06 \times tg\varphi \times L \times \frac{Q}{V_a}$$
 (5.29)

Donde:

L: Longitud de tramos rectos de la tubería [m] $tg \varphi$: representa el roce del material transportado con la pared del recipiente [-] V_a : Caudal Volumétrico $[m^3/s]$

$$h_{tm} = 0.06 \times 0.7 \times 11m \times \frac{0.05 \frac{tn}{h}}{0.01154 \frac{m^3}{s}} = 2.0mmca$$

5.3.2.6.2.3. Pérdidas para Vencer Alturas (h_{hm})

La pérdida está dada por la siguiente ecuación:

$$h_{hm} = \frac{0.278 \times Q \times H}{V_a} \tag{5.30}$$

$$h_{hm} = \frac{0.278 \times 0.05 \frac{tn}{h} \times 9.48m}{0.01154 \frac{m^3}{s}} = 11.418mmca$$

5.3.2.6.2.4. Pérdidas por Ángulos y Cambios de Dirección (h_{dm})

La pérdida (h_{dm}) esta dada por la pérdida (h_{da}) multiplicada por la relación de pesos (r_p) :

$$h_{dm} = h_{da} \times r_p \qquad (5.31)$$

$$h_{dm}=h_{da}\, imes\,r_p=\,0.709\,mmca\, imes\,1=\,0.709\,mmca$$

5.3.2.6.2.5. Pérdidas por la Entrada al Ciclón (h_{dc})

Las pérdidas debidas a la entrada al ciclón se dan en la ecuación (5.32) y son función de la longitud equivalente dada por:

$$L_{Teq} = 50 \times D$$

$$L_{Teq} = 50 \times 0.08m = 4m$$

Y la pérdida es:

$$h_{dc} = \frac{f. L_{Teq}. \gamma_{a}. v_{a}^{2}}{2g. D}$$
 (5.32)

$$h_{dc} = \frac{0,02 \times 4m \times 1,2 \frac{Kg}{m^3} \times \left(2,296 \frac{m}{seg}\right)^2}{2 \times 9,81 \frac{m}{s^2} \times 0,08m} = 0,322mmca$$

5.3.3. Pérdidas Totales

Las pérdidas totales son:

$$h_T = \sum h_m + \sum h_a \qquad (5.33)$$

Pérdidas debidas al aire: $(h_a)=158,489\ mmca$ Pérdidas debidas al Material: $(h_m)=32,061\ mmca$ Pérdidas Totales: $(h_T)=h_a+h_m=190,55\ mmca=18,686\ mbar$

5.3.4. Potencia Necesaria del Ventilador (N_a)

Para este caso, se tienen dos temperaturas de trabajo, una temperatura ambiente mínima de 21°C para la cual la densidad será la más alta y traerá aparejada el mayor consumo de potencia, menor caudal y menor presión estática y una temperatura máxima de trabajo de 110°C para la cual se conseguirá el menor consumo de potencia pero tendremos mayor presión estática de trabajo y mayor caudal a transportar.

La potencia necesaria del ventilador para una instalación neumática del tipo de aspiración viene dado por la siguiente expresión:

$$N_a = \frac{V_a \times h_T}{75 \left(\frac{Kg.m}{s.CV}\right) \times \eta} \times \left(\frac{1000 + h_T}{1000}\right)$$
 (5.34)

Donde:

 η : Rendimiento del Ventilador [-] V_a : Caudal de aire, será la suma del caudal de la trayectoria 2 y 3 $[m^3/s]$

Se adopta un rendimiento del ventilador centrifugo de $\eta=0.5$ según "Libro de Transportes Neumáticos" (C.E.I.L.P.).

$$N_a = \frac{0,24254 \frac{m^3}{s} \times 190,55 \ mmca}{75 \left(\frac{kg \ m}{s. \ CV}\right) \times 0,5} \times \left(\frac{1000 + 190,55 mmca}{1000}\right) = 1,467 \ CV = 1,09 KW$$

5.3.5. Datos para la Selección

Según las condiciones de operación se debe emplear un ventilador del tipo centrífugo. Los requerimientos a cumplir por el ventilador del ciclón 2 son:

$$Q = 513,92 \ CFM$$

 $\Delta h_e = 190,55 \ mmca = 7,51 \ puldagasca = 7,51"SP$
 $N_a = 1,467 \ CV = 1,09KW$

6. SECTOR PELLETIZADO

6.1. DEPÓSITO SOBRE PRENSA (depósito de aserrín)

Ver plano PM-SA-001 Rev. 01

6.2. ALIMENTADOR DE PRENSA

Es el encargado de brindar una alimentación pareja al equipo acondicionador.

Está compuesto por un alimentador helicoidal con batea transportadora en "V" que conecta la boca de descarga del depósito sobre prensa con la alimentación del acondicionador.

Características de Operación del Alimentador de Prensa

Producción: 1tn/h

Materia prima: aserrín seco de madera.

En base a los puntos mencionados el alimentador de prensa a instalar en la planta fue recomendado por el fabricante, por lo que su cálculo y dimensionamiento no se contempló en el presente proyecto.

6.3. ACONDICIONADOR DE PRENSA

Recibe el aserrín en polvo proveniente del alimentador, permitiendo por medio de paletas regulables, generar una mezcla homogénea de aserrín y vapor previo a la alimentación de la prensa y eventualmente otros líquidos que garantizan la correcta preparación del material a pelletizar.

Características de Operación del Acondicionador de Prensa

Producción: 1tn/h

Materia prima: aserrín seco de madera.

En base a los puntos mencionados el acondicionador de prensa a instalar en la planta fue recomendado por el fabricante, por lo que su cálculo y dimensionamiento no se contempló en el presente proyecto.

6.4. PRENSA PELLETIZADORA

Características de Operación de la prensa pelletizadora

Producción: 1tn/h

Materia prima: aserrín proveniente del acondicionador.

En base a los puntos mencionados la prensa pelletizadora a instalar en la planta fue recomendado por el fabricante, por lo que su cálculo y dimensionamiento no se contempló en el presente proyecto.

6.5. CALDERA

Se adopta una caldera con las siguientes características:

- Tipo de combustibles: sólidos.
- Alimentación: leña o desperdicios celulósicos.
- Presión de trabajo: 8 Kg/ cm².

La presión de trabajo a la que opera la caldera es la requerida para inyectar el vapor al acondicionador de prensa y garantizar la correcta preparación del material a pelletizar.

El tipo de alimentación de la caldera se eligió en base al recurso de combustible presente en la planta.

6.6. CUADRO DE REGULACIÓN

Regula y estabiliza presión de entrada de vapor proveniente del equipo generador (caldera), alimentando al acondicionador de prensa con vapor en condiciones requeridas de temperatura y libre de condensación.

Su conformación y rango de regulación dependen de los equipos antes mencionados, siendo estos:

- Elementos: Separador de gota, trampa termodinámica, filtro, válvula reguladora de presión y dos manómetros para vapor.
- Presión de entrada: Variable entre 6 y 8 kg/cm².
- Presión regulable de salida: Entre 0,8 y 3,5 kg/cm².

6.7. CINTA TRANSPORTADORA 1

El cálculo y dimensionamiento de la cinta se realiza según "Transporti Meccanici" (ZIGNOLI, 1970)

6.7.1. Ancho de la Cinta

La sección de trasporte neta (A) y el caudal de transporte (Q) vienen dados por las siguientes ecuaciones:

$$A = 0.122 \times (0.9 B - 0.05)^{2}$$
 (6.7.1)

$$Q = \gamma \times A \times v$$
 (6.7.2)

Dónde:

A: Sección de Transporte Neta [m²]

B: Ancho de la Cinta [m]

 γ : Peso específico del material transportado $[tn/m^3]$

v: V elocidad de la cinta [m/s]

Q: Caudal del material transportado [tn/h]

Reemplazando (6.7.1) en (6.7.2) y despejando B, se obtiene el ancho de banda para el transporte:

$$B = \frac{1}{0.9} \times \left[\sqrt{\frac{Q}{\gamma \times \nu \times 0.122 \times 3600}} + 0.05 \right]$$
 (6.7.3)

Se adopta una velocidad de transporte de $v=1\ m/s$ y se halla el ancho de banda con la ecuación (6.7.3).

$$B = \frac{1}{0.9} \left[\sqrt{\frac{Q}{\gamma \times \nu \times 0.122 \times 3600}} + 0.05 \right] = \frac{1}{0.9} \times \left[\sqrt{\frac{1 \frac{tn}{h}}{0.65 \frac{tn}{m^3} \times 1 \frac{m}{s} \times 0.122 \times 3600}} + 0.05 \right]$$

B = 0.121m = 121mm

Como el ancho de banda hallado no corresponde a un ancho de banda normalizado, se selecciona una banda normalizada de 400 mm. y con esté se recalcula la velocidad de la cinta despejando la velocidad (v) de (6.7.3):

$$v = \frac{Q}{\gamma \times 0,122 \times (0.9B - 0.05)^2} = \frac{1 \frac{tn}{h}}{0.65 \frac{tn}{m^3} \times 0.122 \times 3600 \times (0.9 \times 0.40m - 0.05)^2}$$

$$v = 0.036 \, \frac{m}{s}$$

Como la velocidad de transporte hallada es muy baja se asume una velocidad de 1m/s para evitar una reducción muy excesiva.

Luego se verifica que para el ancho de banda seleccionado y peso específico del material no se sobrepase la capacidad máxima de transporte establecida para la producción de la planta, esto se obtiene de Tabla CCCa, Fig.6.7.1.

	Super- ficie	Peso	Portata		Massima pertata Q in 1 ora con la velocità V in m/sec										
Lar- gherra	delia sezione del	di ma- teriale per m	del nastro in	r	= 1 m/s	80		1,30 m/s	ed		= 2 mjsc	ic .	r	~ 2,5 m/s	ee
nestro H m	mucchio di ma- teriale	di mastro per y = 1	m ora con con v = 1 m/sec (M _{cs})	Peso specifico del materiale γ in t/m*		l'eso specifico del materiale γ in t/m²			Peso specifies del materiale y in Umi			Poso specifico del materiale γ in t/m'			
	in*	kg	(3124)	0,5	1	1,5	6,5	1	1,5	0,5	1	1,5	0,5		1,5
0,30	8,0078	7	25	12	25	37	18	37	5.5	25	50	75	31	62	93
0,35	0,0097	9,7	39	18	39	37	28	57	8.5	39	78	117	48	96	144
0,40	0,0128	12,8	50	25	30	7.5	37	75	112	30	100	150	68	12.5	187
0,43	0,0161	16,4	58	29	38	87	43	87	139	3.8	116	174	72	145	217
6,50	0,0204	20,4	18	39	78	117	38	117	175	78	156	234	97	195	293
0,85	0,0250	25.0	88	44	88	132	66	132	198	88	176	264	110	220	330
0,00	0,0500	34,0	106	33	106	159	7.0	159	228	106	212	318	132	265	397
0,65	9,0355	33,5	125	62	175	187	93	187	280	125	250	375	156	312	10.8
0.10	0,0110	41,6	148	14	148	222	111	222	333	118	296	444	183	270	555
0,80	0,0352	55.2	196	98	196	294	147	294	111	1:16	392	588	245	490	735
0,90	0,0712	71,2	254	127	251	381	190	281	571	254	508	762	314	625	941
1,00	0,0892	89,2	320	169	320	180	240	480	720	320	610	969	400	800	1200
1,20	0,134	134,6	470	235	470	705	352	705	1957	670	210	1419	587	1175	1762
1,40	0.189	189,0	670	335	670	1005	502	1005	1507	676	1340	2010	835	1675	2319

Fig.6.7.1

La capacidad máxima de transporte para la velocidad utilizada se encuentra verificada.

6.7.2. Potencia Necesaria para el Accionamiento

La fuerza necesaria para el movimiento de la cinta está compuesta por las siguientes fuerzas:

$$F_{Accionamiento} = T - t = F_v + F_m \pm F_h + F_d$$
 (6.7.4)

Dónde:

 F_v : Fuerza necesaria para mover la cinta en vacio [Kg]

 F_m : Fuerza necesaria para mover el material en forma horizontal [Kg]

 F_h : Fuerza necesaria para elevar o descender el material [Kg]

 F_d : Fuerza necesaria para vencer los descargadores [Kg]

6.7.2.1. Fuerza Necesaria para mover la Cinta en Vacío (F_{v})

La fuerza se determina mediante la siguiente ecuación:

$$F_{v} = \left(1 + \sum r\right) \times f \times q_{s} \times (L + L_{0}) \quad (6.7.5)$$

Donde:

r: Equivalencia de resistencia que ofrecen los tensores verticales [-].

f: Resistencia equivalentes de las masa rotantes [-].

 q_s : Peso por unidad de longitud de las partes móviles [Kg/m].

L: Distancia horizontal entre centros de tambores [m].

 L_0 : Longitud adicional que depende del tipo de montaje [m].

El valor de "r" se obtiene de la Fig.6.7.2, como cojinetes laminados: r=0.005

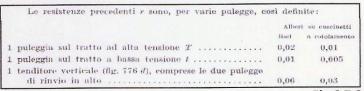


Fig.6.7.2

El valor de "f"se extrae de Fig.6.7.3, como rodamiento bien montado: f = 0.025

```
I valori di f delle (1) (2) (3) sono:

per cuscinetti lisci in bronzo o metallo bianco . . . . f = 0.05

per cuscinetti a rulli di serie . . . . . . . . . . . . f = 0.03

per cuscinetti a sfere o a rulli molto ben montati . f = 0.025
```

Fig.6.7.3

El valor de " q_s " se obtiene de la tabla CCI, Fig.6.7.4, con el ancho de banda B=0.40m: $q_s=24\,\frac{\mathrm{K}g}{m}$

	Posa medio			0.83	kg/m²	128 ano	e) a tek	N.				W	0,93	kg/m ¹	132 one	e) a tele	N.		
Lur	in kg/m		tele 4			tele 5			tele fi			telc 4			tele 5			tele 5	
mestro H	delle parti mobili			-				Sp	еннаг	e gon	ama l	nters	n						
in m	del tra- sporta- tore	1.2	1,5	2,5	1,1	1,5	2,5	1,2	1,5	2,5	1,2	1,3	2,5	1,1	1,5	2,5	1,2	1,5	2,5
	kg							80	essor	e gon	ma	stern	0						
		5,5	4,8	1	3,5	4.8	1	3,3	1,8	7	3,5	1,3	7	3,5	4,9		3,5	4,8	1
0,36	20	3,4	4.0	5,4	3,8	1,5	- 4,7	4.7	1,8	6,2	3,8	4,3	3,6	4.1	4,8	6,0	4,5	3,3	6,5
6.35	22	4	3.8	6.3	1,5	5,3	6.7	4.9	5,6	7,2	4,5	5,1	6,5	4,5	- 5,6	7	5,3	6	7,6
0.40	24	4,6	3,7	7,5	5.1	6,0	1.6	5,6	6,4	8,0	4,5	5,8	7.5	5,5	6,4	ñ	0,0	6,9	8,1
8,45	28	5,2	8,4	8,6	3,7	11,8	E.6	6,3	7,2	6,0	5,6	9,5	8,6	6,2	1,2	,	7.5	1.8	19,8
8,56	3.2	5,7	7,0	9,6	0,4	1,5	14,5	7,0	8,0	10,2	6,2	7,2	9,3	6,9	9,7	10	9,0	10.4	13
0,66	38	7,0	8,5	10,8	7,7	9,8	11,5	8,4	3,7	12,2	7,4	8.7	11.2	8,2	12,0	16	11.0	13	16
6,75	5.5	8,5	19,7	12,5	9,6	11.0	14	10,5	12,0	15,4	9,2	10,3	14	10.2	14.4	18	13.5	15.5	19.5
0,90	60	10,5	11,5	16,6	11,5	13,5	17	12,5	14,4	18,5	11	13	18.5	13,4	18,6	20	15	17	01.5
1,00	13	11,5	12.7	18,8	12,7	15,9	15	1,60	15	26		11,5	18,3	16,4	13	21	1:	21	25
1,20	90	14,0	17,2	21,5	15,2	18,0	23	17,8	13	25	14,8	17.4	22,4	18	21	26	19,5	22.5	28
1,30	100 115	15,6	18,5	23,5	10,7	19,5	26	15.3	21	31	18,5	22	28,0	20,3	91	30	29,5	26	39

Fig.6.7.4

El valor de "L"es la distancia entre centros de tambores de la cinta transportadora, que se encuentra en el plano PM-C1-001 Rev. 01: L=3.8m

El valor de " L_0 " es un factor de seguridad, que se obtiene de Fig.6.7.5, para rodillos bien montados sobre rodamientos: $L_0 = 60m$

Riassumendo, lo sforzo totale motore, detta $L_{\rm o}$ una lunghezza aggiunta che tien conto delle resistenze fisse e che si assume mediamente:

 $L_o=30$ m per rulli montati su bronzine; $L_o=60$ m per rulli montati su cuscinetti a rotolamento;

Fig.6.7.5

Reemplazando los valores obtenidos en (6.7.4):

$$F_v = (1 + 0.005) \times 0.025 \times 24 \frac{Kg}{m} \times (3.8m + 60m)$$

 $F_v = 38.47Kg$

6.7.2.2. Fuerza Necesaria para mover el Material en forma Horizontal $\left(F_{m}\right)$

El valor de F_m viene dado por la siguiente expresión:

$$F_m = f \times q_m \times (L + L_0) \quad (6.7.6)$$

Donde:

 q_m : Peso del material trasnportado por metro de cinta[Kg/m] .

f: Resistencia equivalentes de las masa rotantes[-].

 L_o : Longitud adicional que depende del tipo de montaje [m].

El valor de " q_m " se determina de la siguiente forma:

$$q_m = \frac{Q}{v} \qquad (6.7.7)$$

Donde:

Q: Caudal del material transportado [tn/h]. v: Velocidad de la cinta [m/s].

Entonces, reemplazando en (6.7.7):

$$q_m = \frac{1 \frac{tn}{h}}{1 \frac{m}{s} \times 3.6 \frac{tn.s}{Kg.h}}$$

Ernst Mariángeles - Montañana Guillermo

FACULTAD REGIONAL CONCEPCION DEL URUGUAY UNIVERSIDAD TECNOLOGICA NACIONAL MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA

$$q_m = 0,278 \; \frac{Kg}{m}$$

Reemplazando los valores obtenidos en (6.7.6):

$$F_m = f \times q_m \times (L + L_0) = 0.025 \times 0.278 \frac{kg}{m} \times (3.8m + 60m)$$

 $F_m = 0.443 \text{ Kg}$

6.7.2.3. Fuerza Necesaria para Elevar o Descender el Material (F_h)

El valor de F_h está dado por la siguiente expresión:

$$F_h = q_m \times \Delta h \quad (6.7.8)$$

Dónde: Δh : Diferencia de alturas entre tambores [m]

$$F_h = 0.278 \frac{Kg}{m} \times 0m$$

$$F_h = 0 Kg$$

6.7.2.4. Fuerza Necesaria para vencer los Descargadores (F_d)

Las ecuaciones que determinan la fuerza debido a la existencia de descargadores son las siguientes:

$$F_d = n_d (X . F_O + 1.4 . q_m)$$
 (6.7.9)

Donde:
$$F_{0} = f \times (q_s + q_m) \times (L + L_0) \pm F_h$$
 (6.7.10)

Reemplazando (6.7.10) en (6.7.9):

$$F_d = n_d \times [X. (f.(q_s + q_m) \times (L + L_0) \pm F_h) + 1.4. q_m]$$
 (6.7.11)

Donde:

n_d: Número de descargadores[-]

X: Coeficiente sacado de pág. 1093[-]

 F_0 : Resistencia de la instalación a las partesen movimiento del transportador y material [Kg]

f: Resistencia equivalentes de las masa rotantes [-]

 q_s : Peso por unidad de longitud de las partes móviles [Kg/m]

 q_m : Peso del material trasnportado por metro de cinta [Kg/m]

L: Distancia horizontal entre centros de tambores [m]

 L_0 : Longitud adicional que depende del tipo de montaje [m]

 F_h : Fuerza necesaria para elevar o descender el material [Kg]

Como no existen descargadores en el sistema, la fuerza debido a estos es nula.

$$F_d = 0 Kg$$

Ahora con todos los valores de las magnitudes que componen la fuerza de accionamiento, se obtiene dicha fuerza.

$$\begin{split} F_{Accionamiento} &= T - t = F_v + F_m \pm F_h + F_d \\ F_{Accionamiento} &= 38,47 \ Kg + 0,44 Kg = 38,91 Kg \\ F_{Accionamiento} &= 38,91 \ Kg \end{split}$$

Con la fuerza de accionamiento, se obtiene la potencia que tendrá el motor con la siguiente expresión:

$$N = \frac{F_{Accionamiento} \times v}{75 \frac{Kg \cdot m}{s \cdot CV} \times \eta_{Motor}}$$
(6.7.12)

Donde: η_{Motor} : Rendimiento del motor (adoptado) = 0,8

$$N = \frac{38,91 \, Kg \times 1 \frac{m}{s}}{75 \frac{Kg \cdot m}{s \cdot CV} \times 0,8} = 0,648 \, CV$$

6.7.3. Potencia Necesaria según Zignoli

La Potencia del motor, se determina a partir de la tabla CCCa, Fig.6.7.6 y depende de:

$$N = \frac{a+b+c}{\eta_{Motor}} \qquad (6.7.13)$$

Donde:

a: Potencia absorbida por transporte horizontal [HP].

b: Potencia absorbida por diferencia de alturas entre tambores [HP].

c: Consumo de energía para cada operación del vertido en una cinta intermedia [HP].

Se considera:

 η_{Motor} : Rendimiento del motor (adoptado) = 0,8

El valor de "a" se obtiene para el menor caudal y recorrido de transporte: a=1,2HP

Tonn.				Lung	hezza J	del tr	asportat	ore Li	n m			28
trasp, all'ora	15	30	45 Potenza	60 assorbit	75 a in H	90 P per n	120 astri pir	150 ini su e	180 uscinett	210 i a sfere	240	300
50	1.2	1,4	1,7	1,9	2,2	2,5	2,8	3,1	3,5	4,0	5,0	6,0
100	1,7	2.0	2,5	2,7	3,1	3,9	4,0	4,0	4,5	6,0	7,0	8,0
150	2,0	2,5	3,0	3,5	4,0	4,2	5,1	5,1	6,1	8,0	9,0	10
200	2,2	2.8	3.0	4.0	4.8	5.4	6,0	7,2	8,8	10	11	14
250	2,9	3.5	4.1	4.7	5,4	6,0	7,5	9,5	11	12,5	1.1	16
300	1,2	4,8	5,3	5,8	6.5	7,2	9	11.5	13	15	17	18
350	4.8	5.5	6.2	7.0	7,8	59	11	13	15	17	20	20
400	5.0	6.0	7.0	8,0	9.0	10.5	1.3	15	17	20	23	24
450	5.7	6.9	8,0	9.2	10.5	12	14	17,5	20	23	26	28
500	6.5	8	9,5	11	12.5	14	17	20	23	26	29	33

Fig.6.7.6

El valor de "b" se obtiene interpolando de tabla CCCb, Fig.6.7.7 con el caudal de material Q=1 tn/h (se adopta el menor) y una diferencia de altura entre tambores de $\Delta h=1m$, b=0.165 HP.

Tonn.				Per s	uperare	un disli	vello H	di m			b
trasportate all'ora	1	2 e p	3 er i vari	5	10	20	30	50	70 merica è	100 HP	150
50	0.165	0,33	0,50	0,80	1,65	3,30	5,00	8,2	12,5	16,5	25,0
100	0.33	0,65	1,00	1,60	3,30	6,60	10,0	16,5	25.0	33,0	50,0
150	0.5	1,0	1,5	2,5	5.0	10,0	15,0	25,0	37.0	50,0	75,0
200	0.65	1,3	2.0	3,2	6,5	13	20	33	50	65	1(11)
250	0.80	1.6	2.4	4.0	8,0	16	24	40	60	80	120
300	1.00	2,0	3.0	5.0	10,0	20	30	50	7.5	100	150
350	1,15	2,3	3,4	5.5	11	13	34	58	8.5	115	170
400	1.30	2,6	2,8	6,5	13	26	38	65	95	130	200
450	1,50	3,0	4,5	7,5	15	30	45	75	110	150	225
500	1,65	3,3	5.0	8.0	16	33	50	80	120	160	250

Fig.6.7.7

El valor de "c" es igual a cero por que la cinta no posee descargas intermedias.

Reemplazando los valores obtenidos en la ecuación (6.7.13):

$$N = \frac{1,2HP + 0,165HP + 0 HP}{0,8}$$

$$N = 1,706HP = 1,705CV$$

Como se puede observar el valor de potencia nominal recomendado según ZIGNOLI, es mayor que el hallado en el apartado 6.7.2, por lo que se adopta el valor recomendado de N=1,706HP como Potencia Nominal de régimen para los cálculos posteriores.

6.7.4. Potencia Adicional

La potencia hallada en el apartado 6.7.3 es la correspondiente a la del sistema actuando en estado de régimen, pero en el momento del arranque, así como en casos de sobrecargas bruscas eventuales, el motor estará sobrecargado. Esto se soluciona adoptando un motor con una potencia superior a la nominal y con un par de arranque adecuado a esta exigencia.

$$N_{Arr} = N \times K_{\alpha} \times K_{d} \times K_{i}$$
 (6.7.14)

Donde:

 K_a : Coef. que tiene en cuenta las fuerzas de inercia y la aceleración[-]

 K_d : Coef. que tiene en cuenta el rozamiento estático y dinámico [-]

 K_i : Coef. que tiene en cuenta posibles sobrecargas sobre la cinta el rozamiento estático y dinámico $[\,-\,]$

6.7.4.1. Cálculo de (K_a)

El cálculo de K_a se realiza teniendo en cuenta el incremento de potencia necesaria para vencer la inercia de las masas de las partes rotantes y el peso del material transportado al ponerse en movimiento. Se determina mediante las siguientes ecuaciones:

$$K_a = \frac{N + N_i}{N}$$

$$N_i = \frac{m \cdot v^2}{75 \cdot \eta \cdot t}$$

$$m = \frac{q_s \cdot l}{g} + \frac{q_m \cdot L}{g}$$
 (6.7.17)

$$t = \frac{v}{a}$$

Dónde:

m: Masa total a poner en movimiento [Kg].

t: Tiempo que tarda la cinta en alcanzar la velocidad de régimen [s].

l: Longitud total de la cinta [m] = (2L + 0.05L)

L: Longitud entre centro de tambores [m].

a: Aceleración media de la cinta $[m/s^2]$.

η: Rendimiento del motor [-]

Reemplazando valores:

$$m = \frac{q_s \cdot l}{g} + \frac{q_m \cdot L}{g} = \frac{q_s \cdot (2L + 0,05L)}{g} + \frac{q_m \times L}{g}$$

$$m = \frac{24 \frac{Kg}{m} \times (2 \times 3.8m + 0.05 \times 3.8m) + 0.278 \frac{Kg}{m} \times 3.8m}{9.81 \frac{m}{s^2}} = 19,166 Kg$$

$$t = \frac{v}{a} = \frac{1}{0.3} \frac{m_{/s}}{m_{/s^2}} = 3.33s$$

$$N_i = \frac{m \cdot v^2}{75 \cdot n \cdot t} = \frac{19,166 \, Kg \times (1 \, \frac{m}{s})^2}{75 \times 0.8 \times 3,33 \, s} = 0,096 \, CV$$

$$K_{\alpha} = \frac{N + N_i}{N} = \frac{1,706 \, CV + 0,096 \, CV}{1,706 \, CV} = 1,056$$

Ernst Mariángeles - Montañana Guillermo

6.7.4.2. Cálculo de (K_d)

Este coeficiente se halla por medio de la siguiente relación:

$$K_d = \frac{\mu_{est\'atico}}{\mu_{din\'amico}} = \frac{F_{Arranque}}{F_{r\'egimen}} \qquad (6.7.19)$$

Donde:

 $F_{Arrangue}$: Fuerza necesaria para poner en movimiento el sistema [Kg].

 $F_{r\'egimen}$: Fuerza necesaria para mantener la cinta en movimiento = $F_{Accionamiento}[Kg]$.

Siendo:
$$F_{Arranque} = 1.5 \times (F_v + F_m) + F_h + F_d$$
 (6.7.20)

Reemplazando valores:

$$F_{Arranque} = 1.5 \times (38,47Kg + 0.44Kg) + 0 Kg + 0 Kg = 58,37 Kg$$

Con este valor se obtiene el coeficiente K_d , reemplazando valores en (6.7.19):

$$K_d = \frac{58,37 \, Kg}{38,91 \, Kg} = 1,5$$

6.7.4.3. Cálculo de (K_i)

El valor de K_i depende del tipo de accionamiento de la cinta transportadora. En este caso, para accionamiento por medio de motor eléctrico: K_i : 1-1,2.

Se adopta un valor de $K_i = 1$ ya que el caudal es muy bajo.

Reemplazando los valores en la ecuación (6.7.14) se halla el valor de la potencia de arranque:

$$N_{Arrangue} = 1,056 \ CV \times 1,5 \ CV \times 1 \ CV \times 1,705 \ CV = 2,702 \ CV$$

La relación entre la potencia de arranque y la nominal es:

$$\frac{N_{Arranque}}{N} = \frac{2,702CV}{1,705CV} = 1,583$$

Entonces el porcentaje de potencia adicional es de 58,3%.

6.7.5. Tensión en los Ramales

El método para el cálculo de la tensión en los ramales fue seguido según el fabricante de cintas *Kauman*. La relación entre la tensión en el ramal tenso (t_1) y el descargado (t_2) está dada por:

$$\frac{t_1}{t_2} \le e^{u.\alpha} \quad (6.7.21)$$

Siendo:

 μ : Coef. de rozamiento entre la superficie exterior del tambor y la superficie interior de la cinta [-] a: Ángulo de abrace entre la cinta y el tambor motriz $[\circ]$.

$$T_1 = F_{accionamiento} \times \left(1 + \frac{1}{e^{u.\alpha} - 1}\right)$$
 (6.7.22)

$$T_2 = F_{accionamiento} \times \left(\frac{1}{e^{u.\alpha} - 1}\right)$$
 (6.7.23)

Para el cálculo de las tensiones en los ramales se adopta de tabla VIII, Fig.6.7.8, un coeficiente de rozamiento del tambor motriz recubierto y para ambiente mojado: $\mu=0.25$, y un ángulo de abrace $\alpha=180^\circ$.

ONDICIONES DEL TAMBOR	CONDICIONES DE AMBIENTE	VALOR DE A
- CANOLICA SALA	mojado	0,10
Sin Recubrir	húmedo	0,10 ÷ 0,20
	seco	0,30
	mojado	0,25
Recubierto	húmedo	0,25 ÷ 0,30
IN THE PROPERTY OF THE PARTY OF	seco	0,35

Fig.6.7.8

Reemplazando en (6.7.22) y (6.7.23):

$$T_1 = 38,91g \times \left(1 + \frac{1}{e^{0.25\pi} - 1}\right) = 71,52 \, Kg$$

$$T_2 = 38,91Kg \times \left(\frac{1}{e^{0.25\pi} - 1}\right) = 32,6Kg$$

6.7.6. Selección de Banda Transportadora

Se adopta una superficie de cobertura tipo *Lemafer*, que es un tipo de cobertura para usos generales y materiales medianamente abrasivos, para un tamaño de material que ronda entre 25 y 125mm y un tiempo empleado para que la cinta de una vuelta completa de 8,478 segundos.

Una vez adoptado el tipo de cobertura, se elige el tipo de urdimbre de la cinta y se calcula el número de telas que debe poseer la misma. Fig. 6.7.9.

Se adopta una cinta de Nylon-Nylon ya que el sistema tendrá una capacidad de transporte relativamente pequeña, un diámetro de tambor pequeño, y por lo tanto, se debe tener una banda con una buena flexibilidad que permita una extensa vida útil.

	TIPO	S DE TEJIDOS UTILIZADOS TYPES OF FABRICS USED
Urdimbre/trama - Nylon Nylon Warp/Mesh - Nylon Nylon	Urdimbre/trama - Poliester Nylon Warp/Mesh - Polyester Nylon	Carga de trabajo - Kg/cm/tela Working load - Kg/cm/fabric
12.5	125	12.5
20	200	20
25	250	25
30	300	30
35	350	35
40	400	40

Fig.6.7.9

El número de telas está dado por:

$$n_t = \frac{T_{M\acute{a}x}}{A \times CT} \qquad (6.7.24)$$

Donde:

 n_t : Número de telas [-]

 $T_{M\acute{a}x}$: Tensión máxima de la banda [Kg]

A: Ancho de la cinta [cm]

CT: Carga de trabajo seleccionada a utilizar [Kg/cm.tela]

Reemplazando valores:

$$n_t = \frac{T_{M\acute{a}x}}{A \times CT} = \frac{71,52Kg}{40cm \times 12,5 \ \frac{Kg}{cm.\,tela}} = 0,14\,telas$$

Por lo tanto se adopta un tejido de 2 telas Nylon-Nylon.

6.7.7. Diámetro Mínimo de Poleas

El diámetro mínimo de las poleas, según Fig.6.7.10, está dado en función del tipo y número de telas calculado en el apartado 6.7.6.

		Ny 12.5			Ny 20	
V° de teles	Diámetro polea motora	Diámetro polea de reenvio y tensora	Diámetro polea desviadora	Diámetro polea motora	Diámetro polea de reenvio y tensora	Diámetro pole desviadora
N° of plies	Drive pulley diameter mm	Tail and tension pulley diameter	Shift pulley diameter	Drive pulley diameter mm	Tail and tension pulley diameter	Shift pulley diameter
2	300	250	250	400	350	300
3	350	300	280	500	400	350
4	500	400	350	630	500	500

Fig.6.7.10

6.7.8. Tensión en el Ramal Flojo

Se debe verificar que la tensión en la banda en el ramal flojo sea superior a la mínima para que éste no flexione demasiado entre rodillo y rodillo, la misma está dada por:

$$t_o = 50 \times n_t \times B \tag{6.7.25}$$

$$t_o = 50 \times 2 \times 0.4m = 40Kg$$

Como la tensión en ramal flojo es inferior a la calculada en el punto 6.7.5, la cinta posee tensores.

6.7.9. Diámetro de Tambores

Los diámetros de los tambores motriz y de cola son función del ancho de banda calculado en el apartado 6.7.1.

Se adopta como diámetro para los tambores: 320mm.

6.7.10. Rodillos

El cálculo del diámetro del rodillo y la distancia entre ellos se realizan siguiendo el método del fabricante *Rotrans S.A.*

6.7.10.1. Diámetro y Distancias entre Rodillos

Debido a las exigencias que debe soportar la cinta, se adoptan rodillos de amortiguación en la zona de carga, para disminuir golpes, flexión y hacerla más rígida (distanciados una longitud $L_1/2$) y el resto serán rodillos lisos (a una distancia L_1 entre ellos).

El diámetro de los rodillos es función del ancho de la cinta y está dada por la tabla J, Fig.6.7.11.

Recom de rod						1				Та	ıbla J
BANDA o Rodillo	400	500	650	800	1000	1200	1400	1600	1800	2000	2200
63,5	Х	X	X								
70		X	X	X							
76		X	X	X	X		1				
89		X	X	X	Х						
102			X	X	X	X			7000		
108			X	X	X	X	X			San San Sala	Annual Con-
127		Link open		X	X	X	X	X			
133				X	X	X	X	X	or the second		
152,4						Х	X	X	X	The second	
159						X	X	X	Х		
193.7		A CONTRACTOR OF THE PARTY OF TH			THE PARTY NAMED IN				X	X	X

Fig.6.7.11

Con lo cual para un ancho de cinta de 400mm el diámetro de los rodillos es de $\emptyset = 63,5mm$, y se verifica si los mismos soportan la carga de trabajo a continuación.

6.7.10.2. Verificación de Carga sobre Rodillos

$$K_r = R + L_1 \times \left(G_g + \frac{Q_r}{3.6 \times V}\right) \times F_c \times F_i \times F_v \qquad (6.7.26)$$

Donde:

 K_r : Carga sobre rodillo [Kg]

R: Peso de las partes rodantes de los rodillos (Ver catálogo) [Kg]

 L_1 : Separación entre dos estaciones consecutivas (Ver tabla A) [m]

 Q_r : Capacidad de carga [tn/h]

v: Velocidad de la banda [m/s]

 F_c : Factor de Carga (Ver Tabla C)[-]

 F_i : Factor de Impacto (Ver Tabla D)[-]

 F_v : Factor de vida del rodillo (Ver Tabla E)[-]

En este caso:

R=4Kg (se utiliza el peso del rodillo amortiguado por ser el más desfavorable)

La separación entre dos estaciones consecutivas se determina de tabla A, Fig.6.7.12, para un peso específico de $\gamma = 0.65 \ tn/m^3$.

			Tabla A
ANCHO DE	SUPE	RIORES	INFERIORES
BANDA (mm)	& = 0,6	& 0,6	
400	1.35	1.35	3.00
500	1,35	1,20	3,00
650	1,20	1,10	3,00
800	1,20	1,00	3,00
1000	1,00	1,00	3,00
1200	1,00	1,00	3,00
1400	1,00	1,00	3,00
1600	1,00	1,00	3,00
1800	1,00	1,00	3,00
2000 Y ^	1,00	1,00	2,40

Fig.6.7.12

De la tabla surge que para los rodillos superiores $L_1=1{,}35m$ y para los inferiores $L_1=3m$.

El peso de la banda se obtiene del catálogo comercial.

$$G_g = 12.5 \; \frac{Kg}{cm.\,tela} \times 2telas = 25 \; \frac{Kg}{cm} = 0.25 \frac{Kg}{m}$$

La velocidad en la cinta es: $v = 1 \frac{m}{s}$

La capacidad de carga real es $Q = 1 \frac{tn}{h}$

FACULTAD REGIONAL CONCEPCION DEL URUGUAY
UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA Los factores de carga (F_c) , de impacto (F_i) y de vida (F_v) se obtienen de las tablas C, D y E adjuntas a continuación, Fig.6.7.13:

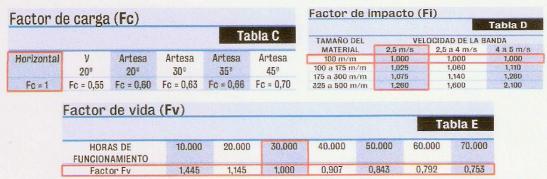


Fig.6.7.13

El valor de Carga sobre Rodillo (K_r) es:

$$K_r = R + L_1 \times \left(G_g + \frac{Q_r}{3,6 \times V}\right) \times F_c \times F_i \times F_v$$
 (6.7.27)
 $K_r = 4 Kg + 1,35m \times \left(0,25 \frac{kg}{m} + \frac{1 \frac{tn}{h}}{3,6 \times 1 \frac{m}{s}}\right) \times 1 \times 1 \times 1 = 4,713 Kg$

Para verificar la carga por rodillo se debe hallar la velocidad de giro de los mismos por medio de la Tabla I, Fig. 6.7.14, interpolando para una velocidad de $v=1\,^m/_S$ y un diámetro de rodillo de $\emptyset=63,5mm$

VELOCIDAD	A Charles			DIAM	ETRO DEL R	ODILLO mr	n				7,000
BANDA M/S	63,5	70	76	89	102	108	127	133	152,4	159	193,7
0,25	75	68	63	53	47	44	38	36	31	30	26
0,50	150	136	126	107	90	88	75	72	63	60	49
0.75	225	205	189	161	141	132	113	107	94	90	74
1,00	300	273	251	214	188	176	150	143	125	120	98
1,25	376	341	314	268	235	221	188	179	157	150	123
1,50	451	409	377	322	282	265	226	215	188	180	148
1,75	526	478	440	375	329	309	263	251	219	210	172
2.00	601	546	503	429	376	353	301	287	251	240	197

Fig.6.7.14

La máxima velocidad que soportan los rodillos es 300rpm.

La capacidad de carga del rodillo se obtiene por medio de la Tabla H, Fig.6.7.15, en función de las revoluciones del rodillo (300rpm) y la longitud del mismo (530mm).

Fig.6.7.15

Como se observa por tabla, la carga máxima que soporta el rodillo es de 165kg y con éste valor se verifica la resistencia del rodillo a la carga:

Capacidad de Carga del Rodillo \geq Carga sobre Rodillo 165 $kg \geq 4{,}713kg \Rightarrow$ queda verificado

6.7.11. Disposición de Rodillos

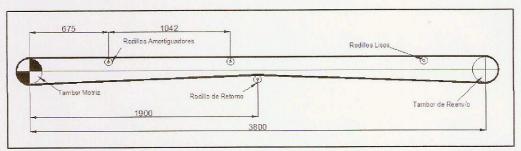


Fig.6.7.16

En la parte superior:

- 1 rodillo amortiguado distanciado 675mm del tambor motriz.
- 2 rodillos lisos distribuidos entre el rodillo amortiguado y el tambor de reenvío 1042mm entre sí. En la parte inferior:
- 1 rodillos liso de retorno centrado sobre los dos tambores.

6.7.12. Velocidad del Eje de Transmisión

Se necesita una velocidad de banda de $v=1\,m/s$ para eso se determina la velocidad de rotación en el eje de transmisión, teniendo como dato el diámetro del tambor:

$$V_T = \omega \times r \quad (6.7.28)$$

6.7.13. Cálculo del Motorreductor

Se adopta un motorreductor del tipo coaxial de la Firma Lentax y se sigue el proceso de cálculo del fabricante.

6.7.13.1. Potencia Efectiva $\left(N_{ef}\right)$

La potencia efectiva es la potencia nominal necesaria de la cinta transportadora calculada en el apartado 6.7.3.

6.7.13.2. Factor de Servicio (f)

El factor de servicio (f=1,4) está dado según la aplicación y la cantidad de horas de servicio, Fig.6.7.17.

MAQUINA ACCIONADA TIPO DE MAQUINA	Service	TOR Servicio e hrs.	24	APPLICATIONS AND INDUSTRY DRIVEN MACHINE		
TRANSPORTE Y ALMACENAJE	8	16	24	CONVEYORS		
Montacargas	1,5	1,6	1,6	Hoists		
Elevadores de personas	1,8	2,0	2,0	Passenger lifts		
Elevadores inclinados	1,65	1,8	1,8	Inclined hoists		
Elevadores de cangilones (rocas)	1,65	1,8	1,8	Bucket elevators (piece goods)		
Elevadores de cangilones (granos)	1,5	1,6	1,6	Bucket elevators (bulk material)		
Transportadores a cadena (redlers)	1,5	1,6	1,6	Chain conveyors		
Transportadores de cangilones	1,5	1,6	1,6	Bucket conveyors		
Transportadores circulares	1,5	1,6	1,6	Circular conveyors		
Roscas transportadoras	1.15	1.4	1.5	Screw conveyors		
Bandas transportadoras (granel)	1,15	1,4	1,5	Belt conveyors (bulk material)		
iransportadores de banda (articulados)	1,3	1,5	1,7	Apron conveyors		
Transportadores de cinta de acero	1,5	1,6	1,6	Steel belt conveyors		
Bandas transportadoras (bultos grandes)	1,3	1,5	1,7	Belt conveyors (piece goods)		
Transportadores de placas	1,5	1,6	1,6	Band pocket conveyors		
Tornos de elevación	1,5	1,6	1,6	Ballast elevators		

Fig.6.7.17

6.7.13.3. Potencia Equivalente $\left(N_{eq}\right)$

$$N_{eq} = f \times N_{ef.}$$
 (6.7.29)

$$N_{eq} = 1.4 \times 1.706HP = 2.39HP$$

6.7.13.4. Preselección del Modelo

El modelo preseleccionado debe poseer una potencia superior a la potencia equivalente (2,39HP = 1,78KW) una velocidad aproximada de 59,68 rpm. Ver Fig.6.7.18.

Entra Entra		Emmada	Velocidad Salida	Relacain	MODEL)		ne de andad	Alemento Enti	Pote		Entrasia	Velocidad Salida	Relation	NO DEL		garidad garidad	Memers List
W	HP	(RPM)	RPM:	(i)		0	(2)	(Nm)	W	HP	(RPM)	RPM)	(1)			(12)	(Sm)
			190.0	7.16	FOOT2	2.00	2,40	73				43.0	12.64	FILL	3.00	1.95	471
2.20	x not	1415	3,30	430.76	F4 SHR	1.00	1.15	6148				51.0 59.0	27,80 23,89	FIT3	3,00	2.25	403 346
6124	a and	1.41.2	4.20	336.70	F45HR	3.00	1.50	4806						FILE			
			5.30 6.30	272.35 225.54	F45HR F45HR	1.00	1.85	1887 3219				67.0	21.14	1112	1,011	2.75	311
			7.40	189.97	F45HR	1100	2.65	2712				60.0	-11.112	1112	3,1361	2.4355	30.3
			8.70	162.02	E45HR F45HR	1,00	1.10					92.0	17.90	F1172	1.00	3.15	264
			10.10	139.40	L-4-3LIE	3.585	3.1307	1991				97.0	14.59	1112	3.00	3.85	215
		1415	7.90	178,85	745T1	1.00	3.05					57.0	24.65	FRT2	3.(8)	1.15	
			9.40	149.62	14513	1.(4)	3.65	2173				69.0	20.52	1012	1.00	1.40	
			1.00	207.02	FAIR	1.00	1.05	4239				75.0 81.0	18.91	F012	3.483	1.60	
			4.80 5.50	297.02 257.40	F41R	3,00	1.20					88.0	16.02	F012	3.00	1,75	
			3030	A. P. (47857	4.78.285		1.1					95.0	14.91	F012	3.00	1.80	
		940	4.80	196.40	F4T3	3,00 %		4287				103.0	13.74	F012	1.00	1.80	
			5.2	180.32	F413	1.00 %		1936				109.0	12.92	F012	3,00	1.90	190
			5.9	159.55	FID	1.00 /5		3483 1198				119.0	11.91	F012	3.(K)	2.00	
			6.4	146.49	F4T3	300 6	1,43	1196				159.0	8.92	F012	3.00	2,45	131

Fig.6.7.18

El modelo seleccionado posee una potencial de 3HP y una velocidad de salida de 67 rpm.

Debe verificar que: $N_{Nom} \ge N_{eq}$

Entonces: $3HP \ge 2,56HP \implies queda\ verificado$

6.7.14. Acoplamiento a Cadena

Se adopta un acoplamiento flexible a cadena para la unión entre el motorreductor y el eje del tambor motriz, como el de la Fig.6.7.19.

Fig.6.7.19

Los acoplamientos flexibles a cadena constituyen un positivo y seguro elemento para unir ejes entre sí. Admiten cierto desalineamientos entre ejes y su eficacia se mantiene constante, aún bajo severas condiciones de trabajo, permitiendo además desconectarlo fácilmente, quitando el eslabón de unión de la cadena, sin necesidad de desmontar el motor o la máquina accionada. Los piñones de los acoplamientos se fabrican en acero Siemens Martin SAE 1050.

La película lubricante que se forma entre los elementos movibles de la cadena y entre esta y los piñones, amortiguan los ruidos y vibraciones. Su utilización es muy apropiada especialmente para ejes de bajas velocidades pues resultan más seguros y compactos que otros tipos de acoplamientos elásticos.

6.7.14.1. Potencia Efectiva (P_e)

La potencia efectiva es igual a la potencia del motorreductor.

6.7.14.2. Factor de Servicio (f_s)

El factor de servicio, ver Fig.6.7.20, depende del tipo de motor de accionamiento y de la naturaleza de la carga.

Tabla de factores de servicio

Madamalama	Tipo de Accionamiento								
Naturaleza de la carga	Motor Eléctrico	Motor Diesel	Motor a Vapor						
Uniforme	1	1.4	2						
Mediana	1.4	1.6	2.2						
Pesada	2	2.2	2.5						

Fig.6.7.20

Para una naturaleza de carga mediana y motor eléctrico: $f_s = 1.4$.

6.7.14.3. Potencia de Cálculo $(P_{\mathcal{C}})$

La potencia de cálculo es el producto de la potencia efectiva y el factor de servicio:

$$P_C = P_e \times f_s \qquad (6.7.30)$$

Donde:

 P_e : Potencia de entrada al eje a acoplar [HP] f_s : Factor de servicio [-]

Entonces: $P_C = 3HP \times 1.4 = 4.2HP$

Se adopta un acoplamiento a cadena que admite una potencia nominal de 5,89HP a una velocidad angular de 67rpm.

6.8. CINTA TRANSPORTADORA 2

El cálculo y dimensionamiento de la cinta se realiza según "Transporti Meccanici" (ZIGNOLI, 1970)

6.8.1. Ancho de la Cinta

La sección de trasporte neta (A) y el caudal de transporte (Q) vienen dados por las siguientes ecuaciones:

$$A = 0.122 \times (0.9 B - 0.05)^{2} \quad (6.8.1)$$

$$Q = \gamma \times A \times v \tag{6.8.2}$$

Ernst Mariángeles - Montañana Guillermo

Donde:

A: Sección de Transporte Neta [m²]

B: Ancho de la Cinta [m]

γ: Peso específico del material transportado [tn/m³]

v: Velocidad de la cinta [m/s]

Q: Caudal del material transportado [tn/h]

Reemplazando (6.8.1) en (6.8.2) y despejando B, se obtiene el ancho de banda para el transporte:

$$B = \frac{1}{0.9} \times \left[\sqrt{\frac{Q}{\gamma \times \nu \times 0.122 \times 3600}} + 0.05 \right]$$
 (6.8.3)

Se adopta una velocidad de transporte de $v=1\ m/s$ y se halla el ancho de banda con la ecuación (6.7.3).

$$B = \frac{1}{0.9} \left[\sqrt{\frac{Q}{\gamma \times \nu \times 0.122 \times 3600}} + 0.05 \right] = \frac{1}{0.9} \times \left[\sqrt{\frac{1 \frac{tn}{h}}{0.65 \frac{tn}{m^3} \times 1 \frac{m}{s} \times 0.122 \times 3600}} + 0.05 \right]$$

B = 0.121m = 121mm

Como el ancho de banda hallado no corresponde a un ancho de banda normalizado, se selecciona una banda normalizada de 400 mm. y con esté se recalcula la velocidad de la cinta despejando la velocidad (v) de (6.7.3):

$$v = \frac{Q}{\gamma \times 0.122 \times (0.9B - 0.05)^2} = \frac{1 \frac{tn}{h}}{0.65 \frac{tn}{m^3} \times 0.122 \times 3600 \times (0.9 \times 0.40m - 0.05)^2}$$

$$v = 0.036 \frac{m}{s}$$

Como la velocidad de transporte hallada es muy baja se asume una velocidad de 1m/s para evitar una reducción muy excesiva.

Luego se verifica que para el ancho de banda seleccionado y peso específico del material no se sobrepase la capacidad máxima de transporte establecida para la producción de la planta, esto se obtiene de Tabla CCCa, Fig.6.8.1.

	Super- ficie	Peso	Dogg	Portata	Massina portata Q in t era con la velocité V in roisec											
Lar- ghezza nastro	della sezione del	di ma- teriale per m	del pastro in	,	r ≈ 1 m/sec			r = 1,50 m/sec			v = 2 m/sec			r = 2,5 m/sec		
Bastro B W	mucchio di ma- teriale .4 m*	di nastro per y = 1 kg	m^{*} orn v = 1 m/sec (M_{vo})	Peso specifico del materiale γ in t/m²			Peso specifico del materiale Y in t/m²			Poso specifico del materiale 7 in 1/m²			Peso specifico del materiale y in t/m'			
			(12) 402	8,5	1	1,5	9,5	1	1,5	0,5	1	1,5	0,5	1	1,5	
0,36	9,0970	Ŧ	25	12	25	37	18	37	53	25	50	75	31	62	93	
0.35	0,0097	9,7	39	18	29	57	28	57	85	39	78	117	48	96	14	
0,40	0,0128	12,8	50	75	581	75	37	15	112	59	100	150	62	125	18	
0,45	0,6164	16,4	58	29	58	87	13	81	130	58	116	174	72	145	21	
0,50	0,0204	20,1	78	39	78	117	3.8	117	175	78	1.55	234	97	195	29	
0.55	8,0250	23,0	8.6	44	88	132	66	132	198	5.8	175	264	110	220	33	
0,60	0,0300	30.0	108	33	169	139	19	159	AGE.	106	212	318	132	263	39	
5,65	0,0355	35,5	125	62	125	187	53	197	280	125	250	375	156	312	46	
0,10	0,6410	41,6	148	74	148	222	111	222	333	148	296	444	185	370	35	
0.80	0,0552	55,2	196	98	196	294	147	294	111	195	392	588	215	499	73	
0,90	0,0712	71,2	254	127	251	381	196	381	571	254	595	762	314	628	194	
1,86	0.0892	89,2	326	160	220	480	240	480	720	320	619	260	400	800	120	
1,20	0,134	134,0	470	135	470	705	359	705	1057	470	940	1410	387	1175	176	
1,46	0,189	189,0	679	335	670	1005	502	1005	1507	670	1346	2010	835	-1675	251	

Fig.6.8.1

La capacidad máxima de transporte para la velocidad utilizada se encuentra verificada.

6.8.2. Potencia Necesaria para el Accionamiento

La fuerza necesaria para el movimiento de la cinta está compuesta por las siguientes fuerzas:

$$F_{Accionamiento} = T - t = F_v + F_m \pm F_h + F_d$$
 (6.8.4)

Donde:

 F_v : Fuerza necesaria para mover la cinta en vacio [Kg]

 F_m : Fuerza necesaria para mover el material en forma horizontal [Kg]

 F_h : Fuerza necesaria para elevar o descender el material [Kg]

 F_d : Fuerza necesaria para vencer los descargadores [Kg]

6.8.2.1. Fuerza Necesaria para mover la Cinta en Vacío (F_{v})

La fuerza se determina mediante la siguiente ecuación:

$$F_v = \left(1 + \sum r\right) \times f \times q_s \times (L + L_0) \quad (6.8.5)$$

Donde:

r: Equivalencia de resistencia que of recen los tensores verticales [-].

f: Resistencia equivalentes de las masa rotantes [-].

 q_s : Peso por unidad de longitud de las partes móviles [Kg/m] .

L: Distancia horizontal entre centros de tambores [m].

 L_a : Longitud adicional que depende del tipo de montaje [m].

El valor de "r" se obtiene de la Fig.6.8.2, como cojinetes laminados: r=0.005

Le resistenze precedenti r sono, per varie pulegge, co	si defii	rite:
	Alber	i su cuscinetti
	Haci	a rotolamento
1 puleggia sul tratto ad alta tensione T	0,02	0,01
1 puleggia sul tratto a bassa tensione t	0,01	0,005
1 tenditore verticale (fig. 776 d), comprese le due pulegge		
di rinvio in alto	0,06	0,03

Fig.6.8.2

El valor de "f"se extrae de Fig.6.8.3, como rodamiento bien montado: f = 0.025

```
I valori di f delle (1) (2) (3) sono:
 per cuscinetti lisci in bronzo o metallo bianco ..... f=0,05
 per cuscinetti a sfere o a rulli molto ben montati . f=0.025
```

Fig.6.8.3

El valor de " q_s "se obtiene de la tabla CCI, Fig.6.8.4, con el ancho de banda B=0.40m: $q_s=24\,\frac{{
m Kg}}{m}$

Larghezza mastro R r tam s s	medio in kg/m G, drile parti mobili del tra- sporta- tore kg	3,5	1,5	2,5	1.2	tele 5	9,5	8 p	1,5	2,5	1,2	tele 4 interi	2,5	1,2	1,5	2,5	1,5	tele 5	2,5										
6,30 6,25 6,46	parti mobili del tra- sporta- tore kg	3,5	4,8				9,5	1.2 S p	1,5	2,5	1,T	1,5 cateri	2,5		1,5	9.5	1,5	1,5	2,5										
5,30 6,32 6,46 0,45	sporta- tore kg	3,5	4,8				9,5	Sp	CHERT		пла	cateri	n o		1,5	9.5	1,9	1,5	2,5										
0,35 0,46 0,45					3.5	4.8	1			e gor			1																
0,35 0,46 0,45	20				3.5	4.8	1	2,5	1,8	1	5.5	4.4			Spennore gomma enterno														
0,35 0,46 0,45	20	4.1								-		4,5	7	3,5	4,5	1	3,5	4,8	1										
0,35 0,46 0,45			4.2	5,4	3,8	1,5	5,7	1.2	4.8	6.9	3,8	4,3	2,6	4,1	4,8	6,0	4,5	5,2	6,5										
0,15	0.0	4	3,4	4,3	1.5	5,3	8.7	4.9	5,5	1,2	4,3	5.1	6,5	4,8	3,6	7	3,3	6	7,6										
	24	4,6	3,7	1,5	0.1	8,0	7.6	3,6	8,4	8,2	4,0	5,8	1,5	5,5	5,4	В	6,0	6,3	5,1										
0.70	28 1	5,2	6,4	9,6	5,7	点,并	1,6	6,3	7,2	9,2	3,6	6.5	8,4	6,2	7,2	2	3/4	1,5	3.1										
0,50	33	5,7	7,0	9,0	0.4	7,5	9.0	7,6	3,5	10,5	6,2	7,2	9,5	6,9	3,6	16	7,5	8,6	10,8										
0,60	38	7,0	8,5	10,8	7,7	9,0	11,5	8,4	9,7	12.3	7.3	8.7	11,2	5,2	9,7	12	5,0	10,1	10										
0,75	55	8,5	10.7	13.5	9.6	11,0	14	10.5	12,0	15,4	9,2	10,5	14	10,2	12,0	15	11,8	15.5	12.5										
0.90	60	10,5	11,5	16,0	11,5	13,5	17	12,6	14,4	18,5	11	13	15.8	17,4	14,4	18	15,5	10,0	91.5										
1.00	7.5	11,5	12,7	18,0	12,7	15,0	15	1,10	16	20	12,5	14,5	15,5	13,7	18	20	12	21	26										
1,20	98	14.0	11,2	21,0	15,2	15,0	23	17.8	19	25	14,8	17,4	22,4	16,4	19	24	19.5	22.5	25										
1,30	100	15,0	18,5	23,5	10,7	19,3	25.5	18,3	21	31	18.5	19	26,2	20,5	21	30	22,5	26	32										

Fig.6.8.4

El valor de "L"es la distancia entre centros de tambores de la cinta transportadora, que se encuentra en los planos PM-C2-002 Rev. 01: L = 7.8m

El valor de " L_0 " es un factor de seguridad, que se obtiene de Fig.6.8.5, para rodillos bien montados sobre $rodamientos: L_0 = 60m$

```
Riassumendo, lo sforzo totale motore, detta L_o una lunghezza aggiunta
che tien conto delle resistenze fisse e che si assume mediamente:
      L_o = 30 m per rulli montati su bronzine;
      L_{\rm o}=60~{
m m} per rulli montati su cuscinetti a rotolamento;
```

Fig.6.8.5

Reemplazando los valores obtenidos en (6.8.4):

$$F_v = (1 + 0.005) \times 0.025 \times 24 \frac{Kg}{m} \times (7.8m + 60m)$$

$$F_{v} = 40,88Kg$$

6.8.2.2. Fuerza Necesaria para mover el Material en forma Horizontal $\left(F_{m}\right)$

El valor de ${\it F_m}$ viene dado por la siguiente expresión:

$$F_m = f \times q_m \times (L + L_0) \quad (6.8.6)$$

Donde:

 q_m : Peso del material trasnportado por metro de cinta [Kg/m]

f: Resistencia equivalentes de las masa rotantes[-]

L: Distancia horizontal entre centros de tambores[m].

 L_o : Longitud adicional que depende del tipo de montaje [m]

El valor de " q_m " se determina de la siguiente forma:

$$q_m = \frac{Q}{v} \qquad (6.8.7)$$

Donde:

Q: Caudal del material transportado [tn/h]. v: Velocidad de la cinta [m/s].

Entonces, reemplazando en (6.8.7):

$$q_m = \frac{1^{tn}/h}{1 \frac{m}{s} \times 3.6 \frac{tn.s}{Kg.h}}$$

$$q_m = 0,278 \; \frac{Kg}{m}$$

Reemplazando los valores obtenidos en (6.8.6):

$$F_m = f \times q_m \times (L + L_0) = 0.025 \times 0.278 \frac{kg}{m} \times (7.8m + 60m)$$

$$F_m = 0.471 Kg$$

6.8.2.3. Fuerza Necesaria para Elevar o Descender el Material $({\cal F}_h)$

El valor de ${\cal F}_h$ está dado por la siguiente expresión:

$$F_h = q_m \times \Delta h \quad (6.8.8)$$

Dónde: Δh : Diferencia de alturas entre tambores [m]

$$F_h = 0.278 \frac{Kg}{m} \times 5m$$

$$F_h = 1.39 Kg$$

6.8.2.4. Fuerza Necesaria para vencer los Descargadores (F_d)

Las ecuaciones que determinan la fuerza debido a la existencia de descargadores son las siguientes:

$$F_d = n_d (X . F_0 + 1.4 . q_m)$$
 (6.8.9)

Donde:
$$F_{0} = f \times (q_s + q_m) \times (L + L_0) \pm F_h$$
 (6.8.10)

Reemplazando (6.8.10) en (6.8.9):

$$F_d = n_d \times [X. (f.(q_s + q_m) \times (L + L_0) \pm F_h) + 1.4. q_m]$$
 (6.8.11)

Donde:

 n_d : Número de descargadores[-]

X: Coeficiente sacado de pág. 1093[-]

 F_0 : Resistencia de la instalación a las partesen movimiento del transportador y material [Kg]

f: Resistencia equivalentes de las masa rotantes [—]

 q_s : Peso por unidad de longitud de las partes móviles [Kg/m]

 q_m : Peso del material trasnportado por metro de cinta [Kg/m]

L: Distancia horizontal entre centros de tambores [m]

 L_o : Longitud adicional que depende del tipo de montaje [m]

 F_h : Fuerza necesaria para elevar o descender el material [Kg]

Como no existen descargadores en el sistema, la fuerza debido a estos es nula.

$$F_d = 0 Kg$$

Ahora con todos los valores de las magnitudes que componen la fuerza de accionamiento, se obtiene dicha fuerza.

$$F_{Accionamiento} = T - t = F_v + F_m \pm F_h + F_d$$

$$F_{Accionamiento} = 40,88 Kg + 0,47 Kg + 1,39 Kg$$

$$F_{Accionamiento} = 42,74Kg$$

Con la fuerza de accionamiento, se obtiene la potencia que tendrá el motor con la siguiente expresión:

$$N = \frac{F_{Accionamiento} \times v}{75 \frac{Kg \cdot m}{s \cdot CV} \times \eta_{Motor}}$$
(6.8.12)

Donde: η_{Motor} : Rendimiento del motor (adoptado) = 0,8

$$N = \frac{42,74Kg \times 1\frac{m}{s}}{75\frac{Kg.m}{s.CV} \times 0.8} = 0.71 \ CV$$

6.8.3. Potencia Necesaria según Zignoli

La Potencia del motor, se determina a partir de la tabla CCCa, Fig.6.8.6 y depende de:

$$N = \frac{\alpha + b + c}{\eta_{Motor}} \qquad (6.8.13)$$

Donde:

a: Potencia absorbida por transporte horizontal [HP].

b: Potencia absorbida por diferencia de alturas entre tambores [HP].

c: Consumo de energía para cada operación del vertido en una cinta intermedia [HP].

Se considera:

 η_{Motor} : Rendimiento del motor (adoptado) = 0,8

El valor de "a" se obtiene para el menor caudal y recorrido de transporte: a=1,2HP

Tonn. trasp. all'ora	15	30	45 Potenza	Lung 60 assorbit	75	90	120	ore L i 150 ini su c	180	210 i a sfere	240	300
50	1.2	1.4	1,7	1,9	2,2	2,5	2,8	3,1	3,5	4.0	5,0	6,0
100	1,7	2.0	2,5	2,7	3,1	3,9	4,0	4,0	4,5	6,0	7,0	8,0
150	2,0	2,5	3.0	3,5	4,0	4,2	5,1	5,1	6,1	8,0	9,0	10
200	2.2	2,8	3,0	4.0	4.8	5,4	6,0	7,2	8,8	10	11	14
250	2,9	3.5	4.1	4.7	5.4	6.0	7,5	9,5	11	12,5	11	16
300	1,2	4.8	5.3	5,8	6.5	7,2	9	11,5	13	15	17	18
350	4.8	5,5	6.2	7.0	7.8	9	11	13	15	17	20	20
400	5.0	6.0	7.0	8,0	9.0	10.5	13	15	17	20	23	24
			8,0	9,2	10.5	12	14	17.5	20	23	26	28
450 500	5,7 6,5	6,9	0,5	11	12,5	14	17	20	23	26	29	33

Fig.6.8.6

El valor de "b" se obtiene interpolando de tabla CCCb, Fig.6.8.7 con el caudal de material Q=1 tn/h (se adopta el menor) y una diferencia de altura entre tambores de $\Delta h=5m$, b=0.8 HP.

Tonn.				Per s	uperare	un disli	vello H	di m	140.0		b
trasportate all'ora Q	1	2 e p	3 er í vari	5 i Q della	10 prima	20 colonna	la pote	50 nza nui	70	100 HP	150
50	0,165	0.33	0,50	0,80	1,65	3,30	5,00	8,2	12,5	16,5	25,6
100	0.33	0,65	1,00	1,60	3,30	6,60	10,0	16,5	20,0	35,0	50,
150	0,5	1.0	1,5	2,5	5,0	10,0	15,0	25,0	37,0	50,0	75,
200	0.65	1,3	2,0 .	3,2	6,5	13	20	33	50	65	100
250	0.80	1,6	2,4	4,0	8,0	16	24	40	60	80	120
300	1,00	2.0	3.0	5.0	10.0	20	30	50	7.5	100	150
350	1,15	2,3	3,4	5,5	11	13	34	58	85	115	170
400	1,30	2,6	2,8	6,5	13	26	38	65	95	130	200
450	1,50	3,0	4,5 .	7,5	15	30	45	75	110	150	225
500	1.65	3,3	5,0	8.0	16	33	50	80	120	160	250

Fig.6.8.7

El valor de "c" es igual a cero por que la cinta no posee descargas intermedias.

Reemplazando los valores obtenidos en la ecuación (6.8.13):

$$N = \frac{1,2HP + 0,8HP + 0 HP}{0,8}$$

$$N = 2,5HP = 2,49CV$$

Como se puede observar el valor de potencia nominal recomendado según ZIGNOLI, es mayor que el hallado en el apartado 6.8.2, por lo que se adopta el valor recomendado de N=2,5HP como Potencia Nominal de régimen para los cálculos posteriores.

6.8.4. Potencia Adicional

La potencia hallada en el apartado 6.8.3 es la correspondiente a la del sistema actuando en estado de régimen, pero en el momento del arranque, así como en casos de sobrecargas bruscas eventuales, el motor estará sobrecargado. Esto se soluciona adoptando un motor con una potencia superior a la nominal y con un par de arranque adecuado a esta exigencia.

La potencia de arranque (N_{Arr}) necesaria está dada por la siguiente expresión:

$$N_{Arr} = N \times K_a \times K_d \times K_i \qquad (6.8.14)$$

Donde:

 K_a : Coef. que tiene en cuenta las fuerzas de inercia y la aceleración[-]

 K_d : Coef. que tiene en cuenta el rozamiento estático y dinámico [-]

 K_i : Coef. que tiene en cuenta posibles sobrecargas sobre la cinta el rozamiento estático y dinámico [-]

6.8.4.1. Cálculo de (K_a)

El cálculo de K_a se realiza teniendo en cuenta el incremento de potencia necesaria para vencer la inercia de las masas de las partes rotantes y el peso del material transportado al ponerse en movimiento.

Se determina mediante las siguientes ecuaciones:

$$K_a = \frac{N + N_i}{N}$$

$$N_i = \frac{m \cdot v^2}{75 \cdot \eta \cdot t}$$

$$m = \frac{q_s \cdot l}{g} + \frac{q_m \cdot L}{g}$$
 (6.8.17)

$$t = \frac{v}{a}$$

Donde:

m: Masa total a poner en movimiento [Kg]

t: Tiempo que tarda la cinta en alcanzar la velocidad de régimen [s]

l: Longitud total de la cinta [m] = (2L + 0,05L)

L: Longitud entre centro de tambores [m]

a: Aceleración media de la cinta $[m/s^2]$

η: Rendimiento del motor [-]

Reemplazando valores:

$$m = \frac{q_s \cdot l}{g} + \frac{q_m \cdot L}{g} = \frac{q_s \cdot (2L + 0.05L)}{g} + \frac{q_m \times L}{g}$$
 (6.8.20)

$$m = \frac{24 \frac{Kg}{m} \times (2 \times 7.8m + 0.05 \times 7.8m) + 0.278 \frac{Kg}{m} \times 7.8m}{9.81 \frac{m}{s^2}}$$

$$m = 39,34 Kg$$

$$t = \frac{v}{a} = \frac{1}{0.3} \frac{m/s}{m/s^2} = 3.33s$$

$$N_i = \frac{m \cdot v^2}{75 \cdot n \cdot t} = \frac{39,34 \, Kg \times (1 \, m/_S)^2}{75 \times 0.8 \times 3.33 \, s} = 0.197 CV$$

$$K_a = \frac{N + N_i}{N} = \frac{2,49 \ CV + 0,197 \ CV}{2,49 \ CV} = 1,08$$

6.8.4.2. Cálculo de (K_d)

Este coeficiente se halla por medio de la siguiente relación:

$$K_d = \frac{\mu_{estático}}{\mu_{dinámico}} = \frac{F_{Arranque}}{F_{régimen}}$$
 (6.8.19)

Donde:

 $F_{Arranque}$: Fuerza necesaria para poner en movimiento el sistema [Kg].

 $F_{régimen}$: Fuerza necesaria para mantener la cinta en movimiento = $F_{Accionamiento}[Kg]$.

Siendo: $F_{Arranque} = 1.5 \times (F_v + F_m) + F_h + F_d$ (6.8.20)

Reemplazando valores:

$$F_{Arrangue} = 1.5 \times (40.88Kg + 0.47Kg) + 1.39Kg + 0Kg = 63.42Kg$$

Con este valor se obtiene el coeficiente K_d por medio de la ecuación (6.8.19):

$$K_d = \frac{63,42Kg}{42,74Kg} = 1,48$$

6.8.4.3. Cálculo de (K_i)

El valor de K_i depende del tipo de accionamiento de la cinta transportadora. En este caso, para accionamiento por medio de motor eléctrico: K_i : 1-1,2.

Se adopta un valor de $K_i = 1$ ya que el caudal es muy bajo.

Reemplazando los valores en la ecuación (6.8.14) se halla el valor de la potencia de arranque:

$$N_{Arrangue} = 2,49 \ CV \times 1,08 \ CV \times 1,48 \ CV \times 1 \ CV = 3,98 \ CV$$

La relación entre la potencia de arranque y la nominal es:

$$\frac{N_{Arranque}}{N} = \frac{3,98CV}{2,49\ CV} = 1,6$$

Entonces el porcentaje de potencia adicional es de 60%.

6.8.5. Tensión en los Ramales

El método para el cálculo de la tensión en los ramales fue seguido según el fabricante de cintas Kauman. La relación entre la tensión en el ramal tenso (t_1) y el descargado (t_2) está dada por:

$$\frac{t_1}{t_2} \le e^{u.\alpha} \quad (6.8.21)$$

Siendo:

 μ : Coef. de rozamiento entre la superficie exterior del tambor y la superficie interior de la cinta [-] α : Ángulo de abrace entre la cinta y el tambor motriz $[\circ]$.

$$T_1 = F_{accionamiento} \times \left(1 + \frac{1}{e^{u.\alpha} - 1}\right)$$
 (6.8.22)

$$T_2 = F_{accionamiento} \times \left(\frac{1}{e^{u.\alpha} - 1}\right)$$
 (6.8.23)

Ernst Mariángeles - Montañana Guillermo

Para el cálculo de las tensiones en los ramales se adopta de Tabla VIII, Fig.6.8.8, un coeficiente de rozamiento del tambor motriz recubierto y para ambiente mojado: $\mu=0,25$, y un ángulo de abrace $\alpha=180^\circ$.

ONDICIONES DEL TAMBOR	CONDICIONES DE AMBIENTE	VALOR DE #
	mojado	0,10
Sin Recubrir	húmedo	0,10 ÷ 0,20
	seco	0,30
	mojado	0,25
Recubierto	húmedo	0,25 ÷ 0,30
	seco	0,35

Fig.6.8.8

Reemplazando en (6.8.22) y (6.8.23):

$$T_1 = 42,74Kg \times \left(1 + \frac{1}{e^{0,25\pi} - 1}\right) = 78,55Kg$$

 $T_2 = 42,74Kg \times \left(\frac{1}{e^{0,25\pi} - 1}\right) = 35,82Kg$

6.8.6. Selección de Banda Transportadora

Se adopta una superficie tipo Grifer S 12 provista de bastones espina de pescado con un ancho de banda de 400mm, el cual permite el transporte de materiales a granel con pendientes variables de 30 a 40°, Fig.6.8.9, para materiales medianamente abrasivos, para un tamaño de material que ronda entre 25 y 125mm y un tiempo empleado para que la cinta de una vuelta completa de 5,39 segundos.

Las características de los compuestos de caucho de la cobertura le otorgan a la misma mejores condiciones de resistencia a la tracción y óptimo alargamiento.

Las cintas Grifer S 12 son provistas de armaduras textiles de Nylon-Nylon con el número y prestación de telas que requiera el transportador a equipar.

Modelo	l A	В	С	D	E	P	Н
Model	mm	mm	mm	mm	mm	mm	mm
а	700/1000	670	217	480	36	338	12
b	400/600	365	114	280	31	199	12

Fig.6.8.9

Una vez adoptado el tipo de cobertura, se elige el tipo de urdimbre de la cinta y se calcula el número de telas que debe poseer la misma. Fig. 6.8.10.

Se adopta una cinta de Nylon-Nylon ya que el sistema tendrá una capacidad de transporte relativamente pequeña, un diámetro de tambor pequeño, y por lo tanto, se debe tener una banda con una buena flexibilidad que permita una extensa vida útil.

	TIPO	S DE TEJIDOS UTILIZADOS TYPES OF FABRICS USED
Urdimbre/trama - Nylon Nylon Warp/Mesh - Nylon Nylon	Urdimbre/trama - Poliester Nylon Warp/Mesh - Polyester Nylon	Carga de trabajo - Kg/cm/tela Working load - Kg/cm/fabric
12.5	125	12.5
20	200	20
25	250	25
30	300	30
35	350	35
40	400	40

Fig.6.8.10

El número de telas está dado por:

$$n_t = \frac{T_{M\acute{a}x}}{A \times CT} \qquad (6.8.24)$$

Donde:

 n_{t} : Número de telas [-]

 $T_{M\acute{a}x}$: Tensión máxima de la banda [Kg]

A: Ancho de la cinta [cm]

CT: Carga de trabajo seleccionada a utilizar $[Kg/cm.\ tela]$

Reemplazando valores:

$$n_t = \frac{T_{M\acute{a}x}}{A \times CT} = \frac{78,55 Kg}{40 cm \times 12,5 \ \frac{Kg}{cm.\,tela}} = 0,16 \ telas$$

Por lo tanto se adopta un tejido de 2 telas Nylon-Nylon.

6.7.7. Diámetro Mínimo de Poleas

El diámetro mínimo de las poleas está dado en función del tipo y número de telas calculado en el apartado 6.8.6. El valor del diámetro mínimo se elige en función de la polea motora, que es igual al de la polea de reenvío para lograr un ángulo de abrace de 180º. Ver Fig.6.8.11.

		梅 12.5		Ny 20								
° da teles ° el pales	Diametro polina motora Drive pulley	Diametro poles de reenvio y tennora Tail and tension	Diâmetro poles desviadors Shift pulley diameter	(Nametro poles motors Drive pulley diameter min	Diametro poles de reenvio y tensora fail and tension pulley diameter	Châmetro pole desviadora Shift pulley diameter						
	disension mm	pulley diameter		400		366						
	350	360	280	500	480	350						

Fig.6.8.11

6.8.8. Tensión en el Ramal Flojo

Se debe verificar que la tensión en la banda en el ramal flojo sea superior a la mínima para que éste no flexione demasiado entre rodillo y rodillo, la misma está dada por:

$$t_o = 50 \times n_t \times B \tag{6.8.25}$$

$$t_o = 50 \times 2 \times 0.4m = 40Kg$$

Como la tensión en ramal flojo es inferior a la calculada en el punto 6.8.5, la cinta posee tensores.

6.8.9. Diámetro de Tambores

Los diámetros de los tambores motriz y de cola son función del ancho de banda calculado en el apartado 6.8.1.

Se adopta como diámetro para los tambores: 320mm.

6.8.10. Rodillos

El cálculo del diámetro del rodillo y la distancia entre ellos se realizan siguiendo el método del fabricante *Rotrans S.A.*

6.8.10.1. Diámetro y Distancias entre Rodillos

Debido a las exigencias que debe soportar la cinta, se adoptan rodillos de amortiguación en la zona de carga, para disminuir golpes, flexión y hacerla más rígida (distanciados una longitud $L_1/2$) y el resto serán rodillos lisos (a una distancia L_1 entre ellos).

El diámetro de los rodillos es función del ancho de la cinta y está dada por la tabla J, Fig.6.8.12.

					anda						
BANDA Rodillo	400	500	650	800	1000	1200	1400	1600	1800	2000	2200
63.5	X	Х	X								
70		X	X	X							
76		X	×	X	X						
89		X	X	X	X						
102			X	X	X	X					
108			X	X	Х	X	X				
127				Х	X	X	X	X			
133				X	Х	Х	X	X			
152,4		Continue to				Х	X	X	X		
159						X	X	Х	Х		
193,7						FULL ST			X	X	Х

Fig.6.8.12

Con lo cual para un ancho de cinta de 400mm el diámetro de los rodillos es de $\emptyset = 63,5mm$, y se verifica si los mismos soportan la carga de trabajo a continuación.

6.8.10.2. Verificación de Carga sobre Rodillos

$$K_r = R + L_1 \times \left(G_g + \frac{Q_r}{3.6 \times V}\right) \times F_c \times F_i \times F_v \tag{6.8.26}$$

Donde:

 K_r : Carga sobre rodillo [Kg]

R: Peso de las partes rodantes de los rodillos (Ver catálogo) [Kg]

 L_1 : Separación entre dos estaciones consecutivas (Ver tabla A) [m]

 Q_r : Capacidad de carga [tn/h]

v: Velocidad de la banda [m/s]

 F_c : Factor de Carga (Ver Tabla C)[-]

 F_i : Factor de Impacto (Ver Tabla D)[-]

 F_v : Factor de vida del rodillo (Ver Tabla E)[-]

En este caso:

R = 4Kg (se utiliza el peso del rodillo amortiguado por ser el más desfavorable)

La separación entre dos estaciones consecutivas se determina de tabla A, Fig.6.8.13, para un peso específico de $\gamma=0.65~tn/m^3$.

			Tabla A
ANCHO DE	SUPE	RIORES	INFERIORES
BANDA (mm)	& = 0.6	& 0,6	
400	1.35	1.35	3.00
500	1,35	1,20	3,00
650	1,20	1,10	3.00
800	1,20	1,00	3,00
1000	1,00	1,00	3,00
1200	1,00	1,00	3,00
1400	1,00	1,00	3.00
1600	1,00	1,00	3,00
1800	1,00	1,00	3,00
2000 Y ^	1,00	1,00	2,40

Fig.6.7.13

De la tabla surge que para los rodillos superiores $L_1=1.35m$ y para los inferiores $L_1=3m$.

El peso de la banda se obtiene del catálogo comercial.

$$G_g = 12.5 \frac{Kg}{cm. tela} \times 2telas = 25 \frac{Kg}{cm} = 0.25 \frac{Kg}{m}$$

La velocidad en la cinta es: $v = 1 \frac{m}{s}$

La capacidad de carga real es $Q=1\frac{tn}{h}$

FACULTAD REGIONAL CONCEPCION DEL URUGUAY UNIVERSIDAD TECNOLOGICA NACIONAL MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA Los factores de carga (F_C) , de impacto (F_i) y de vida (F_v) se obtienen de las tablas C, D y E adjuntas a continuación, Fig.6.8.14:

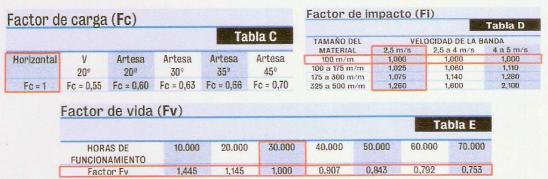


Fig.6.8.14

El valor de Carga sobre Rodillo (K_r) es:

$$K_r = R + L_1 \times \left(G_g + \frac{Q_r}{3,6 \times V}\right) \times F_c \times F_i \times F_v$$
 (6.8.27)
 $K_r = 4 Kg + 1,35m \times \left(0,25 \frac{kg}{m} + \frac{1 \frac{tn}{h}}{3,6 \times 1 \frac{m}{s}}\right) \times 1 \times 1 \times 1 = 4,713 Kg$

Para verificar la carga por rodillo se debe hallar la velocidad de giro de los mismos por medio de la Tabla I, Fig. 6.8.15, interpolando para una velocidad de $v=1\,^m/_{\mathcal{S}}\,$ y un diámetro de rodillo de $\emptyset=63,5mm$

VELOCIDAD		DIAMETRO DEL RODILLO mm												
BANDA M/S	63,5	70	76	89	102	108	127	133	152,4	159	193,7			
0,25	75	68	63	53	47	44	38	36	31	30	25			
0,50	150	136	126	107	90	88	75	72	63	60	49			
0.75	225	205	189	161	141	132	113	107	94	90	74			
1,00	300	273	251	214	188	176	150	143	125	120	98			
1,25	376	341	314	268	235	221	188	179	157	150	123			
1,50	451	409	377	322	282	265	226	215	188	180	148			
1.75	526	478	440	375	329	309	263	251	219	210	172			
2,00	601	546	503	429	376	353	301	287	251	240	197			

Fig.6.8.15

La máxima velocidad que soportan los rodillos es 300rpm.

La capacidad de carga del rodillo se obtiene por medio de la Tabla H, Fig.6.8.16, en función de las revoluciones del rodillo (300rpm) y la longitud del mismo (530mm).

Longitud en (m	m) y vida de 30.000	horas										Tabla	a H
e Eje Rodamiento	c.p.m. Longitud	30	60	100	200	300	400	500	600	700	800	900	100
	200												
	250	410	350										
	315	380		280									
	380		320		205	170	157	149	140	132			
	465			271							128		
020	530			232	200	165	150	140	133	125			
6.240	600			201	190	158	145	136	130	122			
	670			178	170	150	140	132	126	119			
	750				157	142	135	129	122	117			
	950						121	119	113	106			
	1150			NEW S				99				To the	

Fig.6.8.16

Como se observa por tabla, la carga máxima que soporta el rodillo es de 165kg y con éste valor se verifica la resistencia del rodillo a la carga:

Capacidad de Carga del Rodillo \geq Carga sobre Rodillo 165 $kg \geq 4{,}713kg \Rightarrow$ queda verificado

6.8.11. Disposición de Rodillos

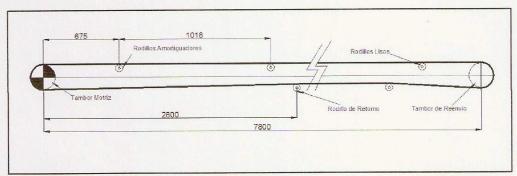


Fig.6.8.17

En la parte superior:

- 1 rodillo amortiguado distanciado 675mm del tambor motriz.
- 7 rodillos lisos distanciados 1018mm entre sí

En la parte inferior:

• 2 rodillos liso de retorno distanciados 2600mm entre sí.

6.8.12. Velocidad del Eje de Transmisión

Se necesita una velocidad de banda de $v=1\,\,m/s$ para eso se determina la velocidad de rotación en el eje de transmisión, teniendo como dato el diámetro del tambor:

$$V_T = \omega \times r \quad (6.8.28)$$

$$\omega = \frac{V_T}{r} = \frac{1 \frac{m}{s}}{0.16m} \times \frac{1 RPM}{\left(\frac{2\pi}{60seg}\right)} = 59,68 RPM$$

6.8.13. Cálculo del Motorreductor

Se adopta un motorreductor del tipo coaxial de la Firma Lentax y se sigue el proceso de cálculo del fabricante.

6.8.13.1. Potencia Efectiva $\left(N_{ef}\right)$

La potencia efectiva es la potencia nominal necesaria de la cinta transportadora calculada en el apartado 6.8.3.

6.8.13.2. Factor de Servicio (f)

El factor de servicio (f=1,4) está dado según la aplicación y la cantidad de horas de servicio, Fig. 6.8.18.

MAQUINA ACCIONADA TIPO DE MAQUINA	Service	TOR Servici e hrs.	24	APPLICATIONS AND INDUSTRY DRIVEN MACHINE
TRANSPORTE Y ALMACENAJE	8	16	24	CONVEYORS
Montacargas	1,5	1,6	1,6	Hoists
Hevadores de personas	1,8	2,0	2,0	Passenger lifts
Elevadores inclinados	1,65	1,8	1,8	Inclined hoists
Elevadores de cangilones (rocas)	1,65	1,8	1,8	Bucket elevators (piece goods)
Elevadores de cangilones (granos)	1,5	1,6	1,6	Bucket elevators (bulk material)
Transportadores a cadena (redlers)	1,5	1,6	1,6	Chain conveyors
Transportadores de cangilones	1,5	1,6	1,6	Bucket conveyors
Transportadores circulares	1,5	1,6	1,6	Circular conveyors
Roscas transportadoras	1.15	1.4	1.5	Screw conveyors
Bandas transportadoras (granel)	1,15	1,4	1,5	Belt conveyors (bulk material)
(ransportadores de banda (articulados)	1,3	1,5	1,7	Apron conveyors
Transportadores de cinta de acero	1,5	1,6	1,6	Steel belt conveyors
Bandas transportadoras (bultos grandes)	1,3	1,5	1,7	Belt conveyors (piece goods)
Transportadores de placas	1,5	1,6	1,6	Band pocket conveyors
Tornos de elevación	1,5	1,6	1,6	Ballast elevators

Fig.6.8.18

6.8.13.3. Potencia Equivalente $\left(N_{eq}\right)$

$$N_{eq} = f \times N_{ef.}$$
 (6.8.29)

$$N_{eq} = 1.4 \times 2.5HP = 3.5HP$$

6.8.13.4. Preselección del Modelo

El modelo preseleccionado debe poseer una potencia superior a la potencia equivalente (3,5HP = 2,61KW) una velocidad aproximada de 59,68 rpm. Ver Fig.6.8.19.

Programa Estable	Estrata	Volucidad Salafa	Relación	MODEO	Facto Segur		Monoretic Utili		rada rada	Velocatad Ererada	Velocidad Salela apros.	Relación	MODELE		tor de cristat	Lisi
NV HP	appin.	aprox.	ō)		ij.	0	(None)	iav	FIF	NAME OF	18/35	19			(2)	(Nati
		6.5 8.7	205,43 163,17	FITE FITE		1,00	2932 2329	3.00	4.00	1405	4.20 5.20 6.20 7.40	136.76) 27.2.35 225.54 189.97	# 45HM # 45HM # 45HM # 45HM	4.00 4.00 4.00 4.00	1.10 1.40 1.65 1.95	6453 5220 4323 3641
	440	5.6 9.4	134,90 122,84 108,71 100,42	FITS FITS FITS	1.000 % 1.000 % 1.000 %	1,10	2945 2681 2873 2192				8.70 10.10 11.60	162.02 139.48 120.92	至45日报 多分5日报 至45日报	4.00 4.00 4.00	2.36 2.76 1.10	3105 2673 231R
		9.8	95.70 89.70	FIR	1.00 /6	1.45	2089 1958			960	5.40 6.40 7.50	178.85 149.82 127.77	84573 84573 84573	4.00 % 4.00 % 4.00 %	1.85 2.15	5097 4270 3641
	1415	8.0 10.0 12.0 13.0 14.0	173.14 134.90 122.84 108.73 100.42	813 813 813 813	1.00	1.20 1.55 1.70 1.95 2.10	2511 1956 1781 1577 1456				8.00 8.70 9.50 10.00 11.10	120.67 110.44 101.09 96.46 84.95	F45T 1 F45T 1 F45T 1 F45T 1	4.00 % 4.00 % 4.00 % 4.00 %	2.55 2.45 2.85	3439 3147 2831 2749 2421
		15.0 16.0 18.0 20.0	95.20 89.70 78.24 71.25	HB HB HB	1.00 1.00 1.00 1.00	2.13 2.35 2.70 1.00	1388 1301 1135 1033			1405	7.90 9.40 11.00 11.60	178.85 149.82 127.77 120.67	F4573 F4573 F4573 F4573	4.00 4.00 4.00 4.00	2.30 2.75 3.25 3.20	1484 2917 2488 2150
		27.0 26.0 55.0 66.0	61,06 54,70 25,39 21,14	F112 F112 F112	4(1)	1.85	914 794 502 416				12.70 10.0 11.0 15.0	110.44 47.65 45.90 40.16	64513 6213 6213 6213	5 50 5 50 5 50	1.10 1.15 1.15 1.55	2150 1242 1212 1000
		68.0 78.0 91.0 96.0	20,69 17.99 15.36 14.59	F172 F172 F172	4.00 4.00 4.00	2.10	409 354 304 289 263				37.0 41.0 44.0 52.0	38.03 34.60 32.05 27.36	610 610 610 810	5.50 5.50 5.50 5.50	1.50 1.75 1.80 1.85	1004 913 846 722
		106.0 112.0 130.0	13.31 12.52 10.85	F172 F172	4.00	3.05 3.50	248 215				60.0	21.29	提出 和担	5.50 5.50	2.15	622
		43.0 46.0	32 HS 30 25	1003	4.(%)	1,(8)	589				82 0 82.0	17.47 16.38	1212 1212 1212	5.50 5.50 5.50	2.75 2.80 3.15	468 468 439 174
		68.0 74.0 81.0	20 52 18.91 17 48		4.68	1.05	406 374 344				102.0 119.0 136.0	13,93 12,01 10,45	1217	5.50 5.50	3.50 4.00	322 280

Fig.6.8.19

El modelo seleccionado posee una potencial de 4HP y una velocidad de salida de 61 rpm.

Debe verificar que: $N_{Nom} \ge N_{eq}$

Entonces: $4HP \ge 3.5HP \implies queda\ verificado$

6.8.14. Acoplamiento a Cadena

Se adopta un acoplamiento flexible a cadena para la unión entre el motorreductor y el eje del tambor motriz, como el de la Fig.6.8.20.

Fig.6.8.20

Los acoplamientos flexibles a cadena constituyen un positivo y seguro elemento para unir ejes entre sí. Admiten cierto desalineamientos entre ejes y su eficacia se mantiene constante, aún bajo severas condiciones de trabajo, permitiendo además desconectarlo fácilmente, quitando el eslabón de unión de la cadena, sin necesidad de desmontar el motor o la máquina accionada. Los piñones de los acoplamientos se fabrican en acero Siemens Martin SAE 1050.

La película lubricante que se forma entre los elementos movibles de la cadena y entre esta y los piñones, amortiguan los ruidos y vibraciones. Su utilización es muy apropiada especialmente para ejes de bajas velocidades pues resultan más seguros y compactos que otros tipos de acoplamientos elásticos.

6.8.14.1. Potencia Efectiva (P_e)

La potencia efectiva es igual a la potencia del motorreductor.

6.8.14.2. Factor de Servicio (f_s)

El factor de servicio, ver Fig.6.8.21, depende del tipo de motor de accionamiento y de la naturaleza de la carga.

Tabla de factores de servicio

***	Tip	o de Accionamie	ento
Naturaleza de la carga	Motor Eléctrico	Motor Diesel	Motor a Vapor
Uniforme	1 1	1.4	2
Mediana	1.4	1.6	2.2
Pesada	2	2.2	2.5

Fig.6.8.21

Para una naturaleza de carga mediana y motor eléctrico: $f_s = 1,4$.

6.8.14.3. Potencia de Cálculo $(P_{\mathcal{C}})$

La potencia de cálculo es el producto de la potencia efectiva y el factor de servicio:

$$P_C = P_e \times f_s \tag{6.7.30}$$

Donde:

 P_e : Potencia de entrada al eje a acoplar [HP] f_s : Factor de servicio [-]

Entonces: $P_C = 4HP \times 1.4 = 5.6HP$

Se adopta un acoplamiento a cadena que admite una potencia nominal de 7,2HP a una velocidad angular de 61rpm.

7. SECTOR DE ENFRIADO

Posterior al proceso de pelletizado, es necesario disminuir la temperatura y humedad del producto conformado con el fin de evitar la formación de hongos y rotura del producto para su posterior manejo.

7.1. ENFRIADOR

El enfriador a contraflujo permite realizar este proceso de manera óptima solo con el manejo de aire a temperatura ambiente.

El producto que ingresa gradualmente seco y con temperatura, dentro del equipo se encuentra con una corriente de aire ascendente, la cual arrastra las partículas de humedad y el calor fuera del equipo, dejando así el material en condiciones para su almacenamiento.

Características de Operación del Enfriador

Tipo: a contra-flujo. Capacidad: 1tn/h.

Materia prima: pellets de madera.

En base a las características mencionadas el enfriador a contraflujos a instalar en la planta fue recomendado por el fabricante, por lo que su cálculo y dimensionamiento no se contempló en el presente proyecto.

8. SECTOR DE CLASIFICACION

8.1. ZARANDA

Características de Operación de la Zaranda

Tipo: vibratoria. Capacidad: 1tn/h. Clasificación: 1 nivel.

Materia prima: pellets de madera.

En base a las características mencionadas la zaranda a instalar en la planta fue recomendada por el fabricante, por lo que su cálculo y dimensionamiento no se contempló en el presente proyecto.

8.2. CINTA TRANSPORTADORA 3

El cálculo y dimensionamiento de la cinta se realiza según "Transporti Meccanici" (ZIGNOLI, 1970)

8.2.1. Ancho de la Cinta

La sección de trasporte neta (A) y el caudal de transporte (Q) vienen dados por las siguientes ecuaciones:

$$A = 0.122 \times (0.9 B - 0.05)^{2} \quad (8.2.1)$$

A: Sección de Transporte Neta [m²]

B: Ancho de la Cinta [m]

γ: Peso específico del material transportado [tn/m³]

v: Velocidad de la cinta [m/s]

Q: Caudal del material transportado [tn/h]

Reemplazando (8.2.1) en (8.2.2) y despejando B, se obtiene el ancho de banda para el transporte:

$$B = \frac{1}{0.9} \times \left[\sqrt{\frac{Q}{\gamma \times \nu \times 0.122 \times 3600}} + 0.05 \right]$$
 (8.2.3)

Se adopta una velocidad de transporte de $v=1\ m/s$ y se halla el ancho de banda con la ecuación (8.2.3).

$$B = \frac{1}{0.9} \left[\sqrt{\frac{Q}{\gamma \times \nu \times 0.122 \times 3600}} + 0.05 \right] = \frac{1}{0.9} \times \left[\sqrt{\frac{1 \frac{tn}{h}}{0.65 \frac{tn}{m^3} \times 1 \frac{m}{s} \times 0.122 \times 3600}} + 0.05 \right]$$

B = 0.121m = 121mm

Como el ancho de banda hallado no corresponde a un ancho de banda normalizado, se selecciona una banda normalizada de 400 mm. y con esté se recalcula la velocidad de la cinta despejando la velocidad (v) de (6.7.3):

$$v = \frac{Q}{\gamma \times 0.122 \times (0.9B - 0.05)^2} = \frac{1 \frac{tn}{h}}{0.65 \frac{tn}{m^3} \times 0.122 \times 3600 \times (0.9 \times 0.40m - 0.05)^2}$$

$$v = 0.036 \frac{m}{s}$$

Como la velocidad de transporte hallada es muy baja se asume una velocidad de 1m/s para evitar una reducción muy excesiva.

Luego se verifica que para el ancho de banda seleccionado y peso específico del material no se sobrepase la capacidad máxima de transporte establecida para la producción de la planta, esto se obtiene de Tabla CCCa, Fig.8.2.1.

	Super- ficin	Peso	Portata				Māisim	a portata	Q in i ers	con la v	elocità V	in m/see			
Lar- ghezza	della sezione del	di ma- (eriale per m	del mastro in		= 1 m/s	ec	p -	- 1,50 m/s	ec	1	= 2 m/sc	NC	l ²	= 2,5 m/s	see
B m	mucchio di ma- teriale A	di nastro per y = 1	m ³ ora con v = 1 m/sec (M _{co})		material in t/m²			'eso specif material in t/m²			eso specifi I material in L/m²			eso specifi l material in t/m*	
	19.5	lcg	(24 66)	0,5	1	1,3	0,5	1	1,3	0,5	1	1,5	0,5	1	1,5
0,30	0,0070	7	25	12	25	37	18	37	3.5	25	50	75	31	62	63
0,33	0,0007	9,7	39	18	39	57	26	57	85	39	78	117	13	96	144
0,40	0,0128	12,8	50	25	\$41	7.9	37	75	112	50	100	150	62	125	181
0.45	0,0164	16,4	58	29	58	87	43	87	130	55.	116	174	72	145	217
0,50	0,0201	20.4	78	39	78	117	3.8	117	175	79	136	231	97	193	23
0,55	6,6256	25.0	85	44	88	132	66	132	198	88	178	264	110	220	331
0.60	0,0300	30,0	105	53	166	139	7.9	159	228	100	212	318	132	265	397
0,65	0,0355	35,5	125	62	125	187	93	187	280	125	250	275	156	312	461
0,78	0,0410	41,6	148	74	148	222	111	222	333	148	296	141	185	376	555
0,50	0,0552	55,2	196	9.8	198	994	147	294	411	195	392	588	245	490	735
0.99	0,0712	71.2	254	127	251	381	190	381	571	254	508	762	211	628	941
1,00	0,0892	89,2	330	160	320	480	210	480	720	320	640	280	400	800	1200
1,29	0,134	134,0	470	225	479	T05	352	105	1057	470	240	1410	387	1175	1762
1,40	0,189	189,0	670	335	679	1005	502	1005	1507	670	1340	2010	835	4675	2515

Fig.8.2.1

La capacidad máxima de transporte para la velocidad utilizada se encuentra verificada.

8.2.2. Potencia Necesaria para el Accionamiento

La fuerza necesaria para el movimiento de la cinta está compuesta por las siguientes fuerzas:

$$F_{Accionamiento} = T - t = F_v + F_m \pm F_h + F_d$$
 (8.2.4)

Donde:

 F_v : Fuerza necesaria para mover la cinta en vacio [Kg]

 F_m : Fuerza necesaria para mover el material en forma horizontal [Kg]

 F_h : Fuerza necesaria para elevar o descender el material [Kg]

 F_d : Fuerza necesaria para vencer los descargadores [Kg]

8.2.2.1. Fuerza Necesaria para mover la Cinta en Vacío (F_{v})

La fuerza se determina mediante la siguiente ecuación:

$$F_v = \left(1 + \sum r\right) \times f \times q_s \times (L + L_0) \quad (8.2.5)$$

Donde:

r: Equivalencia de resistencia que of recen los tensores verticales [—]

f: Resistencia equivalentes de las masa rotantes [-]

 q_s : Peso por unidad de longitud de las partes móviles [Kg/m]

L: Distancia horizontal entre centros de tambores [m]

 L_o : Longitud adicional que depende del tipo de montaje [m]

El valor de "r" se obtiene de la Fig.8.2.2, como cojinetes laminados: r=0.005

Le resistenze precedenti r sono, per varie pulegge, ce	osi defii	iite:
	Alber	i so cuscinetti
	lisei	a rotolamente
1 puleggia sul tratto ad alta tensione T	0,02	0,01
1 puleggin sul tratto a bassa tensione t	0,01	0,005
1 tenditore verticale (fig. $776 d$), comprese le due pulegge		
di rinvio in alto	0,06	0,03

Fig.8.2.2

El valor de "f"se extrae de Fig.8.2.3, como rodamiento bien montado: f = 0.025

```
I valori di f delle (1) (2) (3) sono:

per cuscinetti lisci in bronzo o metallo bianco . . . . f = 0,05

per cuscinetti a rulli di serie . . . . . . . . f = 0,03

per cuscinetti a sfere o a rulli molto ben montati . f = 0,025
```

Fig.8.2.3

El valor de " q_s "se obtiene de la tabla CCI, Fig.8.2.4, con el ancho de banda B=0.40m: $q_s=24\,rac{\kappa g}{m}$

	Peso medio			0.82	kg/m ^r	(28 000	e) a tek	N.					0,93	kg/m²	132 one	e) a teli	N.		
Lar	in kg/m		tele 4			tele 3			tele 6			tele 4			tele 5			tele 6	
nustro	parti mobili							Sp	exxor	e gaz	sma 1	nteri	n						
in m	dei tra- sperta- tore	1.2	1,5	2.5	1,2	1,5	2,5	1,2	1,5	2,5	1,2	1,3	2,5	1,3	1,5	2.5	1,2	1,5	2,5
	kg							8 10	caser	e gon	ma c	sterr	0						
		3,5	4,8	7	3,5	4,8	7	2,5	1,8	1	3,5	5,8	7	3,5	4,8	7	3,5	4,8	
0,30	20	3.4	4.3	5,4	5,8	4.0	5,7	4.9	1,3	6,9	3,8	4,3	5,6	4,1	6,8	6,0	4,5	3.0	6,8
0.35	22	4	5.0	6,3	8.5	5,3	6.7	4,9	5,5	7,2	4,5	5,1	6,5	4.8	5,8	7	5,3	6	7,6
0,40	24	4,6	3,7	1,2	5,1	6,9	7.6	5,6	6,1	8.2	4,51	5,8	1,5	3,3	8,4	Б	6,0	6,9	8,7
6,45	28	5,2	6,4	8,0	5,7	6,8	8,6	6,3	1,2	5,2	5,€	6,5	5,4	6,2	1,2	2	872	1,8	1 4,
8,50	52	3,7	7,0	9,0	0,4	7,5	9,5	7,0	5,0	10,2	6,2	1,2	9,3	6,9	8,0	10	7,5	8,5	19,1
6,66	38	1,0	8,3	10,8	7,7	9,8	11.5	8,4	9,7	12,3	7,4	3,7	11.5	8,2	9,7	12	9,0	10,4	13
8,75	35	8,5	19,7	13,5	9,6	11,9	14	10.5	12,0	10,4	9,0	10,8	14	10,2	12,0	15	11,0	13	16
6,90	69	10,3	11,5	15,6	11,5	13,5	17	17,5	11,1	18,5	11	13	16.8	12,4	14.4	18	15,5	13,5	19,5
1,00	14	11,5	12.7	18,0	10,7	15,2	19	1,40	18	26	12,3	11,5	15,5	13,7	15	28			21.4
1,20	50	14,6	17,2	21,5	15,2	16,9	23	17,8	19	25	14,8	17.4	22,4	16,4	19	24	18	21	25
1.30	100	15,0	18,5	23,5	16,7	10,5	25	35,5	21	27	16	19	21,7	18	21	26	19,5	22,3	32
1.50	114	17,6	21.5	57	19	22.5	28.7	21	21	31	18,5	93	25	20,5	31	30	22.5	16	32

Fig.8.2.4

El valor de "L"es la distancia entre centros de tambores de la cinta transportadora, que se encuentra en los planos PM-C3-001 Rev.01 : L=3.9m

El valor de " L_0 " es un factor de seguridad, que se obtiene de Fig.8.2.5, para rodillos bien montados sobre rodamientos: $L_0 = 60m$

```
Riassumendo, lo sforzo totale motore, detta L_o una lunghezza aggiunta che tien conto delle resistenze fisse e che si assume mediamente: L_o = 30 \, \text{m per rulli montati su bronzine;} L_o = 60 \, \text{m per rulli montati su cuscinetti a rotolamento;}
```

Fig.8.2.5

Reemplazando los valores obtenidos en (8.2.4):

$$F_v = (1 + 0,005) \times 0,025 \times 24 \frac{Kg}{m} \times (3,9m + 60m)$$

 $F_v = 38,53Kg$

8.2.2.2. Fuerza Necesaria para mover el Material en forma Horizontal $\left(F_{m}\right)$

El valor de ${\it F_m}$ viene dado por la siguiente expresión:

$$F_m = f \times q_m \times (L + L_0) \quad (8.2.6)$$

Donde:

 q_m : Peso del material trasnportado por metro de cinta [Kg/m]

f: Resistencia equivalentes de las masa rotantes[-]

L: Distancia horizontal entre centros de tambores[m].

 L_o : Longitud adicional que depende del tipo de montaje [m]

El valor de " q_m " se determina de la siguiente forma:

$$q_m = \frac{Q}{v} \qquad (8.2.7)$$

Donde:

Q: Caudal del material transportado [tn/h]. v: Velocidad de la cinta [m/s].

Entonces, reemplazando en (8.2.7):

$$q_m = \frac{1 \frac{tn}{h}}{1 \frac{m}{s} \times 3.6 \frac{tn.s}{Kg.h}}$$
$$q_m = 0.278 \frac{Kg}{m}$$

Reemplazando los valores obtenidos en (8.2.6):

$$F_m = f \times q_m \times (L + L_0) = 0.025 \times 0.278 \frac{kg}{m} \times (3.9m + 60m)$$

 $F_m = 0.44 \text{ Kg}$

8.2.2.3. Fuerza Necesaria para Elevar o Descender el Material (F_h)

El valor de F_h está dado por la siguiente expresión:

$$F_h = q_m \times \Delta h \quad (8.2.8)$$

Dónde: Δh : Diferencia de alturas entre tambores [m]

$$F_h = 0.278 \frac{Kg}{m} \times 1m$$

$$F_h = 0.278 Kg$$

8.2.2.4. Fuerza Necesaria para vencer los Descargadores (F_d)

Las ecuaciones que determinan la fuerza debido a la existencia de descargadores son las siguientes:

$$F_d = n_d (X.F_0 + 1.4.q_m)$$
 (8.2.9)

Donde:
$$F_{0} = f \times (q_s + q_m) \times (L + L_0) \pm F_h$$
 (8.2.10)

Reemplazando (8.2.10) en (8.2.9):

$$F_d = n_d \times [X. (f.(q_s + q_m) \times (L + L_0) \pm F_h) + 1.4. q_m]$$
 (8.2.11)

Donde:

 n_d : Número de descargadores[-]

X: Coeficiente sacado de pág. 1093[-]

 F_0 : Resistencia de la instalación a las partesen movimiento del transportador y material [Kg]

f: Resistencia equivalentes de las masa rotantes [-]

 q_s : Peso por unidad de longitud de las partes móviles [Kg/m]

 q_m : Peso del material trasnportado por metro de cinta [Kg/m]

L: Distancia horizontal entre centros de tambores [m]

 L_0 : Longitud adicional que depende del tipo de montaje [m]

 F_h : Fuerza necesaria para elevar o descender el material [Kg]

Como no existen descargadores en el sistema, la fuerza debido a estos es nula.

$$F_d = 0 Kg$$

Ahora con todos los valores de las magnitudes que componen la fuerza de accionamiento, se obtiene dicha fuerza.

$$F_{Accionamiento} = T - t = F_v + F_m \pm F_h + F_d$$

$$F_{Accionamiento} = 38,53 Kg + 0,44 Kg + 0,278 Kg$$

$$F_{Accionamiento} = 39,25 Kg$$

Con la fuerza de accionamiento, se obtiene la potencia que tendrá el motor con la siguiente expresión:

$$N = \frac{F_{Accionamiento} \times v}{75 \frac{Kg \cdot m}{s \cdot CV} \times \eta_{Motor}}$$
(8.2.12)

Donde: η_{Motor} : Rendimiento del motor (adoptado) = 0,8

$$N = \frac{39,25 \, Kg \times 1 \frac{m}{s}}{75 \frac{Kg \cdot m}{s \cdot CV} \times 0,8} = 0,65 \, CV$$

8.2.3. Potencia Necesaria según Zignoli

La Potencia del motor, se determina a partir de la tabla CCCa, Fig.8.2.6 y depende de:

$$N = \frac{a+b+c}{\eta_{Motor}}$$
 (8.2.13)

Donde:

a: Potencia absorbida por transporte horizontal [HP].

b: Potencia absorbida por diferencia de alturas entre tambores [HP].

c: Consumo de energía para cada operación del vertido en una cinta intermedia [HP].

Se considera:

 η_{Motor} : Rendimiento del motor (adoptado) = 0,8

El valor de "a" se obtiene para el menor caudal y recorrido de transporte: a = 1.2HP

Tonn. trasp. all'ora Q	15	30	45 Potenza	Lung 80 assorbit	75	90	120	ore L i 150 ini su c	180	210 i a sfere	240	300
50	1,2	1.4	1.7	1,9	2,2	2,5	2,8	3,1	3,5	4,0	5,0	6,0
100	1.7	2.0	2,5	2.7	3,1	3,9	4,0	4,0	4,5	6,0	7,0	8,0
150	2,0	2.5	3.0	3,5	4,0	4,2	5,1	5,1	6,1	8,0	9,0	10
200	2.2	2,8	3,0	4,0	4,8	5,4	6.0	7,2	8,8	10	11	14
250	2.9	3.5	4,1	4.7	5,4	6.0	7.5	9,5	11	12,5	14	16
300	1,2	4.8	5.3	5,8	6,5	7,2	9	11,5	13	15	17	18
350	4,8	5,5	6,2	7.0	7.8	9	11	13	15	17	20	20
400	5.0	6,0	7.0	8,0	9.0	10.5	13	15	17	20	23	24
450	5,7	6.9	8,0	9,2	10.5	12	14	17.5	20	23	26	28
500	6.5	8	9,5	11	12,5	14	17	20	23	26	29	33

Fig.8.2.6

El valor de "b" se obtiene interpolando de tabla CCCb, Fig.8.2.7 con el caudal de material Q=1 tn/h (se adopta el menor) y una diferencia de altura entre tambores de $\Delta h=1m$, b=0.165 HP.

Tonn.				Per s	uperare	un disli	vello H	di m			b
trasportate all'ora Q	1	2 e p	3 er í var	5 Q della	10 a prima	20 colonna	la pote	50 nza nui	70 nerica è	100 HP	150
50	0.165	0.33	0,50	0,80	1,65	3,30	5,00	8,2	12,5	16,5	25,0
100	0,33	0,65	1,00	1,60	3,30	6,50	10,0	16,5	20,11	34,0	a0,0
150	0,5	1,0	1,5	2,5	5,0	10,0	15,0	25,0	37.0	50,0	75,6
200	0,65	1,3	2,0 .	3,2	6,5	13	20	33	50	65	100
250	0.80	1,6	2,4	4,0	8,0	16	24	40	60	80	120
300	1,00	2,0	3,0	5.0	10.0	20	30	50	7.5	100	150
350	1,15	2,3	3,4	5,5	11	13	34	58	85	115	170
	1.30	2,6	2,8	6,5	13	26	38	65	95	130	200
400				7.5	15	30	45	75	110	150	225
450 500	1,50 1.65	3,0	4,5 . 5,0	8.0	16	33	50	80	120	160	250

Fig.8.2.7

El valor de "c" es igual a cero por que la cinta no posee descargas intermedias.

Reemplazando los valores obtenidos en la ecuación (8.2.13):

$$N = \frac{1,2HP + 0,165HP + 0 HP}{0,8}$$

$$N = 1,706HP = 1,705CV$$

Como se puede observar el valor de potencia nominal recomendado según ZIGNOLI, es mayor que el hallado en el apartado 8.2.2, por lo que se adopta el valor recomendado de N=1,706HP como Potencia Nominal de régimen para los cálculos posteriores.

8.2.4. Potencia Adicional

La potencia hallada en el apartado 8.2.3 es la correspondiente a la del sistema actuando en estado de régimen, pero en el momento del arranque, así como en casos de sobrecargas bruscas eventuales, el motor estará sobrecargado. Esto se soluciona adoptando un motor con una potencia superior a la nominal y con un par de arranque adecuado a esta exigencia.

La potencia de arranque (N_{Arr}) necesaria está dada por la siguiente expresión:

$$N_{Arr} = N \times K_a \times K_d \times K_i \qquad (8.2.14)$$

Donde:

 K_a : Coef. que tiene en cuenta las fuerzas de inercia y la aceleración $[\,-\,]$

 K_d : Coef. que tiene en cuenta el rozamiento estático y dinámico [-]

 K_i : Coef. que tiene en cuenta posibles sobrecargas sobre la cinta el rozamiento estático y dinámico [-]

8.2.4.1. Cálculo de (K_a)

El cálculo de K_a se realiza teniendo en cuenta el incremento de potencia necesaria para vencer la inercia de las masas de las partes rotantes y el peso del material transportado al ponerse en movimiento.

Se determina mediante las siguientes ecuaciones:

$$K_a = \frac{N + N_i}{N}$$

$$N_i = \frac{m \cdot v^2}{75 \cdot \eta \cdot t}$$

$$m = \frac{q_s \cdot l}{g} + \frac{q_m \cdot L}{g}$$
 (8.2.17)

$$t = \frac{v}{a}$$

Donde:

m: Masa total a poner en movimiento [Kg]

t: Tiempo que tarda la cinta en alcanzar la velocidad de régimen [s]

l: Longitud total de la cinta [m] = (2L + 0.05L)

L: Longitud entre centro de tambores [m]

a: Aceleración media de la cinta $[m/s^2]$

 η : Rendimiento del motor [-]

Reemplazando valores:

$$m = \frac{q_s \cdot l}{g} + \frac{q_m \cdot L}{g} = \frac{q_s \cdot (2L + 0,05L)}{g} + \frac{q_m \times L}{g}$$

$$m = \frac{24 \frac{Kg}{m} \times (2 \times 3.9m + 0.05 \times 3.9m) + 0.278 \frac{Kg}{m} \times 3.9m}{9.81 \frac{m}{s^2}}$$

$$m = 19,67Kg$$

$$t = \frac{v}{a} = \frac{1}{0.3} \frac{m_{/s}}{m_{/s^2}} = 3.33s$$

$$N_i = \frac{m \cdot v^2}{75 \cdot n \cdot t} = \frac{19,67 \, Kg \, \times \, (1 \, m/_S)^2}{75 \, \times \, 0.8 \, \times \, 3.33 \, s} = 0,098 \, CV$$

$$K_a = \frac{N + N_i}{N} = \frac{1,706 \, CV + 0,098 \, CV}{1,706 \, CV} = 1,058$$

8.2.4.2. Cálculo de (K_d)

Este coeficiente se halla por medio de la siguiente relación:

$$K_d = \frac{\mu_{estático}}{\mu_{dinámico}} = \frac{F_{Arranque}}{F_{régimen}}$$
 (8.2.19)

 $F_{Arranque}$: Fuerza necesaria para poner en movimiento el sistema [Kg].

 $F_{régimen}$: Fuerza necesaria para mantener la cinta en movimiento = $F_{Accionamiento}[Kg]$.

Siendo:
$$F_{Arranque} = 1.5 \times (F_v + F_m) + F_h + F_d$$
 (8.2.20)

Reemplazando valores:

$$F_{Arranque} = 1.5 \times (38.53Kg + 0.44Kg) + 0.278Kg + 0Kg = 58.74Kg$$

Con este valor se obtiene el coeficiente K_d por medio de la ecuación (8.2.19):

$$K_d = \frac{58,74 \, Kg}{39,25 \, Kg} = 1,5$$

8.2.4.3. Cálculo de (K_i)

El valor de K_i depende del tipo de accionamiento de la cinta transportadora. En este caso, para accionamiento por medio de motor eléctrico: K_i : 1-1,2.

Se adopta un valor de $K_i = 1$ ya que el caudal es muy bajo.

Reemplazando los valores en la ecuación (8.2.14) se halla el valor de la potencia de arranque:

$$N_{Arranque} = 1,705 \ CV \times 1,058 \ CV \times 1,5 \ CV \times 1 \ CV = 2,7 \ CV$$

La relación entre la potencia de arranque y la nominal es:

$$\frac{N_{Arranque}}{N} = \frac{2,7CV}{1,705\ CV} = 1,583$$

Entonces el porcentaje de potencia adicional es de 58,3%.

8.2.5. Tensión en los Ramales

El método para el cálculo de la tensión en los ramales fue seguido según el fabricante de cintas *Kauman*. La relación entre la tensión en el ramal tenso (t_1) y el descargado (t_2) está dada por:

$$\frac{t_1}{t_2} \le e^{u.\alpha} \quad (8.2.21)$$

Siendo:

 μ : Coef. de rozamiento entre la superficie exterior del tambor y la superficie interior de la cinta [-] α : Ángulo de abrace entre la cinta y el tambor motriz $[\, ^{\circ}\,]$

$$T_1 = F_{accionamiento} \times \left(1 + \frac{1}{e^{u.\alpha} - 1}\right)$$
 (8.2.22)

$$T_2 = F_{accionamiento} \times \left(\frac{1}{e^{u.\alpha} - 1}\right)$$
 (8.2.23)

Para el cálculo de las tensiones en los ramales se adopta de Tabla VIII, Fig.8.2.8, un coeficiente de rozamiento del tambor motriz recubierto y para ambiente mojado: $\mu=0,25$, y un ángulo de abrace $\alpha=180^{\circ}$.

ONDICIONES DEL TAMBOR	CONDICIONES DE AMBIENTE	VALOR DE #
UNDICIONES DEL TAMBOR	mojado	0,10
Sin Recubrir	húmedo	0,10 ÷ 0,20
	seco	0,30
	mojado	0,25
Recubierto	húmedo	0,25 ÷ 0,30
TARTER STREET	seco	0.35

Fig.8.2.8

Reemplazando en (8.2.22) y (8.2.23):

$$T_1 = 39,25g \times \left(1 + \frac{1}{e^{0,25\pi} - 1}\right) = 72,14 \, Kg$$

$$T_2 = 39,25Kg \times \left(\frac{1}{e^{0,25\pi} - 1}\right) = 32,89Kg$$

8.2.6. Selección de Banda Transportadora

Se adopta una superficie de cobertura tipo *Lemafer*, que es un tipo de cobertura para usos generales y materiales medianamente abrasivos, Fig. 8. 2. 9, para un tamaño de material que ronda entre 25 y 125 mm y un tiempo empleado para que la cinta de una vuelta completa de 8,478 segundos.

Una vez adoptado el tipo de cobertura, se elige el tipo de urdimbre de la cinta y se calcula el número de telas que debe poseer la misma.

Se adopta una cinta de Nylon-Nylon ya que el sistema tendrá una capacidad de transporte relativamente pequeña, un diámetro de tambor pequeño, y por lo tanto, se debe tener una banda con una buena flexibilidad que permita una extensa vida útil.

	TIPO	S DE TEJIDOS UTILIZADOS TYPES OF FABRICS USED
Urdimbre/trama - Nylon Nylon Warp/Mesh - Nylon Nylon	Urdimbre/trama - Poliester Nylon Warp/Mesh - Polyester Nylon	Carga de trabajo - Kg/cm/tela Working load - Kg/cm/fabric
12.5	125	12.5
20	200	20
25	250	25
30	300	30
35	350	35
40	400	40

Fig.8.2.9

El número de telas está dado por:

$$n_t = \frac{T_{M\acute{a}x}}{A \times CT} \qquad (8.2.24)$$

Donde:

 n_t : Número de telas [-]

T_{Máx}: Tensión máxima de la banda [Kg]

A: Ancho de la cinta [cm]

CT: Carga de trabajo seleccionada a utilizar [Kg/cm. tela]

Reemplazando valores:

$$n_t = \frac{T_{M\acute{a}x}}{A \times CT} = \frac{72,14 Kg}{40 cm \times 12,5 \ \frac{Kg}{cm.\,tela}} = 0,14 \, telas$$

Por lo tanto se adopta un tejido de 2 telas Nylon-Nylon.

8.2.7. Diámetro Mínimo de Poleas

El diámetro mínimo de las poleas está dado en función del tipo y número de telas calculado en el apartado 8.2.6.

		Ny 12.5			Ny 20	
Nº de telas Nº of plies	Diámetro polea motora Drive pulley diameter mm	Diametro polea de reenvio y tensora Tail and tension pulley diameter	Diámetro polea desviadora Shift pulley diameter	Diámetro polea motora Drive pulley diameter mm	Diametro polea de reenvio y tensora Tail and tension pulley diameter	Diámetro poles des viadora Shift pulley diameter
2	300	250	250	400	350	300
3	350	300	280	500	400	350
4	500	400	350	630	500	500

Fig.8.2.11

8.2.8. Tensión en el Ramal Flojo

Se debe verificar que la tensión en la banda en el ramal flojo sea superior a la mínima para que éste no flexione demasiado entre rodillo y rodillo, la misma está dada por:

$$t_o = 50 \times n_t \times B \tag{8.2.25}$$

$$t_o = 50 \times 2 \times 0.4m = 40Kg$$

Como la tensión en ramal flojo es inferior a la calculada en el punto 8.2.5, la cinta posee tensores.

8.2.9. Diámetro de Tambores

Los diámetros de los tambores motriz y de cola son función del ancho de banda calculado en el apartado 8.2.1.

Se adopta como diámetro para los tambores: 320mm.

Ernst Mariángeles - Montañana Guillermo

8.2.10. Rodillos

El cálculo del diámetro del rodillo y la distancia entre ellos se realizan siguiendo el método del fabricante *Rotrans S.A.*

8.2.10.1. Diámetro y Distancias entre Rodillos

Debido a las exigencias que debe soportar la cinta, se adoptan rodillos de amortiguación en la zona de carga, para disminuir golpes, flexión y hacerla más rígida (distanciados una longitud $L_1/2$) y el resto serán rodillos lisos (a una distancia L_1 entre ellos).

El diámetro de los rodillos es función del ancho de la cinta y está dada por la tabla J, Fig.8.2.12.

Recon de roc						ı				Ta	ıbla J
BANDA o Rodillo	400	500	650	800	1000	1200	1400	1600	1800	2000	2200
63.5	Х	X	X					and the second			
70		X	X	X							
76		X	X	X	X						
89		X	X	X	X			6193			
102			X	Х	Х	Х					
108		- Commence	X	X	Х	X	X				Alexandra de la compansa de la compa
127				X	Х	X	X	X			
133		The second second		Х	Х	X	X	Х			
152,4						X	X	X	X		
159						X	Х	Х	Х		
193.7									X	X	X

Fig.8.2.12

Con lo cual para un ancho de cinta de 400mm el diámetro de los rodillos es de $\emptyset = 63,5mm$, y se verifica si los mismos soportan la carga de trabajo a continuación.

8.2.10.2. Verificación de Carga sobre Rodillos

$$K_r = R + L_1 \times \left(G_g + \frac{Q_r}{3.6 \times V}\right) \times F_c \times F_i \times F_v$$
 (8.2.26)

Donde:

 K_r : Carga sobre rodillo [Kg]

R: Peso de las partes rodantes de los rodillos (Ver catálogo) [Kg]

 L_1 : Separación entre dos estaciones consecutivas (Ver tabla A) [m]

 Q_r : Capacidad de carga [tn/h]

v: Velocidad de la banda [m/s]

 F_c : Factor de Carga (Ver Tabla C)[-]

 F_i : Factor de Impacto (Ver Tabla D)[-]

 F_v : Factor de vida del rodillo (Ver Tabla E)[-]

En este caso:

R = 4Kg (se utiliza el peso del rodillo amortiguado por ser el más desfavorable)

La separación entre dos estaciones consecutivas se determina de tabla A, Fig.8.2.13, para un peso específico de $\gamma=0.65$ tn/m^3 .

			Tabla A
ANCHO DE	SUPE	RIORES	INFERIORES
BANDA (mm)	& = 0,8	& 0,6	
400	1.35	1.35	3.00
500	1,35	1,20	3,00
650	1,20	1,10	3,00
800	1,20	1,00	3,00
1000	1,00	1,00	3,00
1200	1,00	1,00	3,00
1400	1,00	1,00	3,00
1600	1,00	1,00	3,00
1800	1,00	1,00	3,00
2000 Y *	1,00	1,00	2,40

Fig.8.2.13

De la tabla surge que para los rodillos superiores $L_1=1{,}35m$ y para los inferiores $L_1=3m$.

El peso de la banda se obtiene del catálogo comercial.

$$G_g = 12.5 \frac{Kg}{cm, tela} \times 2telas = 25 \frac{Kg}{cm} = 0.25 \frac{Kg}{m}$$

La velocidad en la cinta es: $v = 1 \frac{m}{s}$

La capacidad de carga real es $Q = 1 \frac{tn}{h}$

Los factores de carga (F_c) , de impacto (F_i) y de vida (F_v) se obtienen de las tablas C, D y E adjuntas a continuación, Fig.8.2.14:

autor a	e carga	(10)			LI- 0				Tabla D
				1	bla C	TAMAÑO DEL	VE	LOCIDAD DE LA	BANDA
						MATERIAL	2,5 m/s	2,5 a 4 m/s	4 a 5 m/s
Horizontal	٧	Artesa	Artesa	Artesa	Artesa	100 m/m	1,000	1,000	1,000
	20°	20°	30°	35°	45°	100 a 175 m/m	1,025	1,060	1,110
	Carellana Albertan	AND MAKESTAN AND ASSESSMENT		Children Market State of Colors		175 a 300 m/m	1,075	1,140	1,280
Fc = 1	Fc = 0.55	Fc = 0.60	Fc = 0.63	Fc = 0.66	Fc = 0.70	325 a 500 m/m	1,260	1,600	2,100
	Factor	de vida	(Fv)					Toble E	
	Factor	de vida	(Fv)					Tabla E	
	HOR	de vida AS DE IAMIENTO	(Fv)	20.000	30.000	40.000 5	D.000 66	Tabla E	0

Fig.8.2.14

El valor de Carga sobre Rodillo (K_r) es:

$$K_r = R + L_1 \times \left(G_g + \frac{Q_r}{3.6 \times V}\right) \times F_c \times F_i \times F_v \qquad (8.2.27)$$

$$K_r = 4 Kg + 1,35m \times \left(0.25 \frac{kg}{m} + \frac{1 \frac{tn}{h}}{3.6 \times 1 \frac{m}{s}}\right) \times 1 \times 1 \times 1 = 4,713 Kg$$

Para verificar la carga por rodillo se debe hallar la velocidad de giro de los mismos por medio de la Tabla I, Fig.8.2.15, interpolando para una velocidad de $v=1\,^m/_{\mathcal{S}}$ y un diámetro de rodillo de $\emptyset=63,5mm$

R.P.M. de la v		10 10 1 0/0				The state of				T	abia i
VELOCIDAD	Oloc	idad			ETRO DEL R		n				
BANDA M/S	63,5	70	76	89	102	108	127	133	152,4	159	193,7
0.25	75	68	83	53	47	44	38	36	31	30	25
0,50	150	136	126	107	90	88	75	72	63	60	49
0,75	225	205	189	161	141	132	113	107	94	90	74
1.00	300	273	251	214	188	176	150	143	125	120	98
1,25	376	341	314	263	235	221	188	179	157	150	123
1,50	451	409	377	322	282	265	226	215	188	180	148
1,75	526	478	440	375	329	309	263	251	219	210	172
2.00	601	546	503	429	376	353	301	287	251	240	197

Fig.8.2.15

La máxima velocidad que soportan los rodillos es 300rpm.

La capacidad de carga del rodillo se obtiene por medio de la Tabla H, Fig.8.2.16, en función de las revoluciones del rodillo (300rpm) y la longitud del mismo (530mm).

EAURITHO OIL (III)	m) y vida de 30.000	horas										Table	a H
o Eje Rodamiento	r.p.m. Longitud	30	60	100	200	300	400	500	600	700	800	900	1000
	200					1							
	250	410	350							1			
	315	380		280									
	380		320		205	170	157	149	140	132			7
	465	Real Property		971		1					128		
ø 20	530			232	200	165	150	140	133	125			
6.240	600	Billion		201	190	158	145	136	130	122			
	670			178	170	150	140	132	126	119			
	750				157	142	135	129	122	117			
	950						121	119	113	106	1		
	1150					T TOWN		99					1383

Fig.8.2.16

Como se observa por tabla, la carga máxima que soporta el rodillo es de 165kg y con éste valor se verifica la resistencia del rodillo a la carga:

Capacidad de Carga del Rodillo \geq Carga sobre Rodillo 165 $kg \geq 4{,}713kg \Longrightarrow queda verificado$

FACULTAD REGIONAL CONCEPCION DEL URUGUAY
UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803
Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY
ENTRE RIOS - REP. ARGENTINA

8.2.11. Disposición de Rodillos

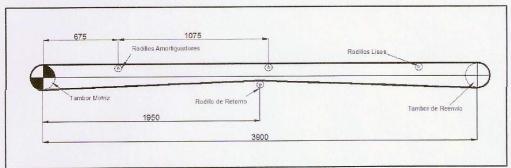


Fig.8.2.17

En la parte superior:

- 1 rodillo amortiguado distanciado 675mm del tambor motriz.
- 2 rodillos lisos distribuidos entre el rodillo amortiguado y el tambor de reenvío 1042mm entre sí.

En la parte inferior:

1 rodillos liso de retorno centrado sobre los dos tambores.

8.2.12. Velocidad del Eje de Transmisión

Se necesita una velocidad de banda de $v=1\,m/s$ para eso se determina la velocidad de rotación en el eje de transmisión, teniendo como dato el diámetro del tambor:

$$V_T = \omega \times r \qquad (8.2.28)$$

$$\omega = \frac{V_T}{r} = \frac{1 \frac{m}{s}}{0.16m} \times \frac{1 RPM}{\left(\frac{2\pi}{60 seg}\right)} = 59,68 RPM$$

8.2.13. Cálculo del Motorreductor

Se adopta un motorreductor del tipo coaxial de la Firma Lentax y se sigue el proceso de cálculo del fabricante.

8.2.13.1. Potencia Efectiva $\left(N_{ef}\right)$

La potencia efectiva es la potencia nominal necesaria de la cinta transportadora calculada en el apartado 8.2.3.

8.2.13.2. Factor de Servicio (f)

El factor de servicio (f=1,4) está dado según la aplicación y la cantidad de horas de servicio, Fig. 8.2.18.

Ernst Mariángeles - Montañana Guillermo

MAQUINA ACCIONADA TIPO DE MAQUINA	Service	TOR Servicio e hrs.	24	APPLICATIONS AND INDUSTRY DRIVEN MACHINE
TRANSPORTE Y ALMACENAJE	8	16		CONVEYORS
Montacargas	1,5	1,6	1,6	Hoists
Elevadores de personas	1,8	2,0	2,0	Passenger lifts
Elevadores inclinados	1,65	1,8	1,8	Inclined hoists
Elevadores de cangilones (rocas)	1,65	1,8	1,8	Bucket elevators (piece goods)
Elevadores de cangilones (granos)	1,5	1,6	1,6	Bucket elevators (bulk material)
Transportadores a cadena (redlers)	1,5	1,6	1,6	Chain conveyors
Transportadores de cangilones	1,5	1,6	1,6	Bucket conveyors
Transportadores circulares	1,5	1,6	1,6	Circular conveyors
Roscas transportadoras	1.15	1.4	1.5	Screw conveyors
Bandas transportadoras (granel)	1,15	1,4	1,5	Belt conveyors (bulk material)
Iransportadores de banda (articulados)	1,3	1,5	1,7	Apron conveyors
Transportadores de cinta de acero	1,5	1,6	1,6	Steel belt conveyors
Bandas transportadoras (bultos grandes)	1,3	1,5	1,7	Belt conveyors (piece goods)
Transportadores de placas	1,5	1,6	1,6	Band pocket conveyors
Tornos de elevación	1,5	1,6	1,6	Ballast elevators

Fig.8.2.18

8.2.13.3. Potencia Equivalente $\left(N_{eq}\right)$

 $N_{eq} = f \times N_{ef.} \qquad (8.2.29)$

 $N_{eq} = 1.4 \times 1.706 HP = 2.39 HP$

8.2.13.4. Preselección del Modelo

El modelo preseleccionado debe poseer una potencia superior a la potencia equivalente (2,39HP = 1,78KW) y una velocidad aproximada de 59,68 rpm. Ver Fig. 8.2.19.

Price		Vella stad Estrada Joans	Velic skel Salada asavu	Relation	MODELO		or de ridad	Museumeti) (Jali)	Foen. Entrad		Velocidad Entrada aposis	Velocidad Salida apiros	Relation	MOORE		Factor de egundad	Nomeron UNI
144	\$8°	RPM:	成的社	të		- 4	21	deni	1M	H	(RFA)	RPM	11			36	(5874)
			190.0	7,16	fraut 2	2.00)	2.40					41.0 51.0	12.64 27.80	FFF I	100	2.25	471 403
2.30	1.00	1415	1.10 4.20 5.20	410.76 116.70 272.35	14 SHR 14 SHR F45HR	1.00	1.15 1.50 1.85	A148 4806 3887				59.0	21.89	IIII	100		146
			6 30 7 40 6,70 10 10	225 54 189 97 162 02 139 48	F45HR F45HR F45HR	1 (8) 1 (8) 5 (8) 1 (8)	2.25 2.65 1.10 1.60	3319 3712 3111 1991				67.0 08.0 79.0 97.0	21 14 17.96 15.36 14.59	F112 F112 F112 F111	1.00 1.00 1.00 1.00 1.00	1.15 3.65	214 264 226 215
		1415	7,40 9.40	178,85 149,82	84573 84573	1.00		2593 2171				57.0 69.0 75.9	24.65 20.52 18.91	18172 1872 1872	3,000 1,000 3,600	1.15	36.1
			4,80 5,50	297.02 257.40	FATR FATR	\$ 1003 1 1003	1.05	4239 3674				0.18 0.88 0.29	17,38 16,02 14,91	H012 H012 H013	1.00	1.60	256
		940	4,80 5.2 5.9 6.4	196,40 180,12 159,55 146,49	6413 6413 6413	370 A 170 A 170 A 170 A	1.05 1.15 1.30 1.45	1936 1483				101.0 109.0 119.0 137.0 159.0	11.74 12.92 11.91 10.29 8.92	F012 F012 F012 F012 F012	1.00 1.00 1.00 1.00	1.90 2.00 2.70	202 199 175 132

Fig.8.2.19

El modelo seleccionado posee una potencial de 3HP y una velocidad de salida de 67 rpm.

Debe verificar que: $N_{Nom} \ge N_{eq}$

Entonces: $3HP \ge 2,56HP \implies queda\ verificado$

8.2.14. Acoplamiento a Cadena

Se adopta un acoplamiento flexible a cadena para la unión entre el motorreductor y el eje del tambor motriz, como el de la Fig.8.2.20.

Fig.8.2.20

Los acoplamientos flexibles a cadena constituyen un positivo y seguro elemento para unir ejes entre sí. Admiten cierto desalineamientos entre ejes y su eficacia se mantiene constante, aún bajo severas condiciones de trabajo, permitiendo además desconectarlo fácilmente, quitando el eslabón de unión de la cadena, sin necesidad de desmontar el motor o la máquina accionada. Los piñones de los acoplamientos se fabrican en acero Siemens Martin SAE 1050.

La película lubricante que se forma entre los elementos movibles de la cadena y entre esta y los piñones, amortiguan los ruidos y vibraciones. Su utilización es muy apropiada especialmente para ejes de bajas velocidades pues resultan más seguros y compactos que otros tipos de acoplamientos elásticos.

8.2.14.1. Potencia Efectiva (P_e)

La potencia efectiva es igual a la potencia del motorreductor.

8.2.14.2. Factor de Servicio (f_s)

El factor de servicio, ver Fig.8.2.21, depende del tipo de motor de accionamiento y de la naturaleza de la carga.

Tabla de factores de servicio

	Tipo de Accionamiento								
Naturaleza de la carga	Motor Eléctrico	Motor Diesel	Motor a Vapor						
Uniforme	1	1.4	2						
Mediana	1.4	1.6	2.2						
Pesada	2	2.2	2.5						

Fig.8.2.21

Para una naturaleza de carga mediana y motor eléctrico: $f_s = 1.4$.

8.2.14.3. Potencia de Cálculo $(P_{\mathcal{C}})$

La potencia de cálculo es el producto de la potencia efectiva y el factor de servicio:

$$P_C = P_e \times f_s \tag{8.2.30}$$

Donde:

 P_e : Potencia de entrada al eje a acoplar [HP] f_s : Factor de servicio [-]

$$P_C = 3HP \times 1.4 = 4.2HP$$

Se adopta un acoplamiento a cadena que admite una potencia nominal de 5,89HP a una velocidad angular de 67rpm.

8.3. ELEVADOR A CANGILONES

Para el cálculo se considera un material a transportar (pellets) con una densidad de $\gamma=0.65\,{}^{tn}/_{m^3}\,$ y un coeficiente de llenado según "Transporti Meccanici" (ZIGNOLI, 1970), de $\varphi=0.65\,$ para un material fino y fluido.

8.3.1. Altura del Elevador (H)

Conociendo las cotas de los silos, y teniendo en cuenta que el ángulo mínimo de descarga para el silo es de 35°, se calcula la altura del elevador.

El cálculo se realiza con respecto a la distancia más lejana con respecto a la cual estará posicionado el elevador y se adoptan silos de 11,65m de altura.

 $H = Distancia Horizontal \times tg \alpha + H silo + Altura de la Válvula Diverter$ (8.3.1)

$$H = 5m \times tg \ 35^{\circ} + 11,65m + 0,65m = 15,8m \cong 16m$$

8.3.2. Selección de Cangilón

Se adopta cangilón con un ancho de 85mm y una capacidad de llenado 0,11l.

8.3.3. Ancho de la Cinta (b)

El ancho de la cinta se determina según la siguiente expresión:

$$b = Ancho \ del \ Cangil\'on + 2 \times 20mm \qquad (8.3.2)$$

$$b = 85mm + 2 \times 20mm = 125mm$$

Para el paso (P_o) se considera que para que no exista interferencia al momento de la descarga, el mismo debe ser de 2 veces la proyección del cangilón (B):

$$P_0 = 2 \times B$$
 (8.3.3)

$$P_0 = 2 \times 125mm = 250mm$$

8.3.5. Velocidad del Transporte

El cálculo de la velocidad surge de:

$$Q = 3.6 \frac{s.tn}{h.s} \times C_i \times \varphi \times \gamma \times z \times v \qquad (8.3.4)$$

Donde:

 C_i : Capacidad ideal del cangilón[l]

 φ : Coeficiente de llenado del cangilón[-]

γ: Peso específico del material transportado ${tn/m^3}$

z:
$$n^{\circ}$$
 de cangilones = $\frac{1}{P_o} = \frac{1}{250mm}$

p: paso de cangilones

Despejando de (8.3.4) la velocidad y expresando el número de cangilones en función del paso de los mismos, se obtiene:

$$v = \frac{P_o \cdot Q}{3600 \frac{S}{h} \cdot C_i \cdot \varphi \cdot \gamma}$$
 (8.3.5)

$$v = \frac{1 \frac{tn}{h} \times 0,250m}{3600 \frac{s}{h} \times 0,11l \times \frac{1m^3}{1000l} \times 0,65 \times 0,65 \frac{tn}{m^3}} = 1,51 \frac{m}{s}$$

8.3.6. Diámetro de la Polea Motriz

La velocidad mínima para que el transportador descargue por fuerza centrífuga es aquella que hace que la fuerza centrífuga sea igual al peso del material más un margen de seguridad del 19%, esto es:

$$F_c = 1,19.P$$

$$m \times a_c = \frac{P \times v^2}{g \times r} = 1,19 \times P \quad (8.3.6)$$

Siendo:

F_c: Fuerza centrífuga

m: masa del tambor motriz

a_c: Aceleración centrífuga

P: Peso del material

v: V elocidad de la cinta [m/s]

g: Fuerza de gravedad $[m/s^2]$

r: Radio del tambor motriz [m]

Despejando el radio del tambor de (8.3.6):

$$r = 0.84 \times \frac{v^2}{g}$$
 (8.3.7)

$$r = 0.84 \times \frac{\left(1.51 \frac{m}{s}\right)^2}{9.81 \frac{m}{s^2}} = 0.195m$$

Se adopta un diámetro (D) de 0,39m para el tambor motriz y el tambor de reenvío.

8.3.7. Velocidad Angular de la Polea Motriz

Para obtener el número de revoluciones del tambor motriz se parte de la ecuación de la velocidad tangencial de la cinta:

$$n = \frac{60 \times v}{\pi \times D} \qquad (8.3.8)$$

Siendo: n: Revoluciones del tambor motriz

Reemplazando en (8.3.8):

$$n = \frac{60 \times v}{\pi \times D} = \frac{60 \times 1,51 \frac{m}{s}}{\pi \times 0,39m} = 73,94rpm$$

8.3.8. Tensión de la Banda

Se debe conocer la Tensi'on m'axima de la Cinta (F) para seleccionar la banda con la resistencia correcta; la misma está dada por:

$$F = F_1 + F_2 + F_3 + T_0 \qquad (8.3.9)$$

Donde:

 F_1 : Tensión provocada por el peso de la cinta, cangilones y material [Kg]

 F_2 : Tensión provocada por rozamientos [Kg]

F₃: Tensión necesaria para el dragado [Kg]

 T_0 : Tensión previa de la cinta [Kg]

8.3.8.1. Tensión provocada por el peso de la Cinta, Cangilones y Material (F1)

Su valor está dado por la siguiente ecuación:

$$F_1 = P_1 \times H \times b + \frac{H}{p_0} \times (P + P')$$
 (8.3.10)

Donde:

P: Peso del material por cangilón [Kg]

 P_1 : Peso propio de la cinta [Kg]

P': Peso propio del cangilón [Kg]

 P_0 : Paso [1/mm]

El peso del material por cangilón (P) es:

$$P = \gamma \times \varphi \times C_i \qquad (8.3.11)$$

$$P = 650 \frac{kg}{m^3} \times 0,65 \times 0,11l \times \frac{1m^3}{1000l}$$

$$P = 0.46kg$$

VALORES DE PL	(KG/M ² , CAPA)
Tipo de Lona	PI (Kg/m²)
EP-100	1,12
EP-125	1,40
EP-160	1,41
EP-200	1,56
EP-250	1,89
EP-315	2,31
EP-400	2,65
EP-500	3,21
EP-630	4,06

Fig.8.3.1

De Tabla del fabricante *Kauman*, Fig.8.3.1 se adopta un tipo de lona EP-100, con $P_1=1.12\frac{kg}{m^2}$ y P':0.05kg

Reemplazando en (8.3.10):

$$F_1 = 1.12 \frac{kg}{m^2} \times 0.125m \times 16m + \frac{16m}{0.25m} \times (0.46kg + 0.05kg)$$

 $F_1 = 34.88kg$

8.3.8.2. Tensión provocada por Rozamientos (F_2)

La tensión viene dada por:

$$F_2 = 0.05 \times F_1$$
 (8.3.11)
 $F_2 = 0.05 \times 34.88 Kg$

$$F_2 = 1,744Kg$$

8.3.8.3. Tensión necesaria para el Dragado (F_3)

La tensión viene dada por:

$$F_3 = (1.1 \ a \ 1.4) \times Q \left[\frac{tn}{h}\right]$$
 (8.3.12)

$$F_3 = (1,4) \times 1 \frac{tn}{h}$$

$$F_3 = 1.4kg$$

8.3.8.4. Tensión previa de la Cinta (T_0)

La tensión viene dada por:

$$T_0 = \left(\frac{50kg}{20m}\right) \times H \quad (8.3.13)$$

$$T_0 = \left(\frac{50kg}{20m}\right) \times 16m = 40Kg$$

Entonces, la fuerza total, se obtiene reemplazando valores en la ecuación (8.3.9):

$$F = 34,88kg + 1,744kg + 1,4kg + 40Kg$$

$$F = 78,024kg$$

8.3.9. Potencia Nominal

La potencia se halla por:

$$N = \frac{F \times v}{75 \times \eta} \tag{8.3.14}$$

Reemplazando valores:

$$N = \frac{78,024kg \times 1,51\frac{m}{s}}{75 \times 0,95}$$

$$N = 1,654HP$$

FACULTAD REGIONAL CONCEPCION DEL URUGUAY
UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803
Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY
ENTRE RIOS - REP. ARGENTINA

La tensión se halla por la fórmula:

$$F_d = \frac{H}{p_0} \times P' + P_1 \times b \times H + T_0$$
 (8.3.15)

Reemplazando valores:

$$F_d = \frac{16m}{0,25m} \times 0,05kg + 1,12\frac{kg}{m^2} \times 0,125m \times 16m + 40Kg$$

$$F_d = 45,44 \, Kg$$

8.3.11. Verificación del Número de Telas

Para la verificación del número de telas se sigue el desarrollo del fabricante de cintas Kauman.

Se consideran coeficientes de seguridad elevados, ya que se deben tener en cuenta los esfuerzos adicionales en servicio, tales como la flexión en los tambores, las irregularidades de reparto de las tensiones sobre la carcasa, las irregularidades en la carga, sobretensiones de arranque, impactos de carga, envejecimiento de la banda, etc.

Se adopta un número de 3 telas según normas DIN 22101, de TablaXI, Fig.8.3.2, para el cual el coeficiente de seguridad recomendado es de 11:

TABLA XI - COEFICIENTES DE SEGURIDAD PARA BANDAS DE CARCASA TEXTIL										
NÚMERO DE CAPAS (Z)	de 3 a 5	de 6 a 9	más de 9							
COEFICIENTE SEGURIDAD (S)	11	12	13							

Fig.8.3.2

$$z = \frac{s \times T_{max}}{100 \times B \times R_1} \tag{8.3.16}$$

Donde:

z: N° de telas [-]

 $T_{m\acute{a}x}$: Tensión máxima de la cinta [Kg] (hallada en apartado 8.3.8.4.)

B: Ancho de la cinta [mm] (hallado en apartado 8.3.3.)

 R_1 : Fuerza realizada sobre la cinta $[N/mm \times tela]$

$$R_1 = \frac{s \times T_{max}}{100 \times B \times z} = \frac{11 \times 78,024 Kg}{100 \times 0,125 m \times 3 telas}$$

$$R_1 = 22,88 \frac{N}{mm \times tela} = 23,32 \frac{kg}{cm \times tela}$$

Se recalcula el número de telas que debe tener la cinta despejando "z" de la ecuación (8.3.16):

$$z = \frac{11 \times 78,024kg}{100 \times 0,125m \times 100 \frac{N}{mm \times tela} \times \left(\frac{10mm}{1cm}\right) \times \left(\frac{kg}{9,81N}\right)}$$

z = 0,67 telas

Por lo tanto seleccionando una cinta de 3 telas satisface la tensión que debería soportar. (Se eligen 3 telas ya que es el mínimo de telas que posee una banda transportadora).

8.3.12. Potencia Necesaria (N)

La potencia necesaria viene dada por:

$$N = \frac{F' \times v}{75 \times \eta} \qquad (8.3.17)$$

$$F' = F'_1 + F'_2 + F'_3$$
 (8.3.18)

Donde:

F'₁: Carga máxima de cangilón [Kg]

 F'_2 : Rozamiento de la cinta = F_2 [Kg]

 F'_3 : Fuerza de dragado = F_3 [Kg]

8.3.12.1. Carga Máxima del Cangilón

La carga máxima se calcula mediante la ecuación:

$$F'_{1} = P \times \frac{H}{P_{0}} = C_{i} \times \gamma \times \frac{H}{P_{0}}$$
 (8.3.19)

Reemplazando:

$$F'_1 = 0.11l \times \frac{1m^3}{1000l} \times \frac{650kg}{m^3} \times \frac{16m}{0.125m}$$

$$F'_1 = 9,152kg$$

8.3.12.2. Rozamiento de la Cinta

$$F'_2 = F_2 = 1,772 \, Kg$$

8.3.12.3. Fuerza de Dragado

$$F_3 = (1.1 \ a \ 1.4) \times Q \left[\frac{tn}{h}\right]$$
 (8.3.20)
 $F'_3 = F_3 = (1.4) \times 1 \frac{tn}{h} = 1.4kg$

Reemplazando en la ecuación (8.3.18):

$$F' = F'_1 + F'_2 + F'_3 = 9,152kg + 1,772kg + 1,4kg$$

 $F' = 12,324kg$

Reemplazando en (8.3.17) se obtiene la potencia de arranque necesaria:

$$N' = \frac{F' \times v}{75 \times \eta} = \frac{12,324Kg \times 1,51\frac{m}{seg}}{75 \times 0,95}$$

$$N' = 0.26HP$$

8.3.13. Motorreductor

Se adopta motorreductor coaxial de la firma Lentax y se sigue el proceso de cálculo del fabricante.

8.3.13.1. Potencia Efectiva $\left(N_{ef}\right)$

La potencia efectiva es la potencia nominal necesaria de la cinta calculada en el apartado 8.3.12.

8.3.13.2. Factor de Servicio (f)

El factor de servicio (f=1.6) está dado según la aplicación y la cantidad de horas de servicio. Fig. 8.3.3.

MAQUINA ACCIONADA TIPO DE MAQUINA	factor fs FAC hs. de Service	TOR Servicio		APPLICATIONS AND INDUSTRY DRIVEN MACHINE
	8	16	24	
TRANSPORTE Y ALMACENAJE				CONVEYORS
Montacargas	1,5	1,6	. 1,6	Hoists
Elevadores de personas	1,8	2,0	2,0	Passenger lifts
Elevadores inclinados	1,65	1,8	1,8	Inclined hoists
Elevadores de cangilones (rocas)	1,65	1,8	1,8	Bucket elevators (piece goods)
Elevadores de cangilones (granos)	1,5	1,6	1,6	Bucket elevators (bulk material)
Transportadores a cadena (redlers)	1,5	1,6	1,6	Chain conveyors
Transportadores de cangilones	1,5	1,6	1,6	Bucket conveyors
Transportadores circulares	1,5	1,6	1,6	Circular conveyors
Roscas transportadoras	1,15	1,4	1,5	Screw conveyors
Bandas transportadoras (granel)	1,15	1,4	1,5	Belt conveyors (bulk material)
Transportadores de banda (articulados)	1,3	1,5	1,7	Apron conveyors
Transportadores de cinta de acero	1,5	1,6	1,6	Steel belt conveyors
Bandas transportadoras (bultos grandes)	1,3	1,5	1,7	Belt conveyors (piece goods)
Transportadores de placas	1,5	1,6	1,6	Band pocket conveyors
Tornos de elevación	1,5	1,6	1,6	Ballast elevators

Fig.8.3.3

8.3.13.3. Potencia Equivalente $\left(N_{eq}\right)$

$$N_{eq} = f \times N_{ef.}$$
 (8.3.21)
 $N_{eq} = 1.6 \times 0.26HP = 0.416HP$

8.3.13.4. Preselección del Modelo

El modelo preseleccionado, Fig.8.3.4, debe poseer una potencia superior a la potencia equivalente $(0.416 \, \text{HP} = 0.31 \, \text{KW})$ y una velocidad aproximada de 73,94 rpm.

	ncia ada	Entrada	Salida	Relación	MODE	10	Factor de Seguridad		
W.	HP	(RPM)	(RPAI)	(j)			({z})	(Nm)	
0.37	0.50	1405	0.80	1713.27	F41R	(1,51)	1.10	4105	
24,55	40000	15.05.000		1345.11	FATR	0.50	1.40	3223	
				1093,21	FAIR	0.50		2619	
			1.50	910.01	FATR	0.50		2180	
			1.80	769.42		0.50		1843	
			2.10	661.38		0.50		1585	
			2.90	490.95	FAIR	0.50	3.80	1176	
			56.0	25.08	F0013	0.50	4.25	61	
			66.0	21.30	FOOT3	0.50	4,80	52	
			62.0	22.64	F0012	0.50	4.60	56	
			77.0	18.29	F0012	0.50		45	
			HIL	15.13	F0012			37	
			97.D	14.46	F0012	0.50		36	
			110.0	12.73	FIXT12	0.50		31	
			117.0	11.96	F0012	0.50		30	
			130.0	10.84	F0012	0.50		27	
			140.0	10.06	FOOT2			27 25 23 21	
			151.0	9.32	FOOT2	0.50		2.3	
			164.0		F0012			18	
			191.0	7.36	F(X)12	0.50	9,00	10	

Fig.8.3.4

El modelo posee una potencia de 0,5HP y una velocidad de salida de 77 rpm.

El modelo preseleccionado debe verificar que: $N_{Nom} \ge N_{eq}$

Entonces: $0.5HP \ge 0.416HP \implies queda\ verificado$

8.3.14. Boca de descarga

Por ser la descarga del tipo centrífugo la forma del cabezal es parabólica. Las dimensiones de la boca son función de la trayectoria que poseen las partículas.

Como esta trayectoria describe un tiro oblicuo, las dimensiones de la boca se calcularán teniendo en

cuenta esta teoría, ver Fig.8.3.5:

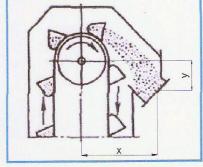


Fig.8.3.5

Longitud Horizontal: $x = v \cdot t$ (8.3.22)

Longitud Vertical: $y = -\frac{1}{2}g \cdot t^2$ (8.3.23)

Velocidad del Material: $v = \frac{\pi \cdot n \cdot D}{60}$ (8.3.24)

Despejando de (8.3.22) y (8.3.23) el tiempo (t) e igualando se obtiene la altura que debe poseer el cabezal superior del elevador:

$$y = \left(\frac{x \cdot 60}{\pi \cdot D \cdot n}\right)^2 \cdot \left(\frac{g}{-2}\right)$$
 (8.3.25)

Por lo tanto, la altura del cabezal superior queda en función de la distancia horizontal a la cual se desea descargar o viceversa.

En este caso se adopta una altura vertical del cabezal superior de dos veces el diámetro motriz, por lo tanto:

$$y = -2 \times D = -2 \times 0.39m = 0.78m$$

Despejando de (8.3.25) el parámetro (x) se obtiene la longitud horizontal del cabezal superior:

$$x = \frac{\pi \times D \times n}{60} \times \sqrt[2]{\frac{-2 \times y}{g}}$$
 (8.3.26)

$$x = \frac{\pi \times 0.39m \times 77rpm}{60} \times \sqrt[2]{\frac{-2 \times 0.78m}{9.81 \frac{m}{seg^2}}}$$

x = 0.63m

8.3.15. Acoplamiento para válvula de descarga

Este acoplamiento une la válvula de descarga con los tubos que transportan el material hasta los silos o sector de embolsado según corresponda.

Está diseñado para corregir la diferencia angular entre la alimentación desde el elevador a cangilones hasta la descarga en los silos.

Ver plano PM-EC-003 Rev.01

9. SECTOR DE ALMACENAMIENTO Y EMBOLSADO

La biomasa puede almacenarse de diferentes maneras, dependiendo de las instalaciones existentes o la disponibilidad de espacio.

En este caso el almacenamiento de pellets se hace en bolsas y silos.

9.1. ALMACENAJE EN BOLSAS

Las bolsas de pellets son preparadas por la embolsadora y luego almacenadas en pallets para su posterior comercialización.

9.1.1. Embolsadora

Características de Operación de Embolsadora

Capacidad: 4-6 bolsas por minuto.

Tipo de bolsas: papel, polipropileno o yute.

Capacidad de las bolsas: 20Kg.

En base a los puntos mencionados la embolsadora a instalar en la planta fue recomendada por el fabricante, por lo que su cálculo y dimensionamiento no se contempló en el presente proyecto.

9.1.2. Cinta de la Embolsadora

La cinta a instalar en la planta, en conjunto con la embolsadora fue recomendada por el fabricante, por lo que su cálculo y dimensionamiento no se contempló en el presente proyecto.

9.2. ALMACENAJE EN SILOS

El almacenaje en silos está destinado a la comercialización de pellets a granel, que será transportado en camiones cisterna cuando sean necesarios grandes volúmenes de combustible sólido.

9.2.1. Silos

La capacidad de los silos se calcula en base al almacenaje de la producción de la planta correspondiente a cuatro semanas, por lo tanto:

Capacidad de silo = $1 tn/h \times 16h/d$ ía × 20dias

Capacidad de silo = 320tn

Se necesitan dos silos cuya capacidad es de 160tn cada uno.

9.2.2. Rosca Transportadora

El cálculo y dimensionamiento del transporte helicoidal se realiza según "Transporti Meccanici" (ZIGNOLI, 1970).

9.2.2.1. Coeficiente de llenado (α)

El coeficiente de llenado se elige de Tabla CCXXII, Fig.9.2.1, en función del material de transporte. Tomando el pellet como un *material clase II* (materiales que fluyen, pellets no abrasivos y piezas pequeñas de polvo) se obtiene un coeficiente de llenado para el mismo de α =0,3.

Classe I: Materiali in polvere, non abrasivi facilmente scorrevoli peso specifico γ = 0,4 ±0,6 t/m² riempimenio α = 0,4			Classe II: Materiali sec abrasivi in grani e picco polvere. Peso specifico γ = 0.6 riempimento α =	il pezz	Classe III: Materiali semisbrasivi in pezzi mescolati a polvere (nor molto consigliabili). Peso specifico γ = 0.0-1.2 t/m ^s riempimento α = 0.25			
Materiale $\begin{bmatrix} \gamma \\ t/m^2 \end{bmatrix}$ Coeff.		Coeff.	Materiale	t/nı²	Coeff.	Materiale	t/m°	Coeff
Calce in polvere aerata identa Carbone polvere Crusca Farina di frumento di line s simili Orzo in grani	0,70 0,60 0,25 0,65 0,70 0,60	7.2 1.2 0.8 0.8 1.2	Alliame polvere Calce idrata Carbone pisello Grafite grani Grani di cacao caffe cotone fave frumonte soin	0,8 0,3 0,75 0,60 0,65 0,68 0,80 0,65 0,65	1,2 1,6 1,8 0,8 0,8 0,8 1,2 1,0 1,0	Allume in grani Asbesto in grani Boraco in grani Boraco in grani Carbone nocetta Gesso calcinato grani Lignite in grani Lardo Orzo tallite	0.96 0.40 0.85 0.95 0.80 0.98 0.80 0.98 0.95	2,8 2,0 1,4 0,8 2,0 2,4 2,0 0,8 1,2

Fig.9.2.1

9.2.2.2. Relación Paso- Diámetro (λ)

Para el transporte de pellet se recomienda una relación paso-diámetro igual a uno (λ =1).

$$\lambda = \frac{p}{D} = 1 \quad (9.1)$$

Donde:

p: Paso de la rosca [m]

D: Diámetro de la rosca [m]

9.2.2.3. Diámetro de la Rosca (D)

El caudal a transportar está dado por las siguientes expresiones:

$$Q_t = A \cdot v \qquad (9.2)$$

$$Q_t = \frac{Q_c}{\gamma} \tag{9.3}$$

$$A = A_r \cdot \alpha \qquad (9.4)$$

$$A_r = \frac{\pi \cdot D^2}{4} \quad (9.5)$$

$$v = p \cdot n \cdot 60 \left(\frac{min}{h}\right) \quad (9.6)$$

Donde:

 Q_t : Caudal de la rosca $[m^3/h]$.

 Q_c : Caudal de la rosca [tn/h].

A: Sección neta de transporte $[m^2]$.

v: Velocidad del material [m/h].

 γ : Peso específico del material $[tn/m^3]$.

p: Paso de la rosca [m].

n: Revoluciones de la rosca [rpm].

De (9.6), (9.5), (9.4), (9.3) en (9.2) se despeja el diámetro que debe poseer la rosca:

$$D = \sqrt[3]{\frac{Q_c \cdot 4}{n \cdot 60 \frac{\min}{h} \cdot \alpha \cdot \lambda \cdot \pi}}$$
(9.7)

Donde: α: Coeficiente de llenado [–]

El ángulo de inclinación del sinfín es de 25°, esto trae consigo una pérdida de rendimiento de aproximadamente 80%, el cual se consigue mediante la Fig.9.2.2:

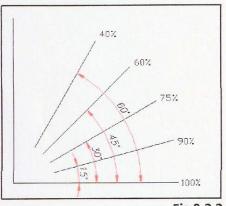


Fig.9.2.2

La descarga de material en los camiones se realiza en no más de 30min=0,5horas, que es un equivalente de descarga igual a:

$$\label{eq:capacidad} \textit{Capacidad del camión} \\ \textit{Capacidad de descarga} = \frac{\textit{Capacidad del camión}}{\textit{Tiempo de descarga}} \\ \textit{Capacidad de descarga} = \frac{16tn}{0.5h} = 32tn/h$$

Por lo tanto se calcula la capacidad de producción, teniendo en cuenta el rendimiento antes mencionado:

$$Q = \frac{Q_C}{\eta} = \frac{32 \ tn/h}{0.80} = 40 \frac{tn}{h}$$

Se calcula el diámetro reemplazando en (9.7)

$$D = \sqrt[3]{\frac{40\frac{tn}{h} \cdot 4}{120 \, rpm \cdot 60\frac{min}{h} \cdot 0.3.1.\pi}}$$

D = 28,67cm

Se debe elegir una opción comercial que satisfaga el caudal que demanda el sistema.

Se preselecciona un diámetro de 360mm de tabla de SINFINES FAS, Fig.9.2.3:

EJE mm.	ALA mm.	TOTAL mm.	TON/HORA x RPM
27	45	117	0,04112
32	54	140	0,07055
42	70	182	0,15484
48	70	188	0,16852
60	85	230	0,30762
60	100	260	0 45144
60	150	360	1,23060
75	100	275	0,52224
89	100	289	0,59274
89	150	289	1,51336
101	120	389	0,98136
101	150	341	1,63837
114	100	314	0,72920
114	130	374	1,28738

Fig.9.3.2

El transporte de material que puede realizar la rosca está dado por:

$$Q_t = Q_r . n . \alpha \qquad (9.8)$$

Donde: Q_r : Caudal máximo que puede transportar la rosca [tn/h.rpm]

Se debe cumplir que: $Q_t(calculado) > Q(solicitado)$ (9.9)

La velocidad de transporte se obtiene interpolando valores para D=360mm de Tabla CCCXXII, Fig.9.3.3, siendo igual a 94rpm.

Tab. CCCXXII — Velocità massime ammissibili per le varie classi di materiali, gradi di riempimento e coefficienti $A \in B$.

Diametro esterno	Veloc		ima n in or le clas		rimo	Coefficiente di costruzione A per cuseinetti						
		cuscinetti a sfera	cuscinetti in bronzo ben lubrificati	cuscinetti in bronze pereso	cuscinetti in stellite							
100	180	120	90	70	31	0,012	0,021	0,033	0,051			
150	170	115	85	68	30	0,018	0,033	0,054	0,078			
200	160	110	80	65	30	0,032	0,054	0,096	0,132			
250	150	105	75	62	28	0,038	0,066	0,114	0.162			
200	140	1.00	70	60	28	0,055	0,096	0,171	0,246			
350	130	95	65	58	27	0,078	0,135	0,255	0,345			
400	120	90	60	55	27	0,106	0,186	0,336	0,480			
450	110	85	55	52	26	0,140	0,240	0,414	0,585			
500	100	80	50	50	25	0,165	0,285	0,510	0,705			
600	90	75	45	45	24	0,230	0,390	0,690	0,945			

Fig.9.3.3

Entonces:

$$Q_t = Q_r \cdot n \cdot \alpha = 1,2306 \times \frac{tn}{h \cdot rpm} \times 94 \, rpm \times 0,3$$

$$Q_t = 34.7 \, ^{tn}/_h$$

Reemplazando en (9.9):

$$34.7^{tn}/_h > 40^{tn}/_h$$

Como el diámetro (D=360mm) y la velocidad recomendada no verifica el caudal requerido, se disminuye el diámetro, aumentando simultáneamente la velocidad recomendada según tabla CCCXXII, Fig.9.3.3, adoptando ahora $D=289mm\ y\ v=101rpm$, ver Fig.9.3.4.

EJE mm.	ALA mm.	TOTAL mm.	TON/HORA × RPM
27	45	117	0,04112
32	54	140	0,07055
42	70	182	0,15484
48	70	188	0,16852
60	85	230	0,30762
60	100	260	0 45144
60	150	360	1.23060
75	100	275	0,52224
89	100	289	0,59274
89	150	289	1,51336
101	120	389	0,98136
101	150	341	1,63837
114	100	314	0,72920
114	130	374	1,28738

Fig.9.3.4

Entonces se recalcula el caudal con (9.8):

$$Q_t = Q_r \cdot n \cdot \alpha = 1,51336 \times \frac{tn}{h \cdot rpm} \times 101 \, rpm \times 0,3$$

$$Q_t = 45,85 \, \frac{tn}{h}$$

Reemplazando en (9.9):

$$45,85 \, ^{tn}/_h > 40 \, ^{tn}/_h \Rightarrow queda \, verificado$$

9.2.2.4. Potencia necesaria para el Transporte (N_o)

La potencia necesaria en el eje está dada por la siguiente expresión:

$$N_o = 0.004 \cdot (A \cdot n + B \cdot Q_t) \cdot L$$
 (9.10)

Donde:

No: Potencia de régimen [HP]

A: Coeficiente que depende del diámetro de la rosca y del tipo de apoyo [-]

B: Coeficiente que depende del material [-]

L: Distancia que debe recorrer el material [m] = 10m

De tabla CCCXXII, Fig.9.3.5, se obtienen los coeficientes A y B.

Con un diámetro de 289mm, se interpola para un material clase II y por rodamientos a bola, y se obtiene el coeficiente A = 0.05126.

Tab. CCCXXII – Velocità massime ammissibili per le varie classi di materiali, gradi di riempimento e coefficienti $A \in B$.

Diametro esterno	Veloc	ità mass po	dma n in or le clas		primo	Coefficiente di costruzione A per cuscinetti						
della coclea D mm	1	II	111	IV	V	cuscinetti a sfera	cuscinetti in bronzo ben lubrificati	cuscinetti in bronzo perese	cuscinetti in stellite			
100 150 200	180 170 160	120 115	90 85 80	70 68	31 30 30	0,012 0,018 0.032	0,021 0,033 0,054	0,033 0,054 0,096	0,051 0,078 0,132			
250 300	150 140	105 100	75 70	62 60	28 28	0,038 0,055	0,066 0,096	0,114 0,171	0,162 0,246			
400 450 500	130 120 110 100	90 90 85 80	60 55 50	55 52 50	27 26 25	0,078 0,106 0,140 0,165	0,135 0,186 0,240 0,285	0,255 0,336 0,414 0,510	0,345 0,480 0,585 0,705			
600	90	75	45	45	24	0,230	0,390	0.696	0,945			

Fig.9.3.5

Ingresando a la tabla, Fig.9.3.6, como grano de cacao, clase II por poseer la misma densidad que el pellet de madera (ya que en la tabla no figura este material), se obtiene B=0.8.

Classe I: Materiali in p abrasivi facilmente s peso specifico $\gamma = 0.4$ riempimento $\alpha =$	correv ÷0,6 i	oli	Clusse 11: Materiali soc abrasivi in grani e picco polvere. Peso specifico γ = 0.6 riempimento α =	ii pezz	Classe III: Materiall semiabrasivi in pezzi mescolati a polvere (non molto consigliabili). Peso specifico $\gamma \approx 0.9\text{-}1.2 \text{ t/m}^{\circ}$ riempimento $\alpha = 0.25$			
		Coeff.	Materiale	γ t/m³	Coeff.	Materiale	γ t/m³	Coeff
Calce in polyere aerata idrata	0,70 0,60 0,25 0,65 0,70	1,2 1,2 0,8 0,8 1,2	Allume polvere Calce idrata Carbone pisello Grafite evani Grani di cacao cane cotone fave frumento solo	0,8 0,3 0,75 0,65 0,65 0,68 0,80 0,80 0,65	1,2 1,6 1,8 0,8 0,8 0,8 1,2 1,0 1,0	Allume in grani Asbesto in grani Borace in grani Burro Carbone necetta Gesso calcinato grani Lignite in grani Lardo Orzo tallito	0.96 0.40 0.85 0.95 0.80 0.98 0.80 0.95 0.95	2,8 2,0 1,4 0,8 2,0 2,4 2,0 0,8 1,2

Fig.9.3.6

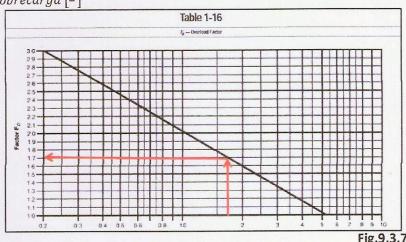
La potencia del motor con el máximo caudal que el sinfín puede transportar se halla reemplazando valores en la ecuación (9.10):

$$N_o = 0.004 \times \left(0.05125 \times 101 rpm + 0.8 \times 45.85 \frac{tn}{h}\right) \times 10m$$

 $N_o = 1.67 \; HP$

9.2.2.5. Corrección por Arranque con Carga $(N_{Arranque})$

La potencia de arranque del motor se corrige con un factor de sobrecarga dado en Tabla 1-16 del catálogo MARTIN, Fig. 9.3.7.


$$N_{Arranque} = N_o \times f_s$$
 (9.11)

Donde:

 $N_{Arranque}$: Potencia de Arranque [HP]

No: Potencia Nominal [HP]

 f_s : Factor de Sobrecarga [-]

El gráfico muestra que para la potencia nominal hallada el factor de sobrecarga es igual a $f_s = 1,7$.

Reemplazando en (9.11):

$$N_{Arranque} = 1.7 \times N_o = 1.7 \times 1.67 HP$$

 $N_{Arranque} = 2.84 HP$

9.2.2.6. Distancia entre Apoyos

Para el cálculo se sigue el método según "Manual del Constructor de Máquinas" (DUBBEL, 1977).

La distancia se calcula mediante la siguiente fórmula:

$$e_m = 0.29 \cdot \sqrt{D_m}$$
 (9.12)

Donde:

 e_m : Distancia entre apoyos de la rosca [m] $D_m = D$ iámetro comercial de la rosca [mm]

FACULTAD REGIONAL CONCEPCION DEL URUGUAY
UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803
Ing. PEREYRA 676 - E32648TD - CONCEPCION DEL URUGUAY
ENTRE RIOS - REP. ARGENTINA

Reemplazando en (9.12):

$$e_m = 0.29 . \sqrt{D_m} = 0.29 \times \sqrt{289mm}$$

 $e_m = 4.93m$

Se colocan dos apoyos con una separación entre ellos de 3,33m, ya que la longitud de la rosca es de 10m y de esta forma quedan equidistantes.

9.2.2.7. Selección de Mando Motriz

El mecanismo de transmisión de la rosca transportadora consiste en un motorreductor acoplado directamente al sinfín, mediante un acoplamiento a cadena.

9.2.2.7.1. Motorreductor

Se adopta un motorreductor coaxial de la Firma Lentax y se sigue el proceso de cálculo del fabricante.

9.2.2.7.1.1. Potencia Efectiva $\left(N_{ef}\right)$

La potencia efectiva es la potencia nominal necesaria del transporte helicoidal calculada en el apartado 9.2.2.4.

9.2.2.7.1.2. Factor de Servicio (f)

El factor de servicio (f=1,4) está dado según la aplicación y la cantidad de horas de servicio, ver Fig.9.3.8

MAQUINA ACCIONADA TIPO DE MAQUINA	fs FACTO fs FAC hs. de Service	TOR Servicio		APPLICATIONS AND INDUSTRY DRIVEN MACHINE
	8	16	24	
TRANSPORTE Y ALMACENAJE				CONVEYORS
Montacargas	1,5	1,6	1,6	Hoists
Elevadores de personas	1,8	2,0	2,0	Passenger lifts
Elevadores inclinados	1,65	1,8	1,8	Inclined hoists
Elevadores de cangilones (rocas)	1,65	1,8	1,8	Bucket elevators (piece goods)
Elevadores de cangilones (granos)	1,5	1,6	1,6	Bucket elevators (bulk material)
Transportadores a cadena (redlers)	1,5	1,6	1,6	Chain conveyors
Transportadores de cangilones	1,5	1,6	1,6	Bucket conveyors
Transportadores circulares	1.5	1.6	1.6	Circular conveyors
Roscas transportadoras	1,15	1,4	1,5	Screw conveyors
Bandas transportadoras (granel)	1,15	1,4	1,5	Belt conveyors (bulk material)
Transportadores de banda (articulados)	1,3	1,5	1,7	Apron conveyors
Transportadores de cinta de acero	1,5	1,6	1,6	Steel belt conveyors
Bandas transportadoras (bultos grandes)	1,3	1,5	1,7	Belt conveyors (piece goods)
Transportadores de placas	1,5	1,6	1,6	Band pocket conveyors
Tornos de elevación	1,5	1,6	1,6	Ballast elevators

Fig.9.3.8

9.2.2.7.1.3. Potencia Equivalente $\left(N_{eq}\right)$

$$N_{eq} = f \times N_{ef.} \quad (9.13)$$

$$N_{eq} = 1.4 \times 2.84HP = 3.98HP$$

9.2.2.7.1.4. Preselección del Modelo

El modelo preseleccionado, Fig.9.3.9, debe poseer una potencia superior a la potencia equivalente $(3.98 \, \text{HP} = 2.96 \, \text{KW})$ y una velocidad aproximada de $101 \, \text{rpm}$.

ciencia rerada	Entrada	Vebradid Valida aprov.	Rotar Est	MODEL()	Tac;	ar de uridad	Momento Unit		eres rada	Velocidad Entrada	Velocidad Salida aprox.	Relacion	MODELO		or de à ridad	tanest tail
V HP	RPM	RPM	(8)			E.	(Nm)	W	HP	RPM	(RPM)	91		ii.	E	iNmi
								3.(%)	4(0)	1405	4.20	116,70	145118	4.00	1.10	6451
		6.9	205.41		1.683	3.567					5.20	272.15	F457-82	4.00	1.40	52.30
		8.7	163.17	FIR	3.583	1.30	2329				6.20	125.54	[45]-K	4期	1.65	4323
											7.40	189,97	F45F保 F45F保	4.00	1.95	3641
	940	7.0	134.90		3.00.75		2945				8.70	162.02 139.48	1451個	4.00	2.30	2673
		7.7	122,84	FIII	100%		2681				10,10	120.92	145HR	4.00		2118
		R.h	108.73	HIII	1.00.76		2373				11.00	1500.95	L-4711.00	35350	19. 838	- 110
		9.4	100.42	FILL	1,0075		2192 2089			(644)	5.40	178.85	F45T3	4.00%	1.55	504
		9.8	95.70	13 B	1100 /6		1958			38682	6,40	149.82	F45T3	4180.6		4271
		10.5	89.70	1313	FYKLID	1,33	10.30				7.50	127,77	E4583			364
	1417	9.0	173.14	EID	3.00	1.20	2511				8.00	120.67	F45T3	4.087.6		143
	1415	8.0	114,90	FILE	100	1 55	1956				8.70	110.44	FASTI	4.00 h		114
		12.0	122,84	Fili	100	1.78	1781				9.50	101.09	F4511	4.00 %		7881
		11.0	108.71	m	1.(4)	1.95	1577				10.00	96.46	F4511			2741
		14.0	(00.42	1313	100	2.10	1450				11.30	84.95	F48T3	4.00 %	3.25	2421
		15.0	95.70	F313	100	2.15	1388									
		16.0	89.70	(i) ii	100	3.15	1301			1405	7.90	178.85	E4513	4.00	2.10	148
		18.6	78.24	F311	1.00	2.70	11.15				9.40	149.82	74573	4.00	2.79	2917
		20.0	71.25	1111	1.00	3.00	1035				11.00	127.77	F457.1	4.00	3.25	2488
		22.0	63.06	FILE	3.00	1.35	914				11.60	120.67	F4511	4.00	1.20	2150
		26.0	54.70	£313	1.00	1.85	793				12.70	110,44	F4571	4.00	1.75	2154
		55.0	25.39		100	1.85	502				30.0	47.05	1213	1.50	1.30	124
		6ab (7	21.14			2.10	418				11.0	45.90	FH	5.99	1.15	1217
		0.86	20.69		(0)	3.10	409				15.0	40.16		5.50	1.55	1(%)
		78.0	17.90	F112 -	00	2.15	354				17.0 41.0	34.60	1213	5,50	1.75	913
							THE RESERVE AND ADDRESS OF THE PERSON NAMED IN				44.0	32.05	F213	5.50	1.80	846
		96.0	14.59	AND DESCRIPTION OF THE PARTY OF		2.90	289				52.0	27.36	1213	5.50	1,85	722
	Contract of	112.0	12.52		100	1.05	248				60.0	71.57	1313	5.50	2.15	622

Fig.9.3.9

El modelo posee una potencia de 4HP y una velocidad de salida de 96 rpm.

El modelo preseleccionado debe verificar que: $N_{Nom} \ge N_{eq}$

Entonces: $4HP \ge 3,98HP \implies queda\ verificado$

9.2.2.8. Acoplamiento a Cadena

Se adopta un acoplamiento flexible a cadena para la unión entre el motorreductor y el eje del tambor motriz. Ver Fig. 9.3.10. Los acoplamientos flexibles a cadena constituyen un positivo y seguro elemento para unir ejes entre sí. Admiten cierto desalineamientos entre ejes y su eficacia se mantiene constante, aún bajo severas condiciones de trabajo, permitiendo además desconectarlo fácilmente, quitando el eslabón de unión de la cadena, sin necesidad de desmontar el motor o la máquina accionada. Los piñones de los acoplamientos se fabrican en acero Siemens Martin SAE 1050.

Fig.9.3.10

La película lubricante que se forma entre los elementos movibles de la cadena y entre esta y los piñones, amortiguan los ruidos y vibraciones. Su utilización es muy apropiada especialmente para ejes de bajas velocidades pues resultan más seguros y compactos que otros tipos de acoplamientos elásticos.

9.2.2.8.1. Potencia Efectiva (P_e)

La potencia efectiva es igual a la potencia del motorreductor.

9.2.2.8.2. Factor de Servicio (f_s)

El factor de servicio, ver Fig.9.3.11, depende del tipo de motor de accionamiento y de la naturaleza de la carga.

Tabla de factores de servicio

	Tipo de Accionamiento								
Naturaleza de la carga	Motor Eléctrico	Motor Diesel	Motor a Vapor						
Uniforme	1	1.4	2						
Mediana	1.4	1.6	2.2						
Pesada	2	2.2	2.5						

Fig.9.3.11

Para una naturaleza de carga mediana y motor eléctrico: $f_s = 1,4$.

9.2.2.8.3. Potencia de Cálculo (P_C)

La potencia de cálculo es el producto de la potencia efectiva y el factor de servicio:

$$P_C = P_e \times f_s \qquad (9.14)$$

Donde:

 P_e : Potencia de entrada al eje a acoplar [HP]

 f_s : Factor de servicio [-]

Reemplazando en (9.14):

$$P_C = 4HP \times 1.4 = 5.6HP$$

Se adopta un acoplamiento a cadena que admite una potencia nominal de 6,09HP a una velocidad angular de 96rpm.

Se consideraron las siguientes premisas de proyecto:

- Se prevé la alimentación desde una subestación de transformación a instalar sobre la línea municipal del predio. Dicha subestación será montada integramente por la distribuidora de energía de la zona donde sea puesta en marcha la planta.
- Considerando el total de las cargas, se determina la situación de carga máxima simultánea más desfavorable, con la cual se procede al dimensionamiento de la instalación.

10.1. RESUMEN DE CARGAS

Para desarrollar el cálculo eléctrico el primer paso es determinar las cargas que consumen potencia en la planta, que son detalladas en las tablas 10.1.1 y 10.1.2, y cuyos valores son calculados en el punto 10.2.

Máquina	Poter	ncia activ equipo	a por
	[CV]	[HP]	[kW]
Transporte a cadena	1,52	1,50	1,12
Secador Rotativo	9,63	9,50	7,08
Ciclón 1	2,24	2,21	1,65
Equipo de Molienda	100	98,60	73,50
Ciclón 2	2,73	2,70	2,01
Alimentador Prensa Pelletizadora	2	1,97	1,47
Acondicionador de Prensa	10	9,86	7,35
Cinta transportadora 1	3,042	3,00	2,24
Cinta transportadora 2	3,98	3,92	2,93
Prensa Pelletizadora	151	148,89	110,99
Enfriador	15	14,79	11,03
Zaranda	2	1,97	1,47
Cinta Transportadora 3	3,042	3,00	2,24
Elevador a cangilones	0,507	0,50	0,37
Embolsadora	3	2,96	2,20
Cinta de banda de embolsadora	1	0,99	0,74
Sinfín 1	2,89	2,84	2,11
Sinfín 2	2,89	2,84	2,11
Balanza de camiones	0,0213	0,021	0,015

Tabla 10.1.1

			Car	ga		
		Tom	as		Carga In	dividual
Tomas e Iluminación	Tension(V)	63A (3x380V)	32A (3x380V)	16A (2x220V)	Potencia activa [kW]	Potencia aparente [kVA]
lluminación uso general en oficina	220		-		-	1,35
Tomas de uso general en oficina	220	-	-	-	-	2,2
Iluminación zona de caldera	380		-		1,2	1,33
Iluminación zona mantenimiento	380	-	-	-	3,2	3,56
Iluminación zona materia prima	380	-		- 1-	8,4	9,33
Iluminación de planta producción	380	-	-		10,4	11,56
Tomas 1	3x380/220	1	1	1	-	0,45
Tomas 2	3x380/220	1	1	1	-	0,45
Tomas 3	3x380/220	1	1	1	-	0,45
Tomas 4	3x380/220	1	1	1	-	0,45
Tomas 5	3x380/220	1	1	1		0,45
Tomas 6	3x380/220	1	1	1		0,45
Tomas 7	3x380/220	1	1	1		0,45
Tomas 8	3x380/220	1	1	1		0,45
Tomas 9	3x380/220	1	1	1		0,45
Tomas 10	3x380/220	1	1	1	- 12 - T	0,45

Tabla 10.1.2

10.1.1. Cálculo de Consumo de Potencia

10.1.1.1. Equipos

Los datos de potencia de los siguientes equipos están dados por el fabricante: secador rotativo, equipo de molienda, alimentador y acondicionador de prensa pelletizadora, prensa pelletizadora, enfriador, zaranda, embolsadora, cinta de banda de embolsadora y balanza de camiones.

Los requerimientos de potencia de los siguientes transportes son calculados en puntos posteriores: transporte a cadena, ciclones 1 y 2, cintas transportadoras 1,2 y 3, elevador a cangilones y sinfines 1 y 2. Ver tabla 10.1.3.

Transporte	Punto de determinación de potencia
Transporte a cadena	3.3
Ciclón 1	4.2.7
Ciclón 2	5.3.4
Cinta transportadora 1	6.7.3
Cinta transportadora 2	6.8.3
Cinta transportadora 3	8.2.3
Elevador a cangilones	8.3.12
Sinfín 1	9.2.2.4
Sinfín 2	9.2.2.4

Tabla 10.1.3

10.1.1.2. Tomas e Iluminación

Iluminación y tomas de uso general en oficinas:

Se considera un circuito de iluminación con 9 bocas de 150 W distribuidas de manera conveniente, por lo que el circuito de iluminación es de:

9 bocas x 150W=1350 W o 1350VA (1,35kVA).

Se considera un circuito de tomas cuya potencia máxima es de 2200VA (2,2kVA), según "Reglamentación para la Ejecución de Instalaciones Eléctricas" (AEA 90364, 2006).

Iluminación zona de caldera.

Se adoptan luminarias cuyo consumo es de 400W y se considera un total de 3 bocas, lo que arroja una potencia de:

 $3 \times 400W = 1200 W = 1,2kW.$

Teniendo en cuenta el factor de potencia de 0,9: S= 1,2kW/0,9= 1,33kVA.

Iluminación zona mantenimiento.

Se adoptan luminarias cuyo consumo es de 400W y se considera un total de 8 bocas, lo que arroja una potencia de:

 $8 \times 400W = 3200 W = 3,2kW.$

Teniendo en cuenta el factor de potencia de 0,9: S= 3,2kW/0,9= 3,55kVA.

Iluminación zona materia prima.

Se adoptan luminarias cuyo consumo es de 400W y se considera un total de 21 bocas, lo que arroja una potencia de:

21 x 400W = 8400 W= 8,4kW.

Teniendo en cuenta el factor de potencia de 0,9: S= 8,4kW/0,9= 9,33kVA.

Iluminación de planta de producción.

Se adoptan luminarias cuyo consumo es de 400W y se considera un total de 26 bocas, lo que arroja una potencia de:

26 x 400W = 10400 W= 10,4kW.

Teniendo en cuenta el factor de potencia de 0,9: S=10,4kW/0,9=11,56kVA.

Tomas de uso industrial.

Para la alimentación de las cargas portátiles se prevé la distribución de 10 tableros con la siguiente configuración de tomacorrientes:

La corriente de carga por tablero se calcula considerando el uso de los tres tomacorrientes con un factor de simultaneidad de 0,7.

Esto es:

$$I_{carga} = (63 + 32 + 16)A.0,7 = 77,7A$$

Por lo que la potencia aparente es:

$$S = I_{carga} * Tensi\'on = 77,7A * 380V = 457,7VA$$

Conociendo la potencia aparente por tablero puede calcularse la potencia aparente total de los tableros, adoptando un coeficiente de simultaneidad de 0,3 para todos los tableros:

$$S_{total} = 457,7VA * 10tomas * 0,3 = 1373,1VA$$

10.1.2. Corrientes de Proyecto

Conociendo la potencia que demandan los equipos instalados en planta, calculada en los puntos 10.1.1.1 y 10.1.1.2, se puede obtener la corriente que circula por los conductores que los alimentan, siendo en cada caso:

- Equipos: $I_{carga} = \frac{P}{\sqrt{3} \times U_L \times cos\varphi}$ (10.1.1)
- Iluminación y tomas de uso general para oficinas: $I_{carga} = \frac{P}{U_l}$ (10.1.2)
- Iluminación en planta: $I_{carga} = \frac{P}{U_L \times \cos \varphi}$ (10.1.3)
- Tomas: $I_{carga} = (63 + 32 + 16)A.0,7 = 77,7A$ (10.1.4)

En las tablas presentadas a continuación se resumen las corrientes de cargas, calculadas según las ecuaciones 10.1.1, 10.1.2, 10.1.3 y 10.1.4, referenciadas al tablero que pertenecen. (Equipos: Tabla 10.1.4 y Tomas e iluminación: Tabla 10.1.5).

Tabero	Máquina	Potei	ncia activ equipo	a por	Potencia activa por	Potencia aparente	Cos fi		
		[cv]	[HP]	[kW]	tablero	(kVA)		Icarga [A]	
TST	Transporte a cadena	1,52	1,50	1,12	1,12	1,31	0,85	2,00	
TSES	Secador Rotativo	9,63	9,50	7,08	7,08	8,33	0,85	12,65	
TSC1	Ciclón 1	2,24	2,21	1,65	1,65	1,94	0,85	2,94	
TSM	Equipo de Molienda	100	98,60	73,50	73,50	86,47	0,85	131,38	
	Ciclón 2	2,73	2,70	2,01					
	Alimentador Prensa Pelletizadora	2	1,97	1,47	I Harat		jer.		
TSE2	Acondicionador de Prensa	10	9,86	7,35	15,99	18,81	0,85	28,58	
	Cinta transportadora 1	3,042	3,00	2,24					
	Cinta transportadora 2	3,98	3,92	2,93					
TSP	Prensa Pelletizadora	151	148,89	110,99	110,99	130,57	0,85	198,38	
TSE1	Enfriador	15	14,79	11,03	12,50	14,71	0,85	22,34	
1251	Zaranda	2	1,97	1,47	12,30	17,71	0,03	22,54	
TSE 4	Cinta Transportadora 3	3,042	3,00	2,24	2,61	3,07	0,85	4,67	
13E 4	Elevador a cangilones	0,507	0,50	0,37	2,01	3,07	0,03	1,07	
TCF2	Embolsadora	3	2,96	2,20	2,94	3,46	0,85	5,26	
TSE3	Cinta de banda de embolsadora	1	0,99	0,74	2,34	3,40	0,03	5,20	
TCC	Sinfín 1	2,89	2,84	2,11	4,22	4,96	0,85	7,54	
TSS	Sinfín 2	2,89	2,84	2,11	4,22	4,50	0,03	1,54	
TSG	Balanza de camiones	0,0213	0,021	0,015	0,015	0,015	0,85	0,06	

Tabla 10.1.4

			Carga			
		Tomas	Carga In	dividual		Corriente
Tablero	Tomas e lluminación	Tension(V)	Potencia activa [kW]	Potencia aparente [kVA]	Cos fi	de Carga Icarga [A]
TO	Iluminación uso general en oficina	220		1,35		10,00
ТО	Tomas de uso general en oficina	220	- I - I	2,2		10,00
TC	Iluminación zona de caldera	380	1,2	1,33	0,9	3,51
TM	Iluminación zona mantenimiento	380	3,2	3,56	0,9	9,36
TMP	Iluminación zona materia prima	380	8,4	9,33	0,9	24,56
TIP	Iluminación de planta producción	380	10,4	11,56	0,9	30,41
TT 1	Tomas 1	3x380/220	-	0,45	-	77,70
TT 2	Tomas 2	3x380/220	-	0,45	-	77,70
TT 3	Tomas 3	3x380/220	- U. II	0,45	-	77,70
TT 4	Tomas 4	3x380/220		0,45	-	77,70
TT 5	Tomas 5	3x380/220		0,45	-	77,70
TT 6	Tomas 6	3x380/220	-	0,45		77,70
ТТ 7	Tomas 7	3x380/220	- 11	0,45		77,70
П8	Tomas 8	3x380/220		0,45	<u>-</u>	77,70
TT 9	Tomas 9	3x380/220	- 1	0,45	-	77,70
TT 10	Tomas 10	3x380/220	-	0,45	Fig.	77,70

Tabla 10.5

10.2. TRANSFORMADOR

Conociendo la corriente que consume cada sector de la planta, puede calcularse la corriente total y la potencia, y así seleccionar un transformador para alimentar la misma. En base a las tablas del punto 10.1.2 se tiene:

- Corriente total de equipos: 408,25 A.
- Corriente total por iluminación: 77,85 A.
- Corriente total por tomas: la corriente de carga por tablero se calculó considerando el uso de los tres tomacorrientes con un factor de simultaneidad de 0,7 para cada tablero.

$$I_{carga\ tableros\ tomas} = (63 + 32 + 16)A.\,0,7 = 77,7A$$

A su vez, los diez tableros de tomas fueron afectados nuevamente por un factor de simultaneidad de 0,3. Esto es:

$$I_{carga\;tomas} = (I_{TT1} + I_{TT2} + I_{TT3} + I_{TT4} + I_{TT5} + I_{TT6} + I_{TT7} + I_{TT8} + I_{TT9} + I_{TT10})A.\,0,3$$

$$I_{carga\ tomas} = 77,7A * 10tomas * 0,3 = 233,1A$$

Entonces la corriente total es:

$$I_{carga\;total} = I_{Equipos} + I_{lluminaci\'on} + I_{Tomas} = 408,25A + 77,85A + 233,1A = 719,2A$$

La potencia aparente total es:

$$S_{total} = \sqrt{3} * I * U = \sqrt{3} * 719,2A * 380V = 473,36kVA$$

En base al consumo de la planta se adopta un transformador de 500kVA.

10.3, TABLEROS

La distribución de tableros en planta se indica en el Plano PEC-G- 001 Rev.01, cuyo detalle se determina en las Tablas 10.3.1 y 10.3.2.

FACULTAD REGIONAL CONCEPCION DEL URUGUAY
UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA

Tablero	Descripción	Alimentado desde:	Alimenta a:
TP	Tablero Principal	Red	TSG
TSG	Tablero Seccional General	TP	Desde TST a TT10
TST	Tablero seccional de transporte	TSG	Transporte a cadena
TSES	Tablero seccional equipo secador	TSG	Secador Rotativo
TSC1	Tablero seccional ciclón 1	TSG	Ciclón 1
TSM	Tablero seccional molienda	TSG	Equipo de Molienda
			Ciclón 2
			Alimentador Prensa Pelletizadora
TSE2	Tablero seccional de equipos 2	TSG	Acondicionador de Prensa
			Cinta transportadora 1
			Cinta transportadora 2
TSP	Tablero seccional prensa	TSG	Prensa Pelletizadora
TCF4	T.I	TSG	Enfriador
TSE1	Tablero seccional de equipos 1	130	Zaranda
TOFA	T. I	TCC	Cinta Transportadora 3
TSE 4	Tablero seccional de equipos 4	TSG	Elevador a cangilones
T0F2	T.I	TCC	Embolsadora
TSE3	Tablero seccional de equipos 3	TSG	Cinta de banda de embolsadora
TCC	Table as a second de sinfinos	TSG	Sinfín 1
TSS	Tablero seccional de sinfines	130	Sinfín 2
то	Tablero de oficina	TSG	Iluminación uso general en oficina
10	Tablero de offcina	130	Tomas de uso general en oficina
TC	Tablero de caldera	TSG	Iluminación zona de caldera
TM	Tablero mantenimiento	TSG	Iluminación zona mantenimiento
TMP	Tablero materia prima	TSG	Iluminación zona materia prima
TIP	Tablero iluminación de planta	TSG	Iluminación de planta producción
771	Tablero de tomas 1	TSG	Tomas 1
TT 2	Tablero de tomas 2	TSG	Tomas 2
TT3	Tablero de tomas 3	TSG	Tomas 3
TT 4	Tablero de tomas 4	TSG	Tomas 4
TT5	Tablero de tomas 5	TSG	Tomas 5
Π6	Tablero de tomas 6	TSG	Tomas 6
Π7	Tablero de tomas 7	TSG	Tomas 7
TT 8	Tablero de tomas 8	TSG	Tomas 8
П9	Tablero de tomas 9	TSG	Tomas 9
TT 10	Tablero de tomas 10	TSG	Tomas 10

Tabla 10.3.1

Los tableros de tomas estarán distribuidos de manera conveniente en la planta y su disposición es la siguiente:

Identificación	Descripción	Ubicación
TT1	Tablero de Tomas 1	Almacén de repuestos
Π2	Tablero de Tomas 2	Almacén de repuestos
ТТ3	Tablero de Tomas 3	Almacén de repuestos
TT 4	Tablero de Tomas 4	Almacén de repuestos
Π5	Tablero de Tomas 5	Zona de caldera
TT 6	Tablero de Tomas 6	Zona de acopio
Π7	Tablero de Tomas 7	Zona de molienda
Π8	Tablero de Tomas 8	Zona de secado
TT 9	Tablero de Tomas 9	Zona de embolsado
TT 10	Tablero de Tomas 10	Zona de elevador

Tabla 10.3.2

10.4. BARRAS DE DISTRIBUCIÓN

Las barras se encuentran alojadas en el TSG y en los tableros de equipos, y distribuyen la alimentación y protección a la planta, son las siguientes:

- Barra de distribución fases RST en TSG.
- Barra de distribución de neutro en TSG.
- Barra de distribución PE en TSG.
- Barra de distribución PE en TSE1, TSE2, TSE3, TSE4 y TSS.

El proceso de cálculo se realiza según "Manual de Baja Tensión" (SIEMENS, 2000).

10.4.1. Barras de Fases RST

Para calcular y seleccionar las barras correspondientes a las fases R, S y T del TSG, se debe conocer la corriente de carga, que según el punto 10.2. es de 719,2 A.

En caso de que las temperaturas ambiente y de servicio difieran de 35ºC y 65ºC respectivamente, es necesario afectar el valor de la corriente por un factor k, obtenido del gráfico 10.3/2., Fig.10.4.1. Luego, se puede escoger de la Tabla 10.3/9, Fig.10.4.2, una barra cuya sección sea normalizada.

La corriente que se toma es la corriente nominal del interruptor automático de cabecera (800 A), donde el mismo debe ser calibrado, en este caso, para una corriente entre 719,2 A (corriente nominal del proyecto) y 774 A (corriente admisible para el paralelo de 3 conductores de 3x150 mm² que alimentan dicho tablero).

Así, considerando una temperatura ambiente en el tablero de 50 $^{\circ}$ C y una temperatura de servicio de la barra de distribución de 65 $^{\circ}$ C, la corriente admisible debe ser afectada por un factor k_2 = 0,67.

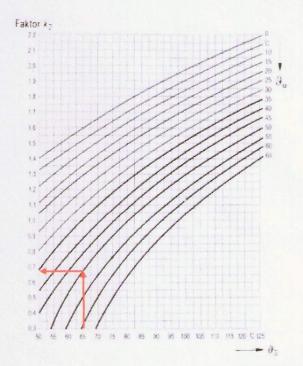


Fig.10.4.1

Con lo cual la corriente para dimensionar la barra es:

$$I_{Barra\ fase} = \frac{800A}{0,67} = 1194A$$

Teniendo en cuenta este valor se seleccionan barras normalizadas de acuerdo a DIN 43671 según Tabla 10.3/9, Fig.10.4.2, con las siguientes características:

Tabla 10.3/9

Barras colectoras de cobre según la norma DIN 43.671, 12.75 (extracto) para una temperatura ambiente θ_0 de 35 °C una temperatura de servicio θ_S de 65 °C, material: E-CuF30.

Dimen-	Secrión	Dimen-	Peso				Corriente	e permane	nte			
siones	q	siones		Corrien	ite alterna	hasta 60 H	Z	Corrient hasta le		a y corrier	te alterna	
			Número de barras pinta en paralelo		as pintadas barras desmidas				ede vintadas lelo	Número de barras desnudas en paralelo		
mm	mm²	pulgadas	kg/m	A A	A A	1 A	E A	A	g A	A	A A	
20× 5	99,1	0.75×0.20	0,882	319	560	274	500	320	562	274	502	
30x 5	149	1 ×0.25	1,33	447	760	379	672	448	766	380	676	
40x 5	199	1,25×0,25	1,77	573	952	482	836	576	966	484	848	
50× 5	249	1,5 ×0,25	2,22	697	1140	583	994	703	1170	588	1020	
20×10	199	0,75×0,5	1,77	497	924	427	825	499	932	428	832	
30x10	299	1 ×0.5	2.66	676	1200	573	1060	683	1230	579	1080	
40×10	309	1,25×0,5	3,55	850	1470	715	1290	865	1530	728	1350	
50×10	499	1,50×0,5	4,44	1020	1720	852	1510	1050	1830	875	1610	
60×10	500	2 ×0.5	5 33	1180	1960	985	1720	1230	2130	1020	1870	
80×10	799	2.5 ×0.5	7.11	1500	2410	1240	2110	1590	2730	1310	2380	
1(x)x1()	999	3 ×0,5	8,89	1810	2850	1490	2480	1940	3310	1600	2890	
120×10	12(8)	3.75×0.5	10.7	2110	3280	1740	2866	23(8)	3900	1890	3390	
160×10	1600	5 ×0.5	14.2	2700	4130	2220	3590	3010	5060	2470	4400	
200×10	2000	6 x0.5	17.8	3290	4970	2690	4310	3720	6220	3040	5390	

Fig.10.4.2

Cantidad: 1 barra por fase (total 3 barras)

Tipo: de cobre desnudo

Dimensiones: 80 mm x 10 mm

Sección: s = 799 mm²

Material: E-CuF30

Corriente admisible (temp. de serv. 65 ºC): 1240 A

Para calcular la máxima exigencia térmica de las barras se sigue el proceso de cálculo según "La Guía de Potencia" (*LEGRAND*).

Se debe verificar que el valor de exigencia térmica del interruptor general $\left(I^2 \cdot t\right)$ sea menor o igual al valor de exigencia térmica de las barras.

Esto es: $I^2 x t \le k^2 x S^2$ (10.4.1)

I: Corriente Nominal [A]

t: tiempo de actuación de la protección[s]

k: factor que depende del material de la barra[-]

S: Sección de la barra[mm²]

Para calcular el máximo esfuerzo térmico se emplea el coeficiente $k=135\frac{A.s^{0.5}}{mm}$ = cte (para barras rígidas de gran sección, con ancho superior a 50 mm), con lo cual:

$$k^2.s^2 = \left(135 \frac{A.s^{0.5}}{mm}\right)^2. (799mm)^2 = 11.6x10^9 A^2.s$$

La exigencia térmica del interruptor se calcula en el punto 10.5.3 y es: I^2x t = 30926739,6A 2 . s

Por lo que, reemplazando en (10.4.1):

 $30926739,6A^2.s \le 11,6 \times 10^9 A^2.s$, quedando verificada la exigencia térmica de la barra.

10.4.2. Barra de Neutro

Para la barra de neutro se considera una corriente admisible correspondiente al paralelo de los tres conductores de neutros de $3x70 \text{ mm}^2$ que alimentan el TSG igual a $3 \times 169 \text{ A} \times 0.85 = 430.95 \text{ A}$ donde 0.85 corresponde a la corrección por agrupamiento de los conductores y 169 A es la corriente admisible para el conductor de 70 mm^2 .

De igual forma que para las barras de fase se considera una temperatura ambiente en el tablero de 50 $^{\circ}$ C y una temperatura de servicio de la barra de distribución de 65 $^{\circ}$ C, con lo cual la corriente admisible debe ser afectada por un factor k_2 = 0,67 (según gráfico 10.3/2, Fig.10.4.1), con lo cual la corriente a tener en cuenta para dimensionar la barra es:

$$I_{Barra\ neutro} = \frac{430,95A}{0,67} = 643,2A$$

Teniendo en cuenta este valor se selecciona para el neutro una barra normalizada de acuerdo a DIN 43671 de Tabla 10.3/9, Fig.10.4.3, con las siguientes características:

Tabla 10.3/9

Barras colectoras de cobre según la norma DIN 43 671, 12.75 (extracto) para una temperatura ambiente θ_n de 35 °C una temperatura de servicio θ_N de 65 °C, material: E-CuE3()

Dimen-	Sección	Dimen-	Peso				Coment	permane	nte			
Siones	q	siones		Comen	te altema	hasta 60 H		Corriente continua y corriente alteri hasta 16 ² / ₃ Hz				
				Número de barras pintada en paralelo		Númen barras o en para	lesnudas	Número barras p en para	ointadas	Número de barras desnuda en paralelo		
mm mm²		pulgadas	kg/m	A	II A	A	A A	A A	II A	l A	g A	
20x 5	99,1	0.75x0,20	0,882	319	560	274	500	320	562	274	502	
30x 5	149	1 x0,25	1,33	447	760	379	672	448	766	380	676	
40× 5	199	1.25×0.25	1.77	573	952	482	836	576	966	484	848	
50x 5	249	1,5 ×0,25	2.22	697	1140	583	994	703	1170	588	1020	
20×10	199	0,75x0,5	1.77	497	924	427	825	499	932	428	832	
30×10	200	1 x05	2 66	676	1700	573	1060	683	1230	579	1080	
40×10	3499	1.25×0.5	3.55	850	1470	715	1290	865	1530	728	1350	
5()×1()	499	1,50x0,5	4,44	1020	1720	852	1510	1050	1830	875	1610	
60×10	599	2 ×0.5	5,33	1180	1960	985	1720	1230	2130	1020	1870	
80×10	799	2.5 ×0.5	7.11	1500	2410	1240	2110	1590	2730	1310	2380	
100×10	999	3 ×0.5	8,89	1810	2850	1490	2480	1940	3310	1600	2890	
120×10	1200	3.75×0,5	10,7	2110	3280	1740	2866	2300	3900	1890	3390	
160×10	16(3)	5 ×0,5	14,2	2700	4130	2220	3590	3010	5060	2470	44(0)	
200×10	2(KX)	6 x0.5	17.8	3290	4970	2690	4310	3720	6220	3040	5300	

Fig.10.4.3

Cantidad: 1 barra para neutro

Tipo: de cobre desnudo

Dimensiones: 40 mm x 10 mm

Sección: $s = 399 \text{ mm}^2$

Material: E-CuF30

Corriente admisible (temp. de serv. 65 ºC): 715 A

10.4.3. Barra de Distribución PE (Protective Earth) de TSG

La sección de la barra de distribución de la tierra de protección (PE), se selecciona de Fig.10.4.4, en base a la sección del conductor de protección según punto 10.10.4, cuyas características son:

		وعالم		Corr.	perm	anenie	en A	Corr. I	iterno	40 a	50 Hz		Corrie	nte al	erna y	contin	nua 16	M. He		
Ancho grueso mm	Section an enm ²	Peso so kg/m	Muterial		Pint				Desn No. de	No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa	50 ^m			adaz barra	1 50 ¹⁶⁰		Desn No. de	udas barras	50 ^m	Kg.
111111				1	11	111	1111	316	11	111	iiii	1	11	111	im	1	11	111	1111	
12 x 2	23.5	0.209	E Cu	125	200			110	200			130	230			115	105			
15 w 2	29.5	0,262	F 37	1864	. 270			140	240	488		160	275			145	245			
15 8 3	44.5	0,396		185	330			170	300			190	335			175	305			
20 + 2	39,5	0.351		205	350	275		185	315			210	360			.190	325			
76 x 1	50.5	0.529	- Continue to the Continue to	745	425		-	220	180	-	-	350	445			125	100	-	_	-
20 x 5	99.1	0,882	F 30	325	560			295	500			330	570	- 35		300	510			0.85
25 x 3	74.5	0,663	F 37	300	520			270	460			305	530			2/3	4/0			0,64
25×5	124	1,110	# 10	393	670	0.5		350	600	133		400	680			155	610			200
30 × 3	89.5	0,796	F 37	355	610			315	540			360	630			320	560			
30 = 5	149	1,330	7 30	450	780			400	700			460	800			410	720			1.3
40 x 3	119	1.060	F 37	450	790			420	710			470	820			430	740			
40×5	199	1,770	L 30	600	1000			520	900			610	P. Contractor	150		510	630	- 200		LA
40 + 10	399	3,550	F 25	850	1500	2060	2800	760	1350	\$100 to 100 to 100 to		820	A STATE OF THE	Spirit Hard Spirit		770		1000		3.64
50 × 5	249	2,220	1 10	720	1220		2300	630	1100	1650		为帕拉		1870		1000000	1130	1750		2.2
50 x 10	449	4,440	F 25	1030	1800		3330	920	1600	2250		1070		2700	w man and	960		2500		4,42
60 25	199	2,560	F 30	850	A STATE OF THE PARTY OF	1950	2650	760	1250		Carlo Allanda	100000000000000000000000000000000000000	Property Print	2.100	2750	1641	1,300)	1960	2500	2.6
60 x 10	299	5.330	F 75	1200	2100		3700	1050	1900		3500			A comment of	1800		2000	1800	3600	5.34
BO x.5	399	3.550	F 30	1070		2500	3300	970	1700	2,500		1100	2000	Exception 1	34(%)		1800	2500	3200	1.54
80 x 10	799	7,110	F 25	1560	2500		4500	11380		3100	4200				5000		26610	3700	4805	7.11
1000年5	499	4,440	F 30	1350	2400	ATTACK TO SE	3800	1200	2050	2850	3500			3499	4300	1250	2250	1150	4050	4.4
00 x 10	999	8,890	1.25	1880	1100		5400	1700			5000			\$10.1925-1014	5200		3200		5320	8.9
20 x 10	1200	10,700	F 30	2700	3500		6100	2(83)	1100			1350	4,100		7200	2130		2700	67(30)	10.6
160 x 10	1600	14,200	F 30	2800	4400		7800	2500	1900		COSTA LOSS	1100	5400	7500	9000	2800	4800	6900	9000	
00 x 10	2000	17 800	£ 30	13350	5300	0.000	\$400	13000	4750	5350	BRUE	1800	5760	9,00	11700	3400	18,000	#500	1.18890	-

(* stedicia mineria para la anchiera luz, expersada en minis

Fig.10.4.4

Cantidad: 1 barra para neutro

Tipo: de cobre desnudo

Dimensiones: 20 mm x 5 mm

<u>Sección</u>: s = 99,1 mm² <u>Material</u>: E-CuF30

Corriente admisible (temp. de serv. 65 ºC): 274 A.

10.4.4. Barra de Distribución PE de TSE1, TSE2, TSE3, TSE4 y TSS

La sección de la barra de distribución de la tierra de protección para los tableros TSE1, TSE2, TSE3, TSE4 y TSS, se selecciona en base a la sección del conductor de protección según punto 10.10.4, Fig.10.4.5, cuyas características son:

Fig.10.4.5

Cantidad: 5 barras.

Tipo: de cobre desnudo

Dimensiones: 12 mm x2 mm

Sección: $s = 23,5 \text{ mm}^2$

Material: E-Cu.

Corriente admisible: 125 A

10.5. CONDUCTORES ELÉCTRICOS

Conociendo las corrientes de proyecto dadas en el punto 10.1.2., es posible calcular y seleccionar los conductores que conectan los tableros con cada una de las cargas de la planta.

Para ello se emplean tablas y procesos de cálculo y verificación según "Reglamentación para la Ejecución de Instalaciones Eléctricas" (AEA 90364, 2006).

La alimentación desde el TP al TSG, se realiza por medio de tres conductores en paralelo, es por ello que la corriente tomada para su selección es la tercera parte de la corriente total del proyecto.

$$I_{carga\ total} = 719,2A$$

$$I_{por\ conductor\ de\ alimentación} = \frac{719,2A}{3} = 240\ A$$

Estos conductores de alimentación están dispuestos en canalizaciones subterráneas. Ver Plano PEC- G-001 Rev.01 y punto 10.8.1.

El resto de los conductores se disponen en bandejas tipo escalera.

10.5.1. Preselección por Corriente de Carga

En primer lugar, con la corriente de carga se preselecciona el conductor por corriente admisible. De acuerdo con las condiciones de la instalación estos valores de corriente admisible son susceptibles de dos modificaciones: por temperatura y por factor de agrupamiento.

Para los equipos en planta se toma la tabla 771.16.III, Fig.10.5.1, se preselecciona la sección del conductor para una temperatura ambiente de 40°C, teniendo en cuenta que los conductores van sobre bandeja tipo escalera.

Tabla 771.16.III - Intensidades de corriente admisibles [A] para temperatura ambiente de 40 °C

	Caño embu	do B2 tido en pared i la vista	Bandeja no o de fono Un cable n cables unipolar	perforada do sólido	Metodo E Bandeja perforada Bandeja tipo escalera Un cable multipolar			
	Alsiactóri PVC / LSOH Terropitasi- co IRAM 2178 IRAM 62266 B2	Assistion PVC rLSOH Termoplistico IRAM 2178 IRAM 62266 B2	Astación PVC r LSBH Termiopiastico BRAM 2178 IRAM 62266 C	Aislación PVC (ESOH Termoplastico IRAM 2178 IRAM 62266 C	Aistación PVC / LS0H Termopliastico IRAM 2178 IRAM 62266 E	Arstaction PVC / LSOH Termoptissico IRAM 2178 IRAM 62266 E		
	the same and the s							
[mm ²]	2×	3x	2x o 2xtx	3x o 3x1x	2x	3x		
1 15	14	13	17	15	19	16		
2.5	20	17	23	21	26	22		
4	26	23	31	28	35	30		
6	33	30	40	36	44	37		
10	45	40	55	50	61	52		
16	60	54	74	66	LIL.	70		
25	78	70	97	84	104	88		
35	97	86	120	104	129	110		
50	116	103	146	125	157	133		

Fig.10.5.1

Para el conductor de alimentación se emplea la tabla 771.16.V, Fig.10.5.2, y se preselecciona la sección del conductor para una temperatura del terreno de 25ºC.

Método D1 Método D1 Método D1 Metodo D1 Caño enterrado Caño enterrado Caño enterrado Caño enterrado Aislación del cable Aislación del cable Aislación del cable Aislación del cable PVC / Termoplástico XLPE / Termoestable XLPE / Termoestable IRAM 2178 IRAM 2178 **IRAM 2178 IRAM 2178** IRAM 62266 IRAM 62266 IRAM 62266 IRAM 62266 B52-3 D1 B52-5 D1 B52-2 D1 [mm²] Cobre 29 25 2.5 27 39 50 83 69 106 89 114 35 140 115 165 138 163 14 *885 * 196 241 . 205 159 242 95 276 * 228 325 * 307 185 289 411 344 398 240 405 * 333 449 537 300 457 * 377

Tabla 771.16.V - Intensidad de corriente admisible [A], para una temperatura del terreno igual a 25 °C y resistividad térmica específica del terreno igual a 1 K.m / W

Fig.10.5.2

Para el caso de los conductores hacia los equipos, según la cantidad de cables que aloje la bandeja, debe corregirse la corriente admisible por el factor de agrupamiento, si luego la corriente de carga no verifica se debe tomar una nueva sección de los conductores hasta que se verifique la misma.

Este factor de agrupamiento se obtiene por Tabla 771.16.IV, Fig.10.5.3, según las condiciones de la instalación, considerando la situación más desfavorable, es decir, el tramo donde la mayor cantidad de conductores son contiguos y no en las derivaciones a cada tablero.

FACULTAD REGIONAL CONCEPCION DEL URUGUAY
UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA

Tabla 771.16.IV - Factores de reducción para agrupamiento de más de un circuito monofásico o trifásico o más de un cable multipolar

					Número	de cir	cuitos o	o de cal	bies mu	itipola	res	,		Para ser	
İtem	Disposición de los cables en contacto	1	2	3	4	5	6	7	8	9	12	16	20	usados con las intensi- dades admi- sibles de los siguientes métodos de referencia	
1	Agrupados en aire, sobre una superfi- cie, embuti- dos o ence- rrados	1,00	0,80	0,70	0,65	9,60	0,57	0,54	0,52	0,50	0,45	0.41	0,38	Métodos A1, A2, 81, B2, D1 y D2	
2	Una sola capa sobre pared, piso o bandeja no perforada	1,00	0,85	0,79	0,75	0,73	0,72	6,72	0,71	0,70			Método C		
3	Una sola capa fijada debajo de delorraso	0,95	0.81	0,72	0.68	0,66	0,64	0,63	0.62	0,61		s necesa			
4	Una sola capa sobre una bandeja perforada honzontal o vertical	1,00	0,88	0,82	0,77	0.75	0.73	0,73	0,72	0,72	màs d	r reducci e nueve les multi	Métados		
5	Una sola capa sobre bandeja tipo escalera o engrapada	1,00	0,87	0,82	0,80	0,80	0.79	0,79	0,78	0,78	And the second s			EyF	

Fig.10.5.3

Para conocer el factor de agrupamiento del conductor de alimentación se emplea la Tabla 771.16.VII.d), Fig.10.5.4, donde se tiene en cuenta el número de caños y la separación entre bordes internos de los mismos.

di Factores de reducción para agrupamiento de caños y conductos enterrados conteniendo cada uno un cable multipolar o un cable unipolar d1) Un cable multipolar por caño

Número de		Separación (a) entr	re bordes internos		
caños	en contacto	0,25 m	0,5 m	1,0 m	
2	0,85	0,90	0,95	0,95	
3	0,75	0,85	0,90	0,95	
4	0,70	0,80	0,85	0,90	
5	0,65	0,80	0,85	0,90	
6	0,60	0,80	0,80	0,90	

Fig.10.5.4

La corriente corregida por factor de agrupamiento (k_1) y temperatura (k_2) es:

$$I_{admisible\ corregida} = I_{admisible} \times k_1 \times k_2$$
 (10.5.1)

Dado que las tablas 771.16.III y 771.16.VII.d ya consideran los valores afectados por temperatura, el coeficiente k_2 es igual a 1.

De este modo pueden preseleccionarse los conductores por la corriente admisible corregida, secciones que son verificadas a continuación por caída de tensión y corriente de cortocircuito. De no cumplirse alguna de ellas se optará por la sección inmediata superior y se vuelve a verificar hasta que ambas se cumplan.

Los resultados se ven en las tablas a continuación:

Ernst Mariángeles - Montañana Guillermo

Tabla 10.5.1: conductor de alimentación y conductores desde TSG a tableros de equipos.

Tabla10.5.2: conductores desde TSG a tableros de tomas e iluminación.

Tabla 10.5.3: conductores desde tableros seccionales a equipos.

Tablero	Máquina	Cos fi	I _{carga} [A]	Sección por l _{carga} [mm ²]	Corriente admisible [A]	K ₁	K ₂	Corriente corregida [A]	Sección final S [mm²]	Identificación	
TP	Alimentación a planta	0,85	240,00	150	258	0,95	1	245,1	150	C-001	
TST -	Transporte a cadena	0,85	2,00	2,5	22	0,78	1	17,16	2,5	C-002	Ver(
TSES	Secador rotativo	0,85	12,65	2,5	22	0,78	1	17,16	2,5	C-003	Ver(
TSC1	Ciclón 1	0,85	2,94	2,5	22	0,78	1	17,16	2,5	C-004	Ver(
TSM	Equipo de molienda	0,85	131,38	70	171	0,87	1	148,77	70	C-005	Ver(
TSE2	Ciclón 2 Alimentador prensa pelletizadora Acondicionador de Prensa Cinta transportadora 1 Cinta transportadora 2	0,85	28,58	6	37,00	0,78	1	28,86	6	C-006	Ver(
TSP	Prensa pelletizadora	0,85	198,38	120	240	0,87	1	208,8	120	C-007	Ver(
TSE1	Enfriador Zaranda	0,85	22,34	4	30	0,78	1	23,40	4	C-008	
TSE 4	Cinta transportadora 3 Elevador a cangilones	0,85	4,67	2,5	22	0,78	1	17,16	2,5	C-009	Ver(
TSE3	Embolsadora Cinta de banda de embolsadora	0,85	5,26	2,5	22	0,78	1	17,16	2,5	C-010	Ver(
TSS	Sinfin 1 Sinfin 2	0,85	7,54	2,5	22	0,78	1	17,16	2,5	C-011	Ver(
TSG	Balanza de camiones	0,85	0,06	2,5	22	1	1	22	2,5	C-040	Ver(

Tabla 10.5.1

(1) Si bien por corriente de carga la sección es de 1,5mm², se adopta una sección de 2,5mm² para verificar la caída de tensión. Ver punto 10.5.2: verificación por caída de tensión.

(2) El conductor cuya sección fue seleccionada por corriente admisible no verifica la corriente afectada por factor de agrupamiento, por lo que se adopta una sección superior.

Nota: los factores de agrupamiento considerados corresponden a:

- 0,78: para más de 9 conductores sobre bandeja tipo escalera, en disposición tresbolillo considerado como una sola capa.
- 0,87: para 2 conductores en una sola capa sobre bandeja tipo escalera.
- 0,95: para conductores enterrados a 1m de distancia.
- 1: para 1 conductor sobre bandeja tipo escalera.

Tablero	Tomas e lluminación	I _{carga} [A]	Sección por l _{carga} [mm2]	Corriente admisible[A]	K1	K2	Corriente corregida [A]	Sección final S [mm2]	Identificación	
то	lluminación uso general en oficina	10.00	2,5	22	0.78	1	17,16	2,5	C-025	Por reglamento
	Tomas de uso general en oficina	10,00	-/-							
TC	lluminación zona de caldera	3,51	2,5	22	0,78	1	17,16	2,5	C-026	Ver (3)
TM	Iluminación zona mantenimiento	9,36	2,5	22	0,78	1	17,16	2,5	C-027	Ver (3)
TMP	lluminación zona materia prima	24,56	6	37	0,78	1	28,86	6	C-028	Ver (3)
TIP	lluminación de planta producción	30,41	10	52	0,78	1	40,56	10	C-029	Ver (3)
TT 1	Tomas 1	77,70	35/16	110	0,78	1	85,8	35/16	C-030	Ver (3)
TT 2	Tomas 2	77,70	35/16	110	0,78	1	85,8	35/16	C-031	Ver (3)
TT 3	Tomas 3	77,70	35/16	110	0,78	1	85,8	35/16	C-032	Ver (3)
TT 4	Tomas 4	77,70	35/16	110	0,78	1	85,8	35/16	C-033	Ver (3)
TT 5	Tomas 5	77,70	35/16	110	0,78	1	85,8	35/16	C-034	Ver (3)
TT 6	Tomas 6	77,70	35/16	110	0,78	1	85,8	35/16	C-035	Ver (3)
TT 7	Tomas 7	77,70	35/16	110	0,78	1	85,8	35/16	C-036	Ver (3)
TT 8	Tomas 8	77,70	35/16	110	0,78	1	85,8	35/16	C-037	Ver (3)
TT 9	Tomas 9	77,70	35/16	110	0,78	1	85,8	35/16	C-038	Ver (3)
TT 10	Tomas 10	77,70	35/16	110	0,78	1	85,8	35/16	C-039	Ver (3)

Tabla 10.5.2

Por reglamento: por corriente admisible el conductor debería tener una sección de 1,5mm² por reglamento de AEA (90364) el conductor debe tener una sección mínima de 2,5mm².

(3) El conductor cuya sección fue seleccionada por corriente admisible no verifica la corriente afectada por factor de agrupamiento, por lo que se adopta una sección superior.

Tablero	Máquina	Cos fi	I _{carga} [A]	Sección por I _{carga} [mm²]	Corriente admisible [A]	K ₁	K ₂	Corriente corregida [A]	Sección final S [mm²]	Identificación	
	Ciclón 2	0,85	3,59	1,5	16	0,8	1	12,8	2,5	C-012	
	Alimentador prensa pelletizadora	0,85	2,63	1,5	16	0,8	1	12,8	2,5	C-013	
TSE2	Acondicionador de prensa	0,85	13,14	1,5	16	0,8	1	12,8	2,5	C-014	Ver(4)
	Cinta transportadora 1	0,85	4,00	1,5	16	0,8	1	12,8	2,5	C-015	
	Cinta transportadora 2	0,85	5,24	1,5	16	0,8	1	12,8	2,5	C-016	
TSE1	Enfriador	0,85	19,71	2,5	22	0,87	1	19,14	4	C-017	Ver(5)
ISEI	Zaranda	0,85	2,63	1,5	16	0,87	1	13,92	2,5	C-018	
TCF A	Cinta transportadora 3	0,85	4,00	1,5	16	0,87	1	13,92	2,5	C-019	
TSE 4	Elevador a cangilones	0,85	0,67	1,5	16	0,87	1	13,92	2,5	C-020	
7650	Embolsadora	0,85	3,93	1,5	16	0,87	1	13,92	2,5	C-021	
TSE3	Cinta de embolsadora	0,85	1,31	1,5	16	0,87	1	13,92	2,5	C-022	
Tee	Sinfín 1	0,85	3,77	1,5	16	0,87	1	13,92	2,5	C-023	
TSS	Sinfín 2	0,85	3,77	1,5	16	0,87	1	13,92	2,5	C-024	

Tabla 10.5.3

(4)El conductor de 1,5mm² no verifica por el valor de corriente corregida por factor de agrupamiento, por lo que se adopta una sección superior.

(5)El conductor de 2,5mm² no verifica por el valor de corriente corregida por factor de agrupamiento, por lo que se adopta una sección superior.

10.5.2. Verificación por Caída de Tensión

La verificación de la caída de tensión considera la diferencia de tensión entre los extremos del conductor, calculada en base a la corriente absorbida por todos los elementos conectados al mismo y susceptibles de funcionar simultáneamente. Se debe cumplir que no supere la carga máxima admisible, de acuerdo con: $\Delta U \leq \Delta U$ adm. Como valores de caída de tensión admisible se adoptan:

- Circuitos de iluminación general: ΔUadm = 3%
- Circuitos de tomas uso general: ΔUadm = 3%
- Circuitos de fuerza motriz: ΔUadm = 5% (en régimen) y ΔUadm = 15% (en arranque)

Para su cálculo se aplica la siguiente expresión: $\Delta U = \sqrt{3} \times In \times L \times (r \times sen\gamma + x \times cos\gamma)$ (10.5.2)

Donde:

ΔU: Caída de Tensión [V]

 I_n : Corriente nominal de la instalación [A]

L: Longitud del conductor [Km]

r: Resistencia del conductor $[\Omega/Km]$

x: Reactancia del conductor $[\Omega/Km]$

γ: Ángulo de fase de la impedancia de carga [–]

Para realizar los cálculos se considera que los conductores deben verificar una caída del 1% en la alimentación desde el transformador hasta el tablero seccional general, y desde éste hasta los equipos, un 2%, un 4% y un 14% según sea circuitos de iluminación y tomas de uso general, y circuitos de fuerza motriz en régimen y en arranque.

Los resultados se ven en las tablas a continuación:

Tabla10.5.4: conductor de alimentación y conductores desde TSG a tableros de equipos.

Tabla10.5.5: conductores desde TSG a tableros de tomas e iluminación.

Tabla10.5.6: conductores desde tableros seccionales a equipos.

Tablero	Máquina	1 [A]	Tensión [V]	Cos fi	Sen fi	S [mm²]	r [Ω/Km]	x [Ω/Km]	L [m]	ΔU [V]	ΔU adm. en arr. [V]	ΔU adm. en rég. [V]	S.final [mm²]	
TP	Alimentación a planta	239,33	380	0,9	0,43	150	0,15	0,072	13	0,89	-	3,8	150	
TST	Transporte a cadena	2,00	380	0,85	0,75	4	5,92	0,099	79	1,40	45,6	15,20	4	Ver(1)
TSES	Secador Rotativo	12,65	380	0,85	0,52	4	5,92	0,099	70	7,80	45,6	15,20	4	Ver(1)
TSC1	Ciclón 1	2,94	380	0,85	0,52	4	5,92	0,099	60	1,55	45,6	15,20	4	Ver(1)
TSM	Equipo de molienda	131,38	380	0,85	0,52	70	0,321	0,074	59	4,18	45,6	15,20	70/35	
TSE2	Ciclón 2 Alimentador prensa pelletizadora Acondicionador de prensa Cinta transp. 1	28,58	380	0,85	0,52	6	3,95	0,0901	54	9,10	45,60	15,20	6,00	
	Cinta transp. 2													
TSP	Prensa pelletizadora	198,38	380	0,85	0,52	120	0,184	0,073	51	3,41	45,6	15,20	120/70	
TOTA	Enfriador	22.24	200	0.05	0,52	4	5,92	0,0991	43	8,46	45,60	15,20	4,00	
TSE1	Zaranda	22,34	380	0,85	0,32	4	3,92	0,0991	43	8,40	43,00	13,20	4,00	
TSE 4	Cinta transp. 3 Elevador a cangilones	4,67	380	0,85	0,52	4	5,92	0,0991	49	2,01	45,60	15,20	2,50	Ver(1)
	Embolsadora			0.05	0.50		F 02	0.0001	45	2.00	45.60	15.20	2.50	\/(1)
TSE3	Cinta de embolsadora	5,26	380	0,85	0,52	4	5,92	0,0991	45	2,08	45,60	15,20	2,50	Ver(1)
TSS	Sinfin 1	7,54	380	0,85	0,52	4	5,92	0,0991	45	2,99	45,60	15,20	2,50	Ver(1)
155	Sinfín 2	7,54	380	0,85	0,32	4	3,32	0,0331	43	2,33	73,00	13,20	2,30	1 (1)
TSG	Balanza de camiones	0,06	380	0,85	0,52	2,5	9,55	0,1	6	5,09	_	7,6	2,5	

Tabla 10.5.4

⁽¹⁾El conductor cuya sección es de 2,5mm² verifica por caída de tensión, pero como no verifica a la exigencia térmica se adopta una sección superior. Ver punto 10.5.3: verificación por cortocircuito.

Tomas e iluminación	1 [A]	Tensión[V]	Cos fi	Sen fi	5 [mm ²]	r [Ω/Km]	χ [Ω/Km]	[m]	ΔU [V]	ΔU adm[V]	S.final [mm ²]	
lluminación uso general en oficina	10	380	0,9	0.43	4	5,92	0.099	21	1,95	7,60	4	Ver (
Tomas de uso general en oficina					Ha							
lluminación zona de caldera	3,51	380	0,9	0,43	4	5,92	0,099	40	1,31	7,60	4	Ver (2
lluminación zona mantenimiento	9,36	380	0,9	0,43	4	5,92	0,099	21	1,83	7,60	4	Ver (2
Iluminación zona materia prima	24,56	380	0,9	0,43	6	3,95	0,09	46	7,03	7,60	6	
lluminación de planta producción	30,41	380	0,9	0,43	10	2,29	0,086	21	2,32	7,60	10	
Tomas 1	77,70	380	0,85	0,52	50	0,464	0,078	30	1,73	7,60	50/25	Ver (
Tomas 2	77,70	380	0,85	0,52	50	0,464	0,078	27	1,55	7,60	50/25	Ver (
Tomas 3	77,70	380	0,85	0,52	50	0,464	0,078	33	1,90	7,60	50/25	Ver (
Tomas 4	77,70	380	0,85	0,52	50	0,464	0,078	45	2,59	7,60	50/25	Ver (
Tomas 5	77,70	380	0,85	0,52	50	0,464	0,078	45	2,59	7,60	50/25	Ver (
Tomas 6	77,70	380	0,85	0,52	50	0,464	0,078	33	1,90	7,60	50/25	Ver (
Tomas 7	77,70	380	0,85	0,52	50	0,464	0,078	60	3,45	7,60	50/25	Ver (
Tomas 8	77,70	380	0,85	0,52	50	0,464	0,078	79	4,55	7,60	50/25	Ver (
Tomas 9	77,70	380	0,85	0,52	50	0,464	0,078	37	2,13	7,60	50/25	Ver (
Tomas 10	77,70	380	0,85	0,52	50	0,464	0,078	56	3,22	7,60	50/25	Ver (

- (2)El conductor cuya sección es de 2,5mm² verifica por caída de tensión, pero como no verifica a la exigencia térmica se adopta una sección superior. Ver punto 10.5.3: verificación por cortocircuito.
- (3) El conductor con una sección de 35/16 mm² verifica por caída de tensión, pero como no verifica a la exigencia térmica se adopta una sección superior. Ver punto 10.5.3: verificación por cortocircuito.

Tablero	Máquina	I [A]	I adm [A]	Tensión [V]	Cos fi	Sen fi	S [mm²]	r [Ω/Km]	χ [Ω/Km]	L[m]	ΔU [V]	ΔU adm en arr. [V]	ΔU adm en rég. [V]	S.final [mm²]
L. P.	Ciclón 2	3,59	22	380	0,85	0,52	2,5	9,55	0,1	8	0,41	45,6	15,2	2,5
	Alimentador Prensa Pelletizadora	2,63	22	380	0,85	0,52	2,5	9,55	0,1	8	0,3	45,6	15,2	2,5
TSE2	Acondicionador de Prensa	13,1	22	380	0,85	0,52	2,5	9,55	0,1	8	1,49	45,6	15,2	2,5
	Cinta Transportadora 1	4	22	380	0,85	0,52	2,5	9,55	0,1	7	0,4	45,6	15,2	2,5
	Cinta Transportadora 2	5,24	22	380	0,85	0,52	2,5	9,55	0,1	8	0,59	45,6	15,2	2,5
	Enfriador	19,7	30	380	0,85	0,52	4	5,92	0,099	6	1,04	45,6	15,2	4
TSE1	Zaranda	2,63	22	380	0,85	0,52	2,5	9,55	0,1	7	0,26	45,6	15,2	2,5
	Cinta Transportadora 3	4	22	380	0,85	0,52	2,5	9,55	0,1	5	0,28	45,6	15,2	2,5
TSE 4	Elevador a cangilones	0,67	22	380	0,85	0,52	2,5	9,55	0,1	4	0,04	45,6	15,2	2,5
	Embolsadora	3,93	22	380	0,85	0,52	2,5	9,55	0,1	5	0,28	45,6	15,2	2,5
TSE3	Cinta de embolsadora	1,31	22	380	0,85	0,52	2,5	9,55	0,1	4	0,07	45,6	15,2	2,5
N. A.	Sinfín 1	3,77	22	380	0,85	0,52	2,5	9,55	0,1	13	0,69	45,6	15,2	2,5
TSS	Sinfín 2	3,77	22	380	0,85	0,52	2,5	9,55	0,1	21	1,12	45,6	15,2	2,5

10.5.3. Verificación al Cortocircuito

Se realiza para determinar la máxima solicitación térmica a la que se ven expuestos los conductores durante la evolución de corrientes de breve duración o cortocircuitos. Existe entonces, una sección mínima "S" que es función de la potencia de cortocircuito en el punto de alimentación, el tipo de conductor evaluado y su protección automática asociada. El cálculo de la sección mínima está dado por:

$$S \ge \frac{I_{CC} \times \sqrt{t}}{K} \qquad (10.5.3)$$

Siendo:

S: Sección mínima del conductor que soporta al cortocircuito $[mm^2]$

 I_{cc} : Valor eficaz de la corriente de cortocircuito [A]

t: Tiempo de actuación de la protección [s]

k: Constante según Tabla 771.19. II, Fig. 10.5.4

Tabla 771.19.II - Valores de k para los conductores de línea

				k			
	ión de los	PVC ≤	PVC >	EPR/XLPE	Goma 60 °C	M	ineral
cond	ductores	300 mm ²	300 mm ²	El Tirriel E	00.700	PVC	Desnudo
Tempera	tura inicial °C	70	70	90	60	70	105
Tempera	stura final °C	160	140	250	200	160	250
	Cobre	115	103	143	141	115	135 / 115
	Aluminio	76	68	94	93		93
Material conductor	Uniones estañadas en conductor de cobre	115	-				•

Fig.10.5.4

Así, se debe comprobar: $S * K \ge I_{CC} \times \sqrt{t}$

(10.5.4)

En caso de que esta relación no se cumpla, se debe adoptar una sección superior.

La verificación se realiza teniendo en cuenta los datos de los interruptores adoptados en el punto 10.7.2, tomando como tiempo de actuación de la protección t= 0,1 segundos cuando el interruptor supere un poder de corte de 10kA.

En el caso de que el interruptor no supere un poder de corte de 10kA, se emplean las Tablas 771-H.IX, Fig.10.5.6 y 771-H.X, Fig.10.5.7.

La corriente de cortocircuito empleada es la calculada en el punto 10.6.

Tabla 771-H.IX - Para pequeños interruptores automáticos de hasta 16 A

		Clases de li	mitaciones de e	nergía		
Poder de corte	Clase 1	Cla	se 2	Clase 3		
asignado	I^2 , t máx.	I^2 . I	máx.	I^2 .	t máx.	
[A]	[A ² s]	[A:	's]	[A ² s]		
	Tipos B y C	Tipo B	Tipo C	Tipo B	Tipo C	
3000		31 000	37 000	15 000	18 000	
4500	Sin limite	60 000	75 000	25 000	30 000	
6000	especificado	100 000	120 000	35 000	42 000	
10000		240 000	290 000	70 000	84 000	

Fig. 10.5.6

Tabla 771-H.X - Para pequeños interruptores automáticos de 16 A < In ≤ 32 A

		Clases de lir	nitaciones de e	nergia		
Poder de corte	1	2	2	3		
asignado [A]	<i>I</i> ² . <i>t</i> máx. [A ² s]	I ² . t		I ² .	1 máx. ²s]	
	Tipos B y C	Tipo B	Tipo C	Tipo B	Tipo C	
3000		40 000	50 000	18 000	22 000	
4500	Sin limite	80 000	100 000	32 000	39 000	
6000	Especificado	130 000	160 000	45 000	55 000	
10000		310 000	370 000	90 000	110 000	

Fig.10.5.7

Los resultados se ven en las tablas a continuación:

Tabla10.5.7: conductor de alimentación y conductores desde TSG a tableros de equipos.

Tabla10.5.8: conductores desde TSG a tableros de tomas e iluminación.

Tabla10.5.9: conductores desde tableros seccionales a equipos.

Tablero	Máquina	I[A]	К	S [mm²]	lcc [A]	t [s]	lcc ² x t	k ² x S ²	lcc²xt≤k²xS²	S.final [mm ²]	
TP	Alimentación planta	240	115	150	17586	0,1	30926739,6	297562500	Verifica	150	
TST	Transporte a cadena	2	115	4	-	-	84000	211600	Verifica	4	Ver(1)
TSES	Secador rotativo	12,65	115	4	-	-	84000	211600	Verifica	4	Ver(1)
TSC1	Ciclón 1	2,94	115	4	-	-	84000	211600	Verifica	4	Ver(1)
TSM	Equipo de molienda	131,4	115	70	16814	0,1	28271059,6	64802500	Verifica	70/35	
	Ciclón 2										
	Alimentador prensa pelletizadora										
TSE2	Acondicionador de Prensa	28,58	115	6	-		110000	476100	Verifica	6	Ver(2)
	Cinta transp. 1										
	Cinta transp. 2										
TSP	Prensa pelletizadora	198,4	115	120	16814	0,1	28224000	190440000	Verifica	120/70	
TOTA	Enfriador	22.24	115	4		_	110000	211600	Verifica	4	Ver(2)
TSE1	Zaranda	22,34	112	4	-		110000	211000	Vernica		VC1(2)
	Cinta transp. 3			THE R							
TSE 4	Elevador a cangilones	4,67	115	4	-	-	84000	211600	Verifica	4	Ver(1)
	Embolsadora										
TSE3	Cinta de banda de embolsadora	5,26	115	4	-	-	84000	211600	Verifica	4	Ver(1)
TCC	Sinfín 1	754	115	4		_	84000	211600	Verifica	4	Ver(1)
TSS	Sinfín 2	7,54	113	4			04000	211000	vernica		VCI(1)
TSG	Balanza de camiones	0,06	115	2,5	-	-	84000	82656,25	Verifica	2,5	Ver (1)

Tabla 10.5.7

⁽¹⁾Se adoptan interruptores Clase 3, Tipo C, In ≤ 16 A, poder de corte asignado 10000 A.

⁽²⁾Se adoptan interruptores Clase 3, Tipo C, 16 A \leq In \leq 32 A, poder de corte asignado 10000 A.

Máquina	1 [A]	К	S [mm²]	l cc [A]	t [s]	lcc ² x t	K ² x S ²	lcc ² x ≤K ² xS ²	S.final [mm ²]	
Iluminación uso general en oficina	10	115	4			84000	211600	Verifica	4	Ver (3
Tomas de uso general en oficina	10	113	7			04000	211000	Vermod	· ·	
Iluminación zona de caldera	3,51	115	4	-	-	84000	211600	Verifica	4	Ver(3
Iluminación zona mantenimiento	9,36	115	4	-	-	84000	211600	Verifica	4	Ver(3
Iluminación zona materia prima	24,56	115	6	-	-	110000	476100	Verifica	6	Ver(4
Iluminación de planta producción	30,41	115	10	-	-	110000	1322500	Verifica	10	Ver(4
Tomas 1	77,7	115	50	16814	0,1	28271060	33062500	Verifica	50/25	
Tomas 2	77,7	115	50	16814	0,1	28271060	33062500	Verifica	50/25	
Tomas 3	77,7	115	50	16814	0,1	28271060	33062500	Verifica	50/25	
Tomas 4	77,7	115	50	16814	0,1	28271060	33062500	Verifica	50/25	
Tomas 5	77,7	115	50	16814	0,1	28271060	33062500	Verifica	50/25	
Tomas 6	77,7	115	50	16814	0,1	28271060	33062500	Verifica	50/25	
Tomas 7	77,7	115	50	16814	0,1	28271060	33062500	Verifica	50/25	
Tomas 8	77,7	115	50	16814	0,1	28271060	33062500	Verifica	50/25	
Tomas 9	77,7	115	50	16814	0,1	28271060	33062500	Verifica	50/25	
Tomas 10	77,7	115	50	16814	0,1	28271060	33062500	Verifica	50/25	

(3)Se adoptan interruptores Clase 3, Tipo C, $\ln \le 16$ A, poder de corte asignado 10000 A.

(4)Se adoptan interruptores Clase 3, Tipo C, 16 A \leq In \leq 32 A, poder de corte asignado 10000 A.

FACULTAD REGIONAL CONCEPCION DEL URUGUAY
UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803
Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY
ENTRE RIOS - REP. ARGENTINA

Tablero	Máquina	1 [A]	К	S [mm ²]	lcc ² x t	k ² x S ²	$ cc^2x t \le k^2xS^2$	S.final [mm ²]	
	Ciclón 2	3,59	115	2,5	30000	82656	Verifica	2,5	Ver(5
	Alimentador prensa pelletizadora	2,63	115	2,5	30000	82656	Verifica	2,5	Ver(5
TSE2	Acondicionador de prensa	13,14	115	2,5	30000	82656	Verifica	2,5	Ver(5
	Cinta transp. 1	4,00	115	2,5	30000	82656	Verifica	2,5	Ver(5
	Cinta transp. 2	5,24	115	2,5	30000	82656	Verifica	2,5	Ver(5
	Enfriador	19,71	115	4	39000	211600	Verifica	4	Ver(6
TSE1	Zaranda	2,63	115	2,5	30000	82656	Verifica	2,5	Ver(5
	Cinta transp. 3	4,00	115	2,5	30000	82656	Verifica	2,5	Ver(5
TSE 4	Elevador a cangilones	0,67	115	2,5	30000	82656	Verifica	2,5	Ver(5
	Embolsadora	3,93	115	2,5	30000	82656	Verifica	2,5	Ver(5
TSE3	Cinta de embolsadora	1,31	115	2,5	30000	82656	Verifica	2,5	Ver(5
	Sinfín 1	3,77	115	2,5	30000	82656	Verifica	2,5	Ver(5
TSS	Sinfín 2	3,77	115	2,5	30000	82656	Verifica	2,5	Ver(5

Tabla 10.5.9

(5)Se adoptan interruptores Clase 3, Tipo C, $ln \le 16$ A, poder de corte asignado 4500 Å.

(6)Se adoptan interruptores Clase 3, Tipo C, 16 A \leq In \leq 32 A, poder de corte asignado 4500 A.

10.5.4. Resumen de Conductores

10.5.4.1. Conductores de Alimentación

Identificación	Origen	Alimenta a :	Cantidad	Longitud [m]	Sección [mm²]	Diámetro [mm]	Resistencia [Ω/Km]	Reactancia [Ω/Km]	Material	Aislación
C-001	TP	TSG	3+1	13	150/70	40	0,1500	0,0720	Cu	PVC
C-002	TSG	TST	4	79	4	13	5,9200	0,0991	Cu	PVC
C-003	TSG	TSES	4	70	4	13	5,9200	0,0991	Cu	PVC
C-003	TSG	TSC1	4	60	4	13	5,9200	0,0991	Cu	PVC
C-005	TSG	TSM	3+1	59	70/35	30	0,3210	0,0736	Cu	PVC
C-005	TSG	TSE2	4	54	6	15	3,9500	0.0901	Cu	PVC
C-007	TSG	TSP	3+1	51	120/70	36	0.1840	0,0729	Cu	PVC
C-007	TSG	TSE1	4	43	4	13	5,9200	0.0991	Cu	PVC
C-008	TSG	TSE 4	4	49	4	13	5,9200	0,0991	Cu	PVC
C-009	TSG	TSE3	4	45	4	13	5,9200	0,0991	Cu	PVC
C-010	TSG	TSS	4	45	4	13	5,9200	0,0991	Cu	PVC
C-011	130	Ciclón 2	4	8	2,5	11	9,5500	0,0995	Cu	PVC
C-012 C-013		Prensa Pelletizadora	4	8	2,5	11	9,5500	0,0995	Cu	PVC
C-013	TSE 2	Acondicionador de Prensa	4	8	2,5	11	9,5500	0.0995	Cu	PVC
C-014 C-015	1362	Cinta transportadora 1	4	7	2,5	11	9,5500	0,0995	Cu	PVC
			4	8	2,5	11	9,5500	0,0995	Cu	PVC
C-016		Cinta transportadora 2 Enfriador	4	6	4	13	5,9200	0,0991	Cu	PVC
C-017	TSE 1		4	7	2,5	11	9,5500	0,0995	Cu	PVC
C-018		Zaranda	4	5	2,5	11	9,5500	0.0995	Cu	PVC
C-019	TSE 4	Cinta Transportadora 3	4	4	2,5	11	9,5500	0,0995	Cu	PVC
C-020		Elevador a cangilones	4	5	2,5	11	9,5500	0,0995	Cu	PVC
C-021	TSE 3	Embolsadora	4	4	2,5	11	9,5500	0,0995	Cu	PVC
C-022		Cinta de banda de embolsadora	4	13	2,5	11	9,5500	0,0995	Cu	PVC
C-023	TSS	Sinfín 1						-	Cu	PVC
C-024	700	Sinfín 2	4	21 21	2,5	11 13	9,5500 5,9200	0,0995	Cu	PVC
C-025	TSG	TO TO	4			13		-	Cu	PVC
C-026	TSG	TC	4	40	4		5,9200	0,0991	-	PVC
C-027	TSG	TM	4	21	6	13	5,9200	0,0991	Cu	PVC
C-028	TSG	TMP	4	46			3,9500	-		
C-029	TSG	TIP	4	21	10	17	2,2900	0,0860	Cu	PVC
C-030	TSG	Π1	3+1	30	50/25	30	0,4640	0,0777	Cu	PVC
C-031	TSG	Π2	3+1	27	50/25	30	0,4640	0,0777	Cu	PVC
C-032	TSG	П3	3+1	33	50/25	30	0,4640	0,0777	Cu	PVC
C-033	TSG	114	3+1	45	50/25	30	0,4640	0,0777	Cu	PVC
C-034	TSG	Π5	3+1	45	50/25	30	0,4640	0,0777	Cu	PVC
C-035	TSG	Π6	3+1	33	50/25	30	0,4640	0,0777	Cu	PVC
C-036	TSG	Π7	3+1	60	50/25	30	0,4640	0,0777	Cu	PVC
C-037	TSG	TT 8	3+1	79	50/25	30	0,4640	0,0777	Cu	PVC
C-038	TSG	Π9	3+1	37	50/25	30	0,4640	0,0777	Cu	PVC
C-039	TSG	TT 10	3+1	56	50/25	30	0,4640	0,0777	Cu	PVC
C-040	TSG	Balanza de camiones	4	6	- 2,5	11	9,5500	0,0995	Cu	PVC

Tabla 10.5.10

10.5.4.2. Conductores de Protección

Identificación	Origen	Conecta a :	Cantidad	Longitud [m]	Sección [mm²]	Diámetro [mm]	Resistencia [Ω/Km]	Material
CP-001	TSG	PAT	1	4	95	18,2	0,206	Cu
CP-003	TSG	TST	1	79	4	4,8	4,950	Cu
CP-004	TSG	TSES	1	70	4	4,8	4,950	Cu
CP-005	TSG	TSC1	1	60	4	4,8	4,950	Cu
CP-006	TSG	TSM	1	59	35	11,7	0,554	Cu
CP-007	TSG	TSE 2	1	54	6	5,3	3,300	Cu
CP-008	TSG	TSP	1	51	70	16	0,272	Cu
CP-009	TSG	TSE 1	1	43	4	4,8	4,950	Cu
CP-010	TSG	TSE 4	1	49	4	4,8	4,950	Cu
CP-011	TSG	TSE 3	1	45	4	4,8	4,950	Cu
CP-012	TSG	TSS	1	45	4	4,8	4,950	Cu
CP-013	100	Ciclón 2	1	8	2,5	4,1	7,980	Cu
CP-014		Alimentador prensa	1	8	2,5	4,1	7,980	Cu
CP-015	TSE2	Acondicionador de prensa	1	8	2,5	4,1	7,980	Cu
CP-016		Cinta transportadora 1	1	7	2,5	4,1	7,980	Cu
CP-017		Cinta transportadora 2	1	8	2,5	4,1	7,980	Cu
CP-018		Enfriador	1	6	4	4,8	4,950	Cu
CP-019	TSE1	Zaranda	1	7	2,5	4,1	7,980	Cu
CP-020		Cinta transportadora 3	1	5	2,5	4,1	7,980	Cu
CP-021	TSE4	Elevador a cangilones	1	4	2,5	4,1	7,980	Cu
CP-022		Embolsadora	1	5	2,5	4,1	7,980	Cu
CP-023	TSE3	Cinta de banda de embolsadora	1	4	2,5	4,1	7,980	Cu
CP-024		Sinfín 1	1	13	2,5	4,1	7,980	Cu
CP-025	TSS	Sinfín 2	1	21	2,5	4,1	7,980	Cu
CP-026	TSG	ТО	1	21	4	4,8	4,950	Cu
CP-027	TSG	TC	1	40	4	4,8	4,950	Cu
CP-028	TSG	TM	1	21	4	4,8	4,950	Cu
CP-029	TSG	TMP	1	46	6	5,3	3,300	Cu
CP-030	TSG	TIP	1	21	10	6,8	1,910	Cu
CP-031	TSG	TT1	1	30	25	10,2	0,780	Cu
CP-032	TSG	TT 2	1	27	25	10,2	0,780	Cu
CP-033	TSG	TT3	1	33	25	10,2	0,780	Cu
CP-034	TSG	TT 4	1	45	25	10,2	0,780	Cu
CP-035	TSG	TT 5	1 .	45	25	10,2	0,780	Cu
CP-036	TSG	TT 6	1	33	25	10,2	0,780	Cu
CP-037	TSG	Π7	1	60	25	10,2	0,780	Cu
CP-038	TSG	TT 8	1	79	25	10,2	0,780	Cu
CP-039	TSG	ТТ 9	1	37	25	10,2	0,780	Cu
CP-040	TSG	TT 10	1	56	25	10,2	0,780	Cu
CP-041	TSG	Balanza de camiones	1	6	2,5	4,1	7,980	Cu
CP-047	PAT	Jabalinas	1	30	95	18,2	0,206	Cu

Tabla 10.5.11

Nota: el dimensionamiento de los conductores de protección está dado en el punto 10.10.4.

10.6. Corrientes de Cortocircuito

La corriente máxima de cortocircuito (lcc) prevista en el lugar de la instalación de los equipos eléctricos es determinante para seleccionar los aparatos de maniobra en lo referente a resistencia de cortocircuitos y a la capacidad de ruptura.

Determinación de la Icc por cálculo

El método consiste en hacer la suma de resistencias y reactancias situadas aguas arriba del punto considerado, y con estos valores calcular la impedancia de cortocircuito (Zcc), que luego permite conocer la lcc.

Los valores de resistencia y reactancia en cada parte de la instalación, según "Manual de Baja Tensión" (SIEMENS, 2000), son:

a) Tablero de distribución:
$$Z = \frac{1.1 \ Ubt^2}{1000.Sc}$$
 $X = 0.995.Z$ $R = 0.10.X$

b) Transformador:
$$Z = \frac{1.1 \ Ubt^2}{1000.Sc}$$
 $R = \frac{Ur.Ubt^2}{1000.Sc}$ $X = \sqrt{Z^2 - R^2}$

La Ucc del transformador es un dato que está fijado por la norma IRAM 2250 y los constructores deben ceñirse a ésta.

Por norma, los transformadores de distribución entre 25 y 630kVA tienen Ucc=4%.

c) Alimentadores a tablero:
$$X = L \cdot \frac{x}{n}$$
 $R = L \cdot \frac{r}{n}$

d) Barras de distribución:
$$R = \frac{L.1000}{56.q}$$
 $X = x. L$

e) Cable alimentador baja tensión:
$$R = L.r$$
 $X = L.x$

Referencias:

 U_{bt} : Tensión del lado de baja tensión [V]

S_C: Potencia aparente [KVA]

U_r: Caída de tensión resistiva [%]

 U_{CC} : Tensión de cortocircuito [%]

L: Longitud del conductor o barra [m]

q: Sección del conductor o barra [mm²]

X: Reactancia $[\Omega]$

R: Resistencia [Ω]

x: Reactancia equivalente $[\Omega/Km]$

r: Resistencia equivalente $[\Omega/Km]$

n: Números de conductores [-]

Z: Impedancia $[\Omega]$

Y la corriente de cortocircuito: $Icc = \frac{Ubt}{\sqrt{3}.Zcc}[kA]$

En el caso de los circuitos de tomas, cuyos conductores tienen igual sección (50mm²), se calcula la corriente de cortocircuito para el caso más desfavorable (tablero de tomas más cercano al TSG: TT1).

Se procede de la misma manera para los puntos correspondientes a los tableros de equipos e iluminación, teniendo en cuenta además las diferentes secciones de los conductores.

En el caso de los circuitos de iluminación (TO, TC, TM y TMP) y tableros de equipos (TST TSES, TSC1, TSE1, TSE3, TSE4 y TSS), cuyos conductores tienen igual sección (4mm²), se calcula la corriente de cortocircuito para el caso más desfavorable (tablero de iluminación más cercano al TSG: TO).

Así, se calculan las corrientes de cortocircuito considerando los puntos más cercanos al TSG, que son los siguientes:

- TO: conductor de 4mm².
- TSE2: conductor de 6mm².
- TIP: conductor de 10mm².
- TT1: conductor de 50mm².
- TSM: conductor de 70mm².
- TSP: conductor de 120mm².

A continuación se exponen las planillas de cálculo (Tablas 10.6.2 a 10.6.10) y el resumen correspondiente (Tabla 10.6.1), referido a los puntos donde se calcula la lcc, tanto en los tableros mencionados anteriormente como en el transformador, el TSG y en las barras (puntos previos de cálculo a los tableros TO, TSE2, TIP, TT1, TSM y TSP).

Punto calculado	Icc (kA)	Tabla
Transformador	17,58	10.5.13
TSG	16,82	10.5.14
Barras	16,81	10.5.15
то	1,78	10.5.16
TSE2	1,05	10.5.17
TIP	4,25	10.5.18
Π1	9,71	10.5.19
TSM	7,97	10.5.20
TSP	10,69	10.5.21

Tabla10.6.1

PU	NTO CONSIDERADO	DATOS		PROCE	SO DE C	ÁLCULO	R[mΩ]	X[mΩ]
Α	TABLERO DE DISTRIBUCIÓN	S"cc[MVA]= Umt[V]= Ubt[V]=	500 13200 400	ZA = (1.1 * Ubt^2) /	(1000 * S	'cc) = 0,3520 XA = 0.995 * ZA= RA = 0.10 * XA =	0,0350	0,3502
		Cant. Trafos =	1					
		S1[kVA]=	500	SB[kVA] =	500			
		Ucc1[%]=	4	UccB[%] =	4			
		Ur1[%] =	1,05	UrB[%] =	1,05			
В	TRANSFORMADOR			ZB =Ucc		/(100 * SB) = 12,80 * Ubt^2 /(100 * SB) =	3,3600	
					XB=(ZB ^2 - RB ^2) ^1/2 =		12,3511
		TRANSFORM	ADOR					
						Rcc [mΩ]]=	3,3950	
						Xcc [mΩ]=		12,7014
		Zcc [mΩ]= (Rc	cc^2 + Xcc	2^2)^1/2 = 13,:	15			
		lcc [kA] =	Ubt / (1.	73 * Zcc) = 17,5	86			

Tabla 10.6.2

PUI	NTO CONSIDERADO	DATOS		P	ROCESO DE CÁ	LCULO		R[mΩ]	X [mΩ]
А	TABLERO DE DISTRIBUCIÓN	S"cc[MVA]= Umt[V]= Ubt[V]=	500 13200 400	ZA = (1.1 * Ubt^2) /	(1000 * S'cc) =	0,3520 XA=0) 1.995 * ZA=		0,3502
		Opt[v]=	400				0.10 * XA =	0,0350	0,5502
		Cant. Trafos =	1						
		S1[kVA] =	500	SB[kVA] =	500				
		Ucc1[%] =	4	UccB[%]=	4				
		Ur1[%]=	1,05	UrB[%]=	1,05				12 11 2 1
В	TRANSFORMADOR								
				ZB =Ucc	B * Ubt^2 / (100 *	SB)= 12	,80		
					RB	=UrB * Ubt^2 / (:	L00 * SB) =	3,3600	
						XB = (ZB ^2 - RB	^2) ^ 1/2 =		12,3511
		S[mm2]=	150						
		L [m] =	16						
С	ALIMENTADORES	r [mΩ/m] =	0,15				=L*x/n=		0,3840
	A TABLERO	x [mΩ/m] =	0,072			RC	=L*r/n=	0,8000	
		n [n° cond //] =	3						
		TSG							
							Rcc [mΩ]=	4,1950	
							Xcc [mΩ]=		13,0854
		Zcc [mΩ]= (Rc	c^2 + Xc	c^2)^1/2 = 13,	74				
		Icc [kA] =	Ubt / (1.	73 * Zcc) = 16,8	26				

Tabla 10.6.3

	PUNTO CONSIDERADO	DATOS		PROCESO DE CA	ÁLCULO	R [mΩ]	X[mΩ]
А	TABLERO DE DISTRIBUCIÓN	S"cc[MVA]= Umt[V]= Ubt[V]=	500 13200 400	ZA=(1.1*Ubt^2)/(1000*S'cc)=	0,3520 XA=0.995*ZA= RA=0.10*XA=	0,0350	0,3502
В	TRANSFORMADOR	Cant. Trafos = S1[kVA] = Ucc1[%] = Ur1[%] =	1 500 4 1,05			3,3600	12,3511
С	ALIMENTADORES A TABLERO	$S[mm2]=$ $L[m]=$ $r[m\Omega/m]=$ $x[m\Omega/m]=$ $n[n^{\circ} cond //]=$	150 16 0,15 0,072		XC=L*x/n= RC=L*r/n=	0,8000	0,384
Đ	BARRAS DISTRIBUCIÓN	q [mm2/Fase]= Material = Longitud[m] = React[mΩ/m]=	799 Cu 1,5		XD = RD = LD * 1000 /(56 * q) =	0,0335	0,0000
		BARRAS Zec [mΩ]={Re	cc^2 +Xc	c^2)^1/2 = 13,75	Rcc [mΩ]= Xcc [mΩ]=	4,2285	13,085
		Icc [kA] =	Ubt/(1.	73*Zcc)= 16,814			40.0

	DATOS DE LA RED	DATOS		PROCESO DE CÁ	LCULO	R [mΩ]	X [mΩ]
Α	TABLERO DE DISTRIBUCIÓN	S"cc[MVA]= Umt[V]= Ubt[V]=	500 13200 400	ZA = (1.1 * Ubt^2) / (1000 * S'cc) =	0,3520 XA=0.995*ZA= RA=0.10*XA=	0,0350	0,3502
В	TRANSFORMADOR	Cant. Trafos = S1[kVA] = Ucc1[%] = Ur1[%] =	1 500 4 1,05			3,3600	12,3511
С	ALIMENTADORES A TABLERO	$S[mm2]=$ $L[m] =$ $r[m\Omega/m] =$ $x[m\Omega/m] =$ $n[n^{\circ} cond //] =$	150 16 0,15 0,072 3		XC = L * x / n = RC = L * r / n =	0,8000	0,3840
D	BARRAS DISTRIBUCIÓN	q [mm2/Fase]= Material = Longitud[m] = React[mΩ/m]=	799 Cu 1,5		XD = RD= LD*1000 /(56 * q)=	0,0335	0,0000
Ε	CABLE ALIMENTADOR TABLERO DE OFICINAS	S[mm2]= L [m] = r [mΩ/m] = x [mΩ/m] =	4 21 5,92 0,0991		XE=L*x = RE=L*r =	124,3200	2,0811
		TO Zcc [mΩ]=(Ri		c^2)^1/2 = 129,44 73 * Zcc) = 1,786	Rcc [mΩ]= Xcc [mΩ]=	128,5485	15,1665

	PUNTO CONSIDERADO	DATOS		PROCESO DE CÁLCULO	R[mΩ]	X [mΩ]
Α	TABLERO DE DISTRIBUCIÓN	S"cc[MVA]= Umt[V]= Ubt[V]=	500 13200 400	ZA=(1.1*Ubt^2)/(1000*S'cc)=	0,0350	0,3502
В	TRANSFORMADOR	Cant. Trafos = S1 [kVA] = Ucc1 [%] = Ur1 [%] =	1 500 4 1,05	SB[kVA] = 500 UccB[%] = 4 UrB[%] = 1,05 ZB=UccB*Ubt^2/(100*SB) = 12,80 RB=UrB*Ubt^2/(100*SB) = XB=(ZB^2-RB^2)^1/2 =	3,3600	12,3511
c	ALIMENTADORES A TABLERO	$S[mm2]=$ $L [m] =$ $r [m\Omega/m] =$ $x [m\Omega/m] =$ $n [n^{\circ} cond //] =$	150 16 0,15 0,072 3	. XC=L*x/n= RC=L*r/n=		0,3840
D	BARRAS DISTRIBUCIÓN	q [mm2/Fase]= Material = Longitud[m] = React[mΩ/m]=	799 Cu 1,5	XD = RD = LD *1000 /(56 * q) =	0,0335	0,0000
E	CABLE ALIMENTADOR TABLERO SECCIONAL 2	$S[mm2]=$ $L[m] =$ $r[m\Omega/m] =$ $x[m\Omega/m] =$	6 54 3,95 0,0901	XE=L*x = RE=L*r =		4,8654
		TSE2 Zcc [mΩ]=(Rc		Rcc [mΩ]= $Xcc [mΩ]=$ $73*Zcc)=$ 1,059		17,950

Tabla 10.6.6

	PUNTO CONSIDERADO	DATOS		T ETHINA	PROCESO DE	CÁLCULC)		R [mΩ]	X[mΩ]
		S"cc[MVA]=	-	ZA = (1.1 * Ubt^2) /	/(1000 *S'cc)=	0,:	3520			
A	TABLERO DE DISTRIBUCIÓN	Umt[V]=	13200				VA = 0	.995 * ZA=	-	0,3502
		Ubt[V]=	400					.10 * XA =	0,0350	0,5502
							NA-U	.10 AA-	0,0330	
		Cant. Trafos =	1							
		S1[kVA] =	500		500					
		Ucc1[%] =	4		4					
		Ur1[%] =	1,05	UrB[%] =	1,05					
В	TRANSFORMADOR	Cirling [
	MANSIONINABON			ZB=Ucc	B*Ubt^2/(10	0 *SB)=	12,	80		
						RB=UrB*L	bt^2/(1	00 * SB) =	3,3600	
						XB=(ZE	3 ^2 - RB /	2) ^1/2=		12,351
		S[mm2]=	150							
		L [m] =	16							
С	ALIMENTADORES A TABLERO	r [mΩ/m] =	0,15					L*x/n=		0,384
		x [mΩ/m] =	0,072				RC =	=L*r/n=	0,8000	
		n [n° cond //] =	3							-
		q [mm2/Fase]=	799							
D	BARRAS DISTRIBUCIÓN	Material =	Cu	The second secon			* 4 0 0 0	XD =		0,000
		Longitud[m] =	1,5			RD= LL	J*1000	/(56 * q) =	0,0335	
		React[mΩ/m]=	0							
	CABLE ALIMENTADOR	S[mm2]=	10	The second secon				(E=L*x=		1 000
E	TABLERO ILUMINACIÓNEN	L [m] =	21	-				RE=L*r=	40,0000	1,806
	PLANTA	r [mΩ/m] =	2,29					/C-L 1 -	48,0900	
		x [mΩ/m] =	0,086							
		TIP						Rcc [mΩ]=	52,3185	
								$Xcc [m\Omega] = $	32,3165	14,891
			40 11	40144 /0 54	40			vec [uits]=		14,031
		$Zcc [m\Omega]=(R$	cc^2 + Xc	(c^2)^1/2 = 54	,40					
		I== F(*1	1164 //4	.73*Zcc)= 4,2	251					
		ICC [KA]	- UDIT (1.	13 2001- 4,2	.51	-	-			

FACULTAD REGIONAL CONCEPCION DEL URUGUAY
UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA

	PUNTO CONSDERADO	DATOS		PROCESO DE CÁLC	ULO	R [mΩ]	X[mΩ]
		S"cc[MVA]=		A = (1.1 * Ubt^2) / (1000 * S'cc) =	0,3520		
Α	TABLERO DE DISTRIBUCIÓN	Umt[V]=	13200				
		Ubt[V]=	400		XA=0.995 * ZA=		0,3502
					RA=0.10 * XA=	0,0350	
		Cant. Trafos =	1				
		S1[kVA] =	500	SB[kVA] = 500			
		Ucc1[%] =	4	UccB[%] = 4			
		Ur1[%] =	1,05	UrB[%] = 1,05			
В	TRANSFORMADOR						
				ZB=UccB*Ubt^2/(100 *SB)	= 12,80		
				RB =Ur	B*Ubt^2/(100*SB)=	3,3600	
				XB	=(ZB ^2 - RB ^2) ^ 1/2 =		12,351
		S[mm2]=	150				
		L [m] =	16				
С	ALIMENTADORES A TABLERO	r [mΩ/m] =	0,15		XC=L*x/n=		0,384
		x [mΩ/m] =	0,072		RC=L*r/n=	0,8000	
		n [n° cond //] =	3				
		q [mm2/Fase]=	799				
_	BARRAS DISTRIBUCIÓN	Material =	Cu		XD =		0,000
D	BARRAS DISTRIBUCION	Longitud[m] =	1,5	RD	= LD * 1000 /(56 * q) =	0,0335	
		React[mW/m]=	0			0,0000	
			50				
	CABLE ALIMENTADOR	S[mm2]= L[m]=	30		XE=L*x=		2,3310
E	TABLERO DE TOMAS	$r[m\Omega/m] =$	0,464		RE=L*r=	13,9200	2,331
	TABLERO DE TOTAS	$x [m\Omega/m] =$	0,0777			25,5200	
		TT1	0,0111				
		1112			Rcc [mΩ]=	18,1485	
					Xcc [mΩ]=		15,416
		$Zcc[m\Omega]=(R$	cc^2 + Xcc^	2}^1/2 = 23,81			
		loc [kA] =	=Ubt/(1.73	*Zcc)= 9,710			

	PUNTO CONSIDERADO	DATOS		PROCESO DE CÁ	ILCULO	R[mΩ]	X [mΩ]
A	TABLERO DE DISTRIBUCIÓN	S"cc[MVA]= Umt[V]=	500 13200	ZA = (1.1 * Ubt^2) / (1000 * S'cc) =	0,3520		
		Ubt[V]=	400		XA=0.995 * ZA=		0,3502
10-					RA=0.10 * XA=	0,0350	
		Cant. Trafos =	1				
		S1[kVA] =	500	SB[kVA] = 500			
		Ucc1[%] =	4	UccB[%] = 4			
		Ur1[%] =	1,05	UrB[%] = 1,05			
В	TRANSFORMADOR			ZB=UccB*Ubt^2/(100*	SB)= 12,80		
					=UrB*Ubt^2/(100*SB)=	3,3600	
					XB = (ZB ^2 - RB ^2) ^ 1/2 =		12,351
		S[mm2]=	150				
		L [m] =	16				
С	ALIMENTADORES A TABLERO	r [mΩ/m] =	0,15		XC=L*x/n=		0,3840
		$x [m\Omega/m] =$	0,072		RC=L*r/n=	0,8000	
		n [n° cond //] =	3				
		g [mm2/Fase]=	799			27	
D	BARRAS DISTRIBUCIÓN	Material =	Cu		XD =		0,000
		Longitud[m] =	1,5		RD = LD * 1000 /(56 * q) =	0,0335	
		React[mΩ/m]=	0				
		S[mm2]=	70				
E	CABLE ALIMENTADOR	L [m] =	59		XE=L*x =		4,342
E	TEBLERO SECTOR MOLIENDA	$r[m\Omega/m] =$	0,321		RE=L*r=	18,9390	
		x [mΩ/m] =	0,0736				
		TSM					
					Rcc [mΩ]=	23,1675	
		7 (01 /2	00 . V	^2)^1/2 = 28,99	Xcc [mΩ]=		17,427
		Zcc [mΩ]=(Rc	.c.,7 + xcc				
		Icc [kA] =	Ubt/(1.7	73 * Zcc) = 7,975			

	PUNTO CONSIDERADO	DATOS		PROCESO DE CÁ	LCULO	R[mΩ]	X[mΩ]
A	TABLERO DE DISTRIBUCIÓN	S"cc[MVA]= Umt[V]= Ubt[V]=	500 13200 400	ZA = (1.1 * Ubt^2) / (1000 * S'cc) =	0,3520 XA=0.995*Z RA=0.10*XA		0,3502
			-		114-0.10 X	0,0330	
		Cant. Trafos =	1				
		S1 [kVA] =	500	SB[kVA] = 500			
		Ucc1[%] =	4	UccB[%] = 4			
	TRANSFORMADOR	Ur1[%] =	1,05	UrB[%] = 1,05			
В	TRANSFORMADOR			ZB=UccB*Ubt^2/(100 *S	SB) = 12,80		
				RB=	UrB*Ubt^2/(100*SB)	3,3600	
				>	(B = (ZB ^2 - RB ^2) ^ 1/2	=	12,351
		S[mm2]=	150				
		L [m] =	16				
С	ALIMENTADORES A TABLERO	r [mΩ/m] =	0,15		XC=L*x/r		0,384
		x [mΩ/m] =	0,072		RC=L*r/r	0,8000	
		n [n° cond //] =	3				
		g [mm2/Fase]=	799				
D	BARRAS DISTRIBUCIÓN	Material =	Cu		XD	= 111-111	0,000
		Longitud[m] =	1,5		RD = LD * 1000 /(56 * q)	= 0,0335	
		React[m Ω /m]=	0			S LITERAL .	
		S[mm2]=	120				
	CABLE ALIMENTADOR	L[m]=	51		XE=L*x	=	3,7179
E	TABLERO SECTOR PRENSA	r [mΩ/m] =	0,184		RE=L*r	= 9,3840	
		x [mΩ/m] =	0,0729			ll control	
		TSP					
					Rcc [mΩ		
					Xcc [mΩ]=	16,803
		$Zcc [m\Omega]=(R$	cc^2 + Xc	c^2)^1/2 = 21,63			
		lcc [kA] =	Ubt / (1.	73*Zcc)= 10,692			

10.7. PROTECCIONES

10.7.1. Introducción

En los sistemas eléctricos siempre existe la posibilidad de que se presente una interrupción en el suministro de energía debido a sobrecargas ó cortos circuitos, ya sea por errores de operación, condiciones ambientales, falta de mantenimiento ó descargas atmosféricas.

El cortocircuito es una falla en la que el conductor de fase se pone en contacto directo con otra fase o con el hilo neutro del sistema eléctrico. Este contacto origina que súbitamente la corriente crezca a diez ó más veces su valor nominal.

En virtud de que el cortocircuito trae consigo un incremento súbito del valor de la corriente, se produce también un incremento inmediato del campo magnético asociado a esa corriente, ya que el campo magnético es directamente proporcional a la corriente eléctrica. Típicamente se producen chispas y fusión de los conductores en el lugar en que estos se unieron para provocar la falla de cortocircuito.

También se puede desprender material de los conductores a causa de la corriente tan intensa. Estos elementos pueden causar a su vez que se produzca fuego en materiales consumibles o explosiones en atmósferas peligrosas. Además, los aislamientos de los conductores se calientan rápidamente y también pueden incendiarse. Por todo lo anterior, las fallas de cortocircuito son eventos muy peligrosos.

El corto circuito puede ser clasificado en los siguientes tipos:

- Corto circuito sólido ó franco: se presenta cuando los conductores (línea, neutro ó tierra) están conectados sólidamente entre sí, presentándose una impedancia cero en dicha conexión por lo que se obtiene la condición de corriente máxima.
- Falla a tierra: sucede cuando una de las fases del sistema entra en contacto directo a tierra ó con alguna parte metálica que se encuentre aterrizada.
- > Falla por arco: sucede entre dos conductores cercanos pero que no entran en contacto directo.

La sobrecarga, a diferencia del cortocircuito, es una demanda paulatina pero creciente de la corriente eléctrica, su efecto es siempre un incremento de temperatura, ya sea en el equipo eléctrico, en los conductores de la instalación y/o en las protecciones. El incremento en la temperatura puede causar fatiga en los elementos de la instalación y disminución de su vida útil, pero también puede ser tan grande el calor que se generen incendios, si la falla de sobrecarga no se interrumpe.

Cualquiera de estas fallas es peligrosa tanto para el equipo como para las personas.

Los dispositivos de protección son los encargados de interrumpir la energía eléctrica en caso de falla en el sistema eléctrico.

Éstos son los interruptores termomagnéticos, interruptores de falla a tierra (diferenciales), los fusibles o una combinación de ellos.

Interruptores termomagnéticos

Para dar protección ante fallas de cortocircuito y sobrecargas se utilizan los interruptores termomagnéticos que integran un elemento magnético que es sensible a la alta intensidad del campo magnético asociado a la corriente de falla.

Los datos que se deben tener en cuenta al seleccionar un interruptor termomagnético son:

- La curva característica de disparo, para proteger los conductores de acuerdo al tipo de corrientes de inserción que presentan los equipos conectados en el circuito (curva B: circuitos resistivos o con gran longitud de cables hasta el receptor, curva C: cargas mixtas y motores, curva D: transformadores, capacitores).
- La capacidad de ruptura de cortocircuito, que debe ser mayor o igual a la corriente de cortocircuito presunta que puede ocurrir en el lugar donde el interruptor termomagnético se encuentra instalado.
- La corriente nominal que debe ser mayor o igual a la corriente del equipo a proteger.

Interruptor seccionador fusible

Los Interruptores Seccionadores Fusibles son aplicados en circuitos eléctricos en general, posibilitando la interrupción, así como la protección contra cortocircuito y sobrecarga, a través de fusibles.

Interruptor diferencial

Tiene la capacidad de detectar la diferencia entre la corriente de entrada y la corriente de salida en un circuito. Cuando esta diferencia supera un valor determinado (sensibilidad), para el que está calibrado el dispositivo abre el circuito, interrumpiendo el paso de la corriente a la instalación que protege. Los valores de sensibilidad varían según el tipo de circuito e instalación a proteger, y pueden distinguirse los siguientes:

- Alta sensibilidad (IDn ≤ 30 mA): Se utilizan para la protección de tomas de corriente, locales húmedos, instalaciones móviles, edificios agrícolas, o cuando las condiciones de puesta a tierra son deficientes.
- Sensibilidad media (30 mA ≤ IDn ≤ 500 mA): Se utilizan para la protección de instalaciones fijas (principalmente con esquema TT). Garantizan la protección en condiciones de cortocircuito mínimo (longitudes de líneas en esquemas TN e IT) y permiten limitar las corrientes de falla (riesgo de incendio).

10.7.2. Protecciones para la Planta

Las protecciones son elegidas en función de los datos de los equipos. Los planos donde se detallan las protecciones siguen la norma IEC 60617 y se numeran en la Tabla10.7.1.

Plano	Ítem
PEU-G-001 Rev.01	Unifilar TSG
PEU-T-001 Rev.01	Unifilar TT
PEU-E-001 Rev.01	Unifilar TSE1
PEU-E-002 Rev.01	Unifilar TSE2
PEU-E-003 Rev.01	Unifilar TSE3
PEU-E-004 Rev.01	Unifilar TSE4
PEU-E-005 Rev.01	Unifilar TSS

Tabla10.7.1

Para los interruptores termomagnéticos y guardamotores se verifica que:

- La corriente de cortocircuito calculada sea menor o igual a la capacidad de ruptura del interruptor: Icc de cálculo ≤ Icc del interruptor
- La corriente nominal del equipo sea menor a la corriente del interruptor: $I_{interruptor} \geq I_{equipo}$

Para los interruptores diferenciales que son conectados en serie con los interruptores termomagnéticos se verifica que:

• La corriente del interruptor diferencial sea mayor a la corriente del interruptor termomagnético: $I_{Diferencial} \ge I_{Interruptor}$

10.7.2.1. Tablero Principal

Se instala un interruptor termomagnético (a cargo de la distribuidora) cuyo poder de corte es de 25 kA, y con corriente nominal de 800A, según la corriente total proyectada para la planta (I total=719,2 A).

10.7.2.2. Tablero Seccional General

Como protección general de cabecera se dispone un interruptor automático termomagnético cuyo poder de corte es de 25kA, y con corriente nominal de 800A.

Aguas debajo de la protección general anterior se utilizan dos interruptores termomagnéticos cuyo poder de corte es de 25kA, uno para el equipo de molienda (con corriente nominal variable regulable de 125-160A) y el otro para prensa pelletizadora (con corriente nominal variable regulable de 160-200A).

Por otra parte se emplea seccionador fusible para las siguientes cargas: transporte a cadena, secador, ciclón 1, TSE 1, TSE 2, TSE 3, TSE 4, TT (1 A 10), TO, TC, TM, TMP, TIP y balanza de camiones, cuya selección se basa en una corriente total de 390A.

Seguido al seccionador fusible se disponen interruptores termomagnéticos cuyo poder de corte es de 15kA y con corriente nominal según el equipo/tablero que corresponda.

A continuación se presenta la Tabla10.7.2 con los datos de los equipos y la selección del interruptor.

Protección	Alimenta a	lcc calculada	lcc interruptor	lcc ≤lcc int.	l _{equipo} (A)	I _{Interruptor}	l _{int} ,≥l _{equipo}	Código
Int. Automático	TSG	16,8	42kA	Verifica	719,2	800	Verifica	ITM1
Seccionador fusible	Cargas varias	16,8	80kA	Verifica	390	400	Verifica	SF1
Int. Termomagnético	TT1	15	15	Verifica	77,7	100	Verifica	ITM2
Int. Termomagnético	TT2	15	15	Verifica	77,7	100	Verifica	ITM3
Int. Termomagnético	ТТ3	15	15	Verifica	77,7	100	Verifica	ITM4
Int. Termomagnético	TT4	15	15	Verifica	77,7	100	Verifica	ITM5
Int. Termomagnético	Π5	15	15	Verifica	77,7	100	Verifica	ITM6
Int. Termomagnético	TT6	15	15	Verifica	77,7	100	Verifica	ITM7
Int. Termomagnético	Π7	15	15	Verifica	77,7	100	Verifica	ITM8
Int. Termomagnético	TT8	15	15	Verifica	77,7	100	Verifica	ITM9
Int. Termomagnético	TT9	15	15	Verifica	77,7	100	Verifica	ITM10
Int. Termomagnético	TT10	15	15	Verifica	77,7	100	Verifica	ITM11
Int. Termomagnético	TO	15	15	Verifica	10	16	Verifica	ITM12
Int. Termomagnético	TM	15	15	Verifica	9,36	16	Verifica	ITM13
Int. Termomagnético	TC	15	15	Verifica	3,51	10	Verifica	ITM14
Int. Termomagnético	TMP	15	15	Verifica	24,56	32	Verifica	ITM15
Int. Termomagnético	TIP	15	15	Verifica	30,41	32	Verifica	ITM16
Int. Termomagnético	TSE1	15	15	Verifica	22,34	25	Verifica	ITM17
Int. Termomagnético	TSE2	15	15	Verifica	28,58	32	Verifica	ITM18
Int. Termomagnético	TSE3	15	15	Verifica	5,26	10	Verifica	ITM19
Int. Termomagnético	TSE4	15	15	Verifica	4,67	10	Verifica	ITM20
Int. Termomagnético	TSS	15	15	Verifica	7,54	10	Verifica	ITM21
Int. Termomagnético	TSES	15	15	Verifica	12,65	16	Verifica	ITM22
Int. Termomagnético	TST	15	15	Verifica	2	10	Verifica	ITM23
Int. Termomagnético	TSC1	15	15	Verifica	2,94	10	Verifica	ITM24
Int. Termomagnético	Balanza camiones	15	15	Verifica	0,06	10	Verifica	ITM25
Int. Termomagnético	TSM	16,8	25	Verifica	131,38	125-160	Verifica	ITM26
Int. Termomagnético	TSP	16,8	25	Verifica	198,38	160-200	Verifica	ITM27

Tabla10.7.2

10.7.2.3. Tableros de Equipos e Iluminación

En esta sección cabe diferenciar los tableros desde los cuales se alimenta un solo equipo y los tableros donde se conectan varios equipos.

• Tableros desde los cuales se alimenta un equipo: son los tableros TST, TSES, TSCE1, TSM Y TSP. En estos tableros se emplea protección diferencial y guardamotor según las corrientes de carga de los equipos.

En esta categoría se incluyen los tableros de iluminación: TO, TM, TC, TMP y TIP, donde se coloca interruptor termomagnético e interruptor diferencial.

• Tableros donde se conectan varios equipos: son los tableros TSE2, TSE3, TSE4 Y TSS. En estos tableros se instalan interruptores termomagnéticos cuyo poder de corte es de 4,5kA, y con corrientes nominales que varían de 6A a 25A, según el equipo que corresponda.

Luego, en los tableros de cada equipo alimentados desde los mencionados anteriormente, se coloca protección diferencial y guardamotor según las corrientes de carga.

Ernst Mariángeles - Montañana Guillermo

203 de 234

A continuación se presentan las tablas con los datos de los equipos y la selección del interruptor.

Tableros de iluminación y tableros que alimentan un solo equipo: Tablas 10.7.3 y 10.7.4

Protección	Alimenta a	Icc calculada Icc(kA)	lcc Interruptor lcc int.(kA)	lcc≤lcc int	I _{equipo}	I _{Interruptor}	I _{int} ≥I _{equipo}	Código
Int.termomagnetico	ТО	1,78	45	Verifica	10	16	Verifica	ITM32
Int.termomagnetico	TM	1,78	4,5	Verifica	9,36	16	Verifica	ITM33
Int.termomagnetico	TC	1,78	4,5	Verifica	3,51	6	Verifica	ITM34
Int.termomagnetico	TMP	1,78	4,5	Verifica	24,56	32	Verifica	ITM35
Int.termomagnetico	TIP	4,2	4,5	Verifica	30,41	32	Verifica	ITM36
Guardamotor	TSES	1,78	15	Verifica	12,65	9-14	Verifica	Q01
Guardamotor	TST	1,78	100	Verifica	2	1,6-2,5	Verifica	Q02
Guardamotor	TSC1	1,78	100	Verifica	2,94	2,5-4	Verifica	Q03
Guardamotor	TSM	7,97	35	Verifica	131,4	90-150	Verifica	Q04
Guardamotor	TSP	10,69	35	Verifica	198,4	132-220	Verifica	Q05

Tabla10.7.3

Protección	Alimenta a	Sensibilidad (mA)	l _{Diferencial} (A)	I _{Interruptor}	l _{dif} ≥l _{int}	Código
Int.diferencial	Oficina	30	25	16	Verifica	ID2
Int.diferencial	Mantenimiento	30	25	16	Verifica	ID3
Int.diferencial	Zona de caldera	30	25	6	Verifica	ID4
Int.diferencial	Zona de m.prima	30	40	32	Verifica	ID5
Int.diferencial	llum.planta	30	40	32	Verifica	ID6
Int.diferencial	Secador	300	25	9-14	Verifica	ID7
Int.diferencial	Transp.cadena	300	25	1,6-2,5	Verifica	ID8
Int.diferencial	Ciclón 1	300	25	2,5-4	Verifica	ID9
Int.diferencial	Molino martillos	300	250	90-150	Verifica	ID10
Int.diferencial	Prensa	300	160	132-220	Verifica	ID11

Tabla10.7.4

Tableros que alimentan varios equipos

Tablero seccional de equipos 1 (TSE1): Tablas 10.7.5 y 10.7.6

Protección	Alimenta a	Icc calculada Icc(kA)	lcc interruptor	lcc≤lcc int	I _{equipo} (A)	I _{interruptor}	l _{int} ≥l _{equipo}	Código
Int.termomagnetico	TSE1	1,78	4,5	Verifica	22,33	25	Verifica	ITM37
Guardamotor	Enfriador	1,78	15	Verifica	19,7	17-23	Verifica	Q06
Guardamotor	Zaranda	1,78	100	Verifica	2,63	2,5-4	Verifica	Q07

Tabla10.7.5

Protección	Alimenta a	Sensibilida d(mA)	I _{diferencial} (A)	I _{interruptor} (A)	l _{dif} ≥l _{int}	Código
Int.diferencial	Enfriador	300	25	17-23	Verifica	ID12
Int.diferencial	Zaranda	300	25	2,5-4	Verifica	ID13

Tablero seccional de equipos 2 (TSE2): Tablas 10.7.7 y 10.7.8

Protección	Alimenta a	lcc calculada lcc(kA)	lcc interruptor lcc int (kA)	lcc≤lcc int	I _{equipo} (A)	l _{interruptor}	l _{int} ≥l _{equipo}	Código
Int.termomagnetico	TSE2	1,059	4,5	Verifica	28,58	32	Verifica	ITM38
Guardamotor	Cinta transportadora 1	1,059	100	Verifica	4	2,5-4	Verifica	Q08
Guardamotor	Ac.prensa	1,059	15	Verifica	13,1	9-14	Verifica	Q09
Guardamotor	Al.prensa	1,059	100	Verifica	2,63	2,5-4	Verifica	Q10
Guardamotor	Ciclón 2	1,059	100	Verifica	3,59	2,5-4	Verifica	Q11
Guardamotor	Cinta transportadora 2	1,059	100	Verifica	5,24	4-6,3	Verifica	Q12

Tabla10.7.7

Protección	Alimenta a	Sensibilidad (mA)	I _{diferencial}	I _{interruptor}	l _{dif} ≥l _{int}	Código
Int.diferencial	Cinta transportadora 1	300	25	2,5-4	Verifica	ID14
Int.diferencial	Ac.prensa	300	25	9-14	Verifica	ID15
Int.diferencial	Al.prensa	300	25	2,5-4	Verifica	ID16
Int.diferencial	Ciclón 2	300	25	2,5-4	Verifica	ID17
Int.diferencial	Cinta transportadora 2	300	25	4-6,3	Verifica	ID18

Tabla10.7.8

Tablero seccional de equipos 3 (TSE3): Tablas 10.7.9 y 10.7.10

Protección	Alimenta a	Icc calculada Icc(kA)	lcc interruptor	lcc≤lcc int	l _{equipo} (A)	I _{interruptor}	I _{int} ≥I _{equipo}	Código
Int.termomagnetico	TSE3	1,78	4,5	Verifica	5,26	10	Verifica	ITM39
Guardamotor	Embolsadora	1,78	100	Verifica	3,93	2,5-4	Verifica	Q13
Guardamotor	Cinta embolsadora	1,78	100	Verifica	1,31	1-1,6	Verifica	Q14

Tabla10.7.9

Protección	Alimenta a	Sensibilidad (mA)	I _{diferencial}	I _{interruptor} (A)	l _{dif} ≥l _{int}	Código
Int.diferencial	Embolsadora	300	25	2,5-4	Verifica	ID19
Int.diferencial	Cinta embolsadora	300	25	1-1,6	Verifica	ID20

Tabla10.7.10

Tablero seccional de equipos 4 (TSE4): Tablas 10.7.11 y 10.7.12

Protección	Alimenta a	lcc calculada lcc(kA)	lcc interruptor	lcc≤lcc int	I _{equipo}	I _{interruptor} (A)	I _{int} ≥I _{equipo}	Código
Int.termomagnetico	TSE4	1,78	4,5	Verifica	4,67	6	Verifica	ITM40
Guardamotor	Cinta transportadora 3	1,78	100	Verifica	4	2,5-4	Verifica	Q15
Guardamotor	Elevador	1,78	100	Verifica	0,67	0,63-1	Verifica	Q16

Tabla10.7.11

Protección	Alimenta a	Sensibilidad (mA)	I _{diferencial} (A)	I _{interruptor} (A)	l _{dif} ≥l _{int}	Código
Int.diferencial	Cinta transportadora 3	300	25	2,5-4	Verifica	ID21
Int.diferencial	Elevador	300	25	0,63-1	Verifica	ID22

Tablero de sinfines (TSS): Tablas 10.7.13 y 10.7.14

Protección	Alimenta a	icc calculada icc(kA)	Icc interruptor Icc int (kA)	lcc≤lcc int	l _{equipo} (A)	I _{interruptor}	I _{int} ≥I _{equipo}	Código
Int.termomagnetico	TSS	1,78	4,5	Verifica	7,54	10	Verifica	ITM41
Guardamotor	Sinfín 1	1,78	100	Verifica	3,77	2,5-4	Verifica	Q17
Guardamotor	Sinfín 2	1,78	100	Verifica	3,77	2,5-4	Verifica	Q18

Tabla10.7.13

Protección	Alimenta a	Sensibilidad (mA)	I _{diferencial}	I _{interruptor}	l _{dif} ≥l _{int}	Código
Int.diferencial	Sinfín 1	300	25	2,5-4	Verifica	ID23
Int.diferencial	Sinfín 2	300	25	2,5-4	Verifica	ID24

Tabla10.7.14

10.7.2.4. Tableros de Tomas

A continuación se presentan las tablas con los datos de uno los tableros de tomas y la selección de las protecciones, al ser iguales los diez tableros, tienen todos la misma selección de protecciones: Tablas 10.7.15 y 10.7.16.

Protección	Alimenta a	Icc calculada Icc(kA)	lcc interruptor	lcc≤lcc int	I _{equipo} (A)	I _{interruptor} (A)	l _{imt} ≥l _{equipo}	Código
Int.termomagnetico	π	9,71	10	Verifica	77,7	100	Verifica	ITM28
Int.termomagnetico		9,71	10	Verifica	63	63	Verifica	ITM29
Int.termomagnetico		9,71	10	Verifica	32	32	Verifica	ITM30
Int.termomagnetico		9,71	10	Verifica	16	16	Verifica	ITM31

Tabla10.7.15

Protección	Alimenta a	menta a Sensibilidad I _{diferencial} (mA) (A)		I _{interruptor} (A)	l _{dif} ≥l _{int}	Código
Int.diferencial	П	30	80	77,7	Verifica	ID1

Tabla10.7.16

FACULTAD REGIONAL CONCEPCION DEL URUGUAY UNIVERSIDAD TECNOLOGICA NACIONAL MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA

10.7.2.5. Resumen de Interruptores Seleccionados

Protecciones en TSG: Tabla10.7.17

Protección	Ubicación	Alimenta a	Cap.de ruptura(kA)	I _{nominal}	Tipo	Tensión (V)	Código
Int. Automático	TSG	TSG	42kA	800	Tetrapolar	380	ITM1
Seccionador fusible	TSG	Cargas varias	80kA	400	Tripolar	380	SF1
Int. Termomagnético	TSG	TT1	15	100	Tetrapolar	380	ITM2
Int. Termomagnético	TSG	TT2	15	100	Tetrapolar	380	ITM3
Int. Termomagnético	TSG	TT3	15	100	Tetrapolar	380	ITM4
Int. Termomagnético	TSG	TT4	15	100	Tetrapolar	380	ITM5
Int. Termomagnético	TSG	TT5	15	100	Tetrapolar	380	ITM6
Int. Termomagnético	TSG	TT6	15	100	Tetrapolar	380	ITM7
Int. Termomagnético	TSG	TT7	15	100	Tetrapolar	380	ITM8
Int. Termomagnético	TSG	TT8	15	100	Tetrapolar	380	ITM9
Int. Termomagnético	TSG	TT9	15	100	Tetrapolar	380	ITM10
Int. Termomagnético	TSG	TT10	15	100	Tetrapolar	380	ITM11
Int. Termomagnético	TSG	ТО	15	16	Tetrapolar	380	ITM12
Int. Termomagnético	TSG	TM	15	16	Tetrapolar	380	ITM13
Int. Termomagnético	TSG	TC	15	10	Tetrapolar	380	ITM14
Int. Termomagnético	TSG	TMP	15	32	Tetrapolar	380	ITM15
Int. Termomagnético	TSG	TIP	15	32	Tetrapolar	380	ITM16
Int. Termomagnético	TSG	TSE1	15	25	Tetrapolar	380	ITM17
Int. Termomagnético	TSG	TSE2	15	32	Tetrapolar	380	ITM18
Int. Termomagnético	TSG	TSE3	15	10	Tetrapolar	380	ITM19
Int. Termomagnético	TSG	TSE4	15	10	Tetrapolar	380	ITM20
Int. Termomagnético	TSG	TSS	15	10	Tetrapolar	380	ITM21
Int. Termomagnético	TSG	TSES	15	16	Tetrapolar	380	ITM22
Int. Termomagnético	TSG	TST	15	10	Tetrapolar	380	ITM23
Int. Termomagnético	TSG	TSC1	15	10	Tetrapolar	380	ITM24
Int. Termomagnético	TSG	Balanza camiones	15	10	Tetrapolar	380	ITM25
Int. Termomagnético	TSG	TSM	25	125-160	Tetrapolar	380	ITM26
Int. Termomagnético	TSG	TSP	25	160-200	Tetrapolar	380	ITM27

Tabla10.7.17

Protecciones en tableros de tomas(TT): Tablas 10.7.18 y 10.7.19.

Todos los tableros de tomas (TT1, TT2,...TT10) tendrán la siguiente configuración de protecciones.

Protección	Ubicación	Alimenta a	Cap.de ruptura(kA)	Inominal(A)	Curva tipo	Clase	Tipo	Tensión(V)	Código
Int.termomagnetico	Π	TT	10	100	С	3	Tetrapolar	380	ITM28
Int.termomagnetico	П	Toma 63A	10	63	С	3	Tetrapolar	380	ITM29
Int.termomagnetico	П	Toma 32A	10	32	С	3	Tetrapolar	380	ITM30
Int.termomagnetico		Toma 16A	10	16	С	3	Bipolar	380	ITM31

Tabla10.7.18

Protección	Ubicación	Alimenta a	Sensibilidad (mA)	Inominal(A)	Tipo	Tensión(V)	Código
Int.diferencial	П	П	30	80	Tetrapolar	380	ID1

Protecciones en tableros de equipos: Tablas 10.7.20 y 10.7.21

Protección	Ubicación	Alimenta a	Cap.de ruptura(kA)	Inominal(A)	Curva tipo	Clase	Tipo	Tensión (V)	Código
Int.termomagnetico	TO	TO	4,5	16	С	3	Tetrapolar	380	ITM32
Int.termomagnetico	TM	TM	4,5	16	С	3	Tetrapolar	380	ITM33
Int.termomagnetico	TC	TC	4,5	6	С	3	Tetrapolar	380	ITM34
Int.termomagnetico	TMP	TMP	4,5	32	С	3	Tetrapolar	380	ITM35
Int.termomagnetico	TIP	TIP	4,5	32	С	3	Tetrapolar	380	ITM36
Guardamotor	TSES	TSES	15	9-14	-	-	Tetrapolar	380	Q01
Guardamotor	TST	TST	100	1,6-2,5	-	-	Tetrapolar	380	Q02
Guardamotor	TSC1	TSC1	100	2,5-4	-	-	Tetrapolar	380	Q03
Guardamotor	TSM	TSM	35	90-150	-		Tetrapolar	380	Q04
Guardamotor	TSP	TSP	35	132-220	-	-	Tetrapolar	380	Q05

Tabla10.7.20

Protección	Ubicación	Alimenta a	Sensibilidad (mA)	Inominal(A)	Tipo	Tensión(V)	Código
Int.diferencial	TO	Oficina	30	25	Tetrapolar	380	ID2
Int.diferencial	TM	Mantenimiento	30	25	Tetrapolar	380	ID3
Int.diferencial	TC	Zona de caldera	30	25	Tetrapolar	380	ID4
Int.diferencial	TMP	Zona de m.prima	30	40	Tetrapolar	380	ID5
Int.diferencial	TIP	Ilum.planta	30	40	Tetrapolar	380	ID6
Int.diferencial	TSES	Secador	300	25	Tetrapolar	380	ID7
Int.diferencial	TST	Transp.cadena	300	25	Tetrapolar	380	ID8
Int.diferencial	TSC1	Ciclón 1	300	25	Tetrapolar	380	ID9
Int.diferencial	TSM	Molino martillos	300	250	Tetrapolar	380	ID10
Int.diferencial	TSP	Prensa	300	160	Tetrapolar	380	ID11

Tabla10.7.21

Protecciones en TSE1: Tablas 10.7.22 y 10.7.23

Protección	Ubicación	Alimenta a	Cap.de ruptura(kA)	Inominal(A)	Curva tipo	Clase	Tipo	Tensión (V)	Código
Int.termomagnetico	TSE1	TSE1	4,5	25	С	3	Tetrapolar	380	ITM37
Guardamotor	TSE1	Enfriador	15	17-23	-	-	Tetrapolar	380	Q06
Guardamotor	TSE1	Zaranda	100	2,5-4	-	-	Tetrapolar	380	Q07

Tabla10.7.22

Protección	Ubicación	Alimenta a	Sensibilidad (mA)	Inominal(A)	Tipo	Tensión(V)	Código
Int.diferencial	TSE1	Enfriador	300	25	Tetrapolar	380	ID12
Int.diferencial	TSE1	Zaranda	300	25	Tetrapolar	380	ID13

Protecciones en TSE2: Tablas 10.7.24 y 10.7.25

Protección	Ubicación	Alimenta a	Cap.de ruptura(kA)	Inominal(A)	Curva tipo	Clase	Tipo	Tensión (V)	Código
Int.termomagnetico	TSE2	TSE2	4,5	32	С	3	Tetrapolar	380	ITM38
Guardamotor	TSE2	Cinta transportadora 1	100	2,5-4	-	-	Tetrapolar	380	Q08
Guardamotor	TSE2	Ac.prensa	15	9-14		-	Tetrapolar	380	Q09
Guardamotor	TSE2	Al.prensa	100	2,5-4	-	-	Tetrapolar	380	Q10
Guardamotor	TSE2	Ciclón 2	100	2,5-4	-	1-	Tetrapolar	380	Q11
Guardamotor	TSE2	Cinta transportadora 2	100	4-6,3	-	-	Tetrapolar	380	Q12

Tabla10.7.24

Protección	Ubicación	Alimenta a	Sensibilidad (mA)	Inominal (A)	Tipo	Tensión (V)	Código
Int.diferencial	TSE2	Cinta transportadora 1	300	25	Tetrapolar	380	ID14
Int.diferencial	TSE2	Ac.prensa	300	25	Tetrapolar	380	ID15
Int.diferencial	TSE2	Al.prensa	300	25	Tetrapolar	380	ID16
Int.diferencial	TSE2	Ciclón 2	300	25	Tetrapolar	380	ID17
Int.diferencial	TSE2	Cinta transportadora 2	300	25	Tetrapolar	380	ID18

Tabla10.7.25

Protecciones en TSE3: Tablas 10.7.26 y 10.7.27

Protección	Ubicación	Alimenta a	Cap.de ruptura(kA)	Inominal(A)	Curva tipo	Clase	Tipo	Tensión (V)	Código
Int.termomagnetico	TSE3	TSE3	4,5	10	C	3	Tetrapolar	380	ITM39
Guardamotor	TSE3	Embolsadora	100	2,5-4	-	- 3	Tetrapolar	380	Q13
Guardamotor	TSE3	Cinta embolsadora	100	1-1,6	-	_ =	Tetrapolar	380	Q14

Tabla10.7.26

Protección	Ubicación	Alimenta a	Sensibilidad (mA)	Inominal(A)	Tipo	Tensión(V)	Código
Int.diferencial	TSE3	Embolsadora	300	25	Tetrapolar	380	ID19
Int.diferencial	TSE3	Cinta embolsadora	300	25	Tetrapolar	380	ID20

Tabla10.7.27

Protecciones en TSE4: Tablas 10.7.28 y 10.7.29

Protección	Ubicación	Alimenta a	Cap.de ruptura(kA)	Inominal(A)	Curva tipo	Clase	Tipo	Tensión (V)	Código
Int.termomagnetico	TSE4	TSE4	4,5	6	С	3	Tetrapolar	380	ITM40
Guardamotor	TSE4	Cinta transportadora 3	100	2,5-4	-	-	Tetrapolar	380	Q15
Guardamotor	TSE4	Elevador	100	0,63-1	-	-	Tetrapolar	380	Q16

Tabla10.7.28

Protección	Ubicación	Alimenta a	Sensibilidad (mA)	Inominal(A)	Tipo	Tensión(V)	Código
Int.diferencial	TSE4	Cinta transportadora 3	300	25	Tetrapolar	380	ID21
Int.diferencial	TSE4	Elevador	300	25	Tetrapolar	380	ID22

Protecciones en TSS: Tablas 10.7.30 y 10.7.31

Protección	Ubicación	Alimenta a	Cap.de ruptura(kA)	Inominal(A)	Curva tipo	Clase	Tipo	Tensión (V)	Código
Int.termomagnetico	TSS	TSS	4,5	10	С	3	Tetrapolar	380	ITM41
Guardamotor	TSS	Sinfín 1	100	2,5-4	-	-	Tetrapolar	380	Q17
Guardamotor	TSS	Sinfín 2	100	2,5-4	-	-	Tetrapolar	380	Q18

Tabla10.7.30

Protección	Ubicación	Alimenta a	Sensibilidad (mA)	Inominal(A)	Tipo	Tensión(V)	Código
Int.diferencial	TSS	Sinfín 1	300	25	Tetrapolar	380	ID23
Int.diferencial	TSS	Sinfín 2	300	25	Tetrapolar	380	ID24

Tabla10.7.31

10.8. CANALIZACIONES

La canalización de la alimentación desde la subestación de distribución donde se aloja el tablero principal se realiza de forma soterrada, según las normativas vigentes y considerando que la misma se encuentra bajo paso de tránsito pesado.

Para la distribución general de conductores dentro de la planta, se prevé la utilización de bandejas portacables tipo escalera.

Para las canalizaciones menores, tales como alimentación a máquinas, iluminación, etc., se prevé la utilización de cañerías normalizadas de acero (conductos), y bandejas verticales (montantes) según la cantidad de conductores que deban llevar y las dimensiones de los mismos.

Disposición de las canalizaciones: ver PLANO PEC-G-001 Rev.01.

10.8.1. Conducto Enterrado

La alimentación a la planta desde la subestación de distribución hasta el tablero seccional general, se realiza de forma soterrada con tres caños que transportan un cable multipolar cada uno.

Los conductos se colocan con pendiente mínima del 1% hacia las cámaras de inspección, en un zanja de profundidad suficiente que permita un recubrimiento mínimo de 0,7m de tierra de relleno por sobre el conducto y su diámetro mínimo debe cumplir con lo indicado en la Tabla 771.12.XIV de "Reglamentación para la Ejecución de Instalaciones Eléctricas" (AEA 900364, 2006), Fig.10.8.1.

Tabla 771.12.XIV - Diámetro mínimo de conductos enterrados

Diámetro exterior del cable (d) [mm]	Un cable por caño [mm]	Dos cables por caño [mm]	Tres cables por caño [mm]
d ≤ 25	50	3 d con un minimo de 50	3 d con un mínimo de 50
25 < d ≤ 66	100	2,5 d con un mínimo de 100	3 d con un mínimo de 100
d > 66	1,5 d	2,5 d	3 d

Fig.10.8.1

Conociendo el diámetro de los conductores de alimentación (d= 40mm), los conductos deben tener un diámetro mínimo de 100mm, por lo que se adoptan conductos de PVC de 110 mm.

La separación entre caños es de 1 m, como muestra la Fig.10.5.4 empleada en el punto 10.5.1. Esta distancia: "a=1m", se debe a la instalación de tres caños que transportan un cable multipolar cada

uno.

A su vez, se prevé para una futura ampliación de la planta, la colocación de otros tres caños, a la par de los tres anteriores.

Al emplear conductos de PVC, es necesario protegerlos contra el impacto mecánico, por lo que son cubiertos con una capa de ladrillos enteros dispuestos en forma transversal a la traza y luego por una capa de hormigón con un espesor mínimo de 5cm. Ver PLANO PEC-G-001 Rev.01.

10.8.2. Bandejas

Para la elección de la bandeja portacables a instalar es necesario conocer el diámetro de los cables a llevar por la bandeja y las características del ambiente donde se montarán (ciudad, marino, industrial, corrosivo, no corrosivos, etc.).

En el caso de la planta productora de pellets se instalan bandejas portacables tipo escalera para evitar la acumulación de polvo en las mismas.

El ancho de la bandeja se determina por la sumatoria de los diámetros de los conductores que aloja la misma. Dimensionamiento de bandejas: Tabla10.8.1.

Bandeja	Conductores de alimentación	Conductores de protección	Cantidad de conductores	Sumatoria de diámetros [mm]	Ancho de bandeja [mm]
А	C-025/C-026/C-027/C-028/C-030/ C-031/C-032/C-033/C-034	CP-026/CP-027/CP-028/CP-029/CP-031/ CP-032/CP-033/CP-034/CP-035	18	274,7	300
В	C-027/C-028/C-031/C-032/C-033/C-034	CP-027/CP-029/CP-032/CP-033/CP-034/ CP-035	12	198,9	300
С	C-030	CP-031	2	40,2	150
D	C-026/C-028/C-032/C-033/C-034	CP-027/CP-029/CP-033/CP-034/CP-035	10	158,7	300
Е	C-026/C-028/C-033/C-034	CP-027/CP-029/CP-034/CP-035	8	118,5	150
F	C-028	CP-029	2	20,3	150
G	C-033/C-034	CP-034/C-035	4	80,4	150
Н	C-002/C-003/C-004/C-005/C-006/ C-007/C-008/C-009/C-010/C-011/ C-029/C-035/C-036/C-037/C-038/C-039	CP-003/CP-004/CP-005/CP-006/CP-007/ CP-008/CP-009/CP-010/CP-011/CP-012/ CP-030/CP-036/CP-037/CP-038/CP-039/ CP-040	32	463,4	600
1	C-002/C-003/C-004/C-005/C-006/C-007/ C-008/C-035/C-036/C-037	C-003/C-004/C-005/C-006/C-007/ C-008/ C-035/C-036/C-037/C-038	20	311,2	450
J	C-003/C-004/C-005/C-006/C-007/ C-008/C-009/C-036/C-037	CP-003/CP-004/CP-005/CP-006/CP-007/ CP-008/CP-009/C-037/C-038	18	286,6	300
К	C-003/C-004/C-005/C-006/C-007/ C-008/C-036/C-037	CP-003/CP-004/CP-005/CP-006/CP-007/ CP-008/CP-037/CP-038	16	247,8	300
L	C-003/C-004/C-005/C-006/C-036/ C-037	CP-003/CP-004/CP-005/CP-006/CP-037/ CP-038	12	172,6	300
M	C-003/C-004/C-037	CP-003/CP-004/CP-038	6	75,8	150
N	C-003/C-037	CP-003/CP-038	4	58	150
0	C-009/C-010/C-011/C-038/C-039	CP-010/CP-011/CP-012/CP-039/CP-040	10	133,8	150
Р	C-009/C-010/C-011/C-039	P-010/CP-011/CP-012/CP-040	8	93,6	150
Q	C-010/C-039	CP-010/CP-040	4	58	150
R	C-039	CP-040	2	40,2	150

Tabla 10.8.1

Como las bandejas presentan diferentes medidas, se presentan uniones, reducciones y curvas. En la Tabla10.8.2, se resumen las uniones entre bandejas.

Unión	Tipo	Medida [mm]
	Reducción	450 a 300
A-B-C	Te plana	450
D-E	Reducción	300 a 150
E-F-G	Te plana	150
	Reducción	600 a 450
H-I-0	Te plana	450
	Reducción	450 a 150
I -J	Reducción	450 a 300
L-M	Reducción	300 a 150
0-0	Curva 90º	150

Tabla 10.8.2

10.8.3. Conductos

Para seleccionar los conductos que transportan los cables desde las bandejas a los equipos, se consideran las secciones de los cables (obtenidas a partir de su diámetro comercial).

Según "Reglamento para la Ejecución de Instalaciones Eléctricas" (AEA 90364,2006), el área total ocupada por los conductores, comprendida la aislación, no será mayor al 35% de la sección interna del conducto.

En la Tabla 10.8.3, se resume el cálculo y selección de los conductos.

Conducto	Conductores	Sección total[mm²]	Sección del conducto[mm²]	Conducto final[mm ²]	Designación IRAM
А	C-025/CP-026	150,83	430,94	616	RS32
В	C-027/CP-028	150,83	430,94	616	RS32
С	C-026/CP-027	150,83	430,94	616	RS32
D	C-028/CP-029	198,78	567,93	616	RS32
E	C-029/CP-030	263,30	752,28	908	RS38
F	C-008/CP-009	150,83	430,94	616	RS32
G	C-006/CP-007	198,78	567,93	616	RS32
Н	C-004/CP-005	150,83	430,94	616	RS32
	C-003/CP-004	150,83	430,94	616	RS32
J	C-002/CP-003	150,83	430,94	616	RS32
K	C-011/CP-012	150,83	430,94	616	RS32
Park Land	C-010/CP-011	150,83	430,94	616	RS32
M	C-009/CP-010	150,83	430,94	616	RS32

Tabla 10.8.3

10.8.4. Montantes

Cuando la sumatoria de las secciones de los conductores supera el valor del diámetro de conductos según IRAM, se emplean bandejas verticales (montantes).

El ancho se selecciona con la sumatoria de diámetros de los conductores. Ver Tabla10.8.4

Montante	Conductores de alimentación	Cantidad de conductores	Sumatoria de diámetros [mm]	Montante seleccionado [mm]
А	C-002/C-003/C-004/C-005/C-006/C-007/C-008/C-009/ C-010/C-011/C-029/C-035/C-036/C-037/C-038/ C-039/CP-003/CP-004/CP-005/CP-006/CP-007/ CP-008/CP-009/CP-010/CP-011/CP-012/CP-030/ CP-036/CP-037/CP-038/CP-039/CP-040	32	463,4	600
В	C-025/C-026/C-027/C-028/C-030/C-031/C-032/C-033/ C-034/CP-026/CP-027/CP-028/CP-029/CP-031/ CP-032/CP-033/CP-034/CP-035	18	273,8	300
С	C-030/CP-031	2	40,20	150
D	C-031/CP-032	2	40,20	150
E	C-032/CP-033	2	40,20	150
F	C-033/CP-034	2	40,20	150
G	C-034/CP-035	2	40,20	150
Н	C-035/CP-036	2	40,20	150
	C-007/CP-008	2	52,00	150
J	C-036/CP-037	2	40,20	150
К	C-005/CP-006	2	41,70	150
L	C-037/CP-038	2	40,20	150
M	C-038/CP-039	2	40,20	150
N	C-039/CP-040	2	40,20	150

Tabla 10.8.4

10.9. PROTECCIÓN CONTRA DESCARGAS

10.9.1 Protección Externa

La misión principal de un SPCR (Sistema de Protección Contra el Rayo) de tipo externo es:

- 1. Interceptar una descarga atmosférica directa sobre la estructura.
- 2. Conducir a corriente en forma segura hacia tierra.
- 3. Dispersar la corriente de la descarga en la tierra.

En la planta se instala un sistema de protección activa por pararrayo, respondiendo a las normas IRAM 2184.

El propósito de elegir un nivel de protección es reducir el riesgo de daños por rayos directos en la estructura, por debajo de un nivel máximo tolerable.

Para cada estructura puede evaluarse el riesgo de daños teniendo en cuenta: la frecuencia anual de rayos directos en la estructura (Nd), la probabilidad con la cual el rayo causa daños, y la cantidad posible de pérdidas promedio que pudieran tener lugar como consecuencia de la caída del rayo.

Una vez elegido el nivel máximo tolerable de daños a la estructura, podrá evaluarse el valor máximo aceptado Nc de la frecuencia anual de rayos que pueden causar daños.

Por lo tanto, la elección del nivel de protección adecuado de los SPCR a instalarse podrá estar basada en la frecuencia esperada de rayos directos en la estructura a proteger Nd y en la frecuencia anual aceptada de los rayos Nc.

10.9.2.1.1. Frecuencia esperada de Rayos Directos (N_d)

Se obtiene de: $N_d = N_g x A_e x 10^{-6}$ (10.9.1)

Donde:

Ng es el valor de rayos a tierra por Km² al año, y su valor se obtiene del mapa de densidades ceráunicas, figura B3, del anexo B de la norma IRAM 2184 1-1. (Fig.10.9.1).

Para la zona: $N_g = 8 \frac{rayos\ a\ tierra}{km^2.a\~no}$

> Ae es el área colectora equivalente, que según la forma de la estructura (por IRAM 2184 1-1 Figura 1-A), Fig.10.9.2, se halla con la fórmula:

$$A_e = a x b + 6 x h x (a + b) + 9 x \pi x h^2$$
 (10.9.2)

Teniendo en cuenta que la altura aproximada del edificio es de 16 m (considerando el elevador a cangilones), se calcula el área colectora, reemplazando valores en (10.9.2):

$$A_e = 98m \times 55m + 6 \times 16m \times (98m + 55m) + 9 \times \pi \times (16m)^2$$

$$A_e = 27317m^2$$

Entonces, la frecuencia esperada de rayos directos N_d, reemplazando en (10.9.1) es:

$$N_d = 8 \frac{rayos\ a\ tierra}{km^2, año} \times 27317m^2 \times 10^{-6}$$

$$N_d = 0,218 \frac{rayos}{a\tilde{n}o}$$

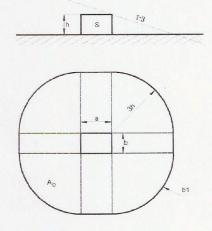


Fig.10.9.2

10.9.2.1.2. Frecuencia aceptada de Rayos (Nc)

Los valores de N_c se estiman a través del análisis de riesgo de daños teniendo en cuenta criterios apropiados tales como:

- El tipo de construcción de la estructura.
- El contenido de la estructura.
- La ocupación de la estructura.
- Las consecuencias sobre el entorno.

Para determinar el valor de N_c se aplican los cuatro criterios mencionados mediante las tablas C-1, C2, C-3 y C-4 del anexo C de la norma IRAM 2184-1-1, Fig.10.9.3, 10.9.4, 10.9.5 y 10.9.6 respectivamente.

La frecuencia aceptada de rayos se calcula con:

$$N_c = \frac{5.5 \times 10^{-3}}{C} \qquad (10.9.3)$$

Donde: $C = C_1 \times C_2 \times C_3 \times C_4$ (10.9.4)

A continuación se hallan los coeficientes: C-2, C3, C-4 y C-5.

 $C_2 = 1$ (estructura común).

Tabla C-1 - Coeficiente C2 de evaluación del tipo de construcción de la estructura

			Techado o tejado	
		Metálica	Común	Inflamable
	Metálica	0,5	1	2
Estructura	Común	1	1	2,5
	Inflamable	2	2,5	3

Fig.10.9.3

 $C_3 = 2$ (particularmente inflamable).

Tabla C-2 - Coeficiente C3 de evaluación del contenido de la estructura

Contenido de la estructura	Coeficiente C
Sin valor o no inflamable	0,5
De valor común o normalmente inflamable	1
De gran valor o particularmente inflamable	2
De valor excepcional, irremplazable o muy inflamable, explosivo	3

Fig.10.9.4

$C_4 = 1$ (normalmente ocupada).

Tabla C-3 - Coeficientes C4 de evaluación de la ocupación de la estructura

Ocupación de la estructura	Coeficiente C ₄
No ocupada	0,5
Normalmente ocupada	1
De evacuación difícil o con riesgo de pánico	3

Fig.10.9.5

 $C_5 = 5$ (con necesidad de continuidad en el servicio...).

Tabla C-4 - Coeficientes C_3 de evaluación de las consecuencias de un impacto de rayo sobre el entorno

Consecuencias de un impacto de rayo	Coeficiente C ₅
Sin necesidad de continuidad en el servicio y con alguna consecuen- cia sobre el entorno	1
Con necesidad de continuidad en el servicio y con algunas conse- cuencias para el entorno	5
Con varias consecuencias para el entorno	10

Fig.10.9.6

Entonces, reemplazando en (10.9.4):

$$C = 1 \times 2 \times 1 \times 5 = 10$$

Y la frecuencia aceptada de rayos, por (10.9.3) es:

$$N_{\rm c} = 5.5 \times 10^{-4} \frac{rayos}{a\tilde{n}o} = 0.00055 \frac{rayos}{a\tilde{n}o}$$

10.9.2.1.3. Nivel y Radio de Protección

Obtenidos los valores de N_d y N_c , se comparan para verificar si es necesaria la instalación de un SPCR y de ser así, qué nivel de protección deberá tener.

Se comparan los valores:

$$N_d > N_c$$

 $0.218 > 0.00055 \Rightarrow se \ debe \ colocar \ SPCR$

Luego, debe calcularse la eficiencia del sistema de protección mediante la fórmula:

$$E_c \geq 1 - \frac{N_c}{N_d} = 1 - \frac{0,00055}{0,218}$$

$$E_c$$
 ≥ 0,99

Por esto, se deberá adoptar un Sistema de Protección Contra Rayos (SPCR) con una eficacia mayor al 0,99.

Así, con una eficacia mayor al 0,99; se debe adoptar un nivel de protección I.

Para seleccionar un SPCR, además de conocer el nivel de protección se debe saber cuál es el radio de protección, que según Fig.10.9.2, empleada para calcular el área colectora equivalente es:

$$R_p = 3h = 3x16m = 48m$$

10.9.2.2. Conductor de Bajada

La bajada desde el dispositivo captor hasta la toma de tierra se realiza mediante un conductor desnudo de cobre cuya sección mínima debe ser de 16 mm², según Tabla 5 de IRAM 2184-1 (Fig.10.9.7). La trayectoria del conductor será lo más directa posible, evitando la intersección, proximidad o recorrido paralelo con conductores eléctricos y de telecomunicaciones.

NIVEL DE PRO- TECCIÓN	MATERIALES	ELEMENTO CAPTOR (mm²)	BAJADAS (mm²)	SISTEMA DE TIERRA (mm²)
	Cu	35	16	50
	Al	70	25	10 E - 11 E
I al IV	Fe	50	50	80
	Acero-cobre	35	16	50

Fig.10.9.7

10.9.2.3. Sistema de Protección

En base a los cálculos anteriores se instala un sistema de pararrayos activo con las siguientes características:

- Altura mínima de 16 metros (punto más alto de la planta).
- Dispositivo captor: pararrayos tipo Leader, con puntas de acero inoxidable.
- Montaje: sobre mástil, con anclaje en pared.

10.10. PUESTA A TIERRA

10.10.1. Introducción

La puesta a tierra de una instalación comprende toda unión conductora ejecutada en forma directa, sin fusibles ni protección alguna, y de sección suficiente entre las masas eléctricas de la instalación y un electrodo o grupo de electrodos enterrados en el terreno.

El valor de la resistencia de la toma de tierra (o de la puesta a tierra) deberá satisfacer las condiciones de protección y/o servicio de la instalación eléctrica.

Las principales funciones de una instalación de puesta a tierra son, entre otras, derivar a tierra las corrientes que se pueden originar por razones de falla, o debidas a descargas atmosféricas o por contacto accidental con conductores de mayor tensión.

Otros de sus objetivos son:

- Limitar la tensión ante condiciones de operación normales, de manera que cualquier equipo conectado al sistema, solamente esté sujeto a un cierto nivel de tensión relativo a tierra.
- Colaborar con la operación de los dispositivos de protección, tales como fusibles, interruptores automáticos, interruptores diferenciales o similares cuando hay un defecto simple que derive corriente a tierra.
- Limitar las diferencias de potencial que en un momento dado pueden presentarse entre masas eléctricas a tierra.
- Limitar las sobretensiones internas que pueden aparecer en la red eléctrica en determinadas condiciones de servicio.

10.10.2. Sistema de Puesta a Tierra

Para la puesta a tierra de la planta se emplea el sistema TT (Fig. 10.9.8).

Los diferentes esquemas de conexión a tierra caracterizan el método de conexión a tierra de la instalación aguas abajo del devanado secundario del transformador de alta tensión/baja tensión y el medio utilizado para conectar a tierra las partes conductoras accesibles de la instalación de baja tensión a la que suministra alimentación.

Así el esquema TT presenta un punto de la fuente de alimentación y el centro estrella del lado de BT del transformador conectados directamente a tierra. Todas las partes conductoras accesibles y extrañas se conectan a una toma de tierra independiente de la instalación.

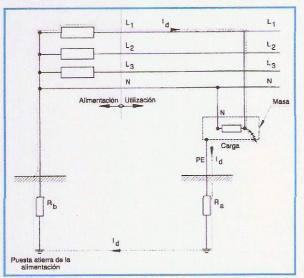


Fig.10.9.8

El sistema de PAT y sus componentes se calcula y dimensiona según "Reglamentación para la Ejecución de Instalaciones Eléctricas" (AEA 90364,2006).

Considerando que el módulo diferencial del interruptor principal del tablero seccional general (TSG) tiene una corriente diferencial máxima asignada de 3 A; el valor máximo de resistencia de puesta a tierra (PAT) se obtiene de Tabla 771.3.I, Fig.10.9.9, y debe ser: $R_{PAT\ m\acute{a}x}=4\Omega$.

Tabla 771.3.I - Valores máximos de resistencia de puesta a tierra de protección

Corriente diferencial máxima asignada del dispositivo diferencial $I_{\Lambda n}$		Columna 1 Valor máximo de la resis- tencia de la toma de tierra de las masas eléctricas Ra (Ω) para U _L 50 V	Columna 2 Valor máximo de la resis- tencia de la toma de tierra de las masas eléctricas Ra (Ω) para U ₁ 24 V	Columna 3 Valor máximo permitio de la resistencia de la toma de tierra de las masas eléctricas Ra (
20 A		2,5	1,2	0,6	
Sensibilidad	10 A	5	2,4	1,2	
baja 5 A		10	4.8	2.4	
		17	8	4	
	1 A	50	24	12	
Sensibilidad	500 mA	100	48	24	
media	300 mA	167	80	40	
100 mA		500	240	40	
Sensibilidad alta	Hasta 30 mA inclusive	Hasta 1666	800	40	

Fig.10.9.9

10.10.3. Jabalinas

Se adoptan jabalinas Normalizadas IRAM 2309 de diámetro comercial ¾" con diámetro exterior real de 16,2 mm y longitud 3 m de material acero-cobre.

10.10.3.1. Resistencia de Jabalinas

La resistencia de las jabalinas se calcula según

Considerando una resistividad del terreno promedio de ρ = 40 Ω .m teniendo en cuenta el suelo de la zona (promedio para Limo, Humus o Greda con precipitaciones normales a abundantes según Tablas 771-C.VIII y 771-C.IX de AEA 90364), Fig.10.9.10 y 10.9.11, a continuación se calcula la resistencia aproximada a lograr con cada jabalina a hincar.

Tabla 771-C.VIII - Resistividades de terrenos

	Condiciones climáticas							
Tipo de suelo	at	A ciones normales y oundantes 500 mm por año)	B Precipitaciones escasas y condiciones desérticas (menos de 500 mm por año)	C Aguas subterráneas salinas				
	Valor mås probable Gama de valores medidos		Gama de valores medidos	Gama de valo res medidos				
	Ωm	Ωm	Ωm	Ωm				
Aluvial y arcillas livianas	5	•		1a5				
Arcillas (excluy al aluvial)	10	5 a 20	10 a 100	3 a 10				
Greda	20	10 a 20	50 a 300	3 a 10				
Tierra calcárea porosa (por ejemplo greda)	50	30 a 100	50 a 300	3 a 10				
Arenisca porosa	100	30 a 300	> 1000	10 a 30				
Cuarzos y piedra caliza compacta y cristalina	300	100 a 1000	> 1000	30 a 100				
Pizarras arcillosas y esquistos pizarrosos			> 1000	30 a 100				
Granito	1000	300 a 3000	> 1000	30 a 100				
Pizarras rajadizas, rocas igneas	2000	> 1000	>1000	30 a 100				

Fig.10.9.10

Tabla 771-C.IX Resistividades de terrenos

Tipo de suelo	Resistividad Ωm
errenos pantanosos	de 1 a 30
Limo	20 a 100
Humus	10 a 150
Turba húmeda	5 a 100

Fig.10.9.11

Teniendo en cuenta la longitud de la jabalina (L=3~m) y el diámetro real (d=16,2~mm=0,0162~m), se calcula la siguiente relación:

$$\frac{L}{d} = \frac{3m}{0,0162m} = 185,2$$

Este valor, para jabalinas enterradas verticalmente, verifica según 771-C.10.1, la siguiente relación:

$$100 \le \frac{L}{d} \le 600$$

Se aplica entonces que la resistencia aproximada de cada jabalina hincada según la forma de cálculo simplificado de 771-C.10.1 es:

$$R\approx\frac{\rho}{L}\approx\frac{40\Omega.\,m}{3m}\approx13{,}33\Omega$$

Teniendo en cuenta este valor, para lograr la resistencia máxima de PAT de 4 Ω , se propone la instalación de 6 jabalinas en paralelo.

La resistencia aproximada a lograr es el valor de resistencia de cada una afectada por un factor K = 0.24 (según Tabla de "Las Puestas a Tierra" (LEVY R., 2010), para 6 jabalinas en paralelo, con lo cual la resistencia total es:

$$R_{PAT} = K x r = 0.24 x 13.33 \Omega$$

$$R_{PAT} = 3.2\Omega$$

Valor que verifica la condición de $R_{PAT-MÁX} = 4 \Omega$.

10.10.3.2. Jabalinas Seleccionadas

Se instala entonces el siguiente conjunto de jabalinas:

- Denominación por norma: L 1830 según IRAM 2309.
- Denominación comercial: ¾" x 3,00.
- Dimensiones reales: Ø 16,2 mm x longitud 3000 mm.
- Material: alma de acero con recubrimiento de cobre.
- Cantidad y tipo: 6 Jabalinas redondas lisas hincadas verticalmente en paralelo.
- Resistencia por unidad: 13,33 Ω .
- Resistencia del paralelo: 3,2Ω.

A su vez se deben cumplir las siguientes condiciones:

- La distancia entre cada uno de los ejes de clavado de cada jabalina individual debe ser como mínimo 4 m para evitar interferencias entre ellas.
- La instalación de cualquiera de las jabalinas debe cumplir, de acuerdo a este sistema de conexión, una distancia mínima a la toma a tierra de servicio de la instalación (conexión a tierra del neutro de la instalación en el centro de estrella del lado de BT del transformador) igual a 10 radios equivalentes que de acuerdo a la jabalina seleccionada es igual a 5,8 m (según Tabla 771.3.II, Fig.10.9.12).

Tabla 771.3.II - Radios equivalentes para electrodos IRAM 2309 y 2310

Designación comercial	Diámetro exterior (mm)	Longitud (m)	10 Re (m)
		1,5	3,2
1/2*		2,0	4.0
	12,6	3,0	5,4
		4,5	7,6
		6,0	8,6
		1,5	3,2
		2,0	4.0
5/8	14,6	3,0	5,6
		4,5	7,8
		6,0	10,0
		1,5	3,4
		2,0	4,2
3/4-	16.2	3,0	5,8
		4,5	8,0
		6.0	10,2

Fig.10.9.12

<u>NOTA</u>: El valor de resistividad del suelo es aproximado y puede variar considerablemente de acuerdo a las condiciones del suelo donde se instalarán las jabalinas. Es recomendable realizar una medición de la resistividad del suelo en el lugar para verificar que el mismo presente como máximo los 40 Ω .m supuestos, de no cumplir esta condición se deberán repetir los cálculos con la nueva condición de suelo.

Por otra parte luego de instalado el paralelo de las jabalinas en conveniente realizar una medición de resistencia de puesta a tierra para verificar que la misma sea igual o menor al valor exigido de 4 Ω . En caso de no verificar este valor se debe revisar la instalación para adecuarla a los valores anteriormente descriptos.

10.10.4. Conductores de Protección

Toda la instalación debe ser recorrida por los conductores de protección para lograr equipotencialidad entre todas las masas (partes metálicas expuestas al contacto) ya sean tableros, componentes de máquinas, estructuras, etc.; evitando que las mismas tomen en algún momento un potencial peligroso al contacto de personas.

Se utilizará una barra distribuidora de tierra en el TSG a fin de distribuir los conductores de protección de forma correcta hacia los distintos circuitos.

Para esto, se deben utilizar conductores de protección de cobre normalizados en su tipo y sección, para lo cual se aplica la disposición normativa dada en Tabla 771-C.II, Tabla10.10.1:

Sección de los conductores de línea [mm²]	Sección del conductor de protección [mm²]		
S ≤ 16	S		
16 < S ≤ 35	16		
S > 35	S/2		

Tabla10.10.1

Aplicando la tabla anterior, se describen a continuación los conductores y barras de protección adoptados, según la sección de los conductores de la instalación (Tabla 10.10.2):

	Sección de conductor de	Sección por	Sección del conductor/barra	Diámetro		Identificación	
Equipo - Tablero	alimentacion [mm²]	tabla [mm²]	de protección[mm²]	[mm]	exterior[mm ²]	Identificación	
Des de TSG a PAT	150	75	95	18,2	260,16	CP-001	
Barra PE TSG	150	75	99,1	72	72 ()	CP-002	
TST	4	4	4	4,8	18,10	CP-003	
TSES	4	4	4	4,8	18,10	CP-004	
TSC1	4	4	4	4,8	18,10	CP-005	
TSM	70	35	35	11,7	107,51	CP-006	
TSE 2	6	6	6	5,3	22,06	CP-007	
TSP	120	60	70	16	201,06	CP-008	
TSE 1	4	4	4	4,8	18,10	CP-009	
TSE 4	4	4	4	4,8	18,10	CP-010	
TSE 3	4	4	4	4,8	18,10	CP-011	
TSS	4	4	4	4,8	18,10	CP-012	
Ciclón 2	2,5	2,5	2,5	4,1	13,20	CP-013	
Alimentador prensa pelletizadora	2,5	2,5	2,5	4,1	13,20	CP-014	
Acondicionador de prensa	2,5	2,5	2,5	4,1	13,20	CP-015	
	2,5	2,5	2,5	4,1	13,20	CP-016	
Cinta transportadora 1	2,5	2,5	2,5	4,1	13,20	CP-017	
Cinta transportadora 2	4	4	4	4,8	18,10	CP-018	
Enfriador		2,5	2,5	4,1	13,20	CP-019	
Zaranda	2,5	2,5	2,5	4,1	13,20	CP-020	
Cinta transportadora 3	2,5		2,5	4,1	13,20	CP-021	
Elevador a cangilones	2,5	2,5		4,1	13,20	CP-022	
Embolsadora	2,5	2,5	2,5	4,1	13,20	CP-023	
Cinta de banda de embolsadora	2,5	2,5	2,5			CP-023	
Sinfín 1	2,5	2,5	2,5	4,1	13,20	CP-025	
Sinfín 2	2,5	2,5	2,5	4,1	13,20		
то	4	4	4	4,8	18,10	CP-026	
TC	4	4	4	4,8	18,10	CP-027	
TM	4	4	4	4,8	18,10	CP-028	
TMP	6	6	6	5,3	22,06	CP-029	
TIP	10	10	10	6,8	36,32	CP-030	
Π1	50	25	25	10,2	81,71	CP-031	
Π2	50	25	25	10,2	81,71	CP-032	
П 3	50	25	25	10,2	81,71	CP-033	
Π4	50	25	25	10,2	81,71	CP-034	
Π5	50	25	25	10,2	81,71	CP-035	
TT 6	50	25	25	10,2	81,71	CP-036	
ПТ 7	50	25	25	10,2	81,71	CP-037	
Π8	50	25	25	10,2	81,71	CP-038	
Π9	50	25	25	10,2	81,71	CP-039	
TT 10	50	25	25	10,2	81,71	CP-040	
Balanza de camiones	2,5	2,5	2,5	4,1	13,20	CP-041	
Barra PE TSE1	4	4	23,5	-	-	CP-042	
Barra PE TSE2	6	6	23,5	-	-	CP-043	
Barra PE TSE3	4	4	23,5	-	-	CP-044	
Barra PE TSE4	4	4	23,5	-		CP-045	
Barra PE TSS	4	4	23,5	-		CP-046	
Unión entre jabalinas	150	75	95	18,2	260,16	CP-047	

Tabla 10.10.2

10.11. FACTOR DE POTENCIA

Se aplica la corrección del factor de potencia, de manera que se proporciona localmente la potencia reactiva necesaria, se reduce el valor de la corriente, (a igual potencia útil requerida), y, por tanto, la potencia global consumida aguas arriba; esto conlleva numerosas ventajas, entre ellas, un uso optimizado de las máquinas (generadores y transformadores) y de las líneas eléctricas (transmisión y distribución).

Debido a las características de la instalación, se consideran como puntos adecuados para la corrección del factor de potencia el TSG y los tableros de iluminación por su alta carga inductiva.

- En el TSG, para los equipos y los tableros de tomas, como lo ilustra la Fig.10.11.1, teniendo en cuenta la potencia reactiva total (50,2 kVAr) y el factor de potencia que presentan los equipos, se corrige de 0,85 a 0,9.
- En los tableros de iluminación se corrige de forma local, Fig.10.11.2, adecuando el factor de potencia de un valor de 0,5 hasta 0,9; según la potencia indicada en cada caso.

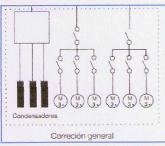


Figura 10.11.1

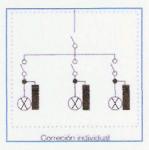


Figura 10.11.2

10.11.1. Corrección en Tablero Seccional General

10.11.1.1. Cálculo de Potencia

Teniendo en cuenta la simultaneidad de cargas en este tablero y un factor de potencia inicial igual a $\cos \varphi_1 = 0.85$, la potencia activa es:

$$P_{TSG} = P_{equipos} + P_{tomas}$$

La potencia total de los equipos se obtiene de la suma de valores de potencia activa, dados en la Tabla 10.1.1 del punto 10.1.

Para la potencia activa de los tableros de tomas se considera la suma total de corriente por tablero, y se aplica un factor de simultaneidad de 0,3 para el total de los tableros.

Así, la corriente total de los tableros de tomas es de 233,1 A (calculada en el punto 10.2).

Y la potencia por tableros de tomas es: $P_{tomas} = \sqrt{3} x 380V x 233,1A x 0,85 = 130,4kW$

Entonces:

$$P_{TSG} = P_{equipos} + P_{tomas} = 229kW + 130,4kW$$

$$P_{TSG} = 359,4kW$$

La potencia reactiva total a instalar para corregir el factor de potencia es:

$$Q_{TSG} = P_{TSG}. (\tan \varphi_1 - \tan \varphi_2) \qquad (10.11.1)$$

Donde $\tan \varphi_1 y \tan \varphi_2$ se hallan considerando el $\cos \varphi_1 = 0.85$ y $\cos \varphi_2 = 0.9$.

Así: $\tan \varphi_1 = 0.62 \text{ y } \tan \varphi_2 = 0.48$.

Reemplazando en (10.11.1):

$$Q_{TSG} = 359,4kW.(0,62-0,48)$$

$$Q_{TSG} = 50,3kVAr$$

10.11.1.2. Selección de Capacitores

En base a la potencia calculada en el punto anterior, se instalan capacitores para realizar la compensación de forma automática o variable (aquella en la que se suministra la potencia reactiva según las necesidades de la instalación).

El conjunto se compone de: aparatos de maniobra y banco de capacitores con controlador de 6 pasos.

En una salida para capacitores se deben contemplar tres funciones: el seccionamiento, la protección contra cortocircuitos y la conmutación.

La solución más simple es la asociación de dos productos: un interruptor que garantice la función de seccionamiento y protección, y un contactor para la conmutación.

Elección de los capacitores

Teniendo en cuenta la potencia total: $Q_{TSG} = 50.3kVAr$, y que el controlador del banco de capacitores es de 6 pasos, cada capacitor debe ser de:

$$Q_{capacitor} = \frac{50,3kVAr}{6} = 8,4kVAr$$

Por lo que se eligen capacitores con una potencia de 9,4kVAr y 15A de corriente nominal.

Elección del interruptor y contactor

El interruptor debe tener protección termomagnética y el calibre de la protección debe ser de 1,43 veces la corriente nominal de la batería de capacitores, esto es:

$$I_{interruptor} = 1,43 \times I_{nominal \ capacitores} = 1,43 \times 15 A = 21,45 A$$

A su vez, para asegurar la protección magnética, según el tipo de carga, el interruptor debe ser curva D. Resumen de selección de interruptores en Tabla10.11.1.

Ernst Mariángeles - Montañana Guillermo

0	
000	
0	
000	
000	
000	
000	
000	
000	
000	
000	

Protección	Ubicación	Alimenta a	Cap.de ruptura(kA)	Inominal (A)	Curva tipo	Clase	Tipo	Tensión (V)	Código
Int.termomagnetico	TSG	Capacitor 1(C1)	15	25	D	3	Tripolar	380	ITM42
Int.termomagnetico	TSG	Capacitor 2(C2)	15	25	D	3	Tripolar	380	ITM43
Int.termomagnetico	TSG	Capacitor 3(C3)	15	25	D	3	Tripolar	380	ITM44
Int.termomagnetico	TSG	Capacitor 4(C4)	15	25	D	3	Tripolar	380	ITM45
Int.termomagnetico		Capacitor 5(C5)	15	25	D	3	Tripolar	380	ITM46
Int termomagnetico	1	Canacitor 6(C6)	15	25	D	3	Tripolar	380	ITM47

Tabla10.11.1

El contactor se asocia al interruptor y se elige de acuerdo a la Icc en ese punto y a la potencia de la batería de condensadores. Ver Fig.10.11.1

Potencia del	Mod	elos y calil	bres segür	1 Icu a 380	V y 40°C	
condensador	10 KA	TOKA	15 kA	15 kA	25 kA	
en KVAr 3x400V	CON Curva D	C120N Curva D	CKCHC)ma0	Č120HOuna D	NO 291 Care D	Contactor
-5	24674		25202	18505		LC1DFK11M5
10	24676		25205	18507		LC1DFK11M5
15	24677		25207	18508		LC1DGK11M5
20	24679		25209	18510		LC1DLK11M5
25	24680		25210	18511		LC1DMK11M5
30	24680	18387	25210	18511	18669	LC1DPK12M5
40	1	18388		18513	18670	LC1DTK12M5
50		18389		18514	18671	LC1DWK12M5
60					18671	LC1DWK12M5

Fig.10.11.1

10.11.2. Corrección en Tableros de Iluminación

En los tableros de iluminación se realiza compensación fija (suministrando a la instalación, de manera constante, la misma potencia reactiva).

En todos los tableros se corrige el factor de potencia de $\cos \varphi_1 = 0.5$ a $\cos \varphi_2 = 0.9$.

Por lo que en todos los casos: $\tan \varphi_1 = 1,73$ y $\tan \varphi_2 = 0,48$

10.11.2.1. Iluminación en Zona de Mantenimiento (TM)

Teniendo en cuenta las cargas en este tablero (corriente = 9,36A), la potencia activa es:

$$P_{TM} = \sqrt{3} x U x I x \cos \varphi_1 = \sqrt{3} x 380 V x 9,36 A x 0,5$$

$$P_{TM} = 3,08kW$$

La potencia reactiva total a instalar para corregir el factor de potencia es:

$$Q_{TM} = P_{TM}. (\tan \varphi_1 - \tan \varphi_2)$$
 (10.11.2)

Reemplazando en (10.11.2):

$$Q_{TM} = 3,08kW.(1,73 - 0,48)$$

$$Q_{TM} = 3,85kVAr$$

10.11.2.2. Iluminación en Zona de Caldera (TC)

Teniendo en cuenta las cargas en este tablero (corriente = 3,51 A), la potencia activa es:

$$P_{TC} = \sqrt{3} x U x I x \cos \varphi_1 = \sqrt{3} x 380 V x 3,51 A x 0,5$$

$$P_{TC} = 1,16kW$$

La potencia reactiva total a instalar para corregir el factor de potencia es:

$$Q_{TC} = P_{TC}.(\tan \varphi_1 - \tan \varphi_2)$$
 (10.11.3)

Reemplazando en (10.11.3):

$$Q_{TC} = 1,16kW.(1,73 - 0,48) = 1,45kVAr$$

$$Q_{TC} = 1,45kVAr$$

10.11.2.3. Iluminación en Zona de Materia Prima (TMP)

Teniendo en cuenta las cargas en este tablero (corriente = 24,56A), la potencia activa es:

$$P_{TMP} = \sqrt{3} x U x I x \cos \varphi_1 = \sqrt{3} x 380V x 24,56A x 0,5$$

$$P_{TMP} = 8,08kW$$

La potencia reactiva total a instalar para corregir el factor de potencia es:

$$Q_{TMP} = P_{TMP}. (\tan \varphi_1 - \tan \varphi_2)$$
 (10.11.4)

Reemplazando en (10.11.4):

$$Q_{TMP} = 8,08kW.(1,73 - 0,48)$$

$$Q_{TMP} = 10,1kVAr$$

10.11.2.4. Iluminación en Planta (TIP)

Teniendo en cuenta las cargas en este tablero (corriente = 30,41A), la potencia activa es:

$$P_{TIP} = \sqrt{3} x U x I x \cos \varphi_1 = \sqrt{3} x 380 V x 30,41 A x 0,5$$

$$P_{TIP} = 10kW$$

La potencia reactiva total a instalar para corregir el factor de potencia es:

$$Q_{TIP} = P_{TIP}. (\tan \varphi_1 - \tan \varphi_2)$$
 (10.11.5)

Reemplazando en (10.11.5):

$$Q_{TIP} = 10kW.(1,73 - 0,48)$$

$$Q_{TIP} = 12,5kVAr$$

10.11.3. Selección de Capacitores

La elección de los capacitores se hace en base a los valores de potencia calculados para cada tablero:

- Iluminación en zona de mantenimiento (TM): capacitor de 4,5kVAr 7,2A.
- Iluminación en zona de caldera (TC): capacitor de 1,5kVAr 2,5A.
- Iluminación en zona de materia prima (TMP): capacitor de 11,3kVAr 18A.
- Iluminación en planta (TIP): capacitor de 13,5kVAr 21,7A.

Para la elección de los interruptores termomagnéticos se considera la lcc en cada punto y la corriente nominal de los condensadores. Ver Tabla10.11.2.

Protección	Ubicación	Alimenta a	Cap.de ruptura(kA)	Inominal (A)	Curva tipo	Clase	Tipo	Tensión (V)	Código
Int.termomagnetico	TM	Capacitor 7(C7)	6	10	D	3	Tripolar	380	ITM48
Int.termomagnetico	TC	Capacitor 8(C8)	6	3	D	3	Tripolar	380	ITM49
Int.termomagnetico	TMP	Capacitor 9(C9)	6	20	D	3	Tripolar	380	ITM50
Int.termomagnetico	TIP	Capacitor 10(C10)	6	25	D	3	Tripolar	380	ITM51

Tabla10.11.2

10.12. ARRANQUE DE MOTORES

10.12.1. Arranque Directo

El arranque de motor directo es el método más sencillo para arrancar un motor trifásico asíncrono. Se emplea en los motores de hasta 5,5 HP.

Los motores que cuentan con este tipo de arranque son:

- Ciclón 2: 2,7 HP.
- Alimentador de prensa: 1,97HP.
- Cinta transportadora 1: 3HP.
- Zaranda: 1,97HP.
- Cinta transportadora 2: 3,92HP.
- Cinta transportadora 3: 4HP.
- Embolsadora: 2,96HP.
- Cinta de embolsadora: 1HP.
- Elevador a cangilones: 0,5HP.
- Sinfines 1 y 2: de 2,84 HP cada uno.

El esquema de conexión para el arranque directo es el siguiente, Fig.10.12.1:

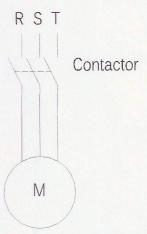


Fig.10.12.1

Los contactores se seleccionan en base a la potencia y corriente del motor, quedando enumerados en la Tabla10.12.1 a continuación:

Motor	Potencia del motor [HP]	Corriente del motor [A]	Potencia del contactor [kW]	Corriente del contactor	Identificación
Ciclón 2	2,7	3,6	5,5	Hasta 9 A	KM01
Alimentador de prensa	1,97	2,63	5,5	Hasta 9 A	KM02
Cinta transportadora 1	3	4	5,5	Hasta 9 A	KM03
Zaranda	1,97	2,63	5,5	Hasta 9 A	KM04
Cinta transportadora 2	3,92	5,24	5,5	Hasta 9 A	KM05
Cinta transportadora 3	4	4	5,5	Hasta 9 A	KM06
Embolsadora	2,96	3,93	5,5	Hasta 9 A	KM07
Cinta embolsadora	1	1,31	5,5	Hasta 9 A	KM08
Elevador a cangilones	0,5	0,67	5,5	Hasta 9 A	KM09
Sinfín 1	2,84	3,77	5,5	Hasta 9 A	KM10
Sinfín 2	2,84	3,77	5,5	Hasta 9 A	KM11

Tabla10.12.1

Las protecciones fueron seleccionadas en el punto 10.7.2.3.

10.12.2. Arranque Estrella Triángulo

Sin duda por su simplicidad y economía, el mayoritariamente utilizado es el método de arranque denominado estrella triángulo.

En este tipo de arranque, en el instante inicial se colocan los devanados de la máquina en estrella y una vez que ha llegado a su velocidad normal de funcionamiento se pasan a configuración triángulo. Un requisito fundamental es que la tensión de funcionamiento de las bobinas del motor, en régimen permanente, debe coincidir con la tensión nominal de la línea de alimentación.

Este arranque es usado en los motores que tienen una potencia entre 7,5 HP y 30 HP.

Los equipos que contarán con este tipo de arranque son:

Secador: 9,5 HP.

Acondicionador de prensa: 9,86 HP.

• Enfriador: 14,79 HP.

El esquema de conexión para el arranque directo es el siguiente, Fig.10.12.2:

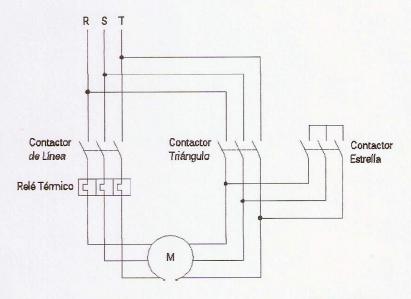


Fig.10.12.2

Los contactores deben seleccionarse de manera tal que cumplan con los siguientes valores de potencia:

- Contactor de red: para el 58% de la potencia del motor.
- Contactor estrella: para el 33% de la potencia del motor.
- ♦ Contactor triángulo: para el 58% de la potencia del motor.

Los relés térmicos son seleccionados en base a la corriente del motor. Las protecciones fueron calculadas en el punto 10.7.2.3.

A continuación se presentan las tablas de resumen de valores para la selección de los contactores y relés térmicos.

Secador: Tabla10.12.2

Elemento	Potencia[kW]	Corriente[A]	Identificación
Motor	7,08	12,66	Secador
Guardamotor	5,5	9 a 14	Q01
Contactor de línea(58% de Pn del motor)	5,5	12	KM12
Contactor triángulo (58% de Pn del motor	5,5	12	KM13
Contactor estrella(33% de Pn del motor)	4	9	KM14
Relé térmico		9 a 13	KA1

Tabla10.12.2

Acondicionador de Prensa: Tabla10.12.3

Elemento	Potencia[kW]	Corriente[A]	Identificación
Motor	7,35	13,44	Ac. de prensa
Guardamotor	5,5	9 a 14	Q09
Contactor de línea(58% de Pn del motor)	5,5	12	KM15
Contactor triángulo (58% de Pn del motor	5,5	12	KM16
Contactor estrella(33% de Pn del motor)	4	9	KM17
Relé térmico	-	12 a 18	KA2

Tabla10.12.3

Enfriador: Tabla10.12.4

Elemento	Potencia[kW]	Corriente[A]	Identificación
Motor	11,03	19,71	Enfriador
Guardamotor	5,5	17 a 23	Q06
Contactor de línea(58% de Pn del motor)	7,5	18	KM18
Contactor triángulo (58% de Pn del motor	7,5	18	KM19
Contactor estrella(33% de Pn del motor)	4	9	KM20
Relé térmico	_	17 a 25	KA3

Tabla10.12.4

10.12.3. Arranque Suave (o progresivo)

Los arrancadores suaves contribuyen a disminuir el pico de corriente de energía eléctrica al momento de arrancar motores de grandes potencias y/o disminuir el par de arranque en maquinaria especializada. Suelen instalarse en motores de más de 10 kW, por lo que serán utilizados en los siguientes equipos:

Molino a martillos: 73,5 kW.Prensa pelletizadora: 111 kW.

El esquema de conexión para el arrancador suave está formado por los siguientes elementos: Guardamotor, Arranque suave y Contactor. La elección de los mismos se basa en la potencia y corriente del motor.

A continuación se presentan las tablas de selección de elementos para cada equipo:

Molino a Martillos: Tabla10.12.5

Elemento	Potencia[kW]	Corriente[A]	Identificación
Motor	73,5	131,38	Molino
Arranque	75	140	U1
Contactor de línea	75	Hasta 150	KM21

Tabla10.12.5

La protección del circuito (Guardamotor) es el Q04 seleccionado en el punto 10.7.2.3.

Prensa Pelletizadora: Tabla10.12.6

Elemento	Potencia[kW]	Corriente[A]	Identificación
Motor	111	198,38	Prensa
Arranque	132	250	U2
Contactor de línea	132	Hasta 265	KM22

Tabla10.12.6

La protección del circuito (Guardamotor) es el Q05 seleccionado en el punto 10.7.2.3.

10.12.4. Variador de Velocidad

Los variadores de velocidad son dispositivos electrónicos que se emplean para variar la velocidad y la cupla de los motores asincrónicos trifásicos, convirtiendo las magnitudes fijas de frecuencia y tensión de red en magnitudes variables.

Son empleados en los equipos transportadores que necesiten regular su velocidad de avance, en este caso será empleado en el transporte a cadena y en el ciclón 1.

Para su selección se tienen en cuenta las siguientes características de los motores:

Transporte a cadena

Potencia: 1,5 HP = 1,12 kW. Tensión de la red: 380 V.

Ciclón 1

Potencia: 2,21 HP= 1,65 kW Tensión de la red: 380 V. El esquema de conexión para el variador de velocidad está formado por los siguientes elementos:

Guardamotor: para cada quipo, Transporte a Cadena y Ciclón 1, están indicados con los códigos Q02 y Q03 respectivamente, y fueron seleccionados en el 10.7.2.3.

Contactor: se selecciona en función de la potencia y corriente nominal del motor.

Inductancia: se selecciona de acuerdo a la corriente nominal del variador.

Variador de Velocidad: su elección se basa en la potencia y corriente del motor.

A continuación se presentan las tablas de selección de elementos para cada equipo:

Transporte a Cadena: Tabla10.12.7

Elemento	Potencia[kW]	Corriente[A]	Identificación
Motor	1,12	2	Transporte a cadena
Variador	1,1	-	U3
Contactor de línea	4	Hasta 25A	KM23
Inductancia	_	2,6-2	L1

Tabla10.12.7

Ciclón 1: Tabla10.12.8

Elemento	Potencia[kW]	Corriente[A]	Identificación
Motor	1,65	2,94	Ciclón 1
Variador	2,2	-	U4
Contactor de línea	4	Hasta 25A	KM24
Inductancia	-	5-4,1	L2

Tabla10.12.8

FACULTAD REGIONAL CONCEPCION DEL URUGUAY UNIVERSIDAD TECNOLOGICA NACIONAL MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA

BIBLIOGRAFÍA

- ✓ "Transporti Meccanici" Zignoli, V. Tomo II Editorial HOEPLI, 1970.
- ✓ "Problemas de Resistencia de Materiales" Miroliubov, I. y otros.- Editorial MIR, 1978.
- ✓ "Resistencia de Materiales" Stiopin P.A.- Editorial MIR, 1968.
- ✓ "Elementos de Máquinas" Dobrovolsky, V. y otros.- Editorial MIR, 1970.
- ✓ "Manual de Resistencia de Materiales" Pisarenko, G. y otros.- Editorial MIR, 1979.
- ✓ "Reglamentación para la Ejecución de Instalaciones Eléctricas" AEA 90264, 2006
- ✓ "Manual de Baja Tensión" Siemens- Editoral: Publicis MCD Verlag, 2000.
- ✓ "Manual y Catálogo del Electricista" Schneider Electric, 2006.
- ✓ "Las Puestas a Tierra: Criterios de Seguridad Eléctrica y Técnica" Levy R.- Editorial UNIVERSITAS,
 2010.
- √ "Guía de Potencia" Legrand.
- ✓ "Manual de combustibles de madera" Valter Francescato y otros, AVEBIOM, 2008.

PAGINAS WEB

- ✓ www.inta.gob.ar
- www.inti.gob.ar
- √ www.avebiom.org
- √ www.giuliani-sa.com
- ✓ www.innova-ing.com
- www.moretti.com.ar
- √ www.greenplus.com.pa
- √ www.lipsia.com
- ✓ www.palazzettigroup.com

UNIVERSIDAD TECNOLOGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERIA ELECTROMECANICA

PROYECTO FINAL DE CARRERA (P F C)

Cálculo y Diseño de una planta para producir pellets de madera

ANEXOS

Proyecto Nº: 1408A

Autores: Ernst, Mariángeles Jessica

Montañana, Guillermo Manuel

Tutor: Turín Alberto

Dirección de Proyectos: Ing. Puente, Gustavo Ing. De Marco, Luis

AÑO 2015

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

FACULTAD REGIONAL CONCEPCION DEL URUGUAY UNIVERSIDAD TECNOLOGICA NACIONAL MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA

ÍNDICE

Almacenamiento de pellets de madera	3
1. Recomendaciones para el mantenimiento general de la planta	3
2. Almacenamiento - Introducción	3
2.1. Almacenamiento de materia prima en la planta	4
2.2. Almacenamiento de pellets	5
2.2.1. Silos	5
3. Riesgos	6
3.1. Riesgo en silos	. 6
3.1.2. Incendios y explosiones	6
3.1.3. Accidentes mecánicos y atrapamientos	7
3.1.4. Espacios confinados	7
3.2. Riesgos en planta	7
3.2.1. Incendios y explosiones	7
3.2.2. Atrapamientos, caídas y accidentes mecánicos	. 8
4. Medidas preventivas	. 8
4.1.1. Incendios y explosiones	. 8
4.1.2. Accidentes mecánicos y atrapamientos	. 9
4.1.3. Espacios confinados	9
4.1.4. Elementos de protección personal	9
4.2. Medidas preventivas en planta	10
4.2.1. Incendios y explosiones	10
4.2.2. Accidentes mecánicos, caídas y atrapamientos	11
Automatización y control	12
1. Control lógico programable	12
2. Sensores	12
2.1. De proximidad	12
2.1.2. Capacitivos	13
2.1.3. Inductivos	13
2.1.4. Subvelocidad	13
2.2. De temperatura	14
3. Puntos de control	15
3.1. Silos	15
3.2. Acondicionador de prensa	15
3.3. Cintas transportadoras	16
3.4. Rodamientos	16
3.5. Elevador a cangilones	17
3.6. Depósito sobre prensa	17

ALMACENAMIENTO DE PELLETS DE MADERA

El presente anexo es una guía de buenas prácticas para la producción, logística y almacenamiento de combustibles sólidos.

El objeto de estas buenas prácticas es ofrecer recomendaciones en información para el almacenamiento de pellet de madera tanto en las plantas de producción de éstos o grandes comercializadores con necesidades de almacenamiento de grandes cantidades.

Esta guía se redactó en base a la Norma UNE- EN 14961 -2:2002.

1. RECOMENDACIONES PARA EL MANTENIMIENTO GENERAL DE LA PLANTA

- Almacenamiento en forma adecuada de los equipos en desuso, eliminar desechos sólidos y desperdicios, recortar y eliminar la hierba y todo aquello dentro de las inmediaciones del edificio que pueda constituir una atracción o refugio para los insectos y roedores.
- Mantener patios y lugares de estacionamiento limpios para que estos no constituyan una fuente de contaminación.
- Mantenimiento adecuado de los drenajes para evitar contaminación e infestación.
- Operación de forma adecuada de los sistemas para el tratamiento de desechos.

2. ALMACENAMIENTO- INTRODUCCIÓN

El almacenamiento tanto de combustibles secos, con un contenido de humedad de alrededor del 10%, como de los pellets de madera requiere un ambiente protegido para mantener bajo el contenido de humedad y, en el caso de pellets, la estructura del combustible. Por lo tanto, las condiciones de almacenamiento de este tipo de combustibles son completamente diferentes de la de los combustibles húmedos, como por ejemplo madera.

Debido a la escasa humedad del ambiente, el crecimiento de microorganismos es limitado en comparación al almacenamiento de otros materiales más húmedos en donde sí se deben tomar más precauciones.

El almacenamiento de combustible en una planta debe diseñarse teniendo en cuenta el sistema de transporte de combustible a la planta y el procedimiento de operación de la planta. El parámetro principal de diseño es el tamaño de almacenamiento, un dispositivo de almacenamiento que necesita la carga al día, o un dispositivo de almacenamiento que se puede utilizar durante los fines de semana sin cargar.

Los pellets de madera son muy sensibles al desgaste físico y por lo tanto deberán ser manejados con cuidado. Los almacenes deben ser diseñados para minimizar los transportes y movimientos al mínimo. Los puntos de transferencia y las grandes caídas se deben evitar, ya que aumentan el contenido de finos, especialmente en pellets.

Los pellets de madera se deben enfriar inmediatamente después de producirlos para evitar la condensación de la humedad. Esto es particularmente importante para pellets envasados en bolsas cerradas.

Se aconseja tomar las medidas necesarias para no mezclar lotes de fabricación diferentes. Un lote puede ser una cantidad producida con un material de origen determinado, que puede ser diferente del material de origen para el anterior y el siguiente lote. Por ejemplo, se produce una partida de pellets con serrines de un determinado aserradero y se cambia a producir con material de un aserradero nuevo o con madera de industria. Para conseguirlo se recomienda que se almacene de abajo a arriba construyendo pilas cónicas aunque unidas entre sí, pero que permita separar el producto según los días de fabricación. Esto facilita la labor enormemente en el caso de que haya algún lote que no sea conforme en calidad para la certificación y permite extraer dicho lote como no conforme.

En algunas ocasiones se puede generar focos de calor en material almacenado. La acumulación de calor se produce en grandes almacenes y también en algunos casos en pequeños montones de pellets de madera almacenados en condiciones normales a temperatura ambiente.

La tendencia de los pellets de madera al autocalentamiento parece variar entre diferentes calidades de pellets y esta problemática surge relativamente poco después de que éstos se hayan producido. La generación de calor es probablemente debida a la baja temperatura de oxidación de los componentes fácilmente oxidables del material. Estos procesos de autocalentamiento pueden conllevar ciertos riesgos, dependiendo de la forma en que estén almacenados, en silos o en naves.

La ignición espontánea de los combustibles de madera seca es el resultado de una cadena de eventos en los que un combustible que presenta uno o varios focos de calor es almacenado en un volumen tan grande que se produce la acumulación de dicho calor.

Otro factor importante es la eliminación de las impurezas del combustible. Incluso si las especificaciones del combustible no permiten impurezas, la experiencia práctica demuestra qué impurezas pueden aparecen de vez en cuando.

2.1. ALMACENAMIENTO DE MATERIA PRIMA EN LA PLANTA

El almacenamiento en planta, en un sector con buena ventilación, sirve de protección contra la exposición a la lluvia y de otras fuentes de agua, previniendo así la absorción de humedad de la materia prima.

En caso de que hubiera poca ventilación se recomienda instalar un sistema de detección de CO, para evitar problemas de salud.

Debido a la existencia de sistemas de cintas transportadoras pueden darse fallos técnicos, sobrecarga de motores eléctricos, electricidad estática, etc. Estas incidencias relacionadas con la existencia de polvo fino seco, en determinadas concentraciones, pueden provocar explosiones. El polvo puede acumularse en las vigas y estructuras por eso hay que mantener unas condiciones de limpieza estrictas.

Las aberturas deben impedir la entrada de animales y contaminantes del medio ambiente como humo, poívo o vapor.

Las superficies de trabajo no deben tener hoyos, ni grietas.

Las vías de tránsito interno deben tener una superficie pavimentada para permitir la circulación de camiones, transportes internos y contenedores.

2.2. ALMACENAMIENTO DE PELLETS

Al ser los pellets de madera un material hidrófilo y por tanto sensible a la humedad siempre serán almacenados en almacenes cubiertos o protegidos de la humedad.

Los almacenes interiores servirán, debiendo estar diseñados para ello, de protección contra la exposición a la lluvia y otras fuentes de agua para prevenir la absorción de la humedad por el biocombustible.

Además, el espacio de almacenamiento debe estar bien ventilado.

Otra manera de almacenar los pellet es en silos, que es lo que se expone a continuación.

2.2.1. Silos

El almacenamiento en silos es lo más común en las fábricas de pellets. Éstos son contenedores de distintas formas que pueden tener una capacidad de unos pocos metros cúbicos o de unos centenares, y que pueden estar abiertos o herméticamente cerrados; se utilizan para el almacenamiento o conservación de una extensa gama de productos, bien sea granos, harinas, forraje o líquidos. El almacenamiento de granos en silos es una práctica muy frecuente y su normatividad apunta a las condiciones técnicas de los silos, para garantizar su resistencia, gracias a la presión interna de la carga y a la generada en muchos casos por la fermentación del producto.

Todos los silos tienen aberturas de alimentación, generalmente cerca del extremo superior y, bocas de descarga en la base o a un lado. En los silos cerrados las aberturas están herméticamente selladas, pero a menudo se sitúa una válvula de compensación de presión en lo alto para facilitar el vaciado.

Un silo debe estar equipado con un sistema de medición de temperatura y otros de detección de gas si es técnica y económicamente viable. El sistema de medición de la temperatura debe incluir sensores de temperatura colocados a diferentes alturas y en diferentes posiciones horizontales. El sistema de medición deberá ser capaz de medir temperaturas de hasta 100°C como mínimo. Una solución habitual es montar los sensores de temperatura en los cables que atraviesan verticalmente en el silo.

El sistema de detección de gas es recomendable que incluya los analizadores de CO y O_2 , y debe medir la atmósfera en la parte superior del silo. El nivel de concentración del CO puede ser utilizado como un indicador de la oxidación o la pirolisis del material a granel. La medición de la concentración de O_2 es útil durante una operación de extinción con gas inerte para asegurarse de que una atmósfera inerte, se ha alcanzado en el silo. También hay sistemas avanzados de detección de incendios disponibles basados en sensores de gas ("nariz electrónica") que pueden ser útiles para la supervisión del silo.

El silo deberá estar preparado para la descarga de emergencia del combustible en caso de incendio. El dispositivo normal de descarga de un silo, en general, tiene una capacidad muy baja para la descarga de urgencia.

El uso de los sistemas de transporte (transportadores, elevadores, etc.) pueden aumentar el riesgo de propagación del fuego en la instalación durante la descarga.

El silo deberá estar equipado con posibilidad de inyección de gas inerte durante una operación de extinción de incendios. En los silos de pellets, el gas inerte a utilizar sería N₂ o CO₂. El punto de inyección óptimo se encuentra en la parte inferior del silo. En un silo con una superficie inferior grande, es preferible equiparlo con varios puntos de inyección. Lo más recomendable es que el silo se pueda cerrar lo más herméticamente posible durante una operación de extinción de incendios con la inyección de gas inerte.

Igualmente, en los edificios de silos con poca ventilación, se recomienda que se instale un sistema de detección de CO para controlar la atmósfera en la parte superior de un complejo de silos y en los locales adyacentes para evitar problemas de salud.

3. RIESGOS

3.1. RIESGOS EN SILOS

Los riesgos propios del almacenamiento en silos son: incendios y explosiones, accidentes mecánicos, atrapamientos y por último espacios confinados.

3.1.2. Incendios y Explosiones

Este riesgo suele presentarse en ambientes pulverulentos. Una explosión de polvo es el resultado de una rápida combustión de partículas combustibles puestas en suspensión, con capacidad para propagarse. Sus efectos son mecánicos (aumento de presión), térmicos (aumento de temperatura) y de producción de humos asfixiantes (consumo de oxígeno).

Como se vio anteriormente, los silos con un combustible almacenado pueden presentar procesos de autocalentamiento en una estructura cerrada, los principales riesgos de este proceso, en orden de aparición, son:

- ♦ La emisión de gases asfixiantes (por ejemplo: CO) e irritantes, por ejemplo: aldehídos y terpenos).
- Ignición espontánea del material a granel, lo que resulta en las emisiones de gases de pirolisis / combustión.
- ♦ Humo y / o explosión de polvo puede ocurrir si por ejemplo, el compartimiento superior de un silo se aborda en los trabajos de rescate.
- Superficie de fuego y extensión del fuego a menudo como resultado de una explosión.

Para que se produzca una explosión, además de requerir unas características determinadas de las partículas en suspensión y una determinada concentración de oxígeno, es necesaria una fuente de ignición, la cual puede tener un origen diverso:

- Calor procedente de chispas mecánicas y de fricción.
- Equipos electrónicos.
- Electricidad estática.
- Herramientas alimentadas por baterías.
- Llamas abiertas y chispas.

Hay riesgo de explosión de polvo durante el manejo y procesamiento de los biocombustibles en seco en espacios reducidos. Las partículas de materiales combustibles mezclados en el aire arden con una violencia y una velocidad que generalmente aumentan con la disminución de tamaño de las partículas. Tras la ignición de una nube de polvo la tasa de combustión puede ser muy rápido y la energía de ignición necesaria muy pequeña para que el resultado fuese una explosión de polvo.

El polvo de madera puede formar una mezcla explosiva en concentraciones bajas (<30 g/m3) si hay oxígeno disponible y una fuente de ignición (energía> 10 mJ). La concentración de oxígeno de aire presente durante las operaciones normales de manejo es suficiente. El tamaño medio de partícula de polvo de madera explosivo puede ser esencialmente mayor en comparación con el polvo inhalable, a pesar de un tamaño de partícula más pequeños por lo general aumenta el riesgo de explosión. Los requisitos para una explosión de polvo se incluyen en el triángulo: la concentración de polvo suficiente, el aire y una fuente de ignición.

El contenido de humedad de los biocombustibles no es decisivo para el riesgo de explosión de polvo, pero cuanto más seco sea el combustible más polvo fino se puede formar. Una explosión de polvo puede ser un evento separado o la consecuencia de un incendio o de una explosión de gas en llamas. Un escenario posible es que, un incendio por explosión de gas, por ejemplo, en la parte superior de un silo, agite el polvo fino de la cama de combustible y que la nube de polvo se prenda por la quema de combustibles resulta en una explosión secundaria.

3.1.3. Accidentes Mecánicos y Atrapamientos

Hay muertes en silos que resultan del proceso de llenado y mantenimiento de éstos. La maquinaria usada también es peligrosa, y en el caso de los silos de torre, los obreros pueden caer de la escalera o plataforma de trabajo.

El trabajo cerca de tornillos sinfín, elevadores, mezcladores y otras piezas mecánicas pueden atrapar a los trabajadores, por lo que debe prestarse total atención al llenado y vaciado de silos así como a las demás medidas de seguridad diseñadas para prevenir tales accidentes.

Durante el ensilado de granos no debe permitirse que los trabajadores entren en el silo sin tener asegurado un medio de salida, ya que existe el peligro que queden enterrados entre el material moviente.

3.1.4. Espacios Confinados

Un silo es un espacio confinado, en el cual existe el riesgo de caídas (cuando el silo es vertical), por lo que el equipo de protección debe ser el apropiado para tales casos. La apertura e ingreso a los silos sin las debidas precauciones pueden ocasionar graves lesiones e incluso la muerte a los trabajadores por la cantidad de gases tóxicos generados al interior del silo.

Antes de realizar cualquier labor que requiera acercarse a la boca del silo o el ingreso dentro de él debe considerarse como un trabajo de espacios confinados, por lo que deben tramitarse los permisos respectivos y utilizar equipo de protección personal apropiado.

3.2. RIESGOS EN PLANTA

Los riesgos propios de los trabajos en planta pueden sintetizarse en los siguientes puntos.

3.2.1. Incendios y Explosiones

Como se menciona anteriormente en los silos, este riesgo suele presentarse en ambientes pulverulentos. Al no ser un espacio confinado como los silos, en las naves es más complicado que se lleguen a las concentraciones necesarias de polvo para que produzcan explosiones. De todas formas es conveniente tomar las precauciones de limpieza y seguridad para evitar estas atmosferas.

Igualmente los efectos de una explosión por nube de polvo son mecánicos (aumento de presión), térmicos (aumento de temperatura) y además producen humos asfixiantes (consumo de oxígeno).

3.2.2. Atrapamientos, Caídas y Accidentes Mecánicos

Los principales riesgos en este sentido, en los almacenamientos en naves, son los que tiene lugar debido a atropellos por vehículos y atrapamientos y aplastamientos por vuelco de máquinas, material almacenado o vehículos.

También entran en este grupo las caídas de escaleras, pasarelas y plataformas.

4. MEDIDAS PREVENTIVAS

A continuación se presentan las medidas para minimizar los riesgos mencionados en los puntos anteriores.

4.1. MEDIDAS PREVENTIVAS EN SILOS

4.1.1. Incendios y Explosiones

- ♦ La medida de control más importante a tomar es el registro de la temperatura del depósito de combustible en diferentes lugares intentando abarcar la mayor parte del combustible.
- Medición de la concentración de CO en el aire sobre la superficie del combustible es un posible método para la detección de la actividad en el lecho del combustible. Otros métodos de detección son los detectores de gases múltiples y sensores tipo "nariz electrónica".
- El primer signo de un curso de autocalentamiento de procesos es a menudo un olor pegajoso e irritante.
- Si "el olor a quemado" se percibe del almacenamiento y / o si se observa humo (no vapor de agua) del almacenamiento es que ya está teniendo lugar la pirolisis en la mayor parte del combustible y por tanto se debe iniciar una operación de lucha contra incendios.
- ♦ Controlar las nubes de polvo, especialmente cerca de posibles fuentes de ignición, observando una limpieza completa del área, evitando levantar polvo (preferiblemente mediante la aspiración) y acudiendo a métodos como separadores magnético para su control.
- ♦ Controlar las fuentes de ignición (calor, equipos electrónicos, energía estática, herramientas, llamas abiertas y chispas, etc.)
- Procurar un silo lleno permanentemente. Un silo vacío es más propenso a sufrir una explosión que un silo lleno, por las razones explicadas anteriormente.
- No fumar dentro de las instalaciones.
- Evitar la caída de objetos o materiales que puedan generar chispas.
- Seguir los procedimientos de seguridad de las máquinas.
- Prohibir en el área operaciones en caliente (soldadura, corte, pulido, etc.). Estas operaciones deben realizarse de acuerdo a un protocolo previamente revisado y aprobado.
- Utilizar equipos eléctricos seguros.

- Conectar a tierra todos los contenedores metálicos donde exista flujo de partículas, líquidos o electricidad para evitar la acumulación de cargas estáticas.
- Colocar supresores.

4.1.2. Accidentes Mecánicos y Atrapamientos

- No deben usarse joyería, cabello suelto, ropa amplia o con bolsillos que faciliten el atrapamiento.
- ♦ Deben existir protocolos para la realización de operaciones arriesgadas como el mantenimiento de piezas mecánicas o la alimentación manual de silos o tolvas.
- Estas áreas de trabajo deben ser de acceso restringido y deben estar correctamente señalizadas.
- Utilización de los elementos de protección individual: careta, guantes, calzado de seguridad, etc.

4.1.3. Espacios Confinados

- ♦ No se debe entrar en un silo hasta que haya circulado aire fresco por medios mecánicos (ventiladores) mínimo durante 30 minutos y con un equipo de respiración.
- ◆ Si la labor requiere acciones cerca de líneas electrificadas o interrumpen el movimiento de máquinas, se cortará el fluido eléctrico de las líneas de conducción presentes en el lugar y se asegurará con ayuda de un candado y/o una etiqueta de peligro. Si esto no es posible utilice otra medida como la desconexión de un fusible. A continuación se fijará un aviso que prohíba cambiar el estado del circuito o retirar el candado.
- ♦ Se realizará pruebas de contenido de oxígeno en el aire. El contenido de oxígeno debe estar entre el 19.5% y 21.5%. Se verificará la concentración de vapores en el ambiente. Las concentraciones no deben exceder el 10% de los límites inferiores de inflamabilidad.
- Se reunirán los equipos de protección personal y de rescate adecuados y se probarán antes de entrar.
- ♦ Se incluirá si es necesario un equipo de iluminación, cascos, caretas, escaleras, arneses, cuerdas, elementos de comunicación (radios, pitos), etc.
- ♦ Se incluirá todo el equipo especial de iluminación, herramientas que no produzcan chispas, y otros equipos eléctricos que deban estar disponibles antes de entrar al espacio confinado.
- Se tramitarán los permisos para la entrada al espacio confinado acatando todas las recomendaciones.

4.1.4. Elementos de Protección Personal

Dependiendo del contenido del silo y de la labor que se realice en ellos, tanto los guantes como los trajes de protección estarán formados de distintos materiales según sea el caso. Entre los elementos de protección personal están los siguientes:

- Respiratoria: máscara de cara completa con un equipo de respiración.
- Traje: Se recomienda utilizar un traje de cuerpo entero con gorro.
- **Guantes:** Se recomienda utilizar guantes elaborados en cuero siempre que no se entre en contacto con sustancias químicas.
- Alturas: el ingreso a un silo requiere de los elementos de protección necesarios mínimos para trabajar en alturas, de manera tal que se garanticen dos cosas: la primera, evitar una caída dentro o fuera del silo, la cual puede ser mortal y la segunda permitir el rescate del trabajador en caso de una caída o inhalación de gases tóxicos emitidos por los materiales almacenadas.

En el trabajo en alturas, debe haber contacto con personas que se encuentren permanentemente en la plataforma de trabajo, ya sea en forma visual o por otro sistema de comunicación.

Cada uno de los sistemas existentes, para trabajo en alturas, cumple con un objetivo específico. Así el arnés es considerado el elemento de seguridad por excelencia para el trabajo en alturas. El cinturón de seguridad se ha diseñado con el fin de permitir la ubicación o desplazamiento del trabajador gracias a las argollas que posee, pero no es útil por sí solo para contrarrestar las caídas ya que un trabajador soportado únicamente en él puede sufrir daños severos, al recibir el impacto del descenso en un solo punto de su cuerpo, además el cinturón sólo distribuye las fuerzas de interrupción en la cintura, mientras que el arnés de cuerpo completo distribuye las fuerzas de interrupción de caída a lo largo de los muslos, la pelvis, la cintura, el pecho y los hombros. Un arnés elaborado en tejido elástico evita lesiones durante la caída.

Otra medida preventiva para el trabajo de altura es colocar en las escaleras de ingreso al silo, estructuras guarda hombre, pasamanos y plataformas intermedias.

4.2. MEDIDAS PREVENTIVAS EN PLANTA

Las siguientes medidas preventivas apuntan a reducir los riesgos mencionados anteriormente.

4.2.1. Incendios y Explosiones

- Repartir a lo largo de la nave donde se almacene materia prima sensores de temperatura, intentando abarcar la mayor parte del combustible.
- ♦ Medición de la concentración de CO en el aire sobre la superficie del combustible almacenado a granel.
- Controlar la limpieza y evitar la formación de ambientes pulverulentos, especialmente cerca de posibles fuentes de ignición, observando una limpieza completa del área, evitando levantar polvo (preferiblemente mediante la aspiración) y acudiendo a métodos como separadores magnético para su control.
- Para controlar la acumulación de polvo las plataformas, pasarelas y escalones deben ser de material desplegado.
- ♦ Controlar las fuentes de ignición (calor, equipos electrónicos, energía estática, herramientas, llamas abiertas y chispas, etc.).
- No fumar dentro de las instalaciones.
- Evitar la caída de objetos o materiales que puedan generar chispas.
- Seguir los procedimientos de seguridad de las máquinas.
- ♦ Prohibir en el área de acopio operaciones en caliente (soldadura, corte, pulido, etc.). Estas operaciones deben realizarse de acuerdo a un protocolo previamente revisado y aprobado.
- Utilizar equipos eléctricos seguros.
- Conectar a tierra todos los contenedores metálicos donde exista flujo de partículas, líquidos o electricidad para evitar la acumulación de cargas estáticas.

4.2.2. Accidentes Mecánicos, Caídas y Atrapamientos

- No deben usarse joyería, cabello suelto, ropa amplia o con bolsillos que faciliten el atrapamiento.
- ♦ Deben existir protocolos para la realización de operaciones riesgosas como el mantenimiento de piezas mecánicas o la alimentación manual de silos o tolvas.
- Estas áreas de trabajo deben ser de acceso restringido y deben estar correctamente señalizadas.
- ♦ Utilización de los elementos de protección individual: careta, guantes, calzado de seguridad, etc.
- Las zonas de circulación de la planta debe estar delimitada y señalizada correctamente.
- ♦ Las escaleras deben contar con pasamanos, barandas y guarda pie. Las correspondientes a silos y elevadores además deben tener guardahombre y plataforma intermedia según corresponda.

FACULTAD REGIONAL CONCEPCION DEL URUGUAY
UNIVERSIDAD TECNOLOGICA NACIONAL
MONUMENTO HISTORICO NACIONAL

TEL./FAX: (03442) 425541 / 423803 Ing. PEREYRA 676 - E3264BTD - CONCEPCION DEL URUGUAY ENTRE RIOS - REP. ARGENTINA

AUTOMATIZACIÓN Y CONTROL

La automatización, mediante el uso de sistemas de control y de tecnología informática puede reducir la necesidad de la intervención humana en un proceso.

De esta forma presenta grandes ventajas en cuanto a producción más eficiente y disminución de riesgos al operador.

Las principales ventajas de aplicar automatización a un proceso son:

- Reemplazo de operadores humanos en tareas repetitivas o de alto riesgo.
- Reemplazo de operador humano en tareas que están fuera del alcance de sus capacidades como levantar cargas pesadas, trabajos en ambientes extremos o tareas que necesiten manejo de una alta precisión.
- Incremento de la producción: al mantener la línea de producción automatizada, las demoras del proceso son mínimas, no hay agotamiento o desconcentración en las tareas repetitivas, el tiempo de ejecución se disminuye considerablemente según el proceso.

1. CONTROL LÓGICO PROGRAMABLE (PLC)

El PLC (Progammable Logic Controller) es un equipo electrónico programable diseñado para controlar en tiempo real y en ambiente industrial un proceso secuencial. Se produce una reacción a la información recibida por los captadores del sistema automatizado (finales de carrera, células fotoeléctricas, sensores, encoders, teclados, etc) y se actúa sobre los accionadores de la instalación (motores, electroválvulas, indicadores luminosos, etc).

En definitiva, se trata de un lazo cerrado entre un dispositivo que controla (PLC) y la instalación en general.

Sus reducidas dimensiones, la extremada facilidad de su montaje, la posibilidad de almacenar los programas para su posterior y rápida utilización, la modificación o alteración de los mismos, etc., hace que su eficacia se aprecie en este el proceso de producción de pellets.

Cada punto de control de la planta será automatizado mediante este sistema, conectado a los diferentes elementos que intervienen en el proceso.

2. SENSORES

2.1. DE PROXIMIDAD

El sensor de proximidad es un transductor que detecta objetos o señales que se encuentran cerca del elemento sensor. Existen varios tipos de sensores de proximidad según el principio físico que utilizan. Entre los sensores de proximidad se encuentran los capacitivos, inductivos y de subvelocidad.

2.1.2. Capacitivos

Los sensores capacitivos de proximidad están diseñados para funcionar mediante la generación de un campo electroestático y detectar cambios en este campo ocasionados por la aproximación de un objeto a la cara de detección. El mecanismo interno del sensor consta de una sonda capacitiva, un oscilador, un rectificador de señales, un circuito filtrador y un circuito de salida (Fig.2.1).

En ausencia de un objeto, el oscilador está inactivo. Cuando un objeto se aproxima, eleva la capacitancia del sistema de la sonda. Cuando la capacitancia alcanza un umbral especificado, el oscilador se activa, lo que activa a su vez el circuito de salida para cambiar entre "encendido" y "apagado". La capacitancia del sistema de la sonda está determinada por el tamaño del objeto, la constante dieléctrica y la distancia con respecto a la sonda. Entre mayor sea el tamaño y la constante dieléctrica de un objeto, mayor será el aumento de la capacitancia de éste. Entre menor sea la distancia entre el objeto y la sonda, mayor será el aumento de capacitancia del objeto.

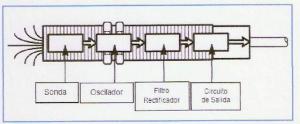


Figura 2.1

2.1.3. Inductivos

Este tipo de sensores incorporan una bobina electromagnética que es usada para detectar la presencia de un objeto de metal conductor. Ignoran los objetos no metálicos. Son utilizados principalmente en la industria, tanto para aplicaciones de posicionamiento como para detectar la presencia de objetos metálicos en determinados contextos (control de presencia o de ausencia, detección de paso, de atasco, de posicionamiento, de codificación y de conteo).

Los sensores inductivos usan el principio de operación de la corriente de Foucault.

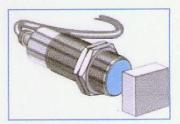


Figura 2.2- Sensor Inductivo

2.1.4. Subvelocidad

Los sensores de proximidad para control de rotación o subvelocidad (Fig.2.3), reúnen en un mismo aparato las funciones de toma de información y comparación de pulsos, conformando así un control de rotación integrado. Las piezas a controlar deben ser metálicas, lográndose la máxima sensibilidad con hierro o acero.

Estos sensores están diseñados para la detección de subvelocidad, es decir, cuando la velocidad a controlar (Vc) pasa por debajo de la velocidad preseleccionada (Vs), se produce la apertura del circuito de salida del sensor. Si Vc supera a Vs, se produce el cierre de la salida. Entre sus ventajas se pueden enumerar las siguientes:

- •Totalmente herméticos.
- Sin desgaste mecánico.
- Ampliamente insensibles contra atmósferas agresivas, sustancias corrosivas e influencias climáticas.
- · Accionamiento libre de rebotes.
- Prolongada vida útil.
- Sensor y control de rotación integrado.
- •Insensible frente a vibraciones, polvo y humedad.
- Precisión de repetición.
- Facilidad de montaje.

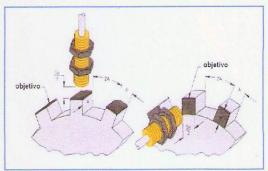


Figura 2.3

2.2. DE TEMPERATURA

El sensor PT100 es un sensor de temperatura que basa su funcionamiento en la variación de resistencia a cambios de temperatura del medio.

El elemento consiste en un arrollamiento muy fino de platino bobinado entre capas de material aislante y protegido por un revestimiento cerámico.

Figura 2.4- Pt100

3. PUNTOS DE CONTROL

3.1. SILOS

Control de nivel

Se colocan sensores capacitivos para detectar nivel bajo y nivel alto de pellets en cada silo (Fig.3.1). De esta manera se obtiene la información del estado de carga de cada silo para poder operar sobre la actuación de las válvulas de carga y descarga.

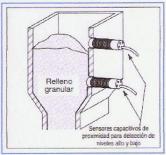


Figura 3.1

· Control de temperatura y humedad

La medición de temperatura se realiza mediante sensores digitales alojados en caños de acero inoxidable de alta resistencia que permite, con una mínima instalación, realizar la visualización de la evolución de la temperatura en los silos, y de ser necesario accionar automáticamente los sistemas de ventilación/aireación. Cada sensor se aloja en un cabezal antiexplosivo y se comunican a una red de datos en serie, que transmite la información de temperaturas a una o más PC (según la cantidad total de puntos de medición). El programa del PLC permite la visualización de datos, seteo de alarmas por alta temperatura, asignación de set points para control automático de ventiladores, impresión de curvas, etc. El sistema es acompañado por una central meteorológica que envía al software información de temperatura y humedad ambiente, siendo estos datos empleados en el control automático.

Figura 3.2 - Control de Temperatura y Humedad en Silo

3.2. ACONDICIONADOR DE PRENSA

Control de temperatura

Se controla la temperatura mediante termómetro digital con sensor de temperatura Pt100. Cuenta con dispositivo para limpieza automática de la sonda.

3.3. CINTAS TRANSPORTADORAS

Control de velocidad

Se colocan sensores de subvelocidad para asegurar el buen funcionamiento de las diferentes cintas transportadoras y la alimentación de pellets a los diferentes equipos.

Con estos sensores se controla el deslizamiento y la sobrecarga del equipo.

Figura 3.4

Control de tensión de cinta

Para asegurar la tensión o detectar la rotura de la cinta se colocan sensores de proximidad. Éstos envían la señal a los tensores de las cintas para asegurar su normal funcionamiento.

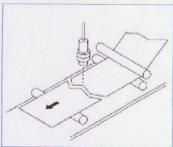


Figura 3.5- Control de rotura

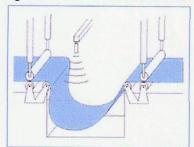


Figura 3.6- Control de tensión

3.4. RODAMIENTOS

Control de temperatura

Cada rodamiento tiene un sensor para controlar su temperatura y evitar posibles calentamientos que dificulten el normal funcionamiento del equipo al que pertenece (elevador a cangilones, cintas transportadoras, etc.). Ver esquema en Fig. 3.7.

Figura 3.7

3.5. ELEVADOR A CANGILONES

Control de Velocidad

Se coloca un sensor de subvelocidad en el cabezal motor para asegurar la continuidad de servicio del elevador.

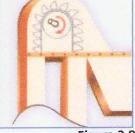


Figura 3.8

Control de tensión de banda transportadora

Se colocan sensores de proximidad capacitivos para controlar la tensión de la banda portadora de los cangilones, de igual forma que para las cintas transportadoras.

Control de alineación de banda

Se coloca sensor de proximidad inductivo para detectar que la banda no se desplace lateralmente hacia una posición incorrecta.

3.6. DEPÓSITO SOBRE PRENSA

Se emplean sensores capacitivos para detectar nivel bajo y nivel alto de aserrín para conocer el estado de carga del depósito y de esta forma operar el transporte neumático que lo alimenta y el transporte helicoidal que conduce el aserrín a la prensa pelletizadora.