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Abstract—This article proposes a design strategy for energy
flow controllers in microgrids with renewable generation within
the framework of Economic Model Predictive Control (EMPC).
The model used is made up of a storage system and a generation
source, considering the possibility of exchanging energy with the
main network, thus allowing to the microgrid, through the pro-
posed control strategy, the possibility of acting and participating
within the electrical market. The proposed functional for the
controller considers costs of use for the microgrid systems, as well
the benefit from sale of energy to the main electrical network. The
operation of the system is checked by simulating it in different
scenarios.

Index Terms—Microgrid, Energy Management, Distributed
Energy Resources, Predictive Control

I. INTRODUCTION

Microgrids appear as a structural solution to facilitate the
correct and effective implementation of Distributed Energy
Resources (DER) or distributed generation, while allowing
efficient and safe inclusion for renewable energy sources.
In this context, in the concept of microgrid introduced by
[1], which can operate in isolated mode or connected to the
electrical network, the control strategy to be used is a vital
component for the safe, effective and sustainable realization.

The control objectives to be achieved by the implemented
strategy can be summarized by what is presented in [2], [3]
and [4], as:

• Voltage and frequency control in both modes of operation.
• Satisfy demand, by coordinating the different Distributed

Energy Resources (DER) available in the microgrid,
together with the main network.

• Connection and synchronization of the microgrid with the
main network.

• Control of power flows between the microgrid and the
network.

• Optimization of operation and maintenance costs.
Since these objectives have very different characteristics and

time scales, they are addressed through a hierarchical control
structure, where each objective is tackled at an established
hierarchical level [2], [4]. This structure generally consists of
three levels: primary, secondary and tertiary.

At the primary level, the goal is to control the voltage
and frequency of the microgrid, and the circulation currents
between the different DERs has to be mitigated, since it can
cause serious inconveniences in the protection system.

At the secondary level, any steady-state voltage and fre-
quency deviation caused by the primary level is eliminated,
and also connection and synchronization with the main net-
work can be regulated here.

The third and last level is in charge of managing the power
flows between the microgrid and main network, optimizing
the operating costs associated with the microgrid.

For the first two levels, the technique called Droop Control
[2], [4] is usually applied, while for the third, one, some
heuristic [5] or fuzzy logic algorithms [6], among others, can
be used.

In this article, we propose a strategy for the last level,
consisting in the application of a Model Predictive Control
(MPC) approach [7]. As advantages of the method and fo-
cusing on the type of system to be controlled, the direct
formulation for multi-variable systems can be highlighted,
being able to consider the operational constraints, both in the
states and in the control variables, directly in the design of
controller, and taking into account external predictions of non-
manipulated inputs, such as in this case, the generation profiles
for renewable energy sources and consumption.

In addition, within the possible formulations of the MPC,
we mainly consider the Economic Model Predictive Control
(EMPC) [8] [9] [10], where the MPC stage cost is directly
a functional related to economic parameters and variables.
Therefore, the controller directly optimizes in real time, the
dynamically economic performance defined in this function.
This approach is very attractive for the system under discus-
sion, since in this framework, it can be able to consider, for
instance, operation and maintenance costs for the components
of microgrid, as well as optimizing the exchange of energy
with the main network.

The note is organized as follows: In section II the archi-
tecture and prediction model for the residential microgrid is
presented, then in Section III the optimization problem to be
solved is formulated, and in Section IV simulations are carried
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out to evaluate the behavior of the proposed controller, ending
with the conclusions drawn in Section V.

II. MICROGRID MODEL

The model of residential microgrid taken into account in this
work is shown in Figure 1. It can be identified: a renewable
energy source, consisting of an array of solar panels, the
battery bank, which constitutes the storage system, the hybrid
inverter, which performs the necessary transformations and
acts as a node or DC bus of the microgrid, and a defined
consumption for a domestic residence.

In [11], this model is described in detail. In this work only,
a brief description is provided for its subsequent use.

Figure 1. Microgrid architecture

The arrangement of solar panels is made up of 12 panels
Poly-crystalline Panel TSM-330PD14. These are connected in
a mixed way, 6 in series and these in turn in parallel, obtaining
a nominal power of 3960 W. The battery bank consists of 4
batteries MLI Ultra 12/5500 connected in series. The Table I
lists the characteristics technical of the solar panel, batteries
and hybrid inverter used.

Table I
TECHNICAL SPECIFICATIONS OF THE MICROGRID COMPONENTS

Dates Description
Panel Poly-crystalline Panel TSM-330PD14
Nominal power, Pmax 330 W
Voltage at maximum power point, Vmpp 37, 4 V
Maximum current, Impp 8, 83 A
Battery-MLI Ultra 12/5500
Nominal voltage, Vbat 12 V
Nominal capacity, Cbat 400 Ah
Useful life (cycles), Nc 3500

Inverter Ingecon Sun Storage 1 Play 3TL
Maximum power of the photovoltaic field, Ppv 6.5 kW
Voltage range of the photovoltaic field, Vpv 200− 350 V
Maximum current of the photovoltaic field, Ipv 20 A
Nominal battery voltage, Vb 48− 330 V
Maximum charge / discharge current of the batteries, Ib 50 A
Inverter efficiency, ηinv 95.5%

The linear discrete-time state space model, discretized by
the Tustin method and with a sampling period of Ts = 3600
s, is:

x(k + 1) = x(k) +
[
−7, 11e−3 6, 48e−3 0 0

]
u(k) (1)

[
1 −1 1 −1

]
u(k) +

[
1 −1

]
d(k) = 0 (2)

In this model, x(k) = SOC is the state of charge of
the battery bank, u(k) =

[
Pbd Pbc Pnp Pns

]T
are

the manipulated input variables and d(k) =
[
Pgen Pload

]T
correspond to non-manipulated input variables or disturbances.

In the vector of manipulated inputs, Pbd/Pbc are the
discharge/charge powers of the battery bank, while Pnp/Pns
represent the power purchase/sale to the main grid. On the
non-manipulated inputs, Pgen is the power generated by solar
panels and Pload corresponds to the demand of loads.

Equation (1) describes the dynamics of the state of charge
of the storage system, while (2) represents the energy balance
at the node of the microgrid. In this, the efficiency of the
inverters is considered ideal.

III. CONTROLLER FORMULATION

The proposed controller is formulated using the Economic
Model Predictive Control (EMPC) approach [8] [9] [10],
which is a formualtion that ensures the convergence and
stability of the closed loop.

The functional to be optimized considers economic criteria
associated with the performance of system to be controlled.
In this way, a mathematical expression is proposed, called the
EMPC Cost Function, to capture the objectives to be optimized
by the controller.

A. EMPC Cost Function

The EMPC functional will be made up of two terms. The
first of these, called “Economic Cost”, considers the costs
associated with the action of manipulated variables, that is, it
will take into account the cost of discharge/charge the battery
bank, as well as cost referred to the purchase of energy from
the main grid and the profit due to the sale of this.

The other term, to be introduced in Section III-A2,
“Smoothness in control actions”, penalizes sudden changes
in the manipulated variables. The objective of this term is to
preserve and maximize the useful life of the components, espe-
cially that of the power inverters. Furthermore, this condition
boosts the effective fulfillment of the energy balance at the
microgrid node.

1) Economic Cost: The objectives pursued by this cost will
be:

• To minimize the degradation of battery bank and there-
fore, to maximize the lifespan of these.

• To minimize the purchase of energy from the main
electricity grid.

• To maximize the sale of energy by the microgrid.
These are expressed mathematically, by the following func-

tion:
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Jeco(k) = c(k) · u(k) (3)

The vector c(k) considers the cost associated to the control
actions, being:

c(k) =
[
cbd cbc cnp(k) cns(k)

]
(4)

where cbd y cbc are the costs of discharge and charge of the
battery bank. These values are considered fixed throughout the
prediction horizon, being:

cbd =
Cibat

Nc · ηinv
(5)

cbc =
Cibat · ηinv

Nc
(6)

where Cibat represents the investment cost of the battery bank,
Nc is the number of life cycles and ηinv is the inverter’s
upload/download performance. The reason for considering
ηinv in the denominator for discharge and in the numerator
for charge, is because the observation point is the node of
microgrid. The investment cost considered for the acquisition
of the battery bank is Cibat = $1800000.

Also in (4), cnp(k) y cns(k) represent the costs of buying
and selling energy to the main grid. They are considered
variables during the prediction horizon, being represented by
the following expressions:

cnp(k) = p(k) · ts (7)

cns(k) = −p(k) · ts (8)

where p(k) is the price of energy expressed in $/kWh and ts
is the sampling period in h. The same price is considered for
both purchase and sale, but they are variable during the day
as indicated in Figure 2. This scenario is hypothetical, since
for the residential type consumption level, there are not price
variations with respect to the time of the day in the current
regulations in Argentina. This price configuration does exist
for large consumers (for example, industrial type), and it is
divided into three areas called peak, valley and rest, where
the peak hours goes from 18 : 00 to 23 : 00 h, the valley goes
from 23 : 00 until 05 : 00 h and the rest from 05 : 00 to
18 : 00 h.

The negative sign in (8) is due to the fact that the sale of
energy is not a cost, but rather a benefit for the management
of microgrid.

2) Smoothness in control actions: To minimize sudden
variations in control actions, the following quadratic term is
used:

J∆u(k) = ∆u(k)T ∆u(k) (9)

where ∆u(k) = u(k)− u(k− 1), is the rate of change of the
control variables.

Figure 2. Energy price

The functional of the EMPC will be the sum of both terms
presented above, multiplying each of them by a coefficient λi,
i = 1, 2, that materializes the weight of prioritization within
the functional. Also, N ∈ N indicates the prediction horizon
of the controller. Therefore, we have that the functional to be
minimized in each sampling period is:

J(k) =
N∑

k=1

λ1 · Jeco(k) + λ2 · J∆u(k) (10)

B. EMPC optimization problem

Once the EMPC functional has been defined, the optimiza-
tion problem to be solved in each sampling period by the
controller is presented:

mı́n J(k)

u
s.t. x(0) = x

x(k + 1) = Ax(k) +Bu(k) + Cd(k)

Euu(k) + Edd(k) = 0

x(k) ∈ X
u(k) ∈ U
x(N) = xs

(11)

Where the matrices, according to the model determined by
(1) and (2) are:

• A =
[
1
]

• B =
[
−7.11e−3 6.48e−3 0 0

]

• C =
[
0 0

]

• Eu =
[
1 −1 1 −1

]

• Ed =
[
1 −1

]

The decision or optimization variable of the mathematical
problem is the vector of manipulated variables u, having
to minimize the functional J(k), subject to the constraints
indicated in (11).
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The first constraint indicates the initial charge status of the
battery bank; then the two following expressions represent the
model of microgrid, and therefore its dynamics; then there are
the constraints on state and the manipulated input variables;
the last one is a terminal equality constraint, imposing that
the state at end of prediction horizon must reach the optimum
steady state that minimizes the economic cost. This last
condition guarantees stability in the control loop, as indicated
in [8].

The optimization problem (11) is solved each sampling
period, that is, in each instant the sequence of optimal actions
is obtained u∗ for the entire prediction horizon N , but due
to the receding horizon strategy, only the first element of the
obtained sequence is applied to the system u∗(k|k), discarding
the rest and re-solving the optimization problem, after having
measured the new state of the system. This gives feedback to
the open-loop problem-based formulation, giving it a certain
degree of robustness. Therefore, the EMPC control law is
implicitly given by:

uk = K(xk) = u∗(k|k) (12)

To define the set of values for the state and input constraints,
the limits and recommendations provided by the manufacturers
of equipment involved are considered.

In the model considered in this work, there is only one state,
which corresponds to the charge of the battery bank. With the
premise of maximizing the lifespan of it, the manufacturer
recommends, in order to reach 3500 life cycles, that it should
work with a depth of discharge of 80% (DOD = 80%),
indicating with this, that the state of charge must be kept
between:

20% ≤ SOC ≤ 80% (13)

The vector u(k) =
[
Pbd Pbc Pnp Pns

]T
represents

the manipulated input variables, therefore, to define the set of
constraints, each particular input is analyzed.

The first two variables correspond to the discharge and
charge of the battery bank. The manufacturer recommends
that their currents should not be greater than 120 A, but the
selected inverter, admits for their connection, a nominal current
of 50 A; therefore, considering that the nominal voltage of the
bank is 48 V, it is necessary that the powers for discharge and
charging must not exceed 2400 W. For more detail, see [11].

Concerning the constraints for the purchase of energy from
the main grid Pnp, the nominal value of the AC power of
the inverter is adopted, i.e. 3000 W, which is greater than
the consumption peaks of the predicted demand profile. These
circumstances will be discussed in the simulations carried out
in section V.

Finally, regarding the sale of energy to the main electrical
network by the microgrid Pns, as there are no regulations
regarding their participation in the electricity market, it is
considered that only a maximum 50% of Pnp can be sold,
considering this a primary and possible scenario in the future
to come.

In summary, the set of constraints for the manipulated
variables are:




0

0

0

0


 ≤




Pbd
Pbc
Pnp
Pns


 ≤




2400

2400

3000

1500


 (14)

IV. SIMULATION

In order to evaluate the behavior of the proposed controller,
a series of simulations are carried out in three different
generation scenarios.

They were carried out in Matlab 2016b, where the opti-
mization problem was solved using the open source tool for
nonlinear optimization and logarithmic differentiation CasADi
[12].

For the first simulation scenario, a prediction horizon N =
24 h is used. The cell irradiance and temperature, are obtained
from [13], to achieve the power profile generated by the
arrangement of solar panels on a sunny January (summer) day
for the city of Avellaneda, Santa Fe - Argentina. The other
parameters of the simulation are those indicated in Table II.

Table II
PARAMETERS FOR SIMULATION I

Parameter Value
Sampling period, ts 1 h
Prediction horizon, N 24 h
Economic cost weight, λ1 20
Weight of smoothness in control actions, λ2 5
Initial condition, x(0) 40%

The results of this first simulation can be seen in the Figures
3 y 4.

In Figure 3, the evolution of manipulated variables is shown,
both the power of battery bank Pbat as well as the one
exchanged with the network Pnet. Positives values of Pbat

and Pnet correspond to bank discharge Pbd and the energy
bought from the main network Pnp, while the negatives values
corresponds to the load of bank Pbc and the energy sold by the
microgrid Pns. Also, they are shown the profile of generated
power, Pgen, and the consumption of the residence Pload.

It can be seen how the EMPC decides in real time, which
is the optimal option, from the point of view of the proposed
functional. In other words, the objective embodied with the
cost of EMPC should minimize the purchase of energy from
the main network, maximize the sale and avoid successive
charges/discharges of the battery bank, in order to prevent
its premature degradation. These objectives must be achieved
satisfying at all times the imposed constraints.

It can be seen in Figure 3, how the desired objectives are
achieved: in the hours of greatest generation, the controller
decides to sell power to the grid and charge the battery bank at
certain times, that is, maximize the sale and avoid successive
charges/discharges by the storage system. Also, in the time
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zone with the highest energy cost, coinciding with the highest
consumption, the EMPC decides to use the storage system
together with the network, to meet the required consumption,
minimizing the purchase of energy from the grid.

Figure 3. Power profiles with N = 24 h, for a sunny January day

In Figure 4, the evolution of state of charge for the battery
bank is presented, complying at all times with the constraints
defined in the optimization problem.

Figure 4. Battery bank charge status with N = 24 h for a sunny January
day

For the second simulation, irradiance and cell temperature
values are considered on a cloudy July (winter) day in the same
city. The simulation parameters are indicated in the Table III.

The results obtained with these new conditions are observed
in Figures 5 and 6. It can be seen that, given the small power
generated by the panels, the demand is practically satisfied by
the main network, and in the short period of time where there
is solar radiation, the controller decides at first to charge the
batteries, to then give higher priority to the sale of energy to
the main grid, meeting the desired objectives.

Table III
PARAMETERS FOR SIMULATION II

Parameter Value
Sampling period, ts 1 h
Prediction horizon, N 24 h
Economic cost weight, λ1 20
Weight of smoothness in control actions, λ2 5
Initial condition, x(0) 35%

Figure 5. Power profiles with N = 24 h for a cloudy July day

Figure 6. Battery bank charge status with N = 24 h for a cloudy July day

For the last simulation scenario, a higher prediction horizon
was considered of 3 days. In this scenario, different seasons
and climatic conditions were considered: the first day, cor-
responds to a sunny January, the second, one, to a partially
cloudy October, while the third and last ones, to a cloudy
July.

The values of parameters used in the simulation are shown
in the Table IV.

The results are found in the Figures 7 and 8. They show
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Table IV
PARAMETERS FOR SIMULATION III

Parameter Value
Sampling period, ts 1 h
Prediction horizon, N 72 h
Economic cost weight, λ1 20
Weight of smoothness in control actions, λ2 5
Initial condition, x(0) 40%

the correct behavior of the controlled system. It can be seen
how the controller decides to load the storage system with
great emphasis in the first hours, where it has the most
solar radiation; to then use this stored energy at different
times, highlighting, as in the hours of greatest consumption,
coinciding with the highest price of energy, how the controller
decides to satisfy demand, through the joint use of the stored
energy and the electrical network.

Throughout the prediction horizon, the microgrid met the
constraints imposed on the controller formulation.

Figure 7. Power profiles for N = 72 h

V. CONCLUSIONS

In this work, an Economic Model Predictive Control
(EMPC) based control strategy was proposed for the manage-
ment of power flows in a residential microgrid. The operating
conditions considered the possibility to work connected to
the electrical network, so the energy exchanged with it is a
decision variable in the optimization problem of the EMPC.
This allows the microgrid to participate in the daily electricity
market.

A correct operation of the system can be observed in
the different simulated scenarios, achieving the objectives,
always staying within the constraints, while complying with
the energy demand requested by the loads.

For future work, it is intended to apply this strategy in
microgrids with greater complexity, other types of consump-
tion profile, with more storage systems and other renewable

Figure 8. Battery bank charge status for N = 72 h

generation sources, where the controller has more options
when making the decision, considering it, a better scenario
for taking advantage of the virtues of the proposed control
system.
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