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mass, located at a generic position, or in presence of a crack, and subjected
to an axial load, at the free end. Nonlocal Euler-Bernoulli beam theory is
used in the formulation and the governing equations of motion and the cor-
responding boundary conditions are derived using an extendend Hamilton’s
variational principle. The governing equations are solved analitically. In or-
der to show the sensitivity of the SWCNT to the values of an added mass,
or crack and the influence of the nonlocal parameter and nondimensional
crack severity coefficient on the fundamental frequencies values, some nu-
merical examples have been performed and discussed. Also, the validity and
the accuracy of the proposed analysis have been confirmed by comparing the
results with those obtained from the literature.

Keywords: non-conservative instability, nonlocal elasticity, nanosensor,
crack, variational method.

1. Introduction

Carbon nanotubes (CNTs) play a key role in a variety of engineering fields
due to their superior mechanical, physical and electronic properties ([1]-[3]).
Owing to these properties, CNTs have met applications in the emerging field
of nanoelectronics, nanosensors, nanocomposites, bio-nanocomposites and so
on ([4]-[6]). According to literature, the nanoscale of these structures suggests
an atomistic model, but this approach turns out to be very expensive. On
the other hand, although the classical continuum theories (Euler-Bernoulli,
Timoshenko, or even higher-order theories) are able to predict the behaviors
of nanostructures, it is found to be inadequate because of ignoring the small
size effects. Thus adopting the nonlocal elasticity theory, as developed by
Eringen in ([7]-[8]), is usual.
The theory of nonlocal elasticity finds general application in the area of
nanostructural study such as in nanorods, nanobeams, nanoplates, nanor-
ings, carbon nanotubes, graphenes, nanoswitches and protein microtubules.
Although initiated by the work of Eringen, the use of nonlocal elasticity
for nanostructures was applied for the first time by Peddieson et al. [9].
They employed a nonlocal elasticity theory to develop a nonlocal cantilever
Euler-Bernoulli beam model, used as an actuator in small scale systems. Fur-
ther applications of the nonlocal theory have been employed in studying the
buckling ([10]-[11]) and vibration problems, by applying Euler-Bernoulli and
Timoshenko beam theories, in CNTs ([9]-[16]).
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Recent literatures show an increased utilization of CNTs as nanomechani-
cal resonators in atomic-scale mass sensor ([17]-[18]). The nano-sized mass
sensors are based on the fact that the resonant frequency is sensitive to the
resonator and the attached mass. The change of the attached mass on the
resonator causes the resonant frequency to deviate from its original value.
The key challenge in mass detection is the quantification of variations in
the resonant frequencies due to the added masses. Recently, mass detection
based on the resonating nanomechanical tools has been subject of a growing
interest as for example in ([19]-[23]).
Although many researches of nanoscale sensors have been conducted, the
above-mentioned works are focused on the absence of axial forces. In fact,
axial force or generalized follower force arises in practical applications due
to initial stress, heat effect, end constraint, etc. ([24]-[25]). CNTs may be
subjected to the follower force when they are utilized in different applica-
tions such as atomic force microscopy [26], scanning probe microscopy [27],
nano-composites [28] and nano-pipes conveying fluid [29]. Thus, the stabil-
ity analysis of CNT with non-conservative forces is important in designing
nano-devices. In recent years, the influence of a non-conservative force on
free-vibration of CNTs has attracted attention by many reseachers, although
few papers can be found in literature regarding their structural stability. Ac-
cording to the nonlocal Euler-Bernoulli beam theory, Murmu and Pradhan
[30] have analyzed the buckling analysis of single-walled carbon nanotube
with effect of temperature change and surrounding elastic medium. Xiang et
al. [31] have studied the dynamic instability phenomenon of cantilever nan-
otubes/nanorods under a follower force. Applying the Galerkin approach,
Kazemi-Lari et al. [32] have investigated the influence of viscoelastic foun-
dation on the non-conservative instability of the cantilever CNTs under a
concentrated follower force. More recently, using the extended Hamilton’s
principle and the extended Galerkin’s method, Kazemi-Lari et al. [33] have
predicted the static and dynamic structural instability of CNTs subjected to
a distributed tangential compressive load. Also, Bahaadini and Hosseini in
[34] have investigated the nonlocal divergence and flutter instability analy-
sis of CNTs conveying fluid embedded in elastic foundation under magnetic
field. Finally, in [35] they have investigated the effects of nonlocal elasticity
and slip condition on free vibration and flutter instability analysis of visoce-
lastic cantilever CNTs conveying fluid.
Further applications of the nonlocal elasticity theory have been employed in
investigating buckling and vibrations problems in cracked CNTs. It is well
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known that the presence of cracks in a structural member, such as nanotubes
and nanobeams, introduces local flexibility and gives rise a local change in
stiffness that may have significant influence on natural frequencies and mode
shapes. With regards to the importance of the influence of crack effects
on mechanical behaviours of nanostructures and thanks to their great the-
oretical and practical interest, an increasing interest has been devoted to
the study of nanotubes with cracks ([36]-[41]). Loya et al. in [36] used the
nonlocal Euler-Bernoulli beam theory to analyze the flexural vibrations of
cracked micro- and nanobeams and to evaluate the effect of crack hardness,
the nonlocal parameter and boundary conditions on natural frequencies of
the cracked nanobeam. In their study the nanobeam is separated into two
parts and the crack is simulated by a rotational spring. Joshi et al. in
[37] have used an extended finite element method to simulate crack prop-
agation in carbon nanotubes. Applying the nonlocal Euler-Bernoulli beam
theory, Hsu et al. [38] have studied the longitudinal frequency of a cracked
nanobeam for different boundary conditions and the influence of the crack
parameter, crack location, and nonlocal parameter on the longitudinal fre-
quency have investigated. Torabi and Dastgerdi [39] have investigated the
free vibration of a cracked nanobeam modeled via nonlocal elasticity and
Timoshenko beam theory. Their cracked nanobeam model is represented by
two segments connected by a rotational spring. In [40] Hossein et al. have
studied the axial vibration of a cracked nanorod in an elastic foundation
based on nonlocal elasticity under different boundary conditions. In their
paper, the cracked nanorod is modeled as two segments connected by a lin-
ear spring which is located at the cracked section. Loghmani and Yazdi in
[41] dealt with the vibration analysis of multi cracked, stepped nanobeams
by using wave approach and have discussed the effects of crack severity, crack
and step location, mass of buckyball and small-scale parameter on natural
frequencies.
In the present paper the non-conservative instability of cantilever single-
walled carbon nanotube (SWCNT) through nonlocal theory is investigated.
The nanotube is modeled as clamped-free beam carrying a concentrated mass
M, located at a generic position, or in presence of a crack, and subjected to
an axial load p, at the free end. Nonlocal Euler-Bernoulli beam theory is
used in the formulation and the governing equations of motion and the cor-
responding boundary conditions are derived using an extendend Hamilton’s
variational principle. The governing equations are solved analytically. In
order to show the sensitivity of the SWCNT to the values of an added mass,
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or in presence of a crack, and the influence of a nonlocal parameter and the
crack severity coefficient on the fundamental frequencies values, some nu-
merical examples have been performed and discussed. Also, the validity and
the accuracy of the proposed analysis have been confirmed by comparing the
results with those obtained from the literature.

2. Nonlocal equations of motion and their formulation

Consider a cantilever nanotube with span L, cross sectional area A, sec-
ond moment of area I, Young modulus E and mass density ρ. An attached
concentrated mass is located at position z=γL, where z is the spatial coor-
dinate along the nanotube, and a non-conservative force p is applied at the
free-end of the nanotube, as shown in Figure 1.

Figure 1: A cantilever single-walled nanotube with added mass at the generic position or
in presence of crack.

According to Hamilton Principle it is possible to write:∫ t2

t1

(δT − δEt) dt +

∫ t2

t1

δWnc dt = 0 (1)

with

T =
1

2

∫ γL

0

ρA

(
∂v1(z, t)

∂t

)2

dz+
1

2

∫ L

γL

ρA

(
∂v2(z, t)

∂t

)2

dz+
1

2
M

(
∂v1(γL, t)

∂t

)2

(2)
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Et =
1

2

∫ γL

0

EI

(
∂2v1(z, t)

∂z2

)2

dz +
1

2

∫ L

γL

EI

(
∂2v2(z, t)

∂z2

)2

dz+

−
∫ L

0

(
(e0a)2 ρA

∂2v1(z, t)

∂t2

)(
∂2v1(z, t)

∂z2

)
dz

−
∫ L

γL

(
(e0a)2 ρA

∂2v2(z, t)

∂t2

)(
∂2v2(z, t)

∂z2

)
dz − 1

2

∫ γL

0

p

(
∂v1
∂z

)2

dz+

− 1

2

∫ L

γL

p

(
∂v2
∂z

)2

dz −
∫ γL

0

(
(e0a)2 p

∂2v1(z, t)

∂z2

)(
∂2v1(z, t)

∂z2

)
dz+

−
∫ L

γL

(
(e0a)2 p

∂2v2(z, t)

∂z2

)(
∂2v2(z, t)

∂z2

)
dz +

1

2
kc

(
∆
∂v(γL, t)

∂z

)2

(3)

where T denotes the kinetic energy of the nanotube subjected to the concen-
trated mass M, Et is the total potential energy, sum of different contributions:
the strain energy of the nanotube, the potential energy of the inertial force(
ρA∂2v(z,t)

∂t2

)
due to the additional displacement

(
(e0a)2 ∂2v(z,t)

∂z2
), the poten-

tial energy of the axial component of the nonconservative force and finally
the potential energy of axial force due to the nonlocal parameter.
In Eq. (3), e0 is a constant, appropriate to each material, for calibrating the
model with experimental results and other validated models: it is estimated
such that the relations of the nonlocal elasticity model could provide satisfac-
tory approximation to the atomic dispersion curves of the plane waves with
those obtained from the atomistic lattice dynamics [42]. ”a” is an internal
(e.g. lattice parameter, granular size, distance between CC bonds) charac-
teristic length of the nanostructure and kc is the crack flexibility coefficient.
Also, the work done by the transverse non-conservative axial force is consid-
ered:

δWnc = −p
∂v2(L, t)

∂z
δv2(L, t) (4)

The first variation of kinetic energy of the nanotube can be easily calcu-
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lated as:

δT =

∫ γL

0

ρA
∂v1(z, t)

∂t
δ

(
∂v1(z, t)

∂t

)
dz+∫ L

γL

ρA
∂v2(z, t)

∂t
δ

(
∂v2(z, t)

∂t

)
dz + M

∂v1(γL, t)

∂t
δ

(
∂v1(γL, t)

∂t

)
(5)

and the first variation of the potential energy is:

δEt =

∫ γL

0

EI
∂2v1(z, t)

∂z2
δ
∂2v1(z, t)

∂z2
dz −

∫ γL

0

(e0a)2 ρA
∂2v1(z, t)

∂t2
δ
∂2v1(z, t)

∂z2
dz+

−
∫ γL

0

p
∂v1(z, t)

∂z
δ
∂v1(z, t)

∂z
dz −

∫ γL

0

(
(e0a)2 p

∂2v1(z, t)

∂z2

)
δ
∂2v1(z, t)

∂z2
dz+∫ L

γL

EI
∂2v2(z, t)

∂z2
δ
∂2v2(z, t)

∂z2
dz −

∫ L

γL

(e0a)2 ρA
∂2v2(z, t)

∂t2
δ
∂2v2(z, t)

∂z2
dz+

−
∫ L

γL

p
∂v2(z, t)

∂z
δ
∂v2(z, t)

∂z
dz −

∫ L

γL

(
(e0a)2 p

∂2v2(z, t)

∂z2

)
δ
∂2v2(z, t)

∂z2
dz+

kc

(
∂v2 (γL, t)

∂z
− ∂v1 (γL, t)

∂z

)(
δ
∂v2 (γL, t)

∂z
− δ

∂v1 (γL, t)

∂z

)
(6)

Substituting Eqs (4-5) and (6) into Eq. (1), it assumes the following form:
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∫ t2

t1

[δT − δEt + δWnc] dt =∫ t2

t1

[∫ γL

0

ρA
∂v1(z, t)

∂t
δ
∂v1(z, t)

∂t
dz +

∫ L

γL

ρA
∂v2(z, t)

∂t
δ
∂v2(z, t)

∂t
dz

−
∫ γL

0

EI
∂2v1(z, t)

∂z2
δ
∂2v1(z, t)

∂z2
dz +

∫ γL

0

(e0a)2 ρA
∂2v1(z, t)

∂t2
δ
∂2v1(z, t)

∂z2
dz+∫ γL

0

p
∂v1(z, t)

∂z
δ
∂v1(z, t)

∂z
dz +

∫ γL

0

(e0a)2 p
∂2v1(z, t)

∂z2
δ
∂2v1(z, t)

∂z2
dz+

−
∫ L

γL

EI
∂2v2(z, t)

∂z2
δ
∂2v2(z, t)

∂z2
dz +

∫ L

γL

(e0a)2 ρA
∂2v2(z, t)

∂t2
δ
∂2v2(z, t)

∂z2
dz+∫ L

γL

p
∂v2(z, t)

∂z
δ
∂v2(z, t)

∂z
dz +

∫ L

γL

(e0a)2 p
∂2v2(z, t)

∂z2
δ
∂2v2(z, t)

∂z2
dz

− p
∂v2(L, t)

∂z
δv2(L, t) + M

∂v1(γL, t)

∂t
δ
∂v1(γL, t)

∂t
+

− kc

(
∂v2(γL, t)

∂z
− ∂v1(γL, t)

∂z

)(
δ
∂v2(γL, t)

∂z
− δ

∂v1(γL, t)

∂z

)]
dt (7)

Performing integration by parts (see Appendix A), Eq. (7) becomes:

∫ t2

t1

[
−
∫ γL

0

ρA
∂2v1(z, t)

∂t2
δv1(z, t)dz −

∫ L

γL

ρA
∂2v2(z, t)

∂t2
δv2(z, t)dz+∫ γL

0

(
−EI + (e0a)2 p

) ∂4v1(z, t)
∂z4

δv1(z, t)dz +

∫ L

γL

(
−EI + (e0a)2 p

) ∂4v2(z, t)
∂z4

δv2(z, t)dz+∫ γL

0

(e0a)2 ρA
∂4v1(z, t)

∂t2∂z2
δv1(z, t)dz +

∫ L

γL

(e0a)2 ρA
∂4v2(z, t)

∂t2∂z2
δv2(z, t)dz

−
∫ γL

0

p
∂2v1(z, t)

∂z2
δv1(z, t)dz −

∫ L

γL

p
∂2v2(z, t)

∂z2
δv2(z, t)dz = 0 (8)
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∫ t2

t1

([
(e0a)2 ρA

∂2v1(z, t)

∂t2
δ
∂v1(z, t)

∂z

]γL
0

+[
(e0a)2 ρA

∂2v2(z, t)

∂t2
δ
∂v2(z, t)

∂z

]L
γL

−
[
(e0a)2 ρA

∂3v1(z, t)

∂t2∂z
δv1(z, t)

]γL
0

−
[
(e0a)2 ρA

∂3v2(z, t)

∂t2∂z
δv2(z, t)

]L
γL

+

[(
−EI + (e0a)2 p

) ∂2v1(z, t)
∂z2

δ
∂v1(z, t)

∂z

]γL
0

+[(
−EI + (e0a)2 p

) ∂2v2(z, t)
∂z2

δ
∂v2(z, t)

∂z

]L
γL

−
[(
−EI + (e0a)2 p

) ∂3v1(z, t)
∂z3

δv1(z, t)

]γL
0

−
[(
−EI + (e0a)2 p

) ∂3v2(z, t)
∂z3

δv2(z, t)

]L
γL

+

[
p
∂v1(z, t)

∂z
δv1(z, t)

]γL
0

+[
p
∂v2(z, t)

∂z
δv2(z, t)

]L
γL

− p
∂v2(L, t)

∂z
δv2(L, t) − M

∂2v1(γL, t)

∂t2
δv1(γL, t)

+ kc

(
∂v2(γL, t)

∂z
− ∂v1(γL, t)

∂z

)
δ
∂v1(γL, t)

∂z
+

− kc

(
∂v2(γL, t)

∂z
− ∂v1(γL, t)

∂z

)
δ
∂v2(γL, t)

∂z
)dt = 0 (9)

From Eq. (8), the governing equations of motion for a nanotube subjected
to an axial load p and concentrated mass M, located at a generic position,
can be derived as:

EI
∂4v1(z, t)

∂z4
+ p

∂2v1(z, t)

∂z2
+ ρA

∂2v1(z, t)

∂t2
−

(e0a)2
(
ρA

∂4v1(z, t)

∂t2∂z2
+ p

∂4v1(z, t)

∂z4

)
= 0, 0 < z < γL (10)

EI
∂4v2(z, t)

∂z4
+ p

∂2v2(z, t)

∂z2
+ ρA

∂2v2(z, t)

∂t2
−

(e0a)2
(
ρA

∂4v2(z, t)

∂t2∂z2
+ p

∂4v2(z, t)

∂z4

)
= 0 γL < z < L (11)

in which v1(z,t) is the transverse displacement along γL and v2(z,t) along

9



(L-γL), respectively. It can be easily noted that the Eqs. (10-11) are entirely
coincident by those obtained according to the nonlocal theory of [8].
The general corresponding boundary conditions are:
for z=0

v1(0, t) = 0;
∂v1(0, t)

∂z
= 0 (12)

for z=γ L in the presence of mass:

v1(γL, t) = v2(γL, t)

∂v1
∂z

(γL, t) =
∂v2
∂z

(γL, t)

− (e0a)2 ρA
∂3v1(γL, t)

∂t2∂z
−
(
−EI + (e0a)2 p

) ∂3v1(γL, t)

∂z3
+

p
∂v1(γL, t)

∂z
− M

∂2v1(γL, t)

∂t2
+ (e0a)2 ρA

∂3v2(γL, t)

∂t2∂z
+(

−EI + (e0a)2 p
) ∂3v2(γL, t)

∂z3
− p

∂v2(γL, t)

∂z
= 0; (13)

− (e0a)2 ρA
∂2v1(γL, t)

∂t2
−
(
−EI + (e0a)2 p

) ∂2v1(γL, t)

∂z2
+

(e0a)2 ρA
∂2v2(γL, t)

∂t2
+
(
−EI + (e0a)2 p

) ∂2v2(γL, t)

∂z2
= 0

for z=γ L in the presence of crack:

v1(γL, t) = v2(γL, t)

− kc

(
∂v1
∂z

(γL, t) − ∂v2
∂z

(γL, t)

)
+

(e0a)2 ρA
∂2v1(γL, t)

∂t2
+
(
−EI + (e0a)2 p

) ∂2v1(γL)

∂z2
= 0
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− (e0a)2 ρA
∂3v1(γL, t)

∂t2∂z
−
(
−EI + (e0a)2 p

) ∂3v1(γL, t)

∂z3
+

p
∂v1(γL, t)

∂z
+ (e0a)2 ρA

∂3v2(γL, t)

∂t2∂z
+(

−EI (e0a)2 p
) ∂3v2(γL, t)

∂z3
− p

∂v2(γL, t)

∂z
= 0; (14)

− (e0a)2 ρA
∂2v1(γL, t)

∂t2
−
(
−EI (e0a)2 p

) ∂2v1(γL, t)

∂z2
+

(e0a)2 ρA
∂2v2(γL, t)

∂t2
+
(
−EI + (e0a)2 p

) ∂2v2(γL, t)

∂z2
= 0

and for z=L:

− (e0a)2 ρA
∂3v2(L, t)

∂t2∂z
−
(
−EI + (e0a)2 p

) ∂3v2(L, t)
∂z3

= 0;

(e0a)2 ρA
∂2v2(L, t)

∂t2
+
(
−EI + (e0a)2 p

) ∂2v2(L, t)
2

= 0 (15)

The method of variables separation can be applied, so that the solution for
Eqs (10-11) can be assumed as:

vj(z, t) = vj(z)eiωt j = 1, 2 (16)

which if inserted into the Eqs (10-11) and if the nondimensional abscissa
ζ = z

L
is introduced, the equations of motion assume the following form:

∂4v1(ζ)

∂ζ4
+

pL2

EI

∂2v1(ζ)

∂ζ2
− ω2ρAL4

EI
v1(ζ)−

(e0a)2
(
−ω

2ρAL2

EI

∂2v1(ζ)

∂ζ2
+

p

EI

∂4v1(ζ)

∂ζ4

)
= 0, 0 < ζ < γ

∂4v2(ζ)

∂ζ4
+

pL2

EI

∂2v2(ζ)

∂ζ2
− ω2ρAL4

EI
v2(ζ)−

(e0a)2
(
−ω

2ρAL2

EI

∂2v2(ζ)

∂ζ2
+

p

EI

∂4v2(ζ)

∂ζ4

)
= 0, γ < ζ < 1 (17)
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For convenience of analysis, the following nondimensional terms are also in-
troduced:

η =
(e0a)

L
; P2 =

pL2

EI
; Ω =

4

√
ω2ρAL4

EI
(18)

and if denoting:

q =
(
1 − η2P2

)
; r =

(
η2Ω4 + P2

)
(19)

Eq. (17) becomes:

q
∂4v1(ζ)

∂ζ4
+ r

∂2v1(ζ)

∂ζ2
− Ω4v1(ζ) = 0

q
∂4v2(ζ)

∂ζ4
+ r

∂2v2(ζ)

∂ζ2
− Ω4v2(ζ) = 0 (20)

and the corresponding boundary conditions turn into:

v1(0) = 0;
∂v1(0)

∂ζ
= 0 ; (21)

in the presence of mass become:

v1(γ) = v2(γ)

∂v1
∂ζ

(γ) =
∂v2
∂ζ

(γ)

r
∂v1(γ)

∂ζ
+ q

∂3v1(γ)

∂ζ3
+ Ω4Msv1(γ) − r

∂v2(γ)

∂ζ
− q

∂3v2(γ)

∂ζ3
= 0;

η2Ω4v1(γ) + q
∂2v1(γ)

∂ζ2
− η2Ω4v2(γ) − q

∂2v2(γ)

∂ζ2
= 0 (22)
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in the presence of crack become:

v1(γ) = v2(γ);

∂v1
∂ζ

(γ) − ∂v2
∂ζ

(γ) + ψ

(
q
∂2v1(γ)

∂ζ2
+ η2Ω4v1(γ)

)
= 0;

r
∂v1(γ)

∂ζ
+ q

∂3v1(γ)

∂ζ3
− r

∂v2(γ)

∂ζ
− q

∂3v2(γ)

∂ζ3
= 0

η2Ω4v1(γ) + q
∂2v1(γ)

∂ζ2
− η2Ω4v2(γ) − q

∂2v2(γ)

∂ζ2
= 0 (23)

At the right end the boundary conditions become:(
q
∂3v2(1)

∂ζ3
+ η2Ω4∂v2(1)

∂ζ

)
= 0(

q
∂2v2(1)

∂ζ2
+ η2Ω4v2(1)

)
= 0 (24)

in which

Ms =
M

ρAL
; Ψ =

EI

kcL
(25)

A general solution of the differential equations system can be expressed
as:

v1(z) = C1Cos(αζ) + C2Sin(αζ) + C3Cosh(βζ) + C4Sinh(βζ) (26)

v2(z) = C5Cos(αζ) + C6Sin(αζ) + C7Cosh(βζ) + C8Sinh(βζ) (27)

where Cj(j=1...8) are unknown arbitrary constants and with

α =

√
1

2q

(
r +

√
r2 + 4qΩ4

)
; β =

√
1

2q

(
−r +

√
r2 + 4qΩ4

)
; (28)

Since the above system of equations has a non-trivial solution, the deter-
minant of the coefficient matrix should be zero.
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3. Numerical examples: results and discussion

In this section, a comparative analysis is carried out to investigate the
influence of various parameters on the instability behaviour of a cantilever
single-walled carbon nanotube with concentrated mass M or in presence of
crack and subjected to non-conservative axial load p. In order to ensure
about the exactness of the numerical calculations and the accuracy of the
proposed analysis, the obtained results are compared with those of available
works in literature. Several comparison analyses are conducted to demon-
strate the influence of the small-scale effect, the critical load, nondimensional
attached mass and the crack severity parameter on the nondimensional fre-
quency values of single-walled nanotube. The numerical results are presented
in the form of tables and figures using the values for physical parameters of
the SWCNT displayed in Table 1.

SWCNT properties Symbol Value Unit
Density ρ 1330 Kg/m3

Radius R 0.68 10−9 m
Cross section area A 1.024 10−18 m2

Moment of inertia I 2.134 10−37 m4

Young’s modulus E 1054 109 Pa
Length L 20.7 10−9 m

Table 1: Values for physical parameters of cantilever single-walled nanotube [20].

3.1. Effect of nonlocal parameter and nondimensional critical load P.

The small length scale factor e0a plays a crucial role on the dynamic
properties of nanotubes, even if its interpretation seems still to be an open
question. Different values of nonlocal parameter e0a for CNT have been re-
ported by many researchers, for example, according to nonlocal beam theory,
the value e0 = 0.39 was given by Eringen in [7], whereas Wang and Hu [43]
proposed the value e0=0.288. On the other hand, by using the nonlocal thin
shell model and matching the theoretical buckling strains with those com-
puted from molecular simulations, Zhang et al. [44] showed that the value
of e0 is equal to 0.117. Finally, Xiang et al. in [31] have found that about
43% of reduction of the critical follower force can be realized for a nanorod
with the length of about 10 nm when the scale factor η=e0a/L reaches 0.2.
Such reduction of the critical follower force shows the significant length scale
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effect of nanomaterials on the flutter problem.
In this paper, a range of dimensionless nonlocal coefficient 0 ≤ e0 a ≤ 2.0
is used for the analysis. Effect of the nonlocal parameter, η=e0a/L, on the
natural frequencies of cantilever nanotube with attached mass M, located at
the position z = γL, is analyzed and two numerical examples have been per-
formed. The first numerical example gives a comparison between the present
results with those obtained in [31]. For different values of the nondimensional
small-scale coefficient η [0,0.01,0.02,0.1,0.2] and nondimensional critical load
factor Λ = P 2/π2 = [0, 0.5, 1, 2], the first two nondimensional frequencies
Ω1 and Ω2 have been calculated and the corresponding values have been re-
ported in Table 2. As can be easily observed, the results are coincident and
they show that with increasing the nonlocal effect, the critical load value of
non-conservative force decreases. As well-known in literature the cantilever
CNT subjected to a non-conservative force loses its stability via flutter if the
first two frequencies values are coincident, whereas the conservative system
loses its stability via divergence if the first frequency reaches to 0 when the
axial load increases.
The second numerical example deals with the numerical comparison between
the present results with those obtained by [45], in which the results have been
obtained by employing the Cell-Discretization Method (CDM). Consider the
cantilever nanotube with a concentrated mass M, at the free-end. The anal-
ysis has been performed in the presence and in the absence of the nonlocal
effect, as shown in Table 3. As can be easily observed, the results are in
excellent agreement with the results given by in [45]. In addition, from Table
3 it can be seen that if the value of nondimensional concentrated mass Ms

increases, the first nondimensional frequency value decreases, whereas when
the nonlocal effect increases the first nondimensional value increases.

3.2. Effect of nondimensional mass Ms for a fixed value of axial load (P=1)
and varying the nonlocal parameter η.

In order to illustrate the influence of the nondimensional mass Ms on the
first nondimensional frequency Ω1, in the following numerical example the
cantilever nanotube with the added mass, located at the left end so that
γ = 1, has been considered. Fixing the axial load P =1, varying the nondi-
mensional mass coefficient between 0 and 1 and assuming the peculiar case
in which Ms = 2, i.e. the added mass value is the double of the nanosensor,
the first nondimensional frequency Ω1 has been calculated. Table 4 shows
the comparison between the results given by the exact procedure, so as de-
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�  [27] Present [27] Present 
K� / (P2/S���� O� �:�

��S�� O� �:�
��S� 

0 /cr=2.0316 1.246 1.246 1.246 1.246 
0.01 0 0.1269 0.1269 4.9777 4.9777 

0.5 0.1815 0.1816 4.2882 4.2882 
1.0 0.2716 0.2716 3.5566 3.5567 
2.0 1.0026 1.0027 1.5165 1.5166 

/cr=2.0277 1.241 1.2411 1.241 1.2411 
0.02 0 0.1270 0.1270 4.9579 4.9579 

0.5 0.1812 0.1812 4.2633 4.2634 
1.0 0.2708 0.2708 3.5267 3.5268 
2.0 1.0442 1.0442 1.4329 1.4330 

/cr=2.0160 1.228 1.2350 1.228 1.2350 
0.1 0 0.1280 0.1280 4.3902 4.3902 

0.5 0.1692 0.1693 3.5555 3.5556 
1.0 0.2465 0.2466 2.6778 2.6778 

/cr=1.7015 0.892 0.8914 0.892 0.8914 
0.2 0 0.1315 0.1315 3.1713 3.1713 

0.5 0.1337 0.1337 2.0908 2.0908 
1.0 0.2015 0.2016 0.9323 0.9327 

/cr=1.1390 0.414 0.4135 0.414 0.4135 
 

Table 2: Numerical comparison between the present results with those obtained by [31].

duced in the present paper, and those obtained by Rayleigh-Ritz (R-R) and
Cell-Discretization Method (CDM) approximate methods given in [45], in
the absence and presence of nonlocal effect. From Table 4, the following
considerations can be made: a) If the concentrated mass value increases, the
natural frequency values decrease; b) if the nonlocal effect increases, the nat-
ural frequency values decrease. Also, setting the small-scale parameter equal
to η =0,0.1,0.3 and Ms = 2, the fundamental frequencies values are almost
coincident.

3.3. Critical load values Pcr varying the nonlocal coefficient η and for Ms = 0

In this subsection, the effect of nonlocal parameter on the flutter insta-
bility of cantilever nanotube is investigated and the critical load values are
calculated. Figure 2 shows the flutter frequency versus flutter load for dif-
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�� K �� K ���� K ��� 
0s Exact [35] CDM Exact [35] CDM Exact [35] CDM 
0 1.9082 1.9082 1.9081 1.9033 1.9033 1.9033 1.8610 1.8610 1.8618 

0.1 1.7575 1.7575 1.7575 1.7535 1.7535 1.7535 1.7192 1.7192 1.7197 
0.2 1.6512 1.6512 1.6511 1.64762 1.6476 1.6476 1.6169 1.6169 1.6173 
0.3 1.5705 1.5705 1.5704 1.5671 1.5671 1.5671 1.53549 1.5385 1.5388 
0.4 1.5061 1.5061 1.5061 1.5029 1.5029 1.5029 1.4757 1.4757 1.4759 
0.5 1.4531 1.4531 1.4530 1.4499 1.4499 1.4499 1.4238 1.4238 1.4240 
0.6 1.4081 1.4081 1.4081 1.4052 1.4052 1.4051 1.3798 1.3798 1.3799 
0.7 1.3694 1.3694 1.3694 1.3665 1.3665 1.3665 1.3418 1.3418 1.3419 
0.8 1.3354 1.3354 1.3354 1.3326 1.3326 1.3326 1.3085 1.3085 1.3087 
0.9 1.3053 1.3053 1.3052 1.3025 1.3025 1.3025 1.2790 1.2790 1.2791 
1.0 1.2782 1.2782 1.2782 1.2755 1.2755 1.2755 1.2525 1.2526 1.2526 
1.1 1.2538 1.2538 1.2537 1.2511 1.2511 1.2511 1.2285 1.2285 1.2286 
1.2 1.2315 1.2315 1.2315 1.2289 1.2289 1.2289 1.2066 1.2066 1.2067 
1.3 1.2111 1.2119 1.2117 1.2085 1.2085 1.2085 1.1866 1.1866 1.1866 
1.4 1.1922 1.1922 1.1922 1.1897 1.1897 1.1897 1.1681 1.1681 1.1681 
1.5 1.1748 1.1748 1.1748 1.1722 1.1722 1.1722 1.1509 1.1509 1.1510 
2 1.1030 1.1030 1.1030 1.1006 1.1007 1.1006 1.0806 1.0806 1.0806 
 
�

Table 4: The first nondimensional frequency values for different values of nonlocal coeffi-
cient η = 0, 0.1, 0.3 and of the nondimensional mass Ms and for a fixed value of P=1.
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Ms η = 0 [45] η = 0.1 [45]
0 1.8751 1.8751 1.8792 1.8792

0.1 1.7227 1.7227 1.7258 1.7258
0.2 1.6164 1.6164 1.6187 1.6187
0.3 1.6164 1.5361 1.5380 1.5380
0.4 1.4724 1.4724 1.4740 1.4740
0.5 1.4200 1.4200 1.4213 1.4213
0.6 1.3757 1.3757 1.3768 1.3768
0.7 1.3375 1.3375 1.3385 1.3385
0.8 1.3041 1.3041 1.3050 1.3050
0.9 1.2745 1.2745 1.2753 1.2753
1 1.2479 1.2479 1.2486 1.2486

Table 3: Numerical comparison between the present results with those obtained by [45].

ferent values of the nonlocal parameter η=0,0.1,0.3,0.5 and the four curves
describe the relation between the nonlocal parameter and the critical loads.
For η = 0, the results show that the critical load value, corresponding to
the higher curve, is equal to P 2

cr=20.051. This value correspond to Beck’s
column solution so as already demonstrated by Bolotin in [47]. In addition,
from Figure 2 one can deduce that the increase of the nonlocal coefficient
value involves the decrease in the critical loads values. In particular, for
η=0.1, the critical load is equal to P 2

cr=16.7854; for η=0.3, P 2
cr=7.22, and for

η=0.5, P 2
cr=3.355, respectively. As can be easily observed, the increase of the

nonlocal coefficient value results in a considerable reduction of the critical
load values and the flutter curves have a more tilted pattern.

3.4. Critical load values Pcr varying the added mass position.

In this numerical example, the influence of an added mass on the flutter
instability of the cantilever nanotube is investigated. For a nondimensional
value of the added mass equal to Ms = 1 and the nonlocal coefficient η=0.1,
in Figure 3 the flutter loads and the flutter frequency is plotted, as function
of the added mass positions, γ=0.2,0.5,1. From Figure 3, one sees that the
higher critical load value is equal to P 2

cr=20.3401, for γ=0.2. The increase
with the added mass position involves the decrease in the critical loads values:
in particular, for γ=0.5, P 2

cr=16.3054, and for γ=0.1, P 2
cr=13.7641.
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Figure 2: Flutter frequency versus flutter load for different values of nonlocal parameter,
η=0,0.1,0.2,0.3,0.5.

3.5. Effect of nonlocal coefficient and crack severity parameter

In the following numerical example the case of a simply-supported nan-
otube with crack is considered and the influence of nonlocal coefficient and
crack severity parameter on the non dimensional frequency is investigated.
The crack is located at the nondimensional distance γ=0.5 from the left end.
Also, this numerical example deals with the numerical comparison between
the present results with those obtained by Loya in [36].
Table 5 gives the changes of the first non dimensional four eigenvalues for
different values of the crack severity Ψ= [0,0.065,0.35,2] and four different
values of the nonlocal coefficient η equal to [0,0.2,0.4,0.6].

From Table 5 can be easily observed that the non dimensional frequency
values decrease with an increase of the crack severity coefficient and for a
larger small scale parameter leads to a decrease of the crack effect on the
vibration frequency. Also, as already observed by Loya in [36], due to the
simmetry of the problem, the mid-span cracked nano-beam has the second
and fourth natural frequencies independent of crack severity coefficient. Fi-
nally, as may be seen from Table 5, the first and third non dimensional
frequencies values obtained by Loya in Table 1 of [36] are smaller than with
the proposed approach. The difference between the results is due to the
presence in the proposed variational approach of the non local effect in the
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Figure 3: Flutter frequency versus flutter load for different values of added mass position
γ=0.2,0.5,1.

boundary conditions of cracked nanotube (see the second Eq. 23). In partic-
ural, as can be seen, for an increase of the nonlocal effect value the first and
third nondimesional frequency increase.

3.6. Critical loads values Pcr varying the nonlocal coefficient η and for nondi-
mensional crack severity parameter Ψ=1

In the last numerical example the case of a clamped free nanotube with
crack is considered and for the nondimensional crack severity parameter Ψ=1
the influence of nonlocal coefficient on the flutter instability is investigated.
The crack is located at γ=0.5. For a nondimensional value of the crack
severity equal to Ψ = 1, in Figure 7 the flutter loads and the flutter frequency
is plotted, as function of the nonlocal coefficient η=0.1 and η=0.3. From
Figure 7, one sees that the lower critical load value P 2

cr is equal to 4.7085,
for η=0.3; whereas for η=0.1 P 2

cr is equal to 6.7335.
Also, comparing the numerical results with those obtained for a clamped

free nanotube in absence of crack and whose values are listed in Table 2, it
can be easily observed that the influence of crack on the flutter instability
are significant. In particular, as can be noted for η=0.1, the difference of
critical load value P 2

cr for uncraked and cracked nanotubes is equal to 10.0519;
whereas for η=0.3 P 2

cr(uncracked) − P 2
cr(cracked) is equal to 2.5115.
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Table 6: The first four order frequency values for a simply-supported beam with different
nonlocal parameter η and crack-severity Ψ. Crack position is γ =0.50.
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Figure 7: Flutter frequency versus flutter load for two different values of nonlocal param-
eter η=0.1 and η=0.3 and for crack severity coefficient Ψ=1 .

4. Concluding remarks

In the present paper, the dynamic instability of cantilever nanotube sub-
jected to a non-conservative force, at the free end, and carrying an added
mass, at a generic position, or in presence of a crack, has been investigated.
In the first part of the present paper, the exact formulation of Hamilton
Principle for a SWCNT, in the presence of nonlocal effect, non-conservative
force, crack and concentrated mass is presented. Interestingly, this energy
approach gives the same boundary problem as obtained by using the geo-
metric method, given by [31]. Numerical comparisons have been performed
in order to evaluate the effect of the nonlocal coefficient, the nondimensional
crack severity parameter and nondimensional added mass. Taking into ac-
count the influence of the nonlocal parmeter, the obtained results agrees with
that observed by other authors, for the cantilever single-walled nanotube. If
considers the presence of a crack, taking into account the influence of the
nondimensional crack severity parameter, the obtained results agree with
that observed by other authors, for the simply-supported single-walled nan-
otube. From the obtained results, it is observed that the influence of crack
severity, nonlocal parameter and added mass on the vibration frequency of
nanotubes are significant and, in particular, the following considerations ap-
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ply: a) if the nonlocal effect η increases and for the constant value of the
nondimensional added mass Ms, the critical load value decreases;
b) if the nondimensional added mass Ms increases and for the constant value
of the non-conservative force, the natural frequency decreases; analogously, if
the nonlocal effect value increases the fundamental frequency value decreases.
c) if the nonlocal parameter η increases the critical load values decrease.
d) the critical load values decrease as the added mass moves toward the free
end of the nanotube.
e) the nondimensional frequency decreases with an increase of the crack sever-
ity parameter;
f) a larger small scale parameter leads to a decrease of the crack effect on
the vibration frequency.
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Appendix A - Integration by parts and boundary conditions

A series of integration by part can be conducted on the terms of Eq (7),
leading to:

∫ γL

0

[∫ t2

t1

ρA
∂v1(z, t)

∂t
δ
∂v1(z, t)

∂t
dt

]
dz =∫ γL

0

[
ρA

∂v1(z, t)

∂t
δv1(z, t)

]t2
t1

dz −
∫ γL

0

[∫ t2

t1

ρA
∂2v1(z, t)

∂t2
δv1(z, t)dt

]
dz
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∫ L

γL

[∫ t2

t1

ρA
∂v2(z, t)

∂t
δ
∂v2(z, t)

∂t
dt

]
dz =∫ γL

γL

[
ρA

∂v2(z, t)

∂t
δv2(z, t)

]t2
t1

dz −
∫ L

γL

[∫ t2

t1

ρA
∂2v2(z, t)

∂t2
δv2(z, t)dt

]
dz;

(A1)

and∫ t2

t1

M
∂v1(γL, t)

∂t
δ
∂v1(γL, t)

∂t
dt =

[
M
∂v1(γL, t)

∂t
δv1(γL, t)

]t2
t1

−
∫ t2

t1

M
∂2v2(γL, t)

∂t2
δv2(γL, t)dt;

(A2)
and ∫ t2

t1

[∫ γL

0

p
∂v1(z, t)

∂z
δ
∂v1(z, t)

∂z
dz

]
dt =∫ t2

t1

[
p
∂v1(z, t)

∂z
δv1(z, t)

]γL
0

dt −
[∫ γL

0

p
∂2v1(z, t)

∂z2
δv1(z, t)dz

]
dt;

∫ t2

t1

[∫ L

γL

p
∂v2(z, t)

∂z
δ
∂v2(z, t)

∂z
dz

]
dt =∫ t2

t1

[
p
∂v2(z, t)

∂z
δv2(z, t)

]L
γL

dt −
[∫ L

γL

p
∂2v2(z, t)

∂z2
δv2(z, t)dz

]
dt; (A3)
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and ∫ t2

t1

[∫ γL

0

(
−EI + (e0a)2 p

) ∂2v1(z, t)
∂z2

δ
∂2v1(z, t)

∂z2
dz

]
dt =∫ t2

t1

[(
−EI + (e0a)2 p

) ∂2v1(z, t)
∂z2

δ
∂v1(z, t)

∂z

]γL
0

dt−∫ t2

t1

[∫ γL

0

(
−EI + (e0a)2 p

) ∂3v1(z, t)
∂z3

δ
∂v1(z, t)

∂z
dz

]
dt =∫ t2

t1

[(
−EI + (e0a)2 p
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∂z2

δ
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]γL
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t1
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−EI + (e0a)2 p

) ∂3v1(z, t)
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δv1(z, t)

]γL
0

dt+∫ t2

t1

[∫ γL

0

(
−EI + (e0a)2 p

) ∂4v1(z, t)
∂z4

δv1(z, t)dz

]
dt;

∫ t2

t1

[∫ L

γL
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−EI + (e0a)2 p

) ∂2v2(z, t)
∂z2

δ
∂2v2(z, t)
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dz
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]L
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dz
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dt; (A4)
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and ∫ t2

t1
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