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Abstract: In this work the problem of regulating glycemia intype I diabetic patients is studied by means
of an impulsive zone model predictive control (impulsive ZMPC) based on a novel long-term glucose-
insulin model. Taking advantage of the model - which features real life properties of diabetes patients
that some other popular models do not - the proposed control ensures the stability under moderate-to-
severe disturbances. A long-term scenario - including meals - are simulated, and the results appear to be
satisfactory as long as every hyperglycemia and hypoglycemia episodes are suitably controlled.
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1. INTRODUCTION

Type 1 diabetes mellitus (T1DM) is an autoimmune disease,
affecting approximately 18 million people in the world, char-
acterized by the destruction of the pancreaticβ−cells. As a
consequence, the natural endogenous production of insulindis-
appears, thus results in a dysfunctional glycemic regulation.
T1DM was a fatal disease until the discovery of insulin in 1921.
Nowadays, the current treatment consist of a number of daily
insulin injections - depending on the measurements of glycemia
and on carbohydrate intake - or of continuous subcutaneous
insulin infusion (CSII) via a pump, with the objective of main-
taining glycemia in a safe zone (between 70 mg/dl and 120
mg/dl) (Magdelaine et al., 2015).

The germinal idea of an artificial pancreas (AP) for T1DM
patients was first envisioned 30 years ago (Doyle III, 2012).
In the last decade, Model Predictive Control (MPC) received
an increasing attention as an advanced control strategy to be
implemented in an AP device (Magni et al., 2009; Grosman
et al., 2010; Gondhalekar et al., 2014). In general, these formu-
lations use discrete-time control actions, and are based onthe
model of T1DM patient presented in (Bergman et al., 1981) and
its linealizations (Dalla Man et al., 2007; Cobelli et al., 2009,
2014). The drawback of these models, as shown in (Magdelaine
et al., 2015), is their modeling of apparent equilibria in fasting
periods, in such a way that for each value of blood glucose
(BG), a different insulin infusion rate is needed in order to
maintain a constant BG level. In (Magdelaine et al., 2015) it
is shown that in fact this is not true in real life, where patients
display only one single-insulin infusion rate, called the basal
rate, which does not depend on the value of glycemia, and
which is capable of ensuring the equilibrium for any value of
the glycemia in fasting periods.

In this note, an Impulsive Zone Model Predictive Control with
artificial variables for T1DM patients is presented. The con-
tribution is twofold. First, to exploit the anticipative benefits
of the optimizing constrained controllers, a novel long-term
glucose-insulin model is considered (Magdelaine et al., 2015).
This model has the advantage of representing the patient re-
alistically, which mainly means that it has a critically stable
equilibrium manifold (instead of a stable one). This equilib-
rium corresponds to a basal insulin injection level, and small
disturbances destabilize the system producing both, hyperand
hypoglycemia episodes, if no actions are taken.

Then, in a second stage, an Impulsive Zone Model Predictive
Controller that takes advantage of long-term forecasts that can
be done with the latter model is designed. An impulsive scheme
of the continuous-time original model is developed, which is
devoted to control the entire system by only injecting control
actions at given time instants. So, based on the design proposed
in (Rivadeneira. et al., 2015), which uses artificial equilib-
rium variables (Limon et al., 2008; Ferramosca et al., 2010),
a controller was designed to impulsively steer the glycemiato
its safety interval. The controller has an enlarged domain of
attraction, thanks to the use of artificial variables, and iten-
sures recursive feasibility and closed-loop stability. Itis worth
remarking that the use of a zone control strategy - which ensures
that no control penalization is made when the glucose is inside
the desired zone - is not a trivial fact, since every time the
glucose is in the normoglycemia zone, no matter at which point
it is, no unnecessary control action (insulin delivery) will be
taken.

To evaluate the proposed strategy, the application of the pro-
posed Impulsive Zone MPC strategy on five different T1DM
patients is presented. To this aim, a long-term scenario - includ-



ing meals - is simulated. The results appear to be satisfactory
as long as smooth variable behaviors are obtained, while hyper-
glycemia and hypoglycemia episodes are avoided.

The outline of this note is as follows. Section 2 presents the
preliminaries, while Section 3 introduces the impulsive model.
In Section 4 the proposed Zone MPC is presented, while in
Section 5, the results of thein silico trials are given. Finally,
some concluding remarks are proposed in Section 6.

2. PRELIMINARIES

According to (Magdelaine et al., 2015), we consider the follow-
ing affine continuous time model:

ẋ(t) = Ax(t) +Buu(t) +Brr(t) + E, x(0) = x0, (1)

wherex(t) = [G(t) I(t) İ(t) D(t) Ḋ(t)]′, beingG the
glycemia (mg/dl),I the plasma insulin (insulinemia) (U/l) and
D the digestion of CHO (g/dl). Furthermore,u(t) is the insulin
infusion rate (U) andr(t) is the meal delivery rate (g/min).
E is a constant term denoting the difference between the liver
endogenous glucose productionk1 and the glucose absorption
rate by the brainkb.

The model matrices are given by:
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whereksi represents the sensitivity to insulin,Tu and ku

Vi

are
respectively the time constant and static gain of the relationship
between the inputu(t) (insulin rate) and the insulinemiaI(t),
with Vi being the insulin distributed volume, andTr and kr

VB

are
respectively the time constant and static gain of the relationship
between the CHO in mealr(t) and the digestion of CHO,D(t),
with VB being the blood volume. Furthermore, the parameterθ
of the constant term is given byθ = k1 − kb.

Constraints for both, states and inputs are considered, in such
a way thatu ∈ U, x ∈ X andr ∈ R, whereU, X andR are
assumed to be polyhedrons.

The main advantages of this model is that it is an integrating
model (A has an eigenvalue at zero, which means that it is not
stable) and so it better represents the evolution of the variable
in real life diabetic patients. For instance, any equilibrium point
corresponding to the fasting state (rs = 0) is given by an
arbitrary value ofG, fixed values for the other states, and a fixed

(and unique) value of insulin,us
∆
= ub, which is known as the

basal insulin rate. These characteristics, that make the model
essentially different from other models used in the literature
(mainly the Bergman model, (Bergman et al., 1981)), allow us

to make long term predictions. This way, it is argued that every
undesirable episode can be better anticipated and corrected.

The general control objective isto maintain the glycemia
in a safety range,XTar, while keeping the other variables
fulfilling the constraints, which are mainly positive values.
An interesting point is that the hypoglycemia episodes (when
glycemia is below this safety range) is much more dangerous
than hyperglycemia episodes (when the glycemia is above this
safety range). Furthermore, the insulin infusionu is considered
as the control variable, while the carbohydrate (CHO) in meals
r is considered as a disturbance. This disturbance, however,
is neither a completely known nor a completely unknown
disturbance. In fact, in this work we assume that disturbance is
unknown, which avoids the alternative to predict or anticipate
the disturbance effect. A completely different problem arises
- mainly in the context of predictive control - if disturbances
(meals) are assumed to be (even partially) anticipated by means
of a signal entering the controller. This issue is not in the scope
of this paper, but a perspective for future research.

3. IMPULSIVE SCHEMES

In many cases it is desirable to control the glycemia by means
of insulin bolus, instead of by a continuous delivery. This is
not a limitating factor as the basal rate can be easily produced
by a sequence of frequent microboluses (every minute). If we
assume that the insulin infusionu is injected to the systemonly

at certain time instants given by τk
∆
= kT , whereT is the

fixed period, andk ∈ N, then it is possible to work under the
impulsive system framework. Formally, assume that the input
is given by

u(t) = u(kT )δ(t− kT ), t ∈ [kT, (k + 1)T ], k ∈ N, (3)

where δ(t) is a generalized function (or distribution) Dirac
delta1 , that fulfills δ(t) = ∞ for t = 0, δ(t) = 0 for t 6= 0, and

∫

∞

−∞

g(ζ)δ(ζ)dζ = g(0), (4)

for all continuous, compactly supported, functiong. This way,
the solution of (1) at each periodsT can be divided into
two parts, the first one, describing the system in the period
[kT, kT + ∆T ], and the second one describing the system in
the period(kT + ∆T, (k + 1)T ), for a positive and arbitrary
small∆:

ϕ(t;x(kT ), u, r) = eA(t−kT )x(kT ) (5)

+
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eA(t−ζ)dζE,

for t ∈ [kT, kT +∆], and

1 The Dirac delta is only an abstraction to formulate the impulsive problem.
The idea behind this concept is that quick insulin injections can be properly
approximated by impulses, if compared toT .



ϕ(t;x(kT +∆T ), u, r) = eA(t−kT )x(kT +∆T ) (6)

+

∫ (k+1)T

kT+∆T

eA(t−ζ)Brr(ζ)dζ

+
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for t ∈ (kT +∆, (k + 1)T ).

Now, if we consider the limits of this solution for∆ → 0, it
follows that

x(kT+)
∆
= lim

∆→0
ϕ(t;x(kT ), u, r) = x(kT ) +Buu(kT ), (7)

and

x(t)
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+
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for t ∈ (kT+, (k + 1)T ). This latter solution is the one
corresponding to the continuous time systemẋ(t) = Ax(t) +
Brr(t)+E, x(0) = x0. So, the hybrid system evolution can be
described as an impulsive system of the form:






ẋ(t) = Ax(t) +Brr(t) + E, x(0) = x0, t 6= τk,

x(τ+k ) = x(τk) +Buu(τk), k ∈ N,
(9)

Remark 1.An interesting point here is that theimpulsive sys-
tem has not formal equilibrium points. In fact, there are not
triplets(xi

s, u
i
s, r

i
s) fulfilling the condition:

Axi
s +Brr

i
s + E = 0, (10)

xi
s = xi

s +Buu
i
s, (no jump), (11)

because the first equation has not solution, forris = 0 (fasting
condition).

An interpretation of the latter situation is that it is not possible to
maintain the system in a given point by only applying impulsive
inputs, even when this input is null. However, as it will be
shown in the next section, it is possible to maintain the system
(switching)inside a given region. The condition for that is: (i)
to find states before and after the jump, that although different
between them, remain constant, and (ii) to ensure that the
transient state trajectories between these states remain inside
a given set.
Remark 2.We assume for simplicity that the disturbancer(t)
remains constant fort ∈ [kT, (k + 1)T ), k ∈ N; i.e., r(t) ≡
r(k) for t ∈ [kT, (k + 1)T ) (zero order hold). This means that
the continuous-time equation in (9) can be written as

ẋ(t) = Ax(t) +Brr(k) + E, t ∈ (τk, τk+1), k ∈ N,

where the starting state of the evolution is given byx(τ+k ) =
x(τk) +Buu(τk).

3.1 Underlying discrete time subsystems

According to the impulsive scheme developed in (Rivadeneira.
et al., 2015), two underlying discrete-time subsystems associ-
ated to (9) can be defined to characterize the statesx(τk) and
x(τ+k ) evolution2 :

2 The statex(τk) is denoted asx•(k), whilex(τ+
k
) is denoted asx◦(k).
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Furthermore, the input and disturbance are related byu◦(k +
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3.2 Extended equilibrium for the impulsive representation

The extended equilibrium points of the impulsive representa-
tion are characterized by the equilibrium points of theUnder-
lying Subsystems, (x•

s, u
•
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•

s) and (x◦
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in such a way that they must fulfill the conditions:
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So, the equilibrium sets corresponding to the two subsystems
are given by
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Furthermore, given thatu◦(k+ 1) = u•(k) andr◦(k) = r•(k)
by definition (andE◦ = E•), we have that at steady state
it is u•

s = u◦

s and r•s = r◦s . For simplicity, we denote the
equilibrium input and disturbance of both subsystems asu•(k)
andr•s , respectively. This means that we need to find variables
(x•

s, x
◦
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•

s, r
•

s) fulfilling
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Remark 3.An important point here is that both triplets(x•

s, u
•

s , r
•

s)
and(x◦

s, u
•

s , r
•

s) arein general different from the continuous-
time (or discrete-time) equilibrium (in particular,us = ub 6=
u•

s = u•

b ). This fact is rather intuitive, given that theimpulsive
input necessary to keep the system in an extended equilibrium
(or equilibrium orbit) is not the same to the one necessary to
keep the system in an equilibrium point by applying a continu-
ous (or piecewise constant) input signal.
Remark 4.Note that(x•

s, u
•

s , r
•

s) → (xs, us, rs) only for T →
0, whose limit represents the continuous time case.

A final condition that the equilibrium quadruplets(x•

s, x
◦

s , u
•

s, r
•

s)
must fulfill to be a feasible extended equilibrium, is that
the free response corresponding to them (the orbit) must be

feasible; i.e.,os(x•

s, u
•

s, r
•

s) ∈ X, where os(x
•

s, u
•

s, r
•

s)
∆
=

{φ(t;x•

s, u
•

s(t), r
•

s(t)), t ∈ [τk, τk+1), k ∈ N}, u•

s(t) is the im-
pulsive input andr•s(t) the constant disturbance, in a period
T , i.e., u•

s(t) = u•

sδ(t − τk) and r•s(t) = r•s , for t ∈
[τk, τk+1), k ∈ N.

In this context, we can characterize the extended equilibrium
by redefining the equilibrium setX•

s as3

3 Note that condition (12) (and (16)) is implicitly accounted for definition (17).



X
•

s

∆
= {x•

s ∈ X : ∃u•

s ∈ U, r•s = 0 such that

A•x•
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Furthermore,U•

s is a singleton for the diabetes system, i.e.,

U•

s

∆
= {u•

s} = {u•

b} 6= {ub}.

The same procedure can be followed to define the equilibrium
sets corresponding to thetarget or therapeutic window,X•Tar

s

andU•Tar
s

∆
= {u•

b}.

4. IMPULSIVE ZMPC FORMULATION

The control objective is to steer, and to maintain, the system
in the therapeutic window, avoiding significant hyper an hypo-
glycemia episodes. The therapeutic window is characterized -
for the impulsive scheme - by setsX•Tar

s andU•Tar
s while X•

s

andU•

s denote the equilibrium sets.

The proposed MPC formulation is the one described in (Ri-
vadeneira. et al., 2015), adapted to the integrating affine system
(1). The cost of the optimization problem that MPC solves on-
line is

VN (x, r,X•Tar
s ,U•Tar

s ;u, ua, xa)
∆
= Vdyn(x, r;u, ua, xa)

+ Vf (X
•Tar
s ,U•Tar

s ;ua, xa),

where Vdyn(x, r;u, ua, xa) =
∑N−1

j=0 (x(j)− xa)
T
C ′QC

(x(j)− xa) + (u(j)− ua)
T
R (u(j)− ua), with Q > 0 and

R > 0, is a term devoted to steer the system to a certainarti-
ficial open-loop equilibrium variable given by theartificial
pairs (ua, xa) ∈ U•

s × X•

s , andVf (X
•Tar
s ,UTar

s ;ua, xa) =
p
(

distCX•Tar
s

(Cxa) + distU•Tar
s

(ua)
)

, with p > 0, is a ter-
minal cost devoted to steerCxa to the whole setsCX•Tar

s and
ua to U•Tar

s , respectively. MatrixC is an output matrix that
decides which states will be controlled (we consider in this
case the first3 states, which represent the controllable part
of the system).

Note that in the latter cost, the current statex, the (possibly
unknown) predicted disturbancer = {r(0), r(1), · · · , r(N −
1)}, and the target setsX•Tar

s and U•Tar
s are optimization

parameters, whileu = {u(0), u(1), · · · , u(N−1)},ua andxa

are theoptimization variables (beingN the control horizon).
Remark 5.The latter cost is a zone-symmetric quadratic cost,
that penalizes the distance to the desired target set (zone), in a
symmetric form. Many alternatives can be analyzed to improve
this cost, in order to penalize harder the hypoglycemia episodes,
and to prevent excursions far from the zone. See (Gondhalekar
et al., 2015) for an example.

The optimization problem to be solved at timek by the MPC is
given by

PMPC(x, r,X
•Tar
s ,U•Tar

s ):

min
u,ua,xa

VN (x, r,X•Tar
s ,U•Tar

s ;u, ua, xa)

s.t.
x(0) = x,
x(j + 1) = A•x(j)+B•

uu(j)+B
•

r r(j)+E
•, j ∈ I0:N−1

x(j) ∈ X, u(j) ∈ U, j ∈ I0:N−1

x(N) = xa,
xa ∈ X

•

s, ua ∈ U
•

s.

The constraintx(N) = xa is the terminal constraint that forces
the terminal state - at the end of control horizonN - to reach the
artificial equilibrium statexa. Furthermore, the last constraint
forces the artificial variable pair(ua, xa) to be inX•

s×U•

s, and it
is equivalent to force the pair(ua, xa) to fulfill the equilibrium
conditionxa = A•xa + B•ua. This means that the state at the
end of the horizon is only forced to be any feasible equilibrium
state.

Once the ProblemPMPC(x, r,X
•Tar
s ,U•Tar

s ) is solved, the
(optimal) solution is denoted as(u0, u0

a, x
0
a), while the op-

timal cost function is given byV 0
N (x, r,X•Tar

s ,U•Tar
s )

∆
=

VN (x, r,X•Tar
s ,U•Tar

s ;u0, u0
a, x

0
a). The control law, derived

from the application of areceding horizon control policy
(RHC), is given byκMPC(x, r,X

•Tar
s ,UTar

s ) = u0(0;x),
whereu0(0;x) is the first element of the solution sequence
u
0(x). The domain of attraction of the closed loop,X•

N , is given
by the controllable set inN steps to theentire equilibrium set
X•

s .
Remark 6.In this work, for brevity, we consider only the
(worst) case in whichr is unknown for the MPC, and so,
r = 0, which means that no information is passed to the MPC
regarding the meals.

5. IN SILICO: NUMERICAL RESULTS

The impulsive ZMPC controller is tested to regulate glycemia
using the T1DM patient model described above, together with
the constraints and the target window. The simulation horizon is
settled in 50 h. This horizon is larger than the one used in other
works (Gondhalekar et al., 2014; Grosman et al., 2010; Doyle
III, 2012), since the used linear model is able to reproduce
accurately the behaviors for long-time intervals. In spiteof
the simplicity of the model, this is an advantage when control
strategies are designed.

Five patients are considered as in (Magdelaine et al., 2015).
According to their parameters, some information can be col-
lected for the future tuning of the MPC controller. The gain
and settling time of the response of each patient to the insulin
injection and food intake are calculated, beingGu, STu, Gr,
andSTr, respectively, and shown in Table 1.

Table 1. Insulin - Glycemia - Food intake response
parameters

Patient Gu STu(h)(≈ 6Ti) Gr STr (h)

IF2 10.69 13 2.4 19
IF3 17.2 9 2 5
LR 81.53 7 4.9 4
IF9 44.46 7 7 8
BE 9.87 6 2.7 4

Note that only Patient IF2 hasSTu smaller thanSTr (signifi-
cantly smaller in fact). This fact makes this patient very easy to
be controlled (as it will be shown next), since clearly, the food
effect can be quickly compensated by the insulin injection.For
the other patients, the limitations for a good closed-loop per-
formance are harder, because the food effect is faster than the
insulin one. However, it should be noted that these limitation
(together with the input and state limits) represents limitation
of the system itself, and not of the controller.

The state and input constraints are given byX = {x : [0 0 −
0.1 0 − 0.1]T � x � [500 .5 0.1 1 0.1]T } andU = {u :



0 ≤ u ≤ 30}, respectively. The state target window should
be decided by the treating physician. In the simulation below
it is defined byXT = {x : [80 0 − 0.1 0 − 0.1]T �
x � [100 0.2 0.05 0.5 0.05]T }. It is clear that, if the glycemia
remains most of the time within the boundaries ofXT , then the
insulin therapy is satisfactory. The time period was selected to
beT = 15 (min) (in many cases it could be modified with good
results). In general, this period should be selected according the
speed of the response of the system (to the insulin and food).
This is so because the controller can inject insulin only at the
period timeskT , k ∈ N. If a disturbance enters the system
at time, for instance,t = kT + ∆, with ∆ << T , then the
controller must wait for almostT minutes to compensate it. In
this context, and given the time responses, patient IF2 can be
almost perfectly controlled withT = 60 min - if only meals are
considered as a disturbances - while patient IF3 cannot.

Thecontrol/prediction horizon N should be large enough to
account for the entire insulin effect(given that overdoses are
hard to compensate, because of its positiveness). So, according
to the insulin response settling time, the control/prediction
horizon (which is the number of periods considered for the
predictions) is selected in these simulations to beN ≈ STu×60

T
,

which is only apractical rule . Note however that, as it is
usual in MPC, the use of larger horizonsN needs a high
computational effort. The MPC parameters are selected to be:
Q = 500; R = 1; p = 500000. A detailed analysis for
the selection of these parameters, according to the patient
parameters, still needs to be done.

The therapeutic windows (target zone) for the glycemia values
is selected to be[80 − 100], which is a zone strictly inside
thenormoglycemiazone of[60 − 140]. This is so to improve
the performance, since the controller makes no distinction
between points inside the zone, and so, it tends to maintain
the glycemia at the boundary of the therapeutic window (not
at a middle point) that is closer to the current value. If a
disturbance pushes the system above the zone, the controller
only steers the system back to the upper bound of the zone.
As a result, any disturbance in the same direction will produce
a transitory evolution that can take the glycemia far from the
upper bound. So selecting the bounds of the target zone inside
the normoglycemia zone could be a good practice.

The simulated meal schedule is the one shown in (Magdelaine
et al., 2015). Notice that the meals/disturbances enter thesys-
tem at arbitrary times (in minutes), and the MPC controller only
“sees” its effect at the next time period. The results - for three
of the patients simulated - can be seen in Figures 1-6. Note
that the meals enter the system as a pulse ofT = 15 min
of duration; so, the amount of CHO of each meal should be
computed as the value on the right hand side scale of Figures
1, 3 and 5, multiplied by15. As it can be seen, the glycemia
evolutions is significantly better than the one obtained by the
manual injection of insulin bolus.

6. CONCLUSIONS

The contributions of the paper are in two-folds: an Impulsive
Zone MPC controller is designed based on a new impulsive
affine model that accurately describes the Type I diabetic pa-
tient. The main attributes of the model (in contrast with other
popular ones) that make it suitable for the proposed MPC are:
i) It shows a non-stable equilibrium region (integrating be-
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Figure 1. IF2 patient. Glycemia evolution (blue line) and meals
(red line).
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Figure 2. IF2 patient. Insulinemia evolution (blue line) and
Bolus (red line).
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Figure 3. IF3 patient. Glycemia evolution (blue line) and meals
(red line).

havior), uniquely characterized by a set of glucose levels and
fixed value of insulin injection. This allows to get a reliable
description of the true T1DM patient, mainly from the point
of view of the anticipative characteristics of MPC controllers.
In fact, anticipating an eventual unstable behavior allowsthe
controller to take preventive action faster. ii) It is a long-term
model, and so the well-known anticipative benefits of predictive
strategies is much better exploited. This way, eventual hyper
and hypo glycemia episodes that may happen in the future can
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Figure 6. BE patient. Insulinemia evolution (blue line) and
Bolus (red line).

be predicted - and avoided - faster by means of a smooth insulin
delivery. iii) It is an affine model, and so, no approximationis
needed for the impulsive representation. Opposite to otherMPC
strategies, which needs a permanent insulin injection (zero-

order hold), here the insulin is delivered by boluses, whichcan
prevent insulin overdoses.
The main features of this new MPC controller are: i) The use
of artificial variables produces a large domain of attraction.
This means that disturbances that steer the system far from the
desired equilibrium target can also be controlled. ii) It works
by zones in such a way that no control penalization is made
when the glucose is inside the desired zone. This is not a trivial
achievement, since every time the glucose is in the zone, no
matter in which point it is, no unnecessary control action (in-
sulin delivery) will be taken. iii) Although the selection of the
main impulsive ZMPC parameters may be not trivial, it allows
a variety of closed-loop behaviors.
Although the proposal shows promising preliminary resultsthat
come from the formulation itself, they must still be tested in
more realistic scenarios. The first step is to make a comparison
with other available models (i.e., Bergman linearized model,
(Bergman et al., 1981)) under MPC schemes. This way, con-
clusion can be drawn about the performance obtained with both
approaches and how it is impacted by the choice of the model.

REFERENCES

Bergman, R.N., Phillips, L.S., and Cobelli, C. (1981). Physiologic evaluation
of factors controlling glucose tolerance in man: measurement of insulin
sensitivity and beta-cell glucose sensitivity from the response to intravenous
glucose.Journal of Clinical Investigation, 68(6), 1456–1467.

Cobelli, C., Dalla Man, C., Pedersen, M.G., Bertoldo, A., and Toffolo, G.
(2014). Advancing our understanding of the glucose system via modeling:
A perspective.IEEE Transactions on Biomedical Engineering, 61(5), 1577–
1592.

Cobelli, C., Dalla Man, C., Sparacino, G., Magni, L., Nicolao, G.D., and
Kovatchev, B.P. (2009). Diabetes: models, signals, and control. IEEE
reviews in biomedical engineering, 2, 54–96.

Dalla Man, C., Rizza, R.A., and Cobelli, C. (2007). Meal simulation model of
the glucose-insulin system.IEEE Transactions on Biomedical Engineering,
54(10), 1740–1749.

Doyle III, F.J. (2012). Zone model predictive control of an artificial pancreas.
In Proceedings of the 10th World Congress on Intelligent Control and
Automation,Beijing, China.
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