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Abstract: In this work the problem of regulating glycemiaype | diabetic patients is studied by means
of an impulsive zone model predictive control (impulsive W) based on a novel long-term glucose-
insulin model. Taking advantage of the model - which feaguesl life properties of diabetes patients
that some other popular models do not - the proposed comignires the stability under moderate-to-
severe disturbances. A long-term scenario - including sreate simulated, and the results appear to be
satisfactory as long as every hyperglycemia and hypoglicepisodes are suitably controlled.

Keywords:Type | diabetes model, zone model predictive control, irepel systems.

1. INTRODUCTION In this note, an Impulsive Zone Model Predictive Controlhwit
artificial variables for T1LDM patients is presented. The-con

Type 1 diabetes mellitus (T1DM) is an autoimmune diseaséjbution is twofold. First, to exploit the anticipative hefits
affecting approximately 18 million people in the world, cha of the optimizing constrained controllers, a novel long¥te
acterized by the destruction of the pancreatiecells. As a glucose-insulin model is considered (Magdelaine et afL520
consequence, the natural endogenous production of irdishin This model has the advantage of representing the patient re-
appears, thus results in a dysfunctional glycemic regaiati alistically, which mainly means that it has a critically st
T1DM was a fatal disease until the discovery of insulin in1.92 equilibrium manifold (instead of a stable one). This edpili
Nowadays, the current treatment consist of a number of daitium corresponds to a basal insulin injection level, andlsma
insulin injections - depending on the measurements of giyae disturbances destabilize the system producing both, ramper
and on carbohydrate intake - or of continuous subcutaneohgpoglycemia episodes, if no actions are taken.
insulin infusion (CSII) via a pump, with the objective of mai

ﬁlg;]/lolnlg(ﬁ/ll);%%g;:ir:g gt 2?1‘(925(1)2)(9 (between 70 mg/di and 1 ontroller that takes advantage of long-term forecastsdiua

" ' be done with the latter model is designed. An impulsive sehem
The germinal idea of an artificial pancreas (AP) for T1DMof the continuous-time original model is developed, whish i
patients was first envisioned 30 years ago (Doyle lll, 2012}§levoted to control the entire system by only injecting caintr
In the last decade, Model Predictive Control (MPC) receivedctions at given time instants. So, based on the design gedpo
an increasing attention as an advanced control strategg to in (Rivadeneira. et al., 2015), which uses artificial edpmili
implemented in an AP device (Magni et al., 2009; Grosmarium variables (Limon et al., 2008; Ferramosca et al., 2010)
et al., 2010; Gondhalekar et al., 2014). In general, thesadfe a controller was designed to impulsively steer the glyceimia
lations use discrete-time control actions, and are basdtien its safety interval. The controller has an enlarged doméin o
model of TLDM patient presented in (Bergman et al., 1981) arattraction, thanks to the use of artificial variables, andrit
its linealizations (Dalla Man et al., 2007; Cobelli et alg0®, sures recursive feasibility and closed-loop stabilitys levorth
2014). The drawback of these models, as shown in (Magdelairemarking that the use of a zone control strategy - whichressu
et al., 2015), is their modeling of apparent equilibria istfag  that no control penalization is made when the glucose islénsi
periods, in such a way that for each value of blood glucoghe desired zone - is not a trivial fact, since every time the
(BG), a different insulin infusion rate is needed in order t@lucose is in the normoglycemia zone, no matter at whichtpoin
maintain a constant BG level. In (Magdelaine et al., 2015) it is, no unnecessary control action (insulin delivery)Ivaié
is shown that in fact this is not true in real life, where patse taken.
display only one single-insulin infusion rate, called tresél
rate, which does not depend on the value of glycemia, al
which is capable of ensuring the equilibrium for any value o
the glycemia in fasting periods.

en, in a second stage, an Impulsive Zone Model Predictive

r;rc? evaluate the proposed strategy, the application of the pr
Posed Impulsive Zone MPC strategy on five different TLDM
patients is presented. To this aim, a long-term scenaridudh



ing meals - is simulated. The results appear to be satisfactdo make long term predictions. This way, it is argued thatyve
as long as smooth variable behaviors are obtained, whilerhypundesirable episode can be better anticipated and cadrecte

glycemia and hypoglycemia episodes are avoided. The general control objective i® maintain the glycemia

The outline of this note is as follows. Section 2 presents thia a safety range, X7, while keeping the other variables
preliminaries, while Section 3 introduces the impulsivedelo fulfilling the constraints, which are mainly positive values.

In Section 4 the proposed Zone MPC is presented, while iin interesting point is that the hypoglycemia episodes (whe
Section 5, the results of tha silico trials are given. Finally, glycemia is below this safety range) is much more dangerous

some concluding remarks are proposed in Section 6. than hyperglycemia episodes (when the glycemia is aboge thi
safety range). Furthermore, the insulin infusiois considered
2 PRELIMINARIES as the control variable, while the carbohydrate (CHO) inlsea

r is considered as a disturbance. This disturbance, however,
is neither a completely known nor a completely unknown
disturbance. In fact, in this work we assume that disturbasc
unknown, which avoids the alternative to predict or antitip
the disturbance effect. A completely different problensesi

@(t) = Ax(t) + Byu(t) + Byr(t) + E, x(0) =x0, (1) - mainly in the context of predictive control - if disturbarsc

B . < . (meals) are assumed to be (even partially) anticipated lanme

wherex_(t) = [G(t) 1(t) I(t). D@ .D(t)] ' bemgG the of a signal entering the controller. This issue is not in teEpe
glycemia (mg/dl),l the plasma insulin (insulinemia) (U/l) and of this paper. but a perspective for future research
D the digestion of CHO (g/dl). Furthermore(t) is the insulin paper, persp '
infusion rate (U) and-(¢) is the meal delivery rate (g/min).
E is a constant term denoting the difference between the liver 3. IMPULSIVE SCHEMES
endogenous glucose productibnand the glucose absorption

rate by the brairk. In many cases it is desirable to control the glycemia by means
The model matrices are given by: of insulin bolus, instead of by a continuous delivery. TlEs i
not a limitating factor as the basal rate can be easily preduc
by a sequence of frequent microboluses (every minute). If we

According to (Magdelaine et al., 2015), we consider theof@!l
ing affine continuous time model:

0 —ksi O 1 0 AL e
0 0 1 0 0 0 assume that the insulin infusiens injected to the systenly
at certain time instants given by, = kT, whereT is the
0 212 0 0 ]? in ti i i b 2k h is th
A= T2 T, , By, = “2 , fixed period, andk € N, then it is possible to work under the
0 0 0 0 1 Vigu impulsive system framework. Formally, assume that thetinpu
1 2 is given by
0 0 0 T, 0
0 0 u(t) = uw(kT)o(t — kT), t € [kT,(k+1)T], k€N, (3)
8 0 where 6(t) is a generalized function (or distribution) Dirac
B, = 0 , E=10/{, (2) deltal, that fulfills §(t) = oo fort = 0, 6(¢) = 0 for ¢ # 0, and
0
Ky
- 0 00
ViT? [ a0 = 900, @

wherek,; represents the sensitivity to insuli#, and k“ are ) ) )
respectively the time constant and static gain of the miahlp for all continuous, compactly supported, functigriThis way,

between the inpui(t) (insulin rate) and the insulinemig(t), ~the solution of (1) at each periods can be divided into.
with V; being the insulin distributed volume, affd and% are two parts, the first one, describing the system in the period

respectively the time constant and static gain of the aaiatiip [KT, KT + AT], and the second one describing the system in
between the CHO in mealt) and the digestion of CHQ)(¢), ;ﬁaﬁ)&rpd(kT + AT, (k+1)T), for a positive and arbitrary
with V5 being the blood volume. Furthermore, the paraméter '

of the constant term is given y= k; — k.

i _ _ . o(t; x(kT),u,r) = eA(t*kT)x(kT) (5)
Constraints for both, states and inputs are consideredidn s KT+LAT
away thatu € U, z € X andr € R, wherell, X andXR are / At-0p §5(C — kT)d
assumed to be polyhedrons. * k ¢ wu(6)ole ¢

T
The main advantages of this model is that it is an integrating i /kT+AT Al=0p r(¢)d¢
model (A has an eigenvalue at zero, which means that it is not oT ’ "
stable) and so it better represents the evolution of thelkri kKT+AT
in real life diabetic patients. For instance, any equilibripoint + / A= qcE,
corresponding to the fasting state, (= 0) is given by an kT

arbitrary value of7, fixed values forthe other states, and a fixedgy ¢ < [kT, kT + Al, and

(and unique) value of msullrug = uy, Which is known as the

basal insulin rate. These characteristics, that make th#eMo 1 The pirac deita is only an abstraction to formulate the impelgiroblem.
essentially different from other models used in the lit@mt The idea behind this concept is that quick insulin injectian be properly
(mainly the Bergman model, (Bergman et al., 1981)), allow uspproximated by impulses, if comparedfo




o(t; 2(kT 4+ AT), u,r) = e *D g (kT + AT) (6) a® (k+1)=A%2* (k) + Biu® (k)+ Brr® (k) + E°, °(0) = (10),
(k+1)T z°(k+1)=A°z°(k)+Byu°(k)+ B r°(k)+ E°, z°(0) = a:(TJ),
+ / A= B,r(¢)d¢
k

T+AT whereA® = A° £ A4 = ¢AT, B* = ¢ATB,, BS = B,.
(k+1)T Furthermore, the input and disturbance are related ¥ +
+/ eA(tic)dgE ° o . ] o A
KT+ AT ’ l)T: u® (k) = u(r), r A(k)T: r*(k) = r(k),andE® = E° =
fort € (kT + A, (k+1)7T). [, €4%dCE, Bp = B = [ eA%d(B,.

Now, if we consider the limits of this solution fak — 0,1t 3.2 Extended equilibrium for the impulsive representation
follows that
A The extended equilibrium points of the impulsive repregent
2(kT) = lim o(t;2(KT), u,r) = @(KT) + Byu(kT), (7)  tion are characterized by the equilibrium points of teder-
lying Subsystems (z2,u2,r?) and (22, u?,r?), respectively,

and in such a way that thé-y must fulfill the conditions:
ANRE : + _ At +

(k+1)T (k+1)T o_ jo0_.0 o, 0 0,.0 o
+/ eA(t_C)Brr(C)dC +/ eA(t_C)d(E, zg = A%z + Bug + Birg + E°.
KT+ KT+ R .
for t € (KT, (k + 1)T). This latter solution is the one :roe, the equilibrium sets corresponding to the two subsystem
; / : . given by
corresponding to the continuous time syste() = Ax(t) +
B,r(t)+ E, z(0) = zq. So, the hybrid system evolution can be

(] A L] L] L]
described as an impulsive system of the form: Xe={af e X Fuf eUr =0 (12)
® () + Bur®) 4 E, 5(0) . such thatd®*z?® + Blu? + BPre: + E* = 0},
z(t) = Az(t)+ Byr(t)+ E, z(0) =xq, t # 71,
N ° T XE{aleX:TueUrt=0 (13)
x(Tk ) = x(’rk‘) + Buu(Tk)7 k e N? SUCh thamoxo —|—BOUO + BOT'O _|_EO — 0}
s u-s 'S )
Remark 1.An interesting point here is that thepulsive sys- el ey _ . e oA oy _ g0
tem has not formal equilibrium points. In fact, there are not WS =A{ud = (i}, W= {udh = {ui} (14)
triplets (7, us, ) fulfilling the condition: Furthermore, given that° (k + 1) = u*(k) andr®(k) = r* (k)
; ; by definition (andE° = E*®), we have that at steady state
Az + Byrg + E=0, (10) itis u® = uS andr® = r°. For simplicity, we denote the

2t =2 + Byu', (nojump)  (11) equilibrium input and disturbance of both subsystems®4%)

because the first equation has not solution;foe= 0 (fasting ?;.d Z:S"’ r;a.s ee;t;\lﬁ:h/inghls means that we need to find variables

condition). s TsrUsyTs

Aninterpretation of the latter situation is that it is nosgible to s =A%l + Biug + Birl + E°, (15)

maintain the system in a given point by only applying imptgsi ° — A°2° 4 B°4® + B°r® + E°. (16)

inputs, even when this input is null. However, as it will be 5 vos "o

shown in the next section, it is possible to maintain theesyst

(switching)inside a given region. The condition for that is: (i) ©. : . S : )

to find states before and after the jump, that although eiffer UMe (Or discrete-time) equilibrium (in particular, = u, #
+ = up). This fact is rather intuitive, given that thepulsive

between them, remain constant, and (ii) to ensure that thie — A N
transient state trajectories between these states remsidei Input necessary to_ke_ep the system in an extended equilibrium
a given set (or equilibrium orbit) is not the same to the one necessary to

keep the system in an equilibrium point by applying a contin
Remark 2.We assume for simplicity that the disturbande) ousrzor pieiewisel constg#;)lin;)uut sFi)gAal. Y appiying nd

remains constant far € [kT, (k + 1)T), k € N; i.e., r(t) = . o
r(k) for t € [kT, (k + 1)T) (zero order hold). This means thatRerTf‘rk 4I._N(_)te that(z?, “shrs) — (@5, us, 75) Only for T —
the continuous-time equation in (9) can be written as 0, whose limit represents the continuous time case.

Remark 3.An important point here is that both triplets?, u?, r?)

and(z?,u?,re) arein general different from the continuous-

EREN

Afinal condition that the equilibrium quadrupléts?, =2, u?,r?)

S s LR}

#(t) = Az(t) + Byr(k) + B, t € (T, Tk+1), kK €N, must fulfill to be afeasible extended equilibrium is that
where the starting state of the evolution is givemt{y,j) = the free response corresponding to them (the orbit) must be
T (7k) + Buu(Tk). feasible; i.e.,0,(x2, us,r?) € X, whereo,(z%,us,r?) 2

. . . {p(t; 22, ul(t),r2(t),t € [Tk, k1), k € N}, u2(t) is the im-
3.1 Underlying discrete time subsystems pulsive input and-*(¢) the constant disturbance, in a period

According to the impulsive scheme developed in (Rivadeneir[T’ €., 1;5(12 ET\T ugd(t — m) andri(t) = r3, fort €
et al., 2015), two underlying discrete-time subsystemeass [7*» Tk+1)> :

ated to (9) can be defined to characterize the states) and  |n this context, we can characterize the extended equiibri
z(r;") evolution? : by redefining the equilibrium séf? as?

2 The stater(ry) is denoted as® (k), while :Jc(rlj) is denoted ag° (k). 3 Note that condition (12) (and (16)) is implicitly accounted definition (17).



X3 = {z5 € X : Fu} € U,r; = 0 such that
A*xS+Blusl+Brri+E® =0, os(zs,ul,rs) € X} (17)

The constraint:(N) = z, is the terminal constraint that forces
the terminal state - at the end of control horiZgn to reach the
artificial equilibrium stater,,. Furthermore, the last constraint

Furthermore Il is a singleton for the diabetes system, i.e.forces the artificial variable pai,, z, ) to be inX3 xUs, and it

U 2 {ul) = {ug} # {w).

is equivalent to force the pafi,, ) to fulfill the equilibrium
conditionz, = A®x, + B*u,. This means that the state at the

The same procedure can be followed to define the equilibriuand of the horizon is only forced to be any feasible equilitri

sets corresponding to ti@rget or therapeutic window, X87"
andUusTer £ {ug}.

4. IMPULSIVE ZMPC FORMULATION

The control objective is to steer, and to maintain, the sgste
in the therapeutic window, avoiding significant hyper andwp
glycemia episodes. The therapeutic window is characirize

for the impulsive scheme - by setg”*" andU2T*" while X*
andU? denote the equilibrium sets.

state.

Once the ProblenPy,pc(x,r, X7 UsTe") is solved, the
(optimal) solution is denoted a&1®, u?, %), while the op-

y Yarta

timal cost function is given by (x,r, XeTer usTar) 2
Vi (z,r, eTar yeTar; u® 42 2%). The control law, derived
from the application of aeceding horizon control policy
(RHC), is given byk pc(x,r, XTI UTar)y = 40(0;2),
whereu®(0; z) is the first element of the solution sequence
u’(z). The domain of attraction of the closed lo6{,, is given

by the controllable set itV steps to thentire equilibrium set

The proposed MPC formulation is the one described in (RiXs.

vadeneira. et al., 2015), adapted to the integrating affisem

Remark 6.In this work, for brevity, we consider only the

(1). The cost of the optimization problem that MPC solves ongworst) case in whiche is unknown for the MPC, and so,

lineis

VN(.%', r, x;Tarv u;Tar; u, Ug, xa) é den(l‘, ru, ug, -ra)

+ Vf(x;TaT7 u;Tar; Uq, 1'11)1
where Vi (2,130, u0,70) = 300" (2()) — 2a)" C'QC
(2(5) — z4) + (u(j) — ua)” R (u(j) — uq), With Q > 0 and
R > 0, is a term devoted to steer the system to a ceddin
ficial open-loop equilibrium variable given by theartificial
pairs (uq,z,) € U x X2, and Vy(XeTor Ular;u,, z,) =
P (distcx;Tm(C:ca) + distyerar (ua)), with p > 0, is a ter-
minal cost devoted to steétzr, to the whole set€’X27" and
u, to UtTer, respectively. MatrixC' is an output matrix that
decides which states will be controlledi€ consider in this

case the first3 states, which represent the controllable part
of the systen).

Note that in the latter cost, the current statethe (possibly
unknown) predicted disturbanee= {r(0),r(1),--- ,r(N —
1)}, and the target set¥*”*" and Us?*" are optimization
parameters whileu = {u(0), u(1),-- ,u(N—-1)}, u, andzx,
are theoptimization variables (being NV the control horizon).

Remark 5.The latter cost is a zone-symmetric quadratic cost,

that penalizes the distance to the desired target set (zore)

symmetric form. Many alternatives can be analyzed to imgrov

this cost, in order to penalize harder the hypoglycemiaogigis,

and to prevent excursions far from the zone. See (Gondhaleka

et al., 2015) for an example.

The optimization problem to be solved at tirady the MPC is
given by

Tar 7(eTar.
Prypo(x,r, X350, USHT):

: oTar oTar,
min VN(I’,I',:X:S 7us 7ua Ua,l'a)

s.t.
z(0) =z,
z(j +1) = Az (j)+Bou(i+Brr()+E®, j € lo.n-1
l'(j)Ex, u(j)€u7 jeHO:Nfl
z(N) = zq,
ZTq € XS, u, € US.

r = 0, which means that no information is passed to the MPC
regarding the meals.

5. IN SILICO: NUMERICAL RESULTS

The impulsive ZMPC controller is tested to regulate glycemi
using the T1DM patient model described above, together with
the constraints and the target window. The simulation loorig
settled in 50 h. This horizon is larger than the one used iaroth
works (Gondhalekar et al., 2014; Grosman et al., 2010; Doyle
lll, 2012), since the used linear model is able to reproduce
accurately the behaviors for long-time intervals. In spife
the simplicity of the model, this is an advantage when cdntro
strategies are designed.

Five patients are considered as in (Magdelaine et al., 2015)
According to their parameters, some information can be col-
lected for the future tuning of the MPC controller. The gain
and settling time of the response of each patient to theimsul
injection and food intake are calculated, beiflg, ST, G,
andST,, respectively, and shown in Table 1.

Table 1. Insulin - Glycemia - Food intake response
parameters

[ Patient] G. [ STu(h)(=6T:) [ Gr [ ST-(h) ]
IF2 [ 10.69 13 24] 19
IF3 [ 17.2 9 2 5
LR | 8153 7 4.9 4
IF9 | 44.46 7 7 8
BE | 9.87 6 2.7 4

Note that only Patient IF2 haST,, smaller thanST.,. (signifi-
cantly smaller in fact). This fact makes this patient vergyeim

be controlled (as it will be shown next), since clearly, thed
effect can be quickly compensated by the insulin injectieor.
the other patients, the limitations for a good closed-loep p
formance are harder, because the food effect is faster bean t
insulin one. However, it should be noted that these linatati
(together with the input and state limits) represents Atigh

of the system itself, and not of the controller.

The state and input constraints are giverdby= {z : [0 0 —
010 —0.1]7 <2z < [500.50.110.1]7} andU = {u :



0 < w < 30}, respectively. The state target window shc ] v m—— 150 110
be decided by the treating physician. In the simulation

it is defined byX” = {z : 800 — 010 - 0.1]7 < \
x < [100 0.2 0.05 0.5 0.05]7'}. It is clear that, if the glycem| 200-\ o T ——— 175
remains most of the time within the boundariesXdf, then the ~ — ~ Lower bound = 80 mg/d! 100
insulin therapy is satisfactory. The time period was seltt comoled ghycema
beT = 15 (min) (in many cases it could be modified with gc

results). In general, this period should be selected aoupttie
speed of the response of the system (to the insulin and 1
This is so because the controller can inject insulin onlyha 100 - 1
period timeskT, k € N. If a disturbance enters the syst | ________ | | {25
at time, for instancet = kT + A, with A << T, then the Hypoghycemia zoni " 20
controller must wait for almosf’ minutes to compensate it. o- s | W
this context, and given the time responses, patient IF2 e e - 1zem H“’H 0
almost perfectly controlled witli' = 60 min - if only meals ar o 5 10 15 20 25 30 35 40 45 50
considered as a disturbances - while patient IF3 cannot. Time (h)

128 125

150 -

CHO (9)

Normz%lycemia zone

Glycemia (mg/dl)

Thecontrol/prediction horizon N should be large enough to Figure 1. IF2 patient. Glycemia evolution (blue line) andatse
account for the entire insulin effect(given that overdoses are (red line).

hard to compensate, because of its positiveness). So,dieg ~~
to the insulin response settling time, the control/preolit
horizon (which is the number of periods considered for
predictions) is selected in these simulations td\be: 27460 °l
which is only apractical rule. Note however that, as it
usual in MPC, the use of larger horizod$ needs a hig
computational effort. The MPC parameters are selected:
Q = 500; R = 1; p = 500000. A detailed analysis fc
the selection of these parameters, according to the p
parameters, still needs to be done.

3
1
610

insulin injection (U/h)
Injected insulin (U)

The therapeutic windows (target zone) for the glycemiaas 9
is selected to bé80 — 100], which is a zone strictly insic O e 15 20 25 30 35 a0 a5 =0
the normoglycemia zone of[60 — 140]. This is so to improv. Time (h)

the performance, since the controller makes no distinction
between points inside the zone, and so, it tends to maintaiidy
the glycemia at the boundary of the therapeutic window (not

at a middle point) that is closer to the current value.

re 2. IF2 patient. Insulinemia evolution (blue line)dan
Bolus (red line).

710

disturbance pushes the system above the zone, the cor Hyperglycemia zone 14
only steers the system back to the upper bound of the teor /\ .
As a result, any disturbance in the same direction will poa | A 18
a transitory evolution that can take the glycemia far fror o ————mmm e e et
upper bound. So selecting the bounds of the target zonee Normoglycemia zone 1 \A / \ . 8

\ 6

the normoglycemia zone could be a good practice.

CHO (g)

The simulated meal schedule is the one shown in (Magdt

et al., 2015). Notice that the meals/disturbances entesyth

tem at arbitrary times (in minutes), and the MPC controltdy

“sees” its effect at the next time period. The results - foet |

of the patients simulated - can be seen in Figures 1-6. 8 Typogiycemiazone =TT [T T 7T B B

that the meals enter the system as a puls@ of 15 min "15" I |15 ,| | ﬂ “‘5 IH
0 5 10 15

"\ WA

~
100- \ o/ NN \VA NS

Glycemia (mg/dl)

of duration; so, the amount of CHO of each meal shoul
computed as the value on the right hand side scale of Fi
1, 3 and 5, multiplied byi5. As it can be seen, the glycerima

evolutions is significantly better than the one obtainedH® t rigyre 3. IF3 patient. Glycemia evolution (blue line) andatse
manual injection of insulin bolus. (red line).

20 25 30 35 40 45 50
Time (h)

havior), uniquely characterized by a set of glucose levets a
6. CONCLUSIONS fixed value of insulin injection. This allows to get a reliabl
description of the true T1DM patient, mainly from the point
The contributions of the paper are in two-folds: an Impusiv of view of the anticipative characteristics of MPC conteod.
Zone MPC controller is designed based on a new impulsiva fact, anticipating an eventual unstable behavior alltines
affine model that accurately describes the Type | diabetic paontroller to take preventive action faster. ii) It is a let@gm
tient. The main attributes of the model (in contrast withesth model, and so the well-known anticipative benefits of priagic
popular ones) that make it suitable for the proposed MPC arstrategies is much better exploited. This way, eventuakhyp
i) It shows a non-stable equilibrium region (integrating beand hypo glycemia episodes that may happen in the future can



order hold), here the insulin is delivered by boluses, witciah
6 2107 18 prevent insulin overdoses.
The main features of this new MPC controller are: i) The use
st {15 of artificial variables produces a large domain of attractio
nsulinemia This means that disturbances that steer the system far frem t
desired equilibrium target can also be controlled. ii) Itrko
by zones in such a way that no control penalization is made
when the glucose is inside the desired zone. This is notialtriv
achievement, since every time the glucose is in the zone, no
matter in which point it is, no unnecessary control action (i
15 sulin delivery) will be taken. iii) Although the selectiori the
. ] main impulsive ZMPC parameters may be not trivial, it allows
L L } ﬂ Tr T a variety of closed-loop behawors.' ' o
9, I " I Tr Although the proposal shows promising preliminary resthigs
5 %0 35 40 45 50 come from the formulation itself, they must still be tested i
more realistic scenarios. The first step is to make a congraris
with other available models (i.e., Bergman linearized nhode
(Bergman et al., 1981)) under MPC schemes. This way, con-
clusion can be drawn about the performance obtained with bot
approaches and how it is impacted by the choice of the model.
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