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Abstract 
 

Biodiesel is generally manufactured by transesterification, obtaining glycerol as a by-product. The transesterification of 
methyl stearate selectively produced monoglycerides, for glycerol valuation. Mixed oxides containing lithium catalysed 
the reaction. The purpose of this work was to develop and compare mathematical models obtained through artificial neural 
networks (ANN), capable for characterising the relationship between the mole percent conversion of methyl stearate and 
the yield of the products mono-, di- and triglycerides. The lowest mean squared error (MSE), the highest correlation 
coefficient (R), similarity in the evolution of validation and simulation errors and absence of data overlearning were 
considered to select the best model. Three ANNs with backpropagation structures were compared. They evidenced high 
correspondence between the estimated product yield values and the interpolated experimental ones. The ANN containing 
35 neurons with sigmoid transfer function in the hidden layer and a linear neuron in the output one was the simplest. 
Consequently, the 5, 15 and 60 neurons were also explored in the hidden layer. The ANN structured with an intermediate 
number of neurons (35) achieved the most adequate MSE, considering mono- and diglyceride products (0.011193, 
0.000489). The development of these models contributes to the dynamic estimation of the process. 
 
Keywords: Artificial Neural Network; Monoglycerides; Yield;  
____________________________________________________________________________________________ 

 
1. Introduction 
 
The use of renewable energy sources is being proposed as an 
important way of development, due to the environmental 
benefits involved. Thus, there is growing interest in obtaining 
biofuels [1]. In this context, biodiesel has gained significant 
attention as a non-toxic, biodegradable and renewable 
alternative to petroleum-based fuels. This biofuel is usually 
manufactured by transesterification of oils with methanol or 
ethanol, obtaining glycerol as a by-product [2]. 
 The increase in biodiesel production is generating a 
glycerol surplus. Accordingly, it is desirable to convert this 
low-cost secondary product into value-added chemicals or 
materials. The synthesis of monoglycerides (MG) by 
transesterification of fatty acid methyl esters is an attractive 
option to revalue glycerol. MG are emulsifiers widely used in 
food and pharmaceutical industries. They improve the long-
term stability of food emulsions and facilitate the 
displacement of protein from oil surfaces [3]. The 
transesterification reaction can be catalysed by solid bases 
such as mixed oxides derived from layered double hydroxides 
(LDH) modified with metal ions [4, 5].  
 LDH are a group of materials that have attracted great 
scientific and industrial interest due to the possibility of 
customized nanodesign, control of accessibility to active 

sites, and a wide range of applications. At present, many 
structural, textural and compositional modifications of these 
materials are known, which allows a fine adjustment and 
therefore, the control of catalytic reactivity [6-7]. Lithium has 
positioned itself as one of the catalysts in a wide range of 
applications. One of its possible uses is as a catalyst with basic 
properties, incorporated in solid materials [8].  
 Current industrial processes for MG production, in the 
presence of inorganic catalysts at high temperatures (>200 
°C), reach a selectivity around 50%. This reaction is known 
as glycerolysis and produces a mixture of MG and 
diglycerides (DG), and sometimes triglycerides (TG). MG are 
the most important of them because they contribute to the 
emulsifying property of the obtained mixture product. For this 
reason, their highest yield was sought. Thus, the possibility of 
estimating MG yield is significant in the chemical process. 
However, many of the technologies offered still need further 
development to make them cost-effective and operationally 
feasible for incorporation into biorefineries [9, 2].   
 Since more than three million tons of glycerol are 
expected to be introduced on the market in the immediate 
future [10] as a consequence of the biodiesel industry, the 
possibility of having a mathematical model to improve the 
MG obtaining process is of great interest. 
 Artificial neural networks (ANN) are powerful 
mathematical tools used to model and simulate different 
processes of non-linear characteristics. They can estimate the 
practical relationships between the independent variables 
(input) of the process and the dependent ones (output), using 
data which were obtained experimentally. There is no 
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criterion that can be applied to its constitution [11]. However, 
there are ANN architectures with more appropriate 
characteristics according to the problem to be solved. 
 The ANN backpropagation algorithm is based on the least 
squares error calculation and uses an associated error gradient 
function, used to update the weights of the connections 
between neurons, as shown in Eq. 1: 
 
wij (t+1) = wij (t) - ɳ ∂E/(∂wij )                                  (1)  
 
 Where wij represents the weights of the connections 
between the neurons j (of the hidden layer) and i (of the output 
layer); t, the time and ɳ, the learning rate. The gradient is 
obtained from the generalized delta rule. It modifies the 
weights in order to locate the global minimum on the error 
surface in weight space. A parameter called momentum 
adjusts the network to ignore the minimum local values on the 
surface [12]. 
 Both the learning rate ɳ and the momentum coefficient are 
optimized heuristically in relation to the number of neurons 
in the hidden layer [13]. The training ends when a specific 
objective is achieved, according to the operator pre-
established criteria or when the response is closer to the 
desired one, that is, the minimum error is reached. Once the 
network is trained, the application continues with its 
validation. This is the ability to give satisfactory answers to 
inputs that the system has never seen in its training phase [12]. 
This procedure allows the estimation of the model 
generalization capacity. 
 A preliminary simulation to evaluate the generalization 
capacity of the model is executed. This process has no effects 
on training but provides an independent approach to the 
performance of the network. The complexity of the networks 
can reduce their capacity for generalization (overlearning). It 
is possible that an increasing number of neurons in the hidden 
layer also increase the mean squared error (MSE) [14]. In this 
situation, if the validation MSE increases while the training 
MSE decreases, an ANN overlearning may occur. 
 The application of ANNs in science and engineering is 
increasing rapidly; they have been used to model and predict 
biodiesel characteristics and production processes [15, 16]. 
Chakraborty and Sahu [17] employed ANN for modelling the 
transesterification process of biodiesel synthesis from waste 
goat tallow. Rocabruno-Valdés et al. [18] presented models 
based on ANN to predict the density, dynamic viscosity, and 
cetane number of biodiesel. Moradi et al. [19] studied the 
transesterification of soybean oil to biodiesel using KOH in 
different process conditions and applied ANN to estimate the 
biodiesel yield. 
 The purpose of this work is to develop and evaluate 
different ANN structures in order to characterise the 
relationship between the mole percent conversion of the 
methyl stearate reagent and the yield of the obtained products. 
In the first phase, three different ANN structures were 
evaluated. One of them was selected to value its performance, 
modifying the number of neurons in its hidden level. In this 
way, the impact produced by the different number of hidden 
neurons in the selected model was analysed. 
 
 
2. Experimental  
 
2.1. Catalyst synthesis 
The LDH consist of sheets of Mg-Al hydroxides and a third 
metal cation that, depending on its charge, replaces Mg or Al. 

There are also charge compensating anions located in the 
interlayer completing the characteristic structure.  
 They have the general formula [M(II)1-x 
M(III)x(OH)2]x+(An-

x/n).m H2O, where M(II) and M(III) 
represent the di- and trivalent positive ions and An-, the 
negative ones. The Mg and Al layer structure was modified. 
The theoretical molar ratio, (M2++M1+):M3+, was 3:1. The 
LDH were synthesized with the addition of Li1+ as a third 
metal. The incorporation of Li was carried out replacing 15% 
of Mg moles. The synthesis consisted of the co-precipitation 
method. Two solutions were prepared, one containing the 
nitrates of Mg, Al and Li and the other, Na2CO3. Both 
solutions were dropped slowly at a constant rate of 60 mL h-1 
to obtain the desired structure. A third solution of NaOH was 
added to keep the pH constant at the value of 10 ± 0.2. When 
the drip was finished, the system continued stirring for 4 h and 
then it kept aging for 8 h. Finally, the resulting precipitate was 
washed with distilled water until reaching a pH = 7. The 
purpose of the distilled water wash was to extract all the ions 
that are not part of the structure. The obtained solid was dried 
at 90 °C for 12 h. The corresponding mixed oxides were 
obtained by thermal decomposition of LDH at 450 °C for 9 h.  
 
2.2. Process description 
The transesterification reaction was performed in a batch 
reactor at 220 °C. A stream of nitrogen was circulated to 
remove the methanol generated, which was recovered by 
condensation. A glycerol/methyl stearate molar ratio of 6:1 
was employed. The catalyst (3 wt%) was added. The reaction 
samples were taken every 30 min for 7 h. 
 The reaction products were identified and quantified by 
gas chromatography using Perkin Elmer Clarus 500 
equipment with flame ionization detector. Quantification was 
carried out using the standards 1-steoryl-rac-glycerol (Sigma, 
>99% GC), Glyceryl 1,3-distearate (Sigma, >99% GC) and 
Glyceryl tristearate (Sigma, ≥99% GC). Silylated samples of 
products and reactants with a known amount of tricaprin 
(Glyceryl tridecanoate, Sigma, >99% GC), added as an 
internal standard, were analysed.  
 The relative response factors were also calculated for a 
quick follow-up of the conversion. In this way, the mole 
percents of stearate conversion and selectivity of the products 
MG, DG and TG were obtained. The yield was calculated as 
the multiplication between reactant conversion and the 
selectivity of each product. 
 The synthesis method and the characterization of the 
catalysts, as well as a preliminary catalytic testing in the 
transesterification reaction, have been exhaustively discussed 
in a previous publication [20]. 
 
2.3. Model development 
Three ANN backpropagation models were proposed, ANN1, 
ANN2 and ANN3 (Fig. 1, a-c). The first one (ANN1, Fig. 1-
a) consisted of 35 sigmoid neurons in the hidden layer 
followed by a linear layer. The second one (ANN2, Fig. 1-b) 
was composed of a cascade structure with 25 neurons in the 
hidden layer and an output layer, both with sigmoid transfer 
function. The third model (ANN3, Fig. 1-c), in contrast with 
the previous ones, was composed of two hidden layers of 25 
and 10 neurons respectively. The first layer was structured 
with a sigmoid transfer function and the second, with radial 
basis one. As in ANN1, the transfer function for the output 
layer was linear. 
 The structure of the employed transfer function influences 
the neural network learning rate. The sigmoid transfer 
function (Fig. 2-a, Eq. 2) used in the hidden layers is 
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continuous and derivable. This allows ANN to adapt to the 
non-linearity of the process [13]. The radial basis function is 
Gaussian and also continuous, which provides adaptation 
characteristics different to those proposed by the sigmoid 
function (Fig. 2-b, Eq. 3). The linear transfer function allows 
the simulation without discontinuities [11] (Fig. 2-c, Eq. 4). 
 

 
Fig. 1. Scheme of the artificial neural networks: (a) ANN1, (b) ANN2 
and (c) ANN3. 
 
 

f (x)= !
!"	$%&

                                  (2) 
 
f (x)=a	e)*	+                                      (3) 
 
f (x)= a x                                     (4) 

 

 
Fig. 2. Transfer functions: (a) sigmoidal, (b) radial basis, (c) linear. 
 
 The input matrix of the ANNs was composed of the mole 
percent conversion of methyl stearate, plus first and second 
derivatives (3x420 elements). The output included the mole 
percent yield, corresponding to the production of MG, DG. 
These data constitute three matrices of 1x420 elements. All 
these values correspond to the process and are not shown in 
this work. 
 The experimental data were taken at 30 min intervals. 
They were interpolated applying differentiable curves defined 
in portions by means of polynomials of a lower order (splines) 
to obtain a continuous trend in the 7 h study period. The 
interpolation method was chosen to provide the model with 
the ability to determine the parameter values that were not 
obtained experimentally. Due to the non-linearity of the 
process, the first and second derivatives of the mole percent 
conversion were incorporated as training information of the 
ANNs. This allowed a fast convergence in the training phase.  
 The training application divided the input and output 
matrix into three parts, 70% was used for network training, 
15% for validating, and the remaining percentage for 
evaluating its generalization capacity. The first and second 

derivatives of the mole percent conversion were a substantial 
contribution for the network convergence to an acceptable 
error. The performance of the ANN models were measured 
by MSE (Eq. 5) and correlation coefficient (R) between the 
network estimated values and the experimental ones. The 
similarity of the validation and test errors and the inexistence 
of overlearning were also considered. 
 
MSE =!

,
∑ (Y01
2
03! - Y0)2   (5) 

 
 Where p is the number of training patterns; Y, the 
estimated values and Yt, the experimental ones.  
 According to the analysis of the indexes for the proposed 
neuronal structures (mentioned above and analysed in the 
results and discussion section), ANN1 (Fig. 1-a) was selected 
for evaluation. Its configuration was 3-35-1 (3 inputs, 35 
neurons at hidden layer and 1 output). In order to find the 
optimum number of neurons in the hidden layer, four different 
3-x-1-architectures (x increases from 5 to 60, including the 35 
provided in the original ANN1 structure) were evaluated. The 
same evaluation criteria used for the preliminary ANN 
analysis were applied. 
 
 
3. Results and discussion  
 
Figs. 3 and 4 compare experimental performance with the one 
estimated by the three proposed neural models for MG (Fig. 
3, a-c) and DG (Fig. 4, a-c). TG models were avoided because 
of their low mole percent yield. As can be seen, the estimated 
values have a very good approximation in relation to the 
interpolated experimental ones for MG and DG. The R values 
for each network are summarized in Tab. 1.  

 
Fig. 3. Correlation between the experimental and estimated values of the 
models: (a) ANN1, (b) ANN2 and (c) ANN3 for the validation data of 
MG product. 
 
Table 1. R values for different ANN architectures. 
Network R 

MG DG 
ANN1 0.99999 0.99770 
ANN2 0.99961 0.99948 
ANN3 0.99999 0.99983 
 
 For MG it was observed that ANN1 and ANN3 had better 
performance (Fig. 3, a-c). For DG, instead, the models did not 
have the same precision as MG. However, the best response 
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is corresponded to ANN2 and ANN3 (Fig. 4, a-c). This may 
be a consequence of the model structures; ANN1 and ANN3 
have 35 neurons in the hidden layer in comparison with 
ANN2, which includes 25. In general, by increasing the 
number of neurons in the hidden layer, it is possible to 
improve the approach capability [14]. 
 

 
Fig. 4. Correlation between the experimental and estimated values of 
the models: (a) ANN1, (b) ANN2 and (c) ANN3 for the validation data 
of DG product. 
 
 In the case of MG, the most important product in 
comparison with DG, all the proposed ANNs had similar 
performance. It was observed that the increment in 
complexity does not lead to substantial improvements in the 
approach (Tab. 1). So, the simplest neural structure, ANN1 
(configuration 3-35-1, Fig. 1-a), was selected [9, 11, 15]. 
Consequently, it was chosen for evaluation, modifying the 
number of neurons in its hidden level. 
 Four different ANN 3-x-1-architectures (x: 5, 15, 35 and 
60 neurons) were considered. Fig. 5 and 6 show the evolution 
of the MSE during the training, validation and testing of the 
ANNs in relation to the number of validation checks for MG 
and DG, respectively. It was verified that the evolution of the 
validation and simulation errors was similar in all the cases, 
differing in the number of required iterations and the final 
error reached.  

 
Fig. 5. Evolution of MSE during training, validation and testing of ANN1 
with (a) 5 neurons, (b) 15 neurons, (c) 35 neurons and (d) 60 neurons in 
the hidden layer for MG. 

 

 
Fig. 6. Evolution of MSE during training, validation and testing of 
ANN1 with (a) 5 neurons, (b) 15 neurons, (c) 35 neurons and (d) 60 
neurons in the hidden layer for DG. 
 
 Tab. 2 displays the MSE and R values reached, 
corresponding to the experimental data and the estimated ones 
of the evaluated models for MG and DG. These errors indicate 
the fitting rate of the ANNs. Fig. 7 shows the evolution of 
MSE according to the number of neurons in their hidden 
layers (5, 15, 35 and 60), during the ANN testing for MG and 
DG. It can be seen that the MSE and R values generated by 
changing the number of neurons in the hidden layer produced 
acceptable results with respect to the experimental ones (Tab. 
2). In general, for both products a decrease in MSE is 
observed when the number of neurons increases. This 
behaviour is also reflected when comparing R values. While 
the number of neurons increases, R values rise too. 
 
Table 2. MSE and R values for different numbers of neurons 
of the ANN1 
ANN                    MG                   DG 

MSE R MSE R 
3-5-1 0.443736 0.999422 0.384768 0.994108 
3-15-1 0.392565 0.999503 0.027687 0.999464 
3-35-1 0.011193 0.999977 0.000489 0.999990 
3-60-1 0.005524 0.999989 0.002319 0.999952 
 

 
Fig. 7. MSE trend according to the number of neurons in the hidden 
layer for MG and DG products. 
 
 In particular, it was verified that the errors achieved by 
ANNs composed of 35 and 60 neurons in the hidden layer 
were similar to each other and smaller than those of 5 and 15 
neurons for MG (Tab. 2, Fig. 7). It was observed that the 
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smallest error occurred in the network composed of 60 
neurons in the hidden layer (0.005524). The MSE observed in 
the 35 neuron network was 0.011193.  
 Moreover, according to Tab. 2, in all cases the MSE 
values for DG were lower than those for MG. The best value 
for DG was obtained for 35 neurons. In this case, MSE and R 
values between the experimental and estimated responses 
were 0.000489 and 0.999990, respectively.  
 Although none of the networks proposed for MG (Fig. 5, 
a-d) or DG (Fig. 6, a-d) showed overlearning in the training 
phase, when the number of neurons in the hidden layer 
increases, the MSE could also rise [14]. Consequently, if there 
are two ANNs with similar estimation capacity, the simplest 
one is desirable [12]. From the current evaluation and 
considering that MG is the product of interest in the reaction, 
the ANN model composed of 35 neurons is accepted as the 
best option for representing the relationship between the 
inputs and outputs of the system. 
 The criterion used for the selection of the number of 
hidden neurons is the same as that assumed by Abdul Rahman 
et al. [11] and Moradi et al. [16]. They concluded that the 
ANN backpropagation model that showed the best 
performance to explain the relationship between the input and 
output variables of the reactions studied in their respective 
works included an intermediate number of neurons in the 
hidden layer. 
 
 
4. Conclusions 
 
In this work, different ANN backpropagation structures were 
designed and evaluated by comparing their performances 

using the correlation coefficient (R) and MSE to select the 
best model. All of them could successfully reproduce the 
relationship between the mole percent of the reagent 
conversion, methyl stearate, and the yield of the products MG 
and DG.  Mixed oxides derived from layered double 
hydroxides (LDH) containing lithium were used as catalyst. 
However, the most suitable network was a two-layer structure 
with 35 neurons in the sigmoidal hidden layer and a linear 
neuron in the output layer.  
In addition, the impact produced by different numbers of 
neurons (5, 15, 35 and 60) in the hidden layer was analysed 
for the selected ANN. It was found that the best accuracy was 
related to the 3-35-1 final model.  
It can be affirmed that ANN models successfully represent the 
reaction carried out, which allows a good estimation of the 
non-linearity of the process. Therefore, it is possible to use 
this methodology to obtain mathematical models of these 
experiments in the simulation phase. The development of 
these models is of great interest since they contribute to the 
dynamic estimation of the process. 
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