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This paper deals with the problem of optimally planning the production, inventory and distribution of 

products transported via multi-compartment vehicles. It assumes that facilities in the distribution net- 

work have preservation-storing devices to inventory products on-site. Production activities may be per- 

formed on any time period of the planning horizon. Due to problem complexity, a two-stage solution 

strategy that first generates a set of multi-period distribution routes through a column generation ap- 

proach is proposed. The routes are used for feeding the MILP formulation of the problem. Several valid 

inequalities are proposed for expediting the MILP resolution. The aim is to maximize the profit obtained 

by the company that fabricates and distributes the products. This profit is computed as the total income 

from sales minus the sum of all costs incurred along the planning horizon. The effectiveness of the two- 

stage solution strategy is tested on an extensive set of realistic instances. 
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. Introduction 

Due to the increasing pressure for reducing costs, inventories

nd ecological footprint, and in order to remain competitive in the

lobal marketplace, Enterprise-wide Optimization (EWO) has be-

ome a major goal of the chemical industry ( Grossmann, 2012 ).

he global scale of chemical and food industries force to better

ntegrate production, inventory and distribution decisions because

f fluctuating demands and seasonal imbalances of raw materials

nd products flows. The consolidation of production, inventory and

istribution efforts is a challenging problem for companies trying

o optimize their supply chain ( Bard and Nananukul, 2010 ). In the

ownside of a typical supply chain, each individual process is of-

en planned and optimized using predetermined decisions from

pstream activities. For example, a production planner first takes

he production lot-sizing decisions in order to minimize production

nd inventory costs and later such production decisions become

he inputs of the distribution planning problem. This sequential ap-

roach may greatly reduce the operating margins obtained by the

ompany with regards to an integrated logistics management. 

The production routing problem (PRP) is an operational plan-

ing application that simultaneously optimizes production, inven-

ory, routing and delivering decisions. In the PRP problem, the
∗ Corresponding author. 
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lanner must decide how much to produce at each time period.

he production activities have associated fixed setup costs and

ariable production costs related to the produced quantity. In addi-

ion, the lot size cannot exceed the production capacity. The prod-

ct deliveries from the plant to retailers are fulfilled by a fleet

f capacitated vehicles considering both fixed and variable routing

osts. In addition, if products are stored at the plant and retailers,

nventory holding costs are incurred. The PRP problem has a prac-

ical relevance for the Vendor Managed Inventory (VMI) approach,

n which the supplier, acting as the central decision maker, moni-

ors the inventory on retailers in order to plan the replenishment

olicy ( Adulyasak et al., 2015 ). In a traditional relationship, where

ustomers call their orders, large inefficiencies may occur due to

he timing of customers’ orders leading to mismatches between

roducts availability and products demand, which force the pro-

ucer to incur in high inventory and distribution costs. The VMI

pproach allows smoothing demand variability and reducing in-

entory holding and distribution costs. Achieving cost savings for

MI partnerships, however, is not an easy task, particularly with

 large number and variety of customers ( Savelsbergh and Song,

008 ). According to such a partnership, customer inventories are

eplenished by the vendor using monitoring and forecasting in a

ay that each product-inventory on each customer must be re-

lenished so as to never fall under its safety level. The supplier

anages inventory on customers, deciding when and how much

o deliver to each one of them. Customers benefit from higher ser-

ice levels and greater product availability because vendors can use

https://doi.org/10.1016/j.compchemeng.2019.106690
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2019.106690&domain=pdf
mailto:rdondo@santafe-conicet.gov.ar
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Nomenclature 

Subscripts 

c vehicle’s compartments 

i,i’,j suppliers or customers 

k products 

r routes 

t,t’ periods of the planning horizon 

Sets 

A minimum-distance arcs interconnecting suppliers 

and customers 

C vehicle’s compartments 

I − customers 

I + production plants 

Inc it subset of incompatible customers for customer i 

during period t 

K products 

R feasible routes 

R’ feasible routes generated by the CG approach 

Suc it subset of customers that can be successor of cus- 

tomer i during period t 

T periods of the planning horizon 

Binary variables 

S ij variable sequencing locations i and j along a route 

X r variable determining if route r is selected 

Y i variable determining that site i belongs to the route 

designed by the routes-generator problem 

Y itk variable denoting the production of product k on 

plant i during period t 

Z it variable computing if customer/plant i is visited 

during period t 

W kcr variable determining if product k is allocated on 

compartment c of route r 

Continuous variables 

�ikrt quantity of product k picked(delivered) from(to) site 

i by route r during period t 

C_ cost of route generated by the pricing problem 

D_ overall travelled distance 

D i distance travelled to reach customer i 

I itk inventory of product k stored on plant/customer i 

during period t 

I rk in-route inventory of product k carried by the vehi- 

cle traveling route r 

P itk quantity of product k made on plant i during period 

t 

T i time spent to reach customer i 

T_ overall traveling time 

Parameters 

a irt binary parameter stating that route r visits location 

i during period t 

a it earliest service time at customer i during period t 

b it latest service time at node i during period t 

c ik unit production cost of product k on plant i 

c r cost of route r 

c in v 
ik 

cost of inventorying a unit of product k on customer 

(plant) i 

c in −route 
k 

in-route inventory cost of product k 

c 
setup 

ik 
setup cost for production of product k on plant i 

cf fixed vehicle utilization cost 

cv travel-time unit-cost 

d ij distance between locations i and j 
o  
dem itk demand of product k by customer i during the pe- 

riod t 

i 0 
ik 

initial inventory of product k on location i 

i min 
ik 

minimum inventory level or safety-stock for product 

k on location i 

i max 
ik 

maximum storage capacity of product k on location 

i 

M D , M T upper bounds for travelled distance (D) and travel 

time (T) variables 

p k selling price of a unit of product k 

p min 
ik 

minimum production capacity of product k at plant 

i 

p max 
ik 

maximum production capacity of product k at plant 

i 

q c cargo capacity of compartment c 

speed average speed of trucks 

st i service time on customer (plant) i 

t max maximum vehicle routing time 

t 0 earliest start time of the route 

t ij traveling time between locations i and j 

time t end time of period t 

v i minimum number of visits necessary to satisfy the 

demand of customer i 

v + minimum number of necessary routes 

vi r index value of route r 

y min 
k 

minimum number of startups necessary to satisfy 

demand of product k 

y max 
k 

maximum number of startups necessary to satisfy 

demand of product k 

σ i dual variable associated to constraint (20) 

π it dual variable associated to constraint (21) 

β dual variable associated to constraint (22) 

nventory data at customer to predict future demands ( Fumero and

ercellis, 1999 ). 

On the other hand, the inventory routing problem with con-

inuous moves (IRPCM) is a problem specifically designed to han-

le limited product availabilities at production facilities because

ome customers cannot be served using out-and-back tours. In this

ase, delivery tours can last for several days ( Savelsbergh and Song,

008 ). Although the problem of simultaneously planning the pro-

uction and inventory of multiple products in several plants to

ater distribute them through multi-period routes can be found

n several industrial environments, almost no literature about the

ubject is available. Most contributions in the literature have been

ocused on single-period routes and single product variants of the

RP. Consequently, this paper is an attempt to advance the research

bout the integrated planning of production, inventory and deliv-

ry of several products from multiple plants to customers by us-

ng routes that may cover more than just a single time-period. The

outes are performed by multi-compartments vehicles. In addition,

outes start-times may be adjusted to further achieve cost-savings.

hese are particularly hard features that have not yet been consid-

red in the context of the PRP. 

The current work aims at modelling and optimizing the integra-

ion of production, inventory and distribution of several products

equiring non-negligible preservation costs. It proposes a two-stage

rocedure that first uses the column generation paradigm (CG)

or generating distribution routes, which are then used to feed a

ILP formulation of the integrated problem. The proposed solution

trategy is able to efficiently solve large size realistic instances. This

aper continues a line of research on the optimal integration of

roduction, inventorying and distribution of chemical fluids. Previ-

us works by Cóccola et al. (2017 , 2018 ) focusing respectively on
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ptimizing the order-based-resupply of chemical fluids and on the

nventory and routing of several fluids trough a fleet of homoge-

eous multi-compartment trucks respectively can be found in the

iterature. The main contributions of this third work are the fol-

owing: 

1. A formulation for modelling the optimal planning of produc-

tion, inventory and distribution of several industrial prod-

ucts over a multi-period time horizon. The case of bulk de-

livery by a homogeneous fleet of multi-compartments trucks

is here researched. 

2. A decomposition strategy based on a column generation al-

gorithm for generating distribution routes to feed to the

MILP formulation of the problem. The idea behind this is

to decouple delivering decisions from production and inven-

tory decisions with the purpose of tackling industrial size in-

stances in reasonable computation times. Valid inequalities

to strength the mathematical formulation are also proposed.

3. Computational experiments on both standard and realis-

tic instances featuring different sizes and characteristics are

performed to test the capability of the proposed algorithm

for providing effective and efficient solutions. 

The remainder of this paper is organized as follows: In

ection 2 a literature review is performed focusing on different

roblems involved by the integrated planning of production, inven-

ory and distribution of several industrial products. Section 3 de-

cribes the problem of optimally assembling decisions about pro-

uction, inventorying and distribution. Section 4 formally states

he problem. A MILP formulation of the problem based in the enu-

eration of feasible routes is presented in Section 5 . The proposal

f separating routing decisions from production and inventorying

ecisions is presented in Section 6. The two-stage procedure is ex-

lained in Section 7 . Numerical tests over a series of instances fea-

uring different sizes and different timing and spatial characteris-

ics are presented in Section 8 . Finally, the concluding remarks are

tated in Section 9 . 

. Literature review 

One of the most-referenced logistic problems in the literature is

he lot-sizing problem with direct shipment, which assumes that

 product is transported directly from the manufacturing plant to

he customers. The problem goal is to minimize the overall cost

ver a given planning horizon. Several researchers have studied

his production and distribution problem with direct shipment,

onsidering the distribution cost just as a fixed cost. The review by

duyasak et al. (2015) surveys main contributions on the subject.

hen the routing decisions are included but the production

ctivities are disregarded, the problem becomes an inventory

outing problem (IRP), which assumes that each plant has an

vailable quantity of the product at beginning of planning horizon

o be distributed between the customers. Besides determining the

elivery quantities and routes to serve customers, the IRP problem

lso includes timing decisions in order to determine when to

ervice each customer. The IRP first appeared in a gas delivery

tudy by Bell et al. (1983) , which proposed a solution strategy

ased on Lagrangian relaxation. The IRP is a difficult combinatorial

ptimization problem, both theoretically and practically, because

f the complex periodic routing and the inventory decisions

nvolved in it. Many researchers have tried to solve this logistic

roblem through different solution strategies. Two comprehensive

eviews about the IRP problem and its solution approaches can be

ound in Andersson et al. (2010) and Coelho et al. (2014) . With

egard to exact solution strategies, two branch-and-cut proce-

ures were developed by Archetti et al. (2007) and Solyalı and

üral (2011) for solving the IRP problem with a single capacitated
ehicle. Savelsbergh and Song (2008) considered the IRP with con-

inuous moves where a product is distributed from a set of plants

o a set of customers by multiple vehicles traveling along multi-

eriod routes. More recently, Etebari and Dabiri (2016) proposed a

uadratic mixed-integer programming model for the single prod-

ct, multi-period IRP under the dynamic pricing. These authors

eveloped a simulated annealing framework, which has embedded

n it a heuristic approach comprising initialization, demand gen-

ration, demand adjustment, inventory routing, and neighborhood

earch phases. On the other hand, Dong et al (2017) presented

everal alternative algorithms for solving IRP problem variants.

ariants of the problem in a maritime context have been proposed

y Christiansen and coworkers. See e.g. Christiansen et al. (2004) ;

hristiansen et al. (2007) and Christiansen et al. (2013) .

hey applied Dantzig–Wolfe decomposition to solve these

roblems. 

Generally, the lot-sizing problem and the IRP problem have

een treated separately in the literature, leaving aside the poten-

ial benefits provided by an integrated solution strategy. The lot-

izing problem with direct shipment disregards routing decisions,

hile the IRP ignores production activities. In the last years, the

perational research on supply chains has been moving towards

he development of integrated approaches in where production, in-

entory, and routing decisions are taken together. To the best of

ur knowledge the benefits of coordination between production

nd routing activities was first researched by Chandra (1993) and

handra and Fisher (1994) . Bard and Nananukul (2010) proposed a

euristic based on a branch-and-price framework to solve a single-

lant single-product PRP without continuous moves. Although the

lgorithm may be used in its exact way, the authors also proposed

o use it in a heuristic mode to obtain good solutions in reasonable

PU times. In addition, Archetti et al. (2011) discussed the PRP un-

er the maximum level and order-up-to-level policies and devel-

ped a mixed integer programming heuristic to solve the problem.

he proposal of these authors was tested on several problem in-

tances considering a simple PRP involving an un-capacitated pro-

uction plant and constants demands. The distribution problem is

olved as a shortest path problem with the goal of determining

he best single-period distribution routes. On the other hand, some

apers have introduced exact algorithms to compute strong lower

ounds in order to find the optimal solution to the PRP problem.

or example, Ruokokoski et al. (2010) and Archetti et al. (2011) em-

loyed a branch-and-cut approach similar to a previous proposal

y Archetti et al. (2007) . Adulyasak et al. (2014) focused on the

RP with multiple vehicles and proposed two branch-and-cut ap-

roaches based on different formulations to the problem. More re-

ently, Cóccola et al. (2013) proposed a MILP framework for in-

egrating production and transportation activities in multi-echelon

upply chains. Even though the proposal of these authors achieves

 proper coordination of activities, the management of inventories

s disregarded. 

In the context of a VMI approach, manufacturers that supply

any retailers on a periodic basis must ideally formulate an op-

imal replenishment strategy. Due to the combinatorial complex-

ty of this aim, several pragmatic heuristic approaches have been

eveloped and used by the practitioners. One approach proposes

o use a balanced strategy in which an equal proportion of retail-

rs are replenished each time period of the planning horizon. This

trategy has the advantage of balancing the workload at the plant.

 second approach called “synchronized replacement” is based on

eplenishing all retailers and goods are moved into the manu-

acturer’s warehouse immediately prior to distribution ( Bard and

ananukul, 2010 ). This strategy advocated by many practitioners

nbalances workloads at the plant but allowing for cross-docking

f a significant portion of the goods ( Cheung and Zhang, 2008 ). For

ust-in-time suppliers, it is common to partition the customers into
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compact sets and follow the same delivery sequence daily, skip-

ping those locations with absent demand ( Çetinkaya et al., 2009 ).

Inspired by industrial contexts where VMI policies are applied,

Neves-Moreira et al. (2019) developed an advanced three-phase

methodology for solving a rich variant of the PRP involving sev-

eral realistic features like production of several families of prod-

ucts in alternative production lines, delivery time-windows and

a maximum-level inventory policy. These authors assume that a

fixed-size fleet of capacitated vehicles is used for distributing the

products from a single plant to several customers through one-

period routes. Although our proposal partially overlaps it, this pa-

per broadens the reach of the solution approach for solving real-

istic problems involving several production plants dispersed over

a wide geographical area as well a fleet of unspecified number

of multi-compartment vehicles and multi-period routes that may

cover several days. In reference to the paper presented by Neves-

Moreira et al. (2019) , it is worth to remark that a complete review

about the scarce literature dealing with realistic PRP environments

has been developed by the authors. 

The VMI methodology has been widely used for planning the

production and distribution of industrial fluids in the chemical in-

dustry. Industrial fluids like liquid oxygen and liquid nitrogen have

useful lives much longer than the planning horizon while some

food products like milk and its derivative products have shelf lives

in the order of the planning horizon. An overview about contribu-

tions on the design of food distribution networks is presented by

Akkerman et al. (2010) . Liquid products can be stored on-site in

storage tanks but gaseous products usually cannot be stored and

industrial fluids companies serve customers through three main

distribution modes: large process plants, cryogenic liquid and pack-

aged gases ( Barbosa-Povoa et al., 2018 ). For large customers (e.g.

refineries, steel mills), industrial fluids plants operate adjacent to

their facilities and distribute products by pipelines. Medium-size

customers, such as hospitals and universities, typically have liquid

storage devices used to replenish the products. The third mode in-

volves packaged fluids. Carrier cylinders used to transport fluids

are owned by the company. In addition to cylinders, stores also

retail hard goods that are purchased from vendors and shipped

through distribution centers. These ones, in turn, either ship prod-

ucts directly to customers or to the stores for pickup or deliv-

ery ( Barbosa-Povoa et al., 2018 ). Marchetti et al. (2014) proposed

a multi-period mixed-integer linear programming model for the

optimal production and distribution of industrial gases. Their ob-

jective was to minimize the total cost of producing and distribut-

ing the gases by coordinating decisions at multiple plants and de-

pots. The methodology proposed includes a MILP model for plan-

ning the production of fluids and a heuristic to design distribu-

tion routes. The paper highlights the benefits of an optimal level

of coordination. Since the high computational burden of the prob-

lem researched by Marchetti et al. (2004) becomes a major limi-

tation when dealing with industrial size instances, more recently,

Zamarripa et al (2016) proposed a rolling horizon algorithm with

two different aggregation strategies for decomposing the prob-

lem into smaller subproblems. The first strategy relies on the lin-

ear programming (LP) relaxation for some binary variables, while

the second one uses a model tailored for the distribution side-

constraints. On the other hand, Singh et al. (2015) considered a

multi-period IRP with multiple products assuming deterministic

demand-rates and formulated a linear mixed-integer program to

model the problem. As solution strategy, the authors proposed an

incremental approach based on decomposing the set of customers

of the original problem into smaller sub-problems. A sub-problem

is incrementally solved by using a randomized local-search heuris-

tic method with the number of customers growing successively by

providing the solution of the previously solved sub-problem as an

input. 
. Integrating the production, inventory and distribution 

roblems 

The integrated production, inventory and distribution problem

esearched in this paper involves the production and shipping of

everal products from multiple factories to customers through a

omogenous fleet of multi-compartment vehicles. Since such oper-

tions are performed on a known network infrastructure, the inte-

rated problem can be defined on the basis of a set of nodes repre-

enting facilities placed at fixed locations. Customers are equipped

ith multi-commodity preservation-and-storage facilities and sim-

larly, each plant has a multi-commodity preservation-and-storage

acility from which the products to be fabricated and stored can

e loaded on vehicles that later transport them to customers. Also,

he routes used for products-shipping may last for several time-

eriods along the planning horizon. All features of the integrated

ogistic problem are illustrated in Fig. 1 . 

Each customer consumes one or several products, which are

ourced from plants producing them. It is assumed that forecasted

roducts-demands for each time period of the planning horizon

re known data. The supplier is responsible for keeping the inven-

ory level at each facility between the minimum stock level and

he maximum stock level at all time periods. The minimum level

s the safety stock level, below which the stock of products should

ot fall. The inventory costs in all sites (plants and customers) are

overed by the supplier. In-route inventory-costs are also consid-

red and covered by the supplier. Hence, the following issues must

e addressed by the planner: 

1. What quantity of products must be produced during each

time-period of the planning horizon? 

2. When to resupply a given customer? 

3. Which clients to deliver at each period and from which

plant? 

4. What quantity of products must be supplied to each visited

customer? 

5. How many vehicles must be used? 

6. How to fill each vehicle-compartment for servicing their al-

located customers? 

7. What periods of the planning horizon must a given vehicle

trip cover? 

Considering the complexity and the dimension of the integrated

roblem when realistic instances are considered, it is unpractical

o solve a monolithic mathematical formulation for finding solu-

ions useful as answers to the above questions. Therefore, this pa-

er proposes a two-stage solution strategy with the aim of finding

ractical solutions to large instances of the problem. 

. Problem definition 

The integrated production, inventory, and distribution problem

an be defined on the basis of a set of facilities placed on fixed lo-

ations. Such facilities stand for supply plants and customers. The

actories, denoted by the subset I + = { i 1 + , i 2 + , . . . i n + }, produce an

nknown quantity P itk of commodity k ∈ K during each period t

f the planning horizon T = { t 1 , t 2 , . . ., t t }. A homogenous fleet

f multi-compartment trucks is utilized for moving the products

o customers I −= { i 1- , i 2- ,…, i n- }. It is assumed that every vehicle

as │C │ compartments of capacity q c. Each facility i ∈ I − repre-

enting a customer is characterized by a known quantity dem itk of

ommodity k ∈ K demanded during period t . The vehicles perform

oad operations at supply plants while unload activities are ac-

omplished at customer locations. Each load/unload operation con-

umes a fixed time denoted by st i . For storing the products, both

lants i ∈ I + and customers i ∈ I − have multi-compartment devices
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Fig. 1. Overview of the integrated production, inventory, and distribution problem. 
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ith a storing capacity defined by ( i max 
ik 

- i min 
ik 

), where i max 
ik 

is the

aximum storing capacity and i min 
ik 

is the minimum operative ca-

acity or “safety stock” below which the inventory of the product

ust never fall at the end of any time-period. Also, for each prod-

ct k ∈ K, a known initial inventory i 0 
ik 

at the start of planning hori-

on is assumed at both on suppliers i ∈ I + and customers i ∈ I −.

lthough perishability is not formally considered in the problem

efinition, this feature can be implicitly taken into account by the

aximum storing capacities, the rotation rates on each client and

he product shelf lives. The product rotation rate at each facility

ust have a value such that the maximum number of days to sell

 given unit of product is smaller than the product shelf life. Min-

mum product rotation-rate is defined in the supplementary infor-

ation. Specific issues related to food distribution like quality de-

ay and food safety are out of the scope of this work. We refer to

he excellent review by Akkerman et al. (2010) that surveys these

nd other challenges in this specific area. 

All facilities integrate a network represented by a

raph G ( I + ∪ I −, A ) , where A is the set of minimum-distance arcs

nterconnecting suppliers and customers. Such arcs correspond to

oad segments characterized by a length d ij and a travel-time t ij ,

eing this last one computed as the distance d ij divided by the av-

rage speed of in-route trucks. A vehicle route r ∈ R is considered

easible when the vehicle compartments-capacity constraint is

atisfied and the overall travelling time is lower than a maximum
ime-length t max . Costs incurred for fulfilling customers’ demands

re: 

(i) Production costs comprising both setup costs c 
setup 

ik 
for en-

abling the production of k and variable costs, which are pro-

portional to the produced quantity P itk . The unit production-

cost is denoted by c ik . 

(ii) Transportation costs for delivering products from plants to

customers comprising both vehicles fixed-utilization cost cf

and travelling costs proportional to the travelled time. The

travelling cost per unit time is denoted by cv . 

(iii) Inventory costs associated to the quantity I itk of product k

stored at each time period t . The unit holding cost is given

through parameter c in v 
ik 

. 

(iv) In-route inventory costs incurred by the vehicles transport-

ing the products from plants to customers. The cost associ-

ated to the in-route maintenance of a unit of product k is

denoted by c in −route 
k 

. 

The integrated production, inventory, and distribution problem

ims at determining: 

(i) The quantity of products fabricated in each plant during ev-

ery time period of the planning horizon. 

(ii) The inventory profiles such that, for each product, the max-

imum storing capacity is respected and no stock-outs occur

both on customers and on plants. 
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(iii) The quantity of products delivered in each vehicle route to

any visited customer. 

The objective is the maximization of the company profit de-

fined as the difference between the total income obtained by the

sales of products to the customers and the total costs incurred to

satisfy customers’ demands; i.e. the summation of transportation

costs, inventory holding costs (both at suppliers and customers),

in-route inventory costs, and total production costs on plants. 

5. Mathematical formulation 

The production, inventory and distribution problem (PIRP) on

a multi-site system defined above can be mathematically rep-

resented through a mixed integer-linear problem (MILP). Let R

be the set of all feasible multi-period replenishment routes from

plants to customers. Each feasible route r ∈ R is characterized by

a cost c r given by the sum of travelling costs plus the fixed ve-

hicle utilization-cost. A binary variable X r is defined for select-

ing the routes included in the optimal solution. Several customers

i ∈ I −can be visited along a route r for replenishing them with

products k ∈ K picked up at a supply plant i ∈ I + . A binary param-

eter a irt is used to indicate whether route r ∈ R visits ( a irt = 1) or

not ( a irt = 0) the location i ∈ ( I + ∪ I −) during time period t ∈ T. 

The minimum number of visits to a given customer i ∈ I −along

the whole planning horizon can be computed by the following ex-

pression ( Cóccola et al., 2018 ): 

v i = 

⌈ 

1 

| C | 
∑ 

k ∈ K 

⌈ 

max 
(∑ 

t∈ T de m itk −
(
i 0 
ik 

− i min 
ik 

)
; 0 

)
ma x c q c 

⌉ ⌉ 

∀ i ∈ I − (1)

The parameter v i is then used in Eq. (2) for imposing a lower

bound to the number of routes that will be selected for serving a

given customer i ∈ I −during the planning horizon. ∑ 

t∈ T 

∑ 

r∈ R 
a irt X r ≥ v i ∀ i ∈ I − (2)

Each load (unload) operation of product k performed on plant

(customer) i forces to update the stock level at site i . The inventory

of product k ∈ K on location i ∈ ( I + ∪ I −) at the end of each period

t ∈ T is computed by Eqs. (3) and (4) , where �ikrt is a continuous

positive variable used for determining the quantity of product k

picked/delivered from(to) plant(customer) i during period t by fea-

sible route r ∈ R. 

I itk = 

( 

i 0 ik −
∑ 

t ′ ∈ T : t ′ ≤t 

de m itk + 

∑ 

t ′ ∈ T : t ′ ≤t 

∑ 

r∈ R 
�ikrt 

) 

∀ i ∈ I −, t ∈ T , k ∈ K 

(3)

I itk = 

( 

i 0 ik + 

∑ 

t ′ ∈ T : t ′ ≤t 

P itk −
∑ 

t ′ ∈ T : t ′ ≤t 

∑ 

r∈ R 
�ikrt 

) 

∀ i ∈ I + , t ∈ T , k ∈ K 

(4)

In addition, Eqs. (5a) and (5b) assure that inventory levels at

any site i ∈ ( I + ∪ I −) will be larger than the minimum allowed

stock i min 
ik 

and smaller than the maximum storage capacity i max 
ik 

, re-

spectively . 

I itk ≤ i max 
ik (5.a)

∀ i ∈ 

(
I + ∪ I −

)
, t ∈ T , k ∈ K 

I itk ≥ i min (5.b)
ik 
P  
In order to avoid the supplier from delivering more products

hat those ones demanded by the customers, Eq. (6) forces that

he quantity of inventoried products on all plants (customers) i at

he end of the planning horizon must return to the initial exist-

ng quantity. The pair of constraints (6) allows balancing the stocks

etween the facilities of the distribution network, optimizing ful-

lment and preventing overselling. 
 

i ∈ I + 
i 0 ik = 

∑ 

i ∈ I + 
I itk (6.a)

∀ k ∈ K, t ∈ T : t = | T | 
 

i ∈ I −
i 0 ik = 

∑ 

i ∈ I −
I itk (6.b)

The allocation of product k to compartment c of vehicle per-

orming route r is defined through Eqs. (7) and (8) . Eq. (7) acti-

ates the product-to-compartment allocation variable W kcr just in

ase route r ∈ R belongs to the optimal solution, i.e. X r = 1 . In the

ther hand, Eq. (8) is a capacity constraint on the quantity of prod-

ct that can be loaded into each compartment of the truck. 
 

k ∈ K 
W kcr ≤ X r ∀ r ∈ R, c ∈ R (7)

 

t∈ T 
�ikrt ≤

∑ 

c∈ C 
q c W kcr ∀ r ∈ R, k ∈ K, i ∈ I + (8)

The quantity of product k ∈ K picked-up (delivered) from (to)

lant (customer) i by route r at period t is forced to be zero when

ither the route r is not selected ( X r = 0 ) or the site i is not visited

t period t ( a irt = 0 ) . This constraint is represented through Eq. (9) .

ikrt ≤
∑ 

c∈ C 
q c a irt X r ∀ i ∈ 

(
I + ∪ I −

)
, r ∈ R, t ∈ T , k ∈ K (9)

Eq. (10) is a balance constraint forcing to discharge all quanti-

ies of products k ∈ K loaded on the vehicle traveling the route r ∈
. 

 

t∈ T 

∑ 

i ∈ I + 
�ikrt = 

∑ 

t∈ T 

∑ 

i ∈ I −
�ikrt ∀ r ∈ R, k ∈ K (10)

For each feasible route r ∈ R , the in-route inventory of product

 ∈ K is computed as follows: 

 rk = 

∑ 

t ′ ∈ T 

( ∑ 

t∈ T 

∑ 

i ∈ I + 
�ikrt −

∑ 

t ∈ T : t ≤t ′ 

∑ 

i ∈ I −
�ikrt 

) 

∀ r ∈ R, k ∈ K (11)

Eq. (11) can be seen as the integral over the whole planning

orizon of the actual inventory of product k onboard on route r .

n this way, the positive continuous variable I rk is computed as the

ifference between the total cargos by the period covered by the

rip minus the sum of the actual inventory of the product on each

overed time-period. 

The production activities are represented through Eqs. (12) ,

hich impose upper and lower bounds to the produced quantities

 itk just in case the production decision given by Y itk is activated.

arameters p max 
ik 

and p min 
ik 

stand for the minimum and maximum

roduction capacity, respectively, of product k ∈ K in plant i ∈ I + at

ime period t ∈ T . 

 itk ≤ Y itk p 
max 
ik (12.a)

∀ i ∈ I + , t ∈ T , k ∈ K 

 itk ≥ Y itk p 
min (12.b)
ik 
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The objective function given by Eq. (13) is to maximize the

ompany profits along the whole planning horizon. The total profit

s calculated as the income by sales minus the total cost incurred

y the supplier from production, inventory, and distribution ac-

ivities. The production cost comprises unit production and setup

osts while the distribution cost is computed as the route costs

lus the in-route inventory costs. 

MAX 

[ ∑ 

i ∈ I −

∑ 

k ∈ K 

∑ 

r∈ R 

∑ 

t∈ T 
p k �ikrt 

−
( ∑ 

i ∈ I + 

∑ 

k ∈ K 

∑ 

t∈ T 

(
c setup 

ik 
Y itk + c ik P itk 

)

+ 

∑ 

r∈ R 

( 

c r X r + c in −route 
k 

∑ 

k ∈ K 
I rk 

) 

+ 

∑ 

i ∈ 
(

I + 
I −∪ 

)
∑ 

t∈ T 

∑ 

k ∈ K 
c in v ik I itk 

⎞ 

⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎦ 

(13) 

.1. Valid inequalities 

In order to reduce the feasible solution space and expedite the

ILP model resolution, the formulation (2) - (13) can be tightened

y adding several valid inequalities to be next defined. 

• The minimum and maximum number of startups necessary

to satisfy the demand of any product k ∈ K can be computed

in advance as follows: 

y min 
k = 

⌈ ∑ 

i ∈ I −
∑ 

t∈ T de m itk 

ma x i ∈ I −
(

p max 
ik 

)
⌉ 

(14.a) 

∀ k ∈ K 

y max 
k = 

⌈ ∑ 

i ∈ I −
∑ 

t∈ T de m itk 

mi n i ∈ I −
(

p min 
ik 

)
⌉ 

(14.b) 

The parameters y min 
k 

and y max 
k 

are then used to define the fol-

owing valid inequalities: 

 

min 
k ≤

∑ 

i ∈ I + 

∑ 

t∈ T 
Y itk ≤ y max 

k ∀ k ∈ K (15)

• The minimum number of trips departing from plants to cus-

tomers can be computed as follows: 

v + = 

1 

| C | 
∑ 

k ∈ K 

⌈∑ 

i ∈ I −
∑ 

t∈ T de m itk 

ma x c q C 

⌉
(16) 

This integer value v + can be used to define the following valid

nequality: 

 

r∈ R 
X r ≥ v + (17) 

• In order to avoid alternative optimal solutions, the allocation

of any product k ∈ K to compartment c ∈ C requires that

at least another product k is assigned to compartment c − 1 .

This condition is expressed through Eq. (18) . ∑ 

k ∈ K 
W kcr ≥

∑ 

k ∈ K 
W kc−1 r ∀ r ∈ R (18) 
. Generating feasible distribution routes 

The resolution of multi-period PIRP problem (2) - (18) becomes

umbersome, in terms of computational burden, when the prob-

em size increased. The practice evidences that CPU processing ca-

acities are quickly depleted when realistic instances of the prob-

em are tried to solve through monolithic approaches. For example,

ard and Nananukul (2010) reported that a small problem involv-

ng 3 vehicles, 30 customers, a single product, and a 5-days plan-

ing horizon was not solvable to optimality in 90 minutes and op-

imality gaps between 7% and 10% were generally reported. Also,

ince feasible routes may be in the order of billions, solving mono-

ithic formulations are no longer considered as a feasible option.

his forces to use other solution strategies, such as metaheuristics

r decomposition procedures. 

By analyzing the structure of formulation (2) - (18) , it follows

hat routing decisions, expressed by the set of feasible routes r

 R , can be decoupled from production and inventory decisions.

his problem-characteristic allow us to firstly generate a pool of

romising routes R’ through a CG algorithm as follows. 

.1. Routes generation 

CG is a known and effective decomposition technique used for

olving large routing problems that was extended to solve also

he IRP problem and some of its realistic variations Cóccola et al.

2018) . As mentioned above, it is natural to separate inventory and

roduction constraints from routing decisions in the MILP model

2) - (18) . After removing production and inventory constraints as

ell as their associated terms in the objective function, the model

s reduced to: 

IN 

[ ∑ 

r∈ R 
c r X r 

] 

(19) 

 

t∈ T 

∑ 

r∈ R 
a irt X r ≥ v i ∀ i ∈ I − (20) 

 

r∈ R 
a irt X r ≤ 1 ∀ i ∈ I −, t ∈ T (21)

 

r∈ R 
X r ≥ v + (22) 

The CG approach solves the routing problem (19) - (22) in an

terative way, considering at each iteration both a master prob-

em restricted to a subset of columns (restricted master problem

r RMP) and one or several pricing sub-problems. The procedure

tarts with a RMP that contains a small number of routes, which

an be generated through any heuristic procedure. When binary

ariables X r are relaxed, the solution to the problem is a lower

ound to the integer routing problem. After finding the optimal

olution for the relaxed RMP, the dual variables values σ i , π it and

from constraints (20) to (22) are passed to the pricing subprob-

em in order to generate more profitable routes. Afterwards, the

ew routes computed by the pricing problems are added to the

MP. The iterative procedure continues as far as the optimal so-

ution to the linear master problem cannot be improved with the

ddition of another column. This condition is true when the pric-

ng problem cannot return a route with a negative reduced cost.

he pricing subproblem is defined as follows: 

IN 

[ 

C _ −
∑ 

i ∈ I −
σi Y i −

∑ 

i ∈ I −

∑ 

t∈ T 
πit Z it − β

] 

(23) 

S i j + S ji ≥ Y i + Y j − 1 

S i j + S ji ≤ 1 

}
∀ ( i, j ) ∈ I − : i 	 = j (24)
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∑ 

i ∈ I + 
Y i = 1 (25)

D j ≥ d i j 

(
Y i + Y j − 1 

) ∀ i ∈ I + , j ∈ I − (26)

D j ≥ D i + d i j − M d 

(
1 − S i j 

) ∀ ( i, j ) ∈ I − : i 	 = j (27)

D _ ≥ D j + 

∑ 

i ∈ I + 
d ji Y i ∀ j ∈ I − (28)

 _ = c f + cv 
D _ 

speed 
(29)

T j ≥ t 0 + t i j 

(
Y i + Y j − 1 

) ∀ i ∈ I + , j ∈ I − (30)

T j ≥ T i + s t i + t i j − M t 

(
1 − S i j 

) ∀ ( i, j ) ∈ I − : i 	 = j (31)

T _ ≥ T j + s t j + 

∑ 

i ∈ I + 
t i j Y i ∀ j ∈ I − (32)

T _ − t 0 ≤ t max (33)

∑ 

t∈ T 
Z it = Y i ∀ i ∈ 

(
I + ∪ I −

)
(34)

{
T i ≥

∑ 

t∈ T ( tim e t−1 + a it ) Z it 
T i ≤

∑ 

t∈ T ( tim e t − b it ) Z it 

}
∀ i ∈ I − (35)

{
t 0 ≥ ∑ 

i ∈ I + 
∑ 

t∈ T tim e t−1 Z it 
t 0 ≤ ∑ 

i ∈ I + 
∑ 

t∈ T tim e t Z it 

}
(36)

The objective function (23) defines the reduced cost of the

route as the difference between the total traveling cost and the

prices collected along the multi-periods route. Binary variable

Y i states that the visiting to location i is included in the route

while binary variable Z it specifies the time period t in which the

site i is visited. The sites visited along the route are sequenced

through the pair of Eq. (24) . Binary variable S ij states precedence

relationships between any pair of visited customers ( i, j ) ∈ I −, be-

ing S i j = 1 when customer i precedes customer j along the gen-

erated route. Eq. (24) force node j to be a predecessor or a suc-

cessor of node i if both customers are visited ( Y i = Y j = 1 ) . On the

other hand, Eq. (25) determines that just one plant i ∈ I + can be

selected as origin/end of the route. The minimum distance trav-

elled to reach any customer j ∈ I − from the selected plant i ∈ I + 

is computed by Eq. (26) . In addition, Eq. (27) fixes the accumu-

lated distance travelled by the multi-compartment truck up to each

visited customer, using the value the value of sequencing variable

S ij and S ji . If S i j = 1 , customer i precedes customer j . Otherwise,

S ji = 1 and the reverse statement holds. M D is the minimum upper

bound for variables D i . The total distance travelled by the truck D_

until returning to the origin plant is determined by Eq. (28) while

Eq. (29) computes the total routing cost C _ as the fixed vehicle

utilization cost cf plus the cost of the in-route time. The timing

constraints (30) to (32) are constraints similar to Eq. (26) to (28) ,

but in this case they are defined for determining both the visit-

ing time to every customer i on the route T i and the end time

of the route T_ . The time-length of the route ( T _ − t 0 ) should be

lower than t max , as specified Eq. (33) . Eq. (34) indicates that the

visit to any location i ∈ ( I + ∪ I −) must occur just in a single pe-

riod t ∈ T. If Z it = 1 , the visiting to customer i ∈ I − must occur dur-

ing period t , as expressed Eq. (35) . The parameter time t specifies

the end time of period t while parameters a it and b it determine

the time window for visiting customer i during period t. Finally,

Eq. (36) fixes the period-activation variable corresponding to the

plant i ∈ I + from where the vehicle starts/ends the designed tour. 

s

.2. Valid inequalities for the pricing problem 

The routes-generation problem (23) - (36) can be viewed as a

ulti-period resource-constrained shortest path problem. It is re-

arded as NP-hard. However, some valid inequalities based on in-

ormation from time windows may be utilized for expediting the

roblem resolution. In this way, the following compatibility sets

re defined: 

Set of successors of customer i ∈ I −during period t ∈ T: Node j is

aid to be a successor of node i if j must not be visited before node

 in period t . They are identified by the following set: 

uc ( i, t ) = 

{
j ∈ I −, t ∈ T, j 	 = i : 

((
tim e t−1 + a it + s t i + t i j 

)
≤ tim e t − b jt 

)
∧ ((

tim e t−1 + a jt + s t j + t ji 
)

> tim e t − b it 
) }

∀ i ∈ I −, t ∈ T (37)

Set of nodes incompatibles with i ∈ I − during period t ∈ T : two

odes ( i,j ) that cannot be serviced in the same time t period are

alled incompatible for such a period. The incompatibility condi-

ion for nodes j 	 = i is stated by the following set: 

 nc ( i, t ) = 

{
j ∈ I −, j 	 = i, t ∈ T : 

((
tim e t−1 + a it + s t i + t i j 

)
> tim e t − b jt 

)
∧ 

((
tim e t−1 + a jt + s t j + t ji 

)
> tim e t − b it 

) }

∀ i ∈ I −, t ∈ T (38)

These compatibility sets can be used to define the two follow-

ng valid inequalities: 

 it + Z jt + S ji ≤ 2 ∀ ( i, j ) ∈ I −, t ∈ T , j ∈ Su c it (39)

 it + Z jt ≤ 1 ∀ ( i, j ) ∈ I −, t ∈ T , j ∈ In c it (40)

Eq. (39) states that customer j ∈ Suc it cannot be predecessor

f customer i when both are visited during the same period t , i.e.

f Z it = 1 and Z jt = 1 then S ji = 0 . On the other hand, Eq. (40) rep-

esents the incompatibility of visiting two nodes (i,j) on the same

eriod t . 

.3. Column Generation algorithm 

For realistic instances, feasible routes (columns) may run into

illions. Therefore, it is not possible to enumerate all of them. The

G approach handles this complexity by implicitly considering all

olumns trough the solution of the linear relaxation of the RMP

19) - (22) . Every time this linear relaxation is solved, just a sub-

et of all possible routes is considered. Then the optimal values

or dual variables associated to constraints (20) - (22) are used in

he pricing problem (23) - (40) in order to determine new feasible

outes that can reduce the objective function value. Iterations con-

inue until the optimal solution to the linear problem cannot be

mproved with the addition of another feasible route. 

. Two-stage procedure 

As mentioned above, the applicability of the MILP model (2) -

18) to realistic instances of the PIRP problem considering all feasi-

le routes is either impossible or yield poor solutions. Every time

 new route is added to the PIRP formulation, new associated con-

traints must be added as well. Note that the higher the number

f routes, the largest solution space and more complex and in-

ractable the MILP model resolution. To overcome this drawback,

his paper proposes a solution approach based on a strategy of first

omputing a set of feasible distribution routes R’ through the col-

mn generation algorithm and then using this pool of columns for

olving the MILP model (2) - (18) . The general structure of this two-

tage procedure is depicted in Fig. 2 . 



M.E. Cóccola, C.A. Méndez and R.G. Dondo / Computers and Chemical Engineering 134 (2020) 106690 9 

Fig. 2. The two-stage procedure for solving the PIRP problem. 
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The procedure receives as input an initial pool of columns. So,

or each time period t ∈ T, routes i − j − i starting from any plant

 ∈ I + and going to any customer j ∈ I − are heuristically generated.

hen, the CG algorithm starts to iterate until not a new route with

 negative reduced cost can be found or until the maximum num-

er of generated routes is achieved. Since the number of gener-

ted routes by the CG approach can easily run in thousands, the

rocedure is configured to maintain the number of useful routes

ounded through two simple actions: (i) early termination ; given

he tailing-off effect ( Lübbecke and Desrosiers, 2005 ) consisting on

 slow convergence of to the optimal solution to the RMP, the gen-

ration procedure ends after a stated number of master-slave it-

rations or after generating a given number of columns and (ii)

outes-filtering ; to further reduce the pool of columns feed to the

IRP problem, columns are ranked in decreasing order according to

he following index: 

 i r = 

∑ 

i ∈ I −
∑ 

t∈ T 
a irt 

c r 
∀ r ∈ R 

′ (41)

The index-value vi r is related to the number of visits per unit

f routing cost. A large number would be indicative of an attrac-

ive route and a low value indicates a relatively expensive per-

isited-customer route. Therefore, routes with a vi r value below

 given threshold are eliminated from the columns pool R’ used

u  
o solve the PIRP problem. The problem, conversely, may be fed

ith a maximum number of columns ranked in decreasing value of

i r . 

After the routes generation phase and the optional filtering

tage, the pool of generated routes R’ replaces the set of feasible

outes R in the formulation (2) - (18) . As result the procedure re-

urns: (i) the production schedule, (ii) the inventory profiles, and

iii) the selected distribution routes. 

. Computational results 

The procedure performance was first tested by solving a set

f PRP benchmark instances proposed by Archetti et al. (2011) .

hen several instances generated from data originally proposed

y Marchetti et al. (2014) and later modified and tackled by

óccola et al. (2018) were solved though the proposed solu-

ion strategy. The algorithm and underlying models were codi-

ed in GAMS 24.8.5 using CPLEX 12.6.3 as the MILP solver. The

ardware was an Intel® Core TM i7, 16 GB 2.80 GHz desktop

C. 

.1. Archetti et al. benchmark instances 

Archetti et al. (2011) compared maximum level and order-

p-to-level policies in the context of the PRP considering the
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Table 1 

Solutions to the first class of Archetti’s instances with 19 retailers. 

Instance Archetti’s B&C algorithm Archetti’s MIP-heuristic algorithm Two-stage procedure % improvement Total CPU time (seconds) 

1 50168 50196 52465 −4,58 601,7 

2 50509 51541 51163 −1,29 112,3 

3 54321 55127 52466 3,41 583,6 

4 104807 105756 105494 −0,66 83,6 

5 105966 106598 106511 −0,51 118,4 

6 112428 113307 107209 4,64 419,2 

7 41151 41590 41170 −0,05 124,7 

8 41566 42377 42359 −1,91 359,3 

9 − 44404 43237 2,63 624,3 

10 93313 96379 93309 0,00 114,5 

11 95778 98202 93396 2,49 151,4 

12 − 101926 93875 7,90 124,6 

13 54751 55808 55052 −0,55 189,5 

14 55929 56967 56821 −1,59 1558 

15 59837 60800 59835 0,00 1538.1 

16 109423 110738 109713 −0,27 109,5 

17 111406 112878 111782 −0,34 352.3 

18 118049 118542 114081 3,36 885,5 

19 44402 45304 44949 −1,23 284,6 

20 45667 46594 46620 −2,09 459,9 

21 49459 49682 48953 1,02 601,7 

22 96937 100143 98064 −1,16 140,3 

23 99812 101244 98623 1,19 164,9 

24 − 106932 100153 6,34 317,7 
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single-product, single-period-routes variant of the problem. In-

route inventory costs were not considered in those benchmark

problems. The authors presented benchmark instances available

at the authors’ website ( http://or-brescia.unibs.it/instances ). Prob-

lem characteristics are detailed in the cited paper. They are re-

garded as similar, but simpler, than the problem features consid-

ered in this work and consequently, it was decided to use some

of these standard instances as a test-bed to evaluate the per-

formance of our algorithm. Archetti et al. considered a particu-

lar PRP with constant demands and an un-capacitated production

plant. Moreover, the distribution problem disregards the features

of multi-period routed and multi-compartment vehicles. Time win-

dows for delivering are also not considered. These differences im-

ply that several modifications must be introduced to our algo-

rithm in order to deal with such benchmark instances. Conse-

quently, the RMP, the pricing problem and the PIRP were simpli-

fied and rewritten (see supplementary information) in order to

match the same assumptions. Due to the constraint imposed by

Archetti et al., which specifies that each retailer cannot be vis-

ited by more than one vehicle at each time instant, the binary

variable X r used in the original formulation of PIRP problem be-

comes X ′ tr (see supplementary information). Archetti et al. consid-

ered four classes of 24 instances with 19, 50 and 100 retailers and

an unlimited fleet. We solved the first class of instances with 19

and 50 retailers because routing problems with 100 visited sites

and no time windows constraints are beyond CG-approaches ca-

pabilities to optimally solve the problem (Archetti et al. heuristi-

cally generated these no-time-windows-constrained single period

routes). Tables 1 and 2 compare the best solutions found by our

algorithm for the first class of instances with 19 and 50 retail-

ers, respectively, against the best solutions reported by Archetti

et al. As a result, an improvement average of 0.7% over the best

solution found for the 19 retailers instances was achieved by the

proposed two-stage algorithm while for instances with 50 retail-

ers, the objective value is 6% worsened on average. This is because

of the poor performance exhibited by the CG algorithm for gen-

erating routes in a shortest path problem without resource con-

straints. In addition, the PIRP phase cannot close the integrality

GAP within the CPU time limit of 3600 seconds, as it is observed in

Table 2 . 
.2. PIRP instances 

The solution procedure was also tested by solving several

ealistic instances generated from data originally proposed by

archetti et al. (2014) and later tackled by Cóccola et al. (2018) .

his case study involves the production and distribution, via two-

ompartment trucks, of two products from up to three plants in

rder to supply up to fifty customers over two time-horizons of

even and fourteen days, respectively. Customers are randomly

laced in different geographical locations and all facilities in the

etwork are defined by the (X, Y) coordinates in the Euclidean

lane (See Fig. 3 ). Distances (in miles) between plants and cus-

omers are computed from (X, Y) coordinates as Euclidean dis-

ances. 

Data taken from instances proposed by

archetti et al. (2014) can be downloaded from http://dx.doi.org/

0.1016/j.compchemeng.2014.06.010 while data taken from

óccola et al. (2018) can be downloaded from https://doi.org/

0.1016/j.compchemeng.2018.08.004 . For any facility, plant

r customer, the parameter “redline” defined by Marchetti

t al. (2014) represents the safety stock at the end of any

ime-period while “maximum” stands for the maximum allowed

nventory level. The plants host an unspecified number of iden-

ical two-compartment vehicles with capacity q c = 630 ft 3 per

ompartment. Unlike Cóccola et al. (2018) , which assumed that

aily production parameters were known in advance and that

ust daily-routes could be used, this work releases the production

ecisions, which will be determined by the solution-procedure.

ore useful and harder multi-period routes are also utilized. 

Several sets of instances are generated and solved in this work.

ominal “N-instances” instances are defined by introducing the

arameters values reported in Table 3 . The impact of time win-

ows (TW) on solutions is studied by the introduction of TW

onstraints in order to define a set of time-windows constrained

TW-instances”. The time windows data for this set of instances

re specified as supplementary information. Note that in multi-

eriod routes, TW must apply to each period of the planning

orizon. Later, setup and production costs are incremented and

he minimum and maximum productions levels of each plant are

lso increased with respect to the production levels presented in

http://or-brescia.unibs.it/instances
http://dx.doi.org/10.1016/j.compchemeng.2014.06.010
https://doi.org/10.1016/j.compchemeng.2018.08.004
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Fig. 3. Geographical distribution of plants and customers (reprinted from Marchetti et al., 2014 ). 

Fig. 4. Production schedule and inventory-profiles for both products on the solution to the instance 1-7-5-7-N. 
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Table 2 

Solutions to the first class of Archetti’s instances with 50 retailers. 

Instance Archetti’s MIP-heuristic algorithm Two-stage procedure % improvement PIRP integrality gap (%) 

1 115646 122824 −6,21 10.0 

2 117470 123193 −4,87 7,5 

3 118379 127567 −7,76 6.9 

4 237301 244707 −3,12 4,8 

5 237537 245217 −3,23 9,7 

6 240465 252548 −5,02 5,6 

7 94967 100642 −5,98 8,3 

8 95657 100654 −5,22 7,6 

9 95455 102034 −6,89 8,1 

10 214312 225941 −5,43 8,4 

11 215009 224464 −4,40 9.0 

12 215700 227840 −5,63 9.1 

13 127361 141443 −11,06 8.9 

14 128114 138614 −8,20 8.3 

15 130398 144255 −10,63 11.5 

16 250602 268367 −7,09 7.7 

17 250010 267843 −7,13 8.9 

18 252166 273177 −8,33 8.8 

19 101829 112959 −10,93 11,3 

20 104811 111249 −6,14 12.0 

21 107367 116939 −8,92 9.3 

22 222744 237272 −6,52 11.0 

23 227246 239672 −5,47 12.6 

24 226050 239612 −6,00 7.3 

Table 3 

Vehicles, inventory and production parameters for realistic instances. 

Vehicle parameters Inventory Parameters Products and production parameters 

Capacities (ft 3 ) Inventory costs ($/day ft 3 ) Setup costs ($/day) 

C 1 : 630 C 2 : 630 In plants Plant Plant 2 Plant 3 

k 1 : 0.020 k 2 : 0.020 k 1 800 700 500 

In Customers 

k 1 : 0.035 k 2 : 0.035 k 2 800 800 500 

Routing parameters In route inventory costs ($/ day ft 3 ) Production costs ($/ ft 3 ) 

cf : $ 150 cv : $52.1/h k 1 : 0.1 k 2 : 0.1 Plant 1 Plant 2 Plant 3 
st + : 0.2 day; st −: 0.1 day k 1 3.0 2.5 3.0 

t max : 2.0 days k 2 3.0 3.0 3.5 

Inventory levels (ft 3 ) Production levels (ft 3 ) 

Speed: 300 miles/day Plant 1 Plant 2 Plant 3 Plant 1 Plant 2 Plant 3 

Product prices 

K 1 : $ 6/ft 3 K 2 : $ 8/ft 3 

I min 
k 1 

5000 3000 4000 p min 
k 1 

200 200 200 

I max 
k 1 

18000 12000 14000 p max 
k 1 

2400 1000 2400 

I min 
k 2 

3500 4000 3000 p min 
k 2 

100 100 100 

I max 
k 2 

12000 9000 10000 p max 
k 2 

1200 500 1200 

Table 4 

Initial inventory levels on plants for type-1 and type-2 instances. 

Type-1 instances (ft 3 ) Type-2 instances (ft 3 ) 

Plant 1 Plant 2 Plant 3 Plant 1 Plant 2 Plant 3 

I 0 
k 1 

6000 3500 4500 10000 8500 6500 

I 0 
k 2 

4000 4500 4000 8000 6500 7000 
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Table 3 in order to define high-scale-plants “HS-instances”. Finally,

the initial inventory level at each site is reduced to the mini-

mum inventory level (i.e. i 0 
k 

= i min 
k 

) in order to define the so called

minimum-inventory “MI-instances”. All defined instances are fur-

ther classified into types “1” and “2”, like e.g. N-1 and N-2. Type-

1 problems have a short planning horizon (7 days) while type-2

problems feature a longer planning horizon (14 days). 

Initial inventory levels for all set of instances (except MI-

instances) on both type-1 and type-2 planning horizons are pre-

sented in Table 4 . 
The solved instances are labelled according to the quantity

f plants, the number of customers consuming the first product

 1 , the number of customers consuming the second product k 2 
nd the length of planning horizon th . For example, the instance

I + │ = 1, │I −│k1 = 7, │I −│k2 = 5 and th = 7 feature an instance

nvolving Plant 1 , the first seven customers consuming the product

 1 (i.e. i 1 , …i 7 ), the first five customers consuming k 2 (i.e. i 29 , …i 33 )

nd a time-horizon of seven days. 

.3. Assessing the effect of valid inequalities 

The effect of valid inequalities in the resolution performance is

riefly tested by solving four small scale instances with and with-

ut valid inequalities (14) to (18) . The computational results ob-

ained are summarized in Table 5 . 

From Table 5 , it follows that the CPU time saving was roughly

5% for the first three solved instances. The fourth instance was

ot solved to optimality within the 3600 s CPU time-limit without
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Table 5 

Effect of valid inequalities on the resolution of small scale instances. 

Instance Without valid inequalities With valid inequalities 

│I + │ │I −│k1 │I −│k2 Th Objective function CPU time Objective function CPU time Ratio 

1 7 5 7 15408.0 222.1 15408.0 197.1 0.887 

2 7 5 7 14448.7 40.7 14448.7 35.4 0.869 

1 7 5 14 45076.4 361.7 45076.4 302.3 0.836 

2 7 5 14 20088.7 3600 ∗(2.1%) 20088.7 3520.9 −
∗ CPU time limit reached (Integrality gap). 

Table 6 

Results from the evaluation of the columns filtering technique. 

Instance Thresholds Objective function CPU time (s) 

│I + │ │I −│k1 │I −│k2 th Columns generated Columns accepted RMP Pricing Problem PIRP Total 

1 7 5 7 No limit (186) No limit (186) 15408.0 0.1 15.5 165.7 181.4 

No limit (186) 150 15392.7 0.1 15.5 92.6 108.2 

No limit (186) 100 15274.0 0.1 15.5 31.6 47.2 

150 150 15388.6 0.1 7.1 29.6 36.7 

100 100 15315.4 0.1 4.6 5.8 10.5 

2 7 5 7 No limit (186) No limit (284) 14448.7 0.1 22.4 76.5 99.1 

No limit (186) 200 14448.7 0.1 21.6 54.4 76.1 

No limit (186) 150 14311.3 0.1 21.6 300.9 322.6 

No limit (284) 100 14153.9 0.1 21.2 61.9 83.2 

150 150 14144.9 0.1 1.1 0.9 2.1 

1 7 5 14 327 327 45076.4 0.2 169.4 302.3 471.9 

327 300 Infeasible 0.2 168.8 − −
325 325 45076.4 0.1 132.1 314.2 446.5 

2 7 5 14 No limit (463) No limit 463) 20088.7 0.1 91.1 3520.9 3612.1 

No limit 463) 400 20088.7 0.1 90.7 3004.2 3095.0 

No limit (463) 300 Infeasible 0.1 90.8 − −
350 350 20088.7 0.1 81.7 3054.0 3135.8 
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Table 7 

Setting options for the solution algorithm. 

Options 

MIP solver CPLEX 12.6.3 

Maximum CPU time per master-slave iteration (s) 120 

Maximum CPU time for the PIRP problem (s) 3600 

Multiple columns generated per iteration Yes 

Filtering of columns visiting the same subset of customers Yes 

Time-windows reduction and pre-processing Yes 

Maximum number of generated columns (generation stage) 2500 

Maximum number of accepted columns (PIRP problem) 1000 
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alid inequalities but these additional constraints allowed finding

he optimal solution within such a limit. These results demonstrate

hat the use of valid inequalities is helpful in reducing the CPU

olving-time but their effect is quite moderate. 

.4. Assessing the effect of the columns filter 

In order to validate the heuristic filtering technique, which aims

t downsizing the solution search space of the PIRP problem, some

nstances were solved several times considering a different number

f columns to be generated and accepted with the aim of compar-

ng objective function values and CPU times. The threshold of ac-

epted columns was progressively downsized and the results were

valuated. Results are summarized in Table 6 . This table shows, for

ach solved instance, the number of columns generated by the CG

lgorithm and how many of these routes were accepted and in-

orporated into the set of feasible routes of the PIRP problem. In

ddition to the objective function value, the accumulated compu-

ational times consumed by each model resolution are also given

n this table. 

From Table 6 , it follows that the objective function value seems

ot to be affected by a change in the number of columns consid-

red in the PIRP and just degrades when the filtering threshold is

ear the infeasibility level given by a too low number of columns

vailable in the pool. On the other hand, the CPU time significantly

owns when the number of columns is reduced. 

.5. Results and discussion 

After validating the usefulness of valid inequalities and the

euristic filtering technique, we solved all instances described in

ubSection 8.2 with numerical settings detailed in Table 7 . 

Data about billing, costs and profits of the best solution as well

s the number of selected routes for each type-1 instance are re-
orted in Table 8.a while data about computational costs incurred

o provide solutions to these instances are presented in Table 8.b .

he same information about type-2 instances are respectively re-

orted in Tables 9.a and 9.b . In Tables 8.b and 9.b , the column

Cols shows the number of columns fed to the PIRP while the in-

egrality gap reported by the resolution of the problem model is

iven in the column Gap whenever the maximum CPU time for

he PIRP is reached and the integrality gap is not closed . From

esults of Tables 8.a and 9.a , it can be observed that the number

f used vehicles, for a given instance-size, remain quite similar in

pite of changes of instances-parameters between instances types.

ote also that profits don’t change significantly as a function of

hanges on these parameters. 

The conclusions that can be extracted from the information pre-

ented in Tables (8) and (9) are the following: (i) instances with a

iven number of customers and plants involving a 14 days plan-

ing horizon are much harder to solve than the instances involv-

ng a 7 days planning horizon. Note that the integrality gap of the

IRP was closed in all type-1 instances within the 3600 s max-

mum CPU time while in almost a half of type-2 instances this

ap was not closed; (ii) in some cases, the CPU times incurred

or solving large instances of the PIRP are smaller than solution
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Table 8.a 

Best solutions found for Type-1 instances ( th = 7 ). 

Ins Plants Customers Billing($) Costs ($) Profit($) #Routes 

│I + │ │I −│k1 │I −│k2 Routing Inventory In-route inventory Production setup Production 

N-1 1 7 5 57834.0 5870.9 4424.9 1062.2 4800.0 26268.0 15408.0 9 

N-2 1 14 11 123990.0 12829.3 7249.4 4139.1 8800.0 55248.0 35724.2 18 

N-3 2 7 5 57834.0 6479.2 5702.6 535.5 5400.0 25238.0 14448.7 10 

N-4 2 14 11 123990.0 13196.0 8607.2 3213.2 10100.0 53748.0 35125.5 17 

N-5 2 21 16 189144.0 21833.5 11120.1 6347.3 16900.0 81286.0 51657.1 30 

N-6 3 28 22 266892.0 29175.2 16324.9 7410.4 19600.0 118883.0 75498.5 43 

TW-1 1 7 5 57834.0 5783.4 4453.9 1255.9 4800.0 26268.0 15272.8 8 

TW-2 1 14 11 123990.0 14591.8 8175.9 2780.2 8800.0 55248.0 34394.7 17 

TW-3 2 7 5 57834.0 5783.4 5521.6 1277.6 4800.0 26268.0 14183.4 8 

TW-4 2 14 11 123990.0 14179.3 8419.0 3710.5 10100.0 53748.0 33842.2 18 

TW-5 2 21 16 189144.0 23250.3 11269.2 6685.1 12900.0 81286.0 53753.4 29 

TW-6 3 28 22 266892.0 30208.8 16364.0 7432.5 18200.0 119383.0 75303.7 42 

HS-1 1 7 5 57834.0 6137.5 4698.1 600.4 6400.0 26268.0 13730.0 10 

HS-2 1 14 11 123990.0 12979.3 7369.8 3709.9 14400.0 55248.0 30283.1 17 

HS-3 2 7 5 57834.0 5866.7 5699.9 1013.0 6400.0 26268.0 12589.4 9 

HS-4 2 14 11 123990.0 13504.3 8608.7 3246.7 15400.0 55274.5 30775.8 16 

HS-5 2 21 16 189144.0 22183.6 11394.1 5495.8 23000.0 80051.5 47019.0 27 

HS-6 2 28 22 266892.0 34333.8 14633.2 9016.2 33800.0 112220.0 62888.8 38 

HS-7 3 28 22 266892.0 29758.7 16516.1 6499.3 27400.0 116333.0 70385.0 43 

MI-1 1 7 5 57834.0 6137.5 4491.4 729.2 4800.0 26268.0 15407.8 10 

MI-2 1 14 11 123990.0 13004.3 7039.2 1176.0 8800.0 55248.0 35370.9 18 

MI-3 2 7 5 57834.0 5854.2 5338.7 4527.6 4800.0 26268.0 14397.1 9 

MI-4 2 14 11 123990.0 13270.9 8281.7 3746.0 10100.0 53988.0 34603.4 19 

MI-5 2 21 16 189144.0 22279.4 10452.6 8068.8 16900.0 81451.5 49991.7 28 

MI-6 3 28 22 266892.0 30258.7 15660.3 8399.3 18900.0 119326.0 74339.7 41 

Table 8.b 

Computational costs for solutions reported in Table 8.a . 

Ins Plants Customers CPU TIME (seconds) 

│I + │ │I −│k1 │I −│k2 #Cols RMP PP PIRP Total Gap 

N-1 1 7 5 186 0.1 15.5 165.7 181.4 −
N-2 1 14 11 495 0.3 2648.4 301.3 2950.0 −
N-3 2 7 5 265 0.1 16.8 34.9 51.8 −
N-4 2 14 11 734 0.3 2478.1 321.6 2799.7 −
N-5 2 21 16 808 0.3 2554.6 305.5 2860.4 −
N-6 3 28 22 1050 0.6 3755.4 108.0 3864.0 −
TW-1 1 7 5 127 0.1 7.9 1.4 9.3 −
TW-2 1 14 11 298 0.1 299.8 27.9 327.8 −
TW-3 2 7 5 207 0.1 8.1 2.2 10.4 −
TW-4 2 14 11 489 0.2 392.9 109.7 502.7 −
TW-5 2 21 16 664 0.3 2253.0 227.4 2480.7 −
TW-6 3 28 22 1169 0.5 3755.3 59.2 3815.0 −
HS-1 1 7 5 175 0.1 8.5 235.8 244.3 −
HS-2 1 14 11 493 0.2 2254.2 303.1 2557.5 −
HS-3 2 7 5 265 0.1 17.5 300.8 318.4 −
HS-4 2 14 11 713 0.3 2627.8 401.6 3029.6 −
HS-5 2 21 16 835 0.4 3004.4 303.5 3308.3 −
HS-6 2 28 22 780 0.5 4504.0 82.3 4586.8 −
HS-7 3 28 22 1108 0.5 3753.2 317.5 4071.2 −
MI-1 1 7 5 200 0.1 22.1 38.9 61.2 −
MI-2 1 14 11 413 0.2 1802.4 252.9 274.0 −
MI-3 2 7 5 268 0.2 20.9 301.8 2104.4 −
MI-4 2 14 11 632 0.3 2282.3 322.2 2604.9 −
MI-5 2 21 16 722 0.6 3753.9 504.5 4259.0 −
MI-6 3 28 22 1189 0.6 6005.0 308.0 6131.6 −
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times used to solve some smaller ones. E.g.; PIRP problems for

all ( | I + | = 3 , | I −| k 1 = 28 , | I −| k 2 = 22 , th = 14 ) scenarios were solved

within the 3600 s time limit but several smaller PIRP problems

reached such a limit. In such cases, there is less freedom to al-

locate production activation decisions. I.e., production takes place

in most days and therefore, there are less possible combinations

than in instances where a few production-activation decisions take

place; (iii) the biggest integrality gap is just over 5% in a hardest

midsize type-2 instances. That’s remarkable, given the existences

of multiple optimal solutions implicit in the nature of the PIRP. The

search for additional constraints aimed at improving the resolution

efficiency, although out of the scope of this paper, deserves further

research. 
.6. Illustrating an example 

In order to illustrate the information provided by the solution

lgorithm, the solution to the instance (│I + │ = 1, │I −│k1 = 7,

I −│k2 = 5, th = 7 ) is depicted in Figs. 4 and 5 . Fig. 4. a shows

he production levels while Fig. 4. b details the inventory time-

volution for both products in the storing devices of the plant. In

ddition, Fig. 5 shows the evolution of inventories in each serviced

ustomer. Note that a mix of order-up-to-level and maximum-level

eplenishment operations was recorded. 

Due to space constraints, solution data about production sched-

les, inventories profiles (both on the plant and the customers),

nd delivery routes are detailed as supplementary information. 
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Table 9.a 

Best solutions found for Type-2 instances ( th = 14 ). 

Ins Plants Customers Billing($) Costs ($) Profit($) #Routes 

│I + │ │I −│k1 │I −│k2 Routing Inventory In-route inventory Production setup Production 

N-1 1 7 5 115296.0 9297.5 9690.9 7509.1 8800.0 34922.0 45076.4 20 

N-2 1 14 11 246432.0 20127.6 16611.7 16110.7 17600.0 109731.0 65651.0 39 

N-3 2 7 5 115296.0 13750.0 13336.8 7937.5 9300.0 50883.0 20088.7 19 

N-4 2 14 11 246432.0 30025.1 16441.6 16555.3 17600.0 109731.0 56079.0 38 

N-5 2 21 16 378948.0 46141.8 26316.1 25638.5 33800.0 162878.0 84173.6 61 

N-6 3 28 22 529848.0 55966.7 36954.5 35314.8 38400.0 234494.5 12877.5 86 

TW-1 1 7 5 115296.0 8867.5 9665.4 7761.4 8800.0 52383.0 27818.9 19 

TW-2 1 14 11 246432.0 20415.1 16247.8 7853.6 16800.0 71948.0 9960.9 39 

TW-3 2 7 5 115296.0 12829.2 9284.5 16587.5 9900.0 49883.0 25005.6 19 

TW-4 2 14 11 246432.0 29008.4 19866.1 17225.2 20100.0 106231.0 54001.3 40 

TW-5 2 21 16 378948.0 45616.8 26276.0 26004.8 33800.0 162878.8 84372.4 60 

TW-6 3 28 22 529848.0 54758.3 37077.7 36020.8 38400.0 234494.5 129096.7 85 

HS-1 1 7 5 115296.0 9320.0 9709.1 7452.3 12800.0 34922.0 41092.5 20 

HS-2 1 14 11 246432.0 20067.7 16225.4 16951.7 27200.0 73154.0 92833.2 37 

HS-3 2 7 5 115296.0 14145.9 13535.0 7477.1 13800.0 49383.0 16955.1 20 

HS-4 2 14 11 246432.0 29575.2 19085.0 16689.9 27800.0 103801.0 47620.9 38 

HS-5 2 21 16 378948.0 46991.8 26239.7 25031.1 44200.0 158883.5 77601.9 62 

HS-6 2 28 22 529948.0 67600.0 33301.0 36823.8 33000.0 222865.0 136258.2 84 

HS-7 3 28 22 529948.0 56850.4 36588.6 36500.4 55400.0 227594.5 117015.1 83 

MI-1 1 7 5 115296.0 6617.5 9198.3 6979.8 8800.0 52383.0 31317.4 22 

MI-2 1 14 11 246432.0 14557.6 15302.6 17944.9 17600.0 109731.0 71295.9 43 

MI-3 2 7 5 115296.0 12558.4 10758.9 8398.9 8700.0 52051.5 22828.3 18 

MI-4 2 14 11 246432.0 31216.7 19307.6 16838.6 29000.0 102743.5 47325.6 40 

MI-5 2 21 16 378948.0 46466.8 26244.3 25313.3 44200.0 158883.5 77480.1 61 

MI-6 3 28 22 529848.0 57933.3 33698.5 38282.9 37500.0 236467.5 125965.4 86 

Table 9.b 

Computational costs for solutions reported in Table 9.a . 

Ins Plants Customers CPU TIME (seconds) 

│I + │ │I −│k1 │I −│k2 #Cols RMP PP PIRP Total Gap 

N-1 1 7 5 306 0.1 110.4 302.4 412.8 −
N-2 1 14 11 807 1.3 3607.8 3600 ∗ 7209.1 2.1 

N-3 2 7 5 465 0.1 161.7 307.2 469.0 −
N-4 2 14 11 672 0.9 2780.9 3600 ∗ 6381.8 2.2 

N-5 2 21 16 1063 1.0 502.0 3600 ∗ 4103.0 2.6 

N-6 3 28 22 2160 0.6 6005.0 224.4 6250.0 −
TW-1 1 7 5 229 0.1 13.0 159.9 173.0 −
TW-2 1 14 11 425 0.1 416.1 3600 ∗ 4016.2 1.0 

TW-3 2 7 5 380 0.1 10.9 978.1 989.1 −
TW-4 2 14 11 780 0.1 353.3 3600 ∗ 3953.4 3.2 

TW-5 2 21 16 1344 0.6 4506.9 3600 ∗ 8107.4 3.4 

TW-6 3 28 22 2137 0.7 6754.4 3600 ∗ 7064.8 −
HS-1 1 7 5 325 0.1 193.2 1558.7 1752.0 −
HS-2 1 14 11 759 1.2 4147.7 3600 ∗ 5856.2 1.5 

HS-3 2 7 5 463 0.1 91.8 3600 ∗ 3692.0 5.0 

HS-4 2 14 11 1007 0.6 2255.6 3600 ∗ 7749.0 2.1 

HS-5 2 21 16 1036 0.5 4505.6 3600 ∗ 8106.1 4.8 

HS-6 2 28 22 1487 0.6 5251.1 205.5 5460.1 −
HS-7 3 28 22 2257 0.6 5257.9 150.1 5408.6 −
MI-1 1 7 5 252 0.1 130.5 302.9 433.5 −
MI-2 1 14 11 757 0.5 4234.6 370.8 4605.9 −
MI-3 2 7 5 482 0.2 137.6 303.3 441.1 −
MI-4 2 14 11 1123 0.5 5248.5 3600 ∗ 8849.0 5.1 

MI-5 2 21 16 1394 0.6 5256.4 3600 ∗ 8857.0 4.5 

MI-6 3 28 22 2137 0.7 6753.9 447.6 7202.2 −
∗ CPU time limit reached. 
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. Conclusion 

This paper researched the optimal planning of production,

nventory and distribution of products requiring non-negligible

reservation effort s and cost s. It is our third work on a research

ine aimed at the integration of production, inventory and delivery

f chemical fluids. The paper presented a decomposition algorithm

or planning, over a multi-period time-horizon, the production, in-

entory and distribution of several industrial products. Forecasted

emands are assumed as data known in advance while quantities

o be produced at each plant and the consequently inventory pro-
les at all facilities in the distribution network are decisions which

ust be optimized by the solution procedure. The proposed al-

orithm determines, in a first stage, the best multi-period routes

or distributing several generic products from plants to customers

hrough a CG mechanism; next, this set of routes is used for solv-

ng the PIRP problem. The goal was to decouple routing decisions

rom production and delivering decisions in order to obtain near-

ptimal solutions in practical computational times. It is worth to

emark that multi-period routes considered in this work consti-

ute a scarcely researched issue in the literature referred to the

oint planning of production, inventorying and distribution. From a
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Fig. 5. Inventory profiles on customers for the solution to the instance 1-7-5-7-N. 
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routing point of view, the solution provided by the algorithm indi-

cates the time to serve a given customer, the quantity of products

to deliver to the visited customers and the optimal sequence of

visited customers by each vehicle-route. The procedure is able also

to consider the allocation of several products on the same vehi-

cle by fixing the quantity and type of product transported on each

vehicle-compartment. From a production point of view, the algo-

rithm computes the quantity of products made during each pe-

riod of the planning horizon, i.e. the production schedule. This is

of utmost importance because storing costs may be an important

fraction of total costs when dealing with perishable products that

must be preserved. It is worth noting that in-route inventories here

considered are neglected in the scant bibliography referred to the

joint planning of production, inventory and distribution and also

in the bibliography referred to the IRP and its variants. This term,

although negligible in the distribution of non-perishable products

may be important when considering the distribution of perishables

because of the need of preserving the in-route cargo. The proposed

solution procedure has been used to solve a set of benchmark in-
tances taken from the literature and several realistic instances of

our different scenarios featuring two different planning-horizons

nd several numbers of customers and plants. In all examples, the

olutions were obtained with relatively moderate computational

ffort. 
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