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Abstract. Different parameters feed mathematical and/or empirical
models. However, the uncertainty (or lack of precision) present in such
parameters usually impacts in the quality of the output/recommendation
of prediction models. Fortunately, there exist uncertainty reduction
methods which enable the obtention of more accurate solutions. One
of such methods is ESSIM-DE (Evolutionary Statistical System with
Island Model and Differential Evolution), a general purpose method for
prediction and uncertainty reduction. ESSIM-DE has been used for the
forest fireline prediction, and it is based on statistical analysis, parallel
computing, and differential evolution. In this work, we enrich ESSIM-DE
with an automatic and dynamic tuning strategy, to adapt the genera-
tional parameter of the evolutionary process in order to avoid premature
convergence and/or stagnation, and to improve the general performance
of the predictive tool. We describe the metrics, the tuning points and
actions, and we show the results for different controlled fires.

Keywords: Dynamic tuning - Differential Evolution - Fire
prediction - Parallel computing

1 Introduction

Year after year, forest fires constitute a great threat in different regions of the
world, especially in summer, where high temperatures and prolonged drought
provide an environment favorable to the development of these phenomena. In
2019, several serious fires occurred worldwide, including the case of the Amazon
area with a loss of 2.5 million hectares of rainforest, and the case of Australia with
a loss of 6 million hectares, as shown in Fig. 1. Due to the serious consequences
they produce, it is important to have tools that allow predicting the behavior of
fire to collaborate in fire fighting and fire prevention plans.
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Fig. 1. Left: Forest fire in the Amazon area [14]. Right: Forest fire in Australia [15].

The prediction of a forest fire consists in determining how the fire will spread
on the terrain in an instant of future time. Figure 2 illustrates both the general
view of the simulation process and the particular case of the forest fire simu-
lation for prediction. Generally, the prediction methods implement models that
describe the behavior of the fire, and use as input data a set of variables repre-
senting those factors that condition the propagation. Some of the variables that
are worth mentioning are: the wind speed and direction, the slope of the terrain,
the type of combustible material, the humidity of the material, etc.
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(a) General view of the simulation process (b) Clasical view of the forest fire prediction

Fig. 2. General view of simulation and prediction process. RFL: Real Fire Line. PFL:
Predicted Fire Line. FS: Fire Simulator.

Unfortunately, in general it is not possible to have the exact values for these
factors, due to two main reasons: on the one hand, it is not feasible to provide
all forest land with sensors and measuring instruments. On the other hand, the
value of some of the parameters can vary dynamically throughout the develop-
ment of the fire itself. This lack of information and/or precision regarding the
values of the parameters is called uncertainty. There are also other sources of
uncertainty, such as the limitations for mathematically modeling all the details
of the system under consideration, the computer representation of the informa-
tion (which for example causes truncation), the implementation of the simulator,
etc. Every uncertainty source could cause drastic consequences if the output of
the model provides a solution certainly different from reality. All of them are
detrimental to the accuracy of the simulator and the quality of the prediction.
In [11] we introduced a series of methods belonging to the class of so-called Data
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Driven Methods with Multiple Overlapped Solutions (DDM-MOS [1]). In this
article, we provide some details about them, as can be appreciated in Fig. 3.
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Fig. 3. Subjects involved by Data Driven Methods with Multiple Overlapped Solutions
(DDM-MOS). RFL: Real Fire Line. PFL: Predicted Fire Line. FS: Fire Simulator.

On the one hand, the DDM-MOS take the initial state of the phenomenon as
input parameter, in this case the real fire line (RFL). On the other hand, unlike
what is observed in Fig. 2(b) in which the simulator takes as input a single combi-
nation of input parameters, the DDM-MOS take into account a certain number
of combinations of values for the input parameters, valid within the possible
search space. Each combination is called a scenario or individual, and is consid-
ered a possible solution to the problem. Since several individuals are considered
at the same time, DDM-MOS are considered multiple solution methods. The set
of individuals is called a population. As can be seen in Fig. 3, the operation of
the simulator is enriched by the interrelation of Metaheuristics, Statistics and
Parallelism. The metaheuristic allows to orientate the search within the exten-
sive search space. Statistics allow to determine the tendency of the behavior of
the individuals under consideration, by aggregating the results obtained for each
of them; and this is why the DDM-MOS are considered as multiple overlapping
solutions methods. Finally, the parallelism provides the necessary power to face
the large amount of computation required by so many simulations in parallel
and the consequent treatment of the results to yield a single prediction (PFL).
The level of parallelism of DDM-MOS is also determined by the amount of pop-
ulations considered: some DDM-MOS manage a unique population, whilst other
operate on several populations in parallel, obeying to the Island Model [9]. In
summary, these methods obtain predictions of the fireline based on the aggrega-
tion of multiple solutions, and focus on reducing the negative impact caused by
uncertainty.

In particular, we have developed the ESSIM-DE method (Evolutionary Sta-
tistical System with Islands Model and Differential Evolution), a DDM-MOS
which involves Differential Evolution as metaheuristic [8], and increases the level
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of parallelism by considering the Master/Worker pattern [5] and the Island Model
[9] with several islands each responsible for the evolution of an independent pop-
ulation. In order to improve the performance of ESSIM-DE, we have defined and
incorporated into the method a dynamic and automatic tuning strategy, which
was presented in [11] and is extended in this work. Given that dynamic tuning
is the core of this work, in the following we provide the general background
necessary to understand this new version of the method: ESSIM-DE(ldr). In
general, the Tuning process [2,6] allows to calibrate, improve, adjust, or modify
any critical aspect, bottleneck or factor that limits application performance. It
consists of incorporating the phases of instrumentation, monitoring, analysis and
tuning, during the execution of the program, as Fig. 4 illustrates.

[ Instrumentin } Running — -
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Fig. 4. The tuning process and its phases operating on the improvement of the appli-
cation

In the Instrumentation phase, the code of the application is augmented or
annotated with sentences or record certain metrics of interest. These metrics,
in general, correspond to some model of the behavior of the application, and
define specific knowledge about the behavior of it. This knowledge can respond
to mathematical performance models, fuzzy logic, ad hoc heuristics, among oth-
ers. Along the Monitoring phase the metrics are detected and recorded, for later
analysis and tuning. The Analysis phase is focused on the processing and analysis
of the recorded metrics. The type of expert knowledge considered (mathematical
performance models, fuzzy logic, ad hoc heuristics, etc.) defines how the analysis
process is carried out to determine the tuning actions necessary to improve the
performance of the application. Subsequently, in the Tuning phase the defined
actions are applied in order to improve the critical aspects. In this work, all
these phases are performed with no user intervention, at runtime. This is why
the proposed tuning strategy is classified as automatic and dynamic. In particu-
lar, in this paper we present a performance model to dynamically and automat-
ically tune one of the key stages of ESSIM-DE: the Optimization stage, which
involves the Differential Evolution algorithm (more details are provided in the
next section). This metaheuristic is a population optimizer (based on multiple
solutions) and consists of an iterative process in which a population of indi-
viduals evolves. Each individual represents a possible solution to the problem.
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Stagnation and/or premature convergence towards a local optimum constitute
possible performance problems associated with Differential Evolution [4]. This
paper establishes a criterion by which it is possible to tune the number of gen-
erations by which populations have to evolve in order to detect in advance a
tendency to stagnation and/or premature convergence. The performance model
uses statistical information from the trend of population dispersion, monitored in
a distributed manner. The objective is to prevent the performance of the ESSTM-
DE method from being affected by stagnation or premature convergence, both in
the quality of the predictions and in the response time. Another objective is that
the tuning can be carried out independently of the case of burning considered
and the particular characteristics of the execution. We call ESSIM-DE(ldr) this
version of the method, given that it is capable of tuning the limit of evolutionary
generations for a given prediction step, according to the analysis of the tendency
of the distributions; what is more, it is capable of restart the populations
along the successive prediction steps. In [11], we presented a general view of
ESSIM-DE(ldr) and all the related basis of it. In this article, we are extending
some key concepts (such as uncertainty, DDM-MOS, differential evolution, archi-
tecture and operation of ESSIM-DE), we provide some complementary graphics,
and we include two new experimental cases of study that allow for confirming
the effectiveness of ESSIM-DE(ldr). Section2 provides more details about the
architecture and operation of ESSIM-DE. In Sect. 3 we explain the performance
problem addressed by ESSIM-DE(1dr). In Sect.4 we show the results obtained
for five study cases. Finally, in Sect.5 we present the main conclusions of this
work.

2 Forest Fires Prediction with ESSIM-DE

To make the prediction of the fire front, ESSIM-DE divides the total develop-
ment of the fire into different discrete time slots, called simulation steps. For the
simulation step 4, ESSIM-DE operates in the manner explained in Fig. 3. It takes
as input the real fire line at instant ¢ — 1, and also takes a sample of candidate
individuals which manages in several parallel populations. After processing them
through Differential Evolution, parallelism and statistics, ESSIM-DE yields the
corresponding prediction for instant i. The Differential Evolution (or DE) algo-
rithm [8,13] is a population-based optimizer that uses multi-dimensional vec-
tors to represent candidate solutions, also called population of individuals. Each
dimension encodes a variable of the problem to be optimized and is represented
with a value belonging to real numbers. The population evolves in different gen-
erations or iterations, in which the mutation, crossing and selection operators
are applied to all of the individuals in the population. The mutation operator
disturbs each individual in the current population, and for each one generates
a new individual, called a “mutated vector”. To do this, vector differences are
applied between each individual considered and other randomly selected indi-
viduals. Subsequently, each mutated vector is submitted together with the orig-
inal individual to the crossing operator, generating a new vector, called “trial
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vector”. Finally, the selection stage determines the best candidate between the
original individual and the trial vector. The one that has the best value regarding
the function to be optimized will be the one that will survive the next gener-
ation. Below we present more details about the architecture and operation of
ESSIM-DE. We also explain how the quality of an individual and a prediction
is evaluated. In the next section we focus on the tuning component that allows
to improve the performance of ESSIM-DE, constituting ESSIM-DE(1dr).

Architecturally, ESSIM-DE has a double hierarchy of processes that are orga-
nized in parallel islands and collaborate through migration, under the supervision
of a Monitor process. Figure 5 presents how ESSIM-DE organizes its processes
in a double hierarchy model, basing on the Master/Worker pattern [5] and the
Island Model [9]. At a lower hierarchy level, each island manages a population of
individuals, that is, different scenarios that constitute subsets of the total search
space. On each island operates a main process called Master (green box), which
is responsible for generating the initial population and applying the evolutionary
operators of DE to improve the scenarios. In turn, each island has a group of
Workers processes (light-blue “W” boxes) that are responsible for accelerating
the prediction process, thanks to the parallel simulation of the different indi-
viduals or burning scenarios. In a higher hierarchy, a Monitor process (yellow
box) coordinates the interaction between the Master processes of each island.
These communicate with each other to exchange individuals from their islands
through the Migration operator [9], a particular operator related to the evolu-
tionary island models. The migration process promotes the global exploration of
the search space represented by the populations of the different islands.

Monitor
b
Island / \ Island
Master - . Master
A A
w W [~ W w W [ W

Fig. 5. Architecture of ESSIM-DE: double hierarchy of processes. W: Worker. (Color
figure online)

Taking into account the ESSIM-DE architecture and the operation of the
DE algorithm, we can now concentrate on the mode of operation of ESSIM-DE.
The general operational scheme of ESSIM-DE is described in Fig.6. For each
prediction step four main stages operate: Optimization stage (OS), Statistical
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stage (SS), Calibration stage (CS) and Prediction stage (PS). Because ESSIM-
DE uses a hierarchical process scheme, these four stages are subdivided to be
cooperatively performed by the different entities of the process hierarchy: Master
(M), Workers (W) and Monitor (Mon).
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Fig. 6. General operation of ESSIM-DE. OS: Optimization stage. SS: Statistical stage.
CS: Calibration stage. PS: Prediction stage. RO: Restart Operator. DE: Differential
Evolution. M: Master. W: Worker. Mon: Monitor. Dotted line: tuning process in
ESSIM-DE(ldr). (Color figure online)

In Fig. 6 can be seen the four stages involved in the method, of which we will
focus on the Optimization Stage (OS), which is carried out between the Work-
ers (W) and the Master (M) processes of each island. This stage allows a popula-
tion of individuals to evolve based on the Differential Evolution algorithm. Each
individual represents a combination of values for variables that determine the
progress of the fire (the wind speed, direction and slope of the land, type of com-
bustible material, humidity of the living combustible material, etc.). The Master
process initializes the population (pop), applies the DE mutation and crossing
operators to generate new candidate individuals, and distributes the individuals
among the Workers. These use the current state of the fire, together with an
individual to perform the simulation. Subsequently, each Worker evaluates the
aptitude of the prediction obtained, weighing the accuracy of the simulation by
comparing the cells burned in the real fire and the cells reached by the fire on
the simulated map. The evaluation of the prediction quality is quantified based
on a fitness function, which obeys to the Jaccard index [7], where the division
between A and B is performed, being A the set of cells on the real map without
the subset of cells burned before starting the predictive process, and being B
the set of cells on the simulated map, without the subset of cells burned before
starting the prediction (the subset of cells burned before starting the predictive
process are not considered to avoid biased results). Therefore, the fitness value
can be considered the percentage of coincidence between the map obtained from
the simulation and the real map, and will be in the range [0, 1]: a value equal
to 1 will represent a perfect prediction, and a value equal to zero would indicate
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the maximum error. Therefore, aptitude represents the percentage of coincidence
between both maps. Subsequently, the following stages are carried out: Statistics
(SS), Calibration (CS) and Prediction (PS), which collect the information and
results obtained by all the islands in the OS stage, and based on this, they allow
to obtain the global prediction of the state of the fire. As the Prediction stage
finishes and the following fire step is going to start, ESSIM-DE also involves the
Restart Operator (RO). This operator generates a new population (new search
space). For more detail on the operation of the ESSIM-DE stages it is possible
to consult [10].

3 Dynamic Tuning: Performance Model

In this section we concentrate on the performance model defined to enhance
ESSIM-DE, constituting ESSIM-DE(ldr). For each prediction step, the Master
process of each island determines when the evolution of its population finishes
to continue with the next stages of the prediction process. In the OS stage
of ESSIM-DE, the termination condition of the evolutionary cycle consists in
determining a certain maximum level or limit of iterations. This condition has a
double influence on the optimization process, since it limits the amount of evolu-
tionary generations through which each population will evolve, and consequently
determines the execution time of the evolutionary process. In part, these were
the reasons why it was proposed to define the dynamic tuning process applied
to the limit of evolutionary iterations.

In the definition of the tuning process we have considered two possible prob-
lems associated with the evolution process carried out by DE: premature con-
vergence and stagnation. Premature convergence is the situation in which the
population converges to a local optimum, due to the loss of diversity; for its
part, stagnation is the situation in which the optimizer is not able to gener-
ate new solutions better than its predecessors, even when the population has a
certain diversity [4]. The problem of population stagnation depends on the effec-
tive movements of the DE optimizer. When a new individual is generated, there
is a movement in the search space. This movement is considered effective if the
new generated individual has a better aptitude compared to his predecessor [13].
Among all the possible movements that are made in the population, some are
effective, while others are not, and therefore the latter involve a computational
effort in vain. To address the treatment of these problems, it was proposed to
quantify two different metrics for the population:

— Effective movements (EM metric): quantifies the number of individuals
that have been improved after an evolutionary cycle (better fitness value than
that of their predecessor).

— Population diversity (IQR metric): quantifies the dispersion of the pop-
ulation (variability of the population distribution). It is computed based on
the Interquartile Range [3] of the fitness values of individuals.
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These metrics are proposed after an experimental analysis in which they were
monitored, recorded and studied for different cases of controlled burning. In a
first approximation, a fixed threshold value was used for each metric. However,
analyzing the results presented in Fig. 7, it was possible to note that the graphic
of the IQR metric is variable from case to case, throughout the iterations, even
when the same seeds are involved in the different fire cases. This is because the
distribution of the values of fitness is influenced by multiple factors (method
convergence speed, mutation factor, crossing probability, migration rate, map
dimensions, among others). For this reason, the proposed performance model
uses the information of the dispersion of the population, considering the succes-
sive IQR values obtained throughout the evolutionary generations. The purpose
is —according to the current burning case considered— to detect states with some
tendency to stagnation and/or premature convergence, making use of recent
information about fitness distributions.
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Fig. 7. The distribution of IQR is dependent of the study case. The same three seeds
were used for the three illustrated cases: s, s2 and s3.

To achieve this, it was proposed: (i) to record the minimum IQR value
obtained; (i7) to update such minimum IQR value throughout the iterations;
and (4ii) to compare it with respect to the IQR value obtained in the current
iteration. This idea is exemplified in Fig. 8.
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Fig. 8. Example: how is Delta determined.
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The z axis represents the evolutionary generation (iteration) whilst the y
axis represents the registered IQR value. The graph shows the minimum IQR
recorded (MinIQR) and the IQR of the current iteration (CurrIQR). If the
difference between both of them —called Delta— is very small, it means that the
population has achieved a very similar distribution (in terms of fitness values)
to that achieved in any of the previous iterations. Defining Delta = (MinIQR
— CurrlQR), the tuning criterion is defined by the Eq. 1 in which it is verified
that the tendency of IQR is decreasing (Delta >= 0) and Delta is bounded by
a certain small threshold DELTA value.

Delta < threshold DELTA A Delta >0 AME < thresholdME (1)

For its part, the value of the ME metric is also considered, required to analyze
whether the optimizer still has effective movements to be made on the search
space, bounded to a certain threshold value thresholdME. In ESSIM-DE, the
Eq. 1 is computed in each iteration throughout the OS, according to the current
population distribution, for each burning map and particular conditions of exe-
cution. The proposal aims to improve response times with respect to the method
without tuning, since the new condition used as a cut-off criterion is a specific
property of each population, which avoids unnecessary cycles. The tuning pro-
cess is included in Fig. 6 (see the boxes in red dotted lines). The aptitude values
are recorded along the Monitoring phase and the metrics are computed in the
Master Analysis phase. When analyzing each iteration, each Master sends the
metrics of its island to the Monitor (Mon) process, who makes an aggregation
of the values received in its Analysis phase, and determines if there is any island
with a tendency to stagnation and/or premature convergence. If some island
evaluated as true the Eq. 1, the Monitor decides: (a) to stop the evolution of all
the islands; (b) to make the prediction by aggregating the information of all of
them; and (¢) to resume the next prediction step.

4 Experiments

In [11] the proposal was validated based on experimentation with three cases of
controlled burning belonging to the SPREAD project [12] (see Table 1, cases A, B
and C). In this article we extend such experimentation, including two additional
cases also from SPREAD project (see Table 1, cases D and E). For each case of
burning, the experiment was performed to compare two different scenarios:

— Fire prediction with ESSIM-DE (with no tuning process).
— Prediction of the fire with ESSIM-DE(ldr) (ESSIM-DE empowered by
dynamic tuning).

It should be remembered that 1dr is the acronym with which we call the method
with the process of dynamic tuning of the iteration limit and with the population
restart operator. Each experiment was executed 10 times with different seeds. We
present the average of the results obtained along the ten executions. The island
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model was configured with 5 islands, of 7 Workers each. The migration process
involves 20% of the individuals in the population, and it is carried out in each
iteration. The size of each population was defined as 200 individuals. For ESSIM-
DE and ESSIM-DE(ldr) the same configuration of the evolutionary parameters
was used: crossover probability 0.3, mutation factor 0.9, and binomial crossover.
The value used as the thresholdME was set at 20%. The value established for
the threshold DELTA parameter was 1073,

Table 1. Study cases: dimension, slope, start time, end time, and increase.

Case | Width (m) |High (m)  Slope (degrees) |St. T. (min) |Incr. (min)|End T. (min)
A 89 109 21 2 2 14

B 60 90 6 2 2 10

C 89 91 21 2.5 2.5 12.5

D 95 123 21 2 2 12

E 75 126 19 3 1 9

The results obtained are presented in Fig.9, 10, 11, 12 and 13. Two graphics
are included in each figure. The graph (a) represents the fitness averages for
each prediction step, obtained by ESSIM-DE(ldr), and compared with respect
to the ESSIM-DE with no tuning. Graph (b) shows the distribution of fitness
values obtained for each prediction step and method, which allows analyzing the
dispersion of the results and the robustness of the method in terms of obtaining
different solutions under different executions. Table 2 shows the average runtime
values obtained.

Figure 9 shows the results obtained for the case of burning A of Table 1. The
fire starts in minute 2 and lasts for 14 min, constituting a calibration step and
five prediction steps (calibration: minute 2 to 4; prediction steps: minutes 4 to 6
first step, minutes 6 to 8 second step, minutes 8 to 10 third step, minutes 10 to 12
fourth step, and minutes 12 to 14 fifth step). In general, it can be seen from graph
(a) that ESSIM-DE obtains low quality of prediction, especially in the prediction
step 3. Figure 9(b) shows how step 1 and step 5 present a wide variability of the
results obtained with ESSIM-DE, whilst for ESSIM-DE(1dr) there is less distri-
bution in all prediction steps, which indicates robustness in terms of obtaining
solutions under different executions. In general, ESSIM-DE(ldr) gets better per-
formance, with average of fitness greater than 0.7 in all the prediction steps, and
with a reduction of the execution time of approximately 38%. This reduction
in time is associated with the ability of ESSIM-DE(ldr) to prematurely detect
the tendency to stagnation and/or premature convergence, avoiding unnecessary
cycles, and therefore, achieving less response time. Execution time reductions are
very relevant in the context of prediction methods, allowing decisions to be made
in advance of the fire. It is important to note that the reduction of time not only
depends on the speed with which the stagnation and premature convergence is
detected, but also depends on the characteristics of the burning case and the
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Fig. 9. Case A. (a) fitness average for ESSIM-DE and ESSIM-DE(ldr). (b) Distribution
of the fitness values obtained in the successive prediction steps.

size of the considered map, which influences the overall behavior of the system
in the different stages.

Table 2. Average execution times and percentage reduction.

Case | ESSIM-DE | ESSIM-DE(ldr) | Time reduction
A 3540 1292 63.5%
B 1696 446 73.7%
C 2332 1438 38.3%
D 3582 1265 64.7%
E 2406 702 70.8%

Figure 10 shows the results obtained for the case of burning B of Table 1. The
fire consists of three prediction steps (minutes 4-6, 6-8, 8-10). It can be seen
from the Fig. 10(a) that ESSIM-DE has a decreasing trend in the quality of the
predictions, with a low percentage of coincidence in the third prediction step, less
than 60%. Although in the first prediction step can be observed good quality
(higher than 0.8) and low distribution (see the results obtained in Fig.10(b),
step 1 for ESSIM-DE), ESSIM-DE(Idr) improves all prediction steps, with fitness
averages greater than 0.85 in all steps. In addition, in this case ESSIM-DE(Idr)
obtains a gain in runtime, with a significant reduction of approximately 73%.

Figure 11 shows the results obtained for the case of burning C of Table1.
The fire consists of three prediction steps. It can be seen from the Fig. 11(a) that
ESSIM-DE(ldr) obtains a better fitness average in the first and third prediction
step, while ESSIM-DE obtains a quality close to 0.9 in the second prediction step.
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Fig. 11. Case C. (a) fitness average for ESSIM-DE and ESSIM-DE(1dr). (b) Distribu-

tion of the fitness values obtained in the successive prediction steps.

It is important to highlight in this experiment that ESSIM-DE(ldr) significantly
improves the quality of the prediction obtained in the third prediction step with
respect to ESSIM-DE, achieving a percentage of coincidence with the real fire
close to 80% of coincidence (fitness close to 0.8). In addition, it can be seen
from the results in Table2 that ESSIM-DE(ldr) reduces the execution times
approximately by 63% compared to ESSIM-DE.

Figure 12 shows the results obtained for the case of burning D of Table 1.
The fire consists of four prediction steps (minutes 4-6, 6-8, 8-10, 10-12). Tt
can be seen from the Fig.12(a) that ESSIM-DE present good results. However,
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Fitness Average

Fig. 12. Case D. (a) fitness average for ESSIM-DE and ESSIM-DE(1dr). (b) Distribu-
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tion of the fitness values obtained in the successive prediction steps.

it has a decreasing trend in the quality of the predictions, showing a loss in
the percentage of coincidence in the third prediction step, less than 70%. Even
when ESSIM-DE(1dr) overtakes ESSIM-DE only in the third prediction step, it
is possible to note that the quality of ESSIM-DE(ldr) is maintained around a
70% of coincidence with the real fire situation along the four prediction steps,
and from Table2 it is possible observe that ESSIM-DE(ldr) obtains a gain in

runtime, with a significant reduction of approximately 65%.

Fitness Average

Fig. 13. Case E. (a) fitness average for ESSIM-DE and ESSIM-DE(1dr). (b) Distribu-
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tion of the fitness values obtained in the successive prediction steps.
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Figure 13 shows the results obtained for the case of burning E of Table1.
The fire consists of five prediction steps. It can be seen from the Fig. 12(a) that
ESSIM-DE(ldr) improves the average fitness in every prediction step, whilst
ESSIM-DE obtains a quality at most close to 0.6 in the last prediction step. It
is important to highlight in this experiment that ESSIM-DE(ldr) significantly
improves the quality of the prediction obtained in the first and fourth prediction
steps with respect to ESSIM-DE, achieving a percentage of coincidence with
the real fire over 70% of coincidence, in contrast to the 30% or 40% reached
by ESSIM-DE without tuning. Figure 13(b) shows that in this case, the fitness
distributions for ESSIM-DE(ldr) do not present major variability, confirming
the robustness of the method. In addition, it is important to note that ESSIM-
DE(Idr) reduces the execution times approximately by 70% compared to ESSTM-
DE, as shows Table 2.

In general, considering all studied cases, the quality of the predictions
obtained by ESSIM-DE(ldr) was improved regarding ESSIM-DE (the method
without tuning). With respect to response times, ESSIM-DE(1dr) obtained the
results with a significant reduction in the execution time: between 38% and 73%
savings with respect to ESSIM-DE. Both improvements are associated with the
early detection of stagnation and premature convergence, avoiding unnecessary
cycles to the Evolution Differential optimizer, and obtaining better individuals
that contribute to the overall solution. It is important to highlight that the use
of a mathematical/statistical model as the basis of expert knowledge for the
dynamic tuning process allows for the reduction of the time taken in decision
making, unlike other strategies with higher computational cost, such as search,
iterative processes, logic diffuse, neural networks, approximations, among others.
This is because the analysis and tuning decisions are based only on the evalua-
tion of mathematical expressions. In the context of prediction methods such as
ESSIM-DE, these time reductions are essential to obtain short-term predictions.

5 Conclusions

In this paper, we proposed a performance model to dynamically tune the ESSIM-
DE method, a general method for the uncertainty reduction in the prediction of
spread phenomena. We proposed to incorporate the tuning process in order to
improve the ESSIM-DE performance both in terms of quality of the obtained pre-
dictions, and the response time. The defined performance model uses the infor-
mation of the dispersion of the population in the succession of values obtained
throughout the evolutionary generations, in order to detect tendency to stagna-
tion and/or premature convergence of the population. The state and distribution
of the search space (populations) is computed at two different levels: (7) in a dis-
tributed manner, given that each island analyzes the current distribution of its
own population, for each burning map and particular conditions of execution,
and (#) in a centralized manner as the Monitor process analyzes the search space
in a global view. The results obtained have shown that the proposal improves
both the quality and the response times with respect to the method without
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tuning, since the new condition used as a cut-off criterion is a specific property
of each population, which avoids unnecessary cycles once certain level of conver-
gence has been detected. As future work, we propose to tune the threshold values
of the metrics defined in the performance model, and consider other parameters
of the method that may be potentially tunable, such as the population size, or
the parameters related to the parallel/distributed model.
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