

Using plastic waste in construction: Recycled medical equipment to improve concrete

This work is an EFL engineering student project. The pictures and content in this presentation are only used for educational purposes. If there is any copyright conflict, they will be immediately removed.

Universidad Tecnológica Nacional

Facultad Regional Paraná

Juan P. BIDEGORRY Juliana M. DEYUSTO

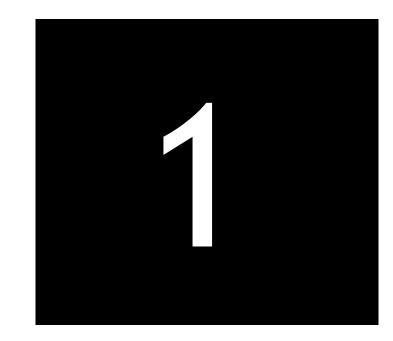
INGLES II - CIVIL ENGINEERING

2023

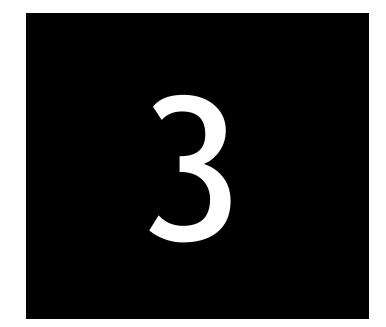
Introduction

Contextualization

Large amounts of plastic-based personal protective equipment (PPE) for health workers, as well as face masks for the general public, have been used to combat the spread of COVID-19.

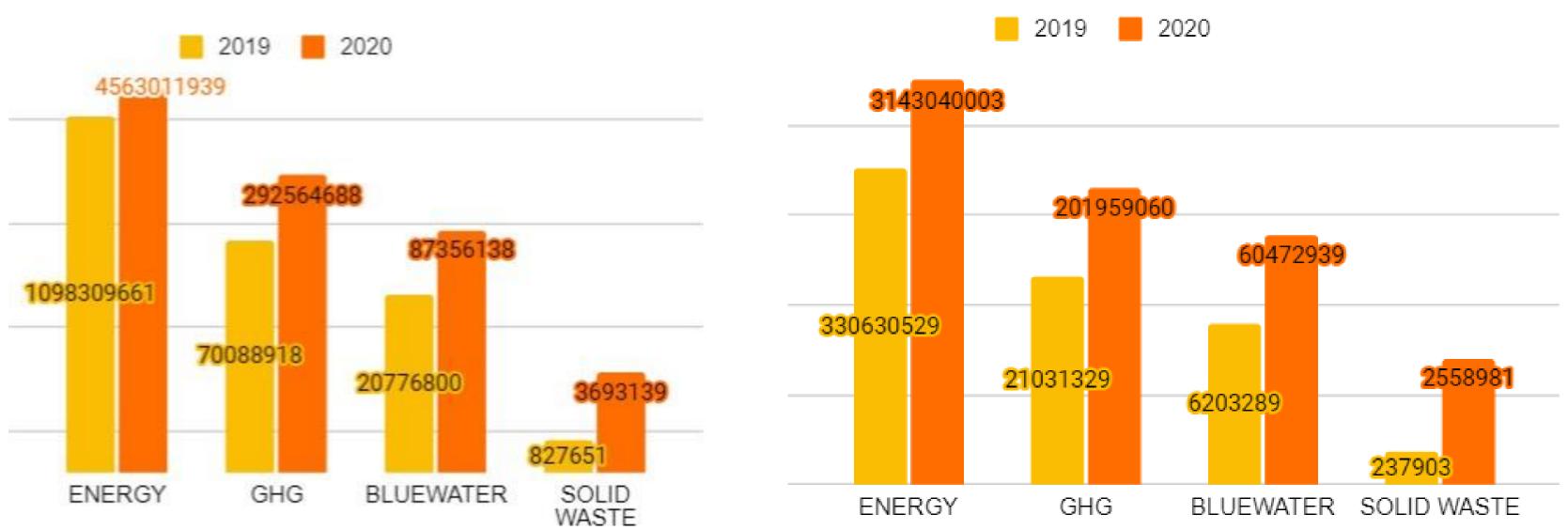

Objective

The aim of this paper is to introduce an alternative material for infrastructure building that incorporate plastic waste



Ζ ш

Current Statistics and Environmental Impact of DMFM and PS Application of Plastic Waste in Concrete



Analysis of the Research

Current Statistics and Environmental Impact of DMFM and PS

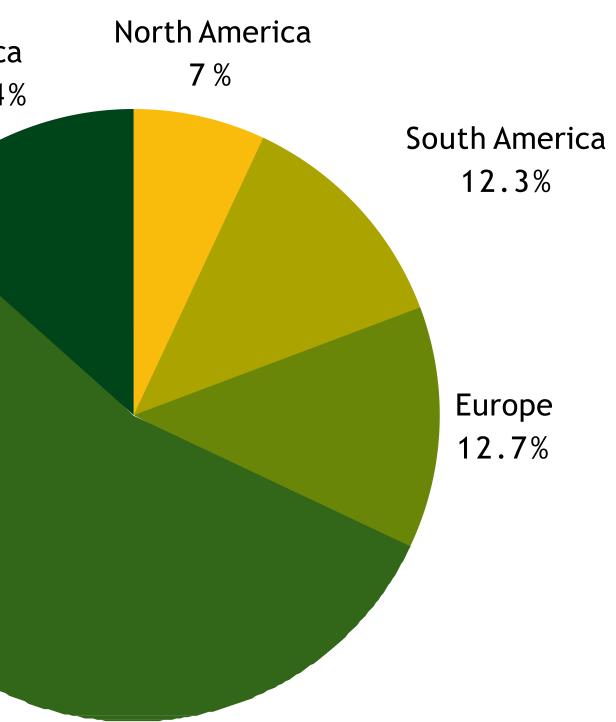
DMFM AND PS CONSUMPTION IN MAJOR REGIONS

USA

EUROPE

Current Statistics and Environmental Impact of DMFM and PS

STATISTICS OF MASK WASTE


The current daily estimated number of DMFMs is approximately 3503.7 million worldwide.

Daily waste =
$$1x10^{-4}x (P_{Total} x P_{Urban} x A x B)$$

Africa 13.4%

Asia

54.6%

Application of Plastic Waste in Concrete

Processes to Obtain the Polypropylene **Fibres**

Mix Design, Casting Procedures and Specimen-Making

Testing and Results

Processes to Obtain the Polypropylene Fibers

MASKS (EXPERIMENT N 1)

Ear straps and nose wire are removed

Samples into cut are rectangular shapes (20x5 mm)

eliminated

Samples

PROTECTIVE SUITS (EXPERIMENT N 2)

Zippers and elastics are

cut into are rectangular shapes (20x4 mm)

Mix Design, Casting Procedures and Specimen-Making

Ordinary Portland Cement

River Sand

Crushed stone and recycled concrete

EXPERIMENT N 1

Polypropylene Fibers

Superplasticizer

Mix Design, Casting Procedures and Specimen-Making

Composite Portland Cement

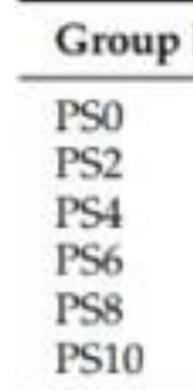
River Sand

Crushed limestone

EXPERIMENT N 2

Polypropylene Fibers

Water-reducing aditive


Mix Design, Casting Procedures and Specimen-Making

EXPERIMENT N 1

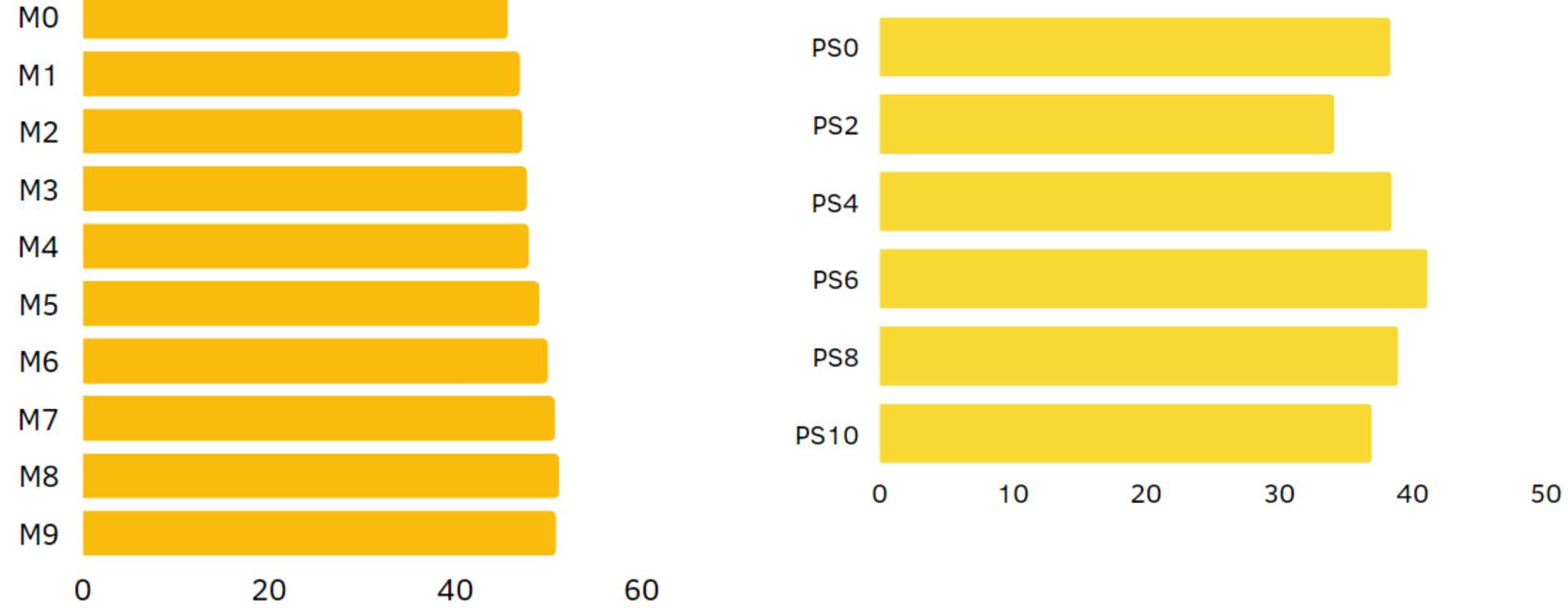
Mix Fiber dosage (%) Binder (kg/m³)

ID

	DMFM fiber	Basalt fiber	OPC	FA	GGBFS
MO	0.00	0.00	489	-	-
M1	0.00	0.00	391	33	65
M2	0.10	0.00	391	33	65
M3	0.20	0.00	391	33	65
M4	0.00	0.25	391	33	65
M5	0.10	0.25	391	33	65
M6	0.20	0.25	391	33	65
M7	0.00	0.50	391	33	65
M8	0.10	0.50	391	33	65
M9	0.20	0.50	391	33	65

nen-Making EXPERIMENT N 2

Number	PSF (% by Volume		
	0		
	0.2		
	0.4		
	0.6		
	0.8		
	1.0		

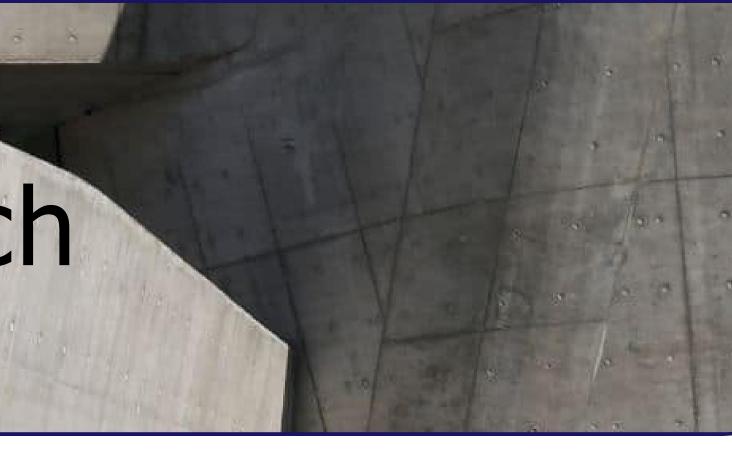


Testing and Results

- Compressive strength test
 - Cilindrical specimens (Experiment N 1)
 - Cubical specimens (Experiment N 2)

Testing and results EXPERIMENT N 1

Compressive Strength [MPa]



EXPERIMENT N 2

Compressive Strenght [MPa]

Analysis of the Research

Improved Compressive Strength of Concrete Environmental and Economic Benefits Desinfection of Recycled Equipment

Higher performance with minerals and basalt fibers addition

Conclusion

References

- 1.S. Kahlert, Bening, C.R. Plastics recycling after the global pandemic: Resurgence or regression? Resource. Conserv. Recycle. 2020, 160, 104948. [CrossRef]
- 2.Y. Tao; F. You. Can decontamination and reuse of N95 respirators during COVID-19 pandemic provide energy, environmental, and economic benefits? Appl. Energy 2021, 304, 117848. [CrossRef]
- 3.J. Prata, C. Silva, A.L.P, T.R. Walker, A.C Duarte, and T. Rocha-Santos. COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environ. Sci. Technol. 2020, 54, 7760–7765. [CrossRef]
- 4.S. Yang; Y. Cheng; T. Liu; S. Huang; L. Yin; Y. Pu; G. Liang. Impact of waste of COVID-19 protective equipment on the environment, animals and human health: A review. Environ. Chem. Lett. 2022, 2022, 1–20. [CrossRef]
- 5. G.M.S Abdullah; A.A. El Aal. Assessment of the reuse of Covid-19 healthy personal protective materials in enhancing geotechnical properties of Najran's soil for road construction: Numerical and experimental study. J. Clean. Prod. 2021, 320, 128772. [CrossRef]
- 6. F. Guidetti; Energy consumption in production of concrete, 28 August 2017. [CrossRef]
- 7.I.A. Abdulaziz; Y.A. Mohanad; I. Galobardes; J. Mushtaq; S.F. Almojil. Producing sustainable concrete with plastic waste: A review, Environmental Challenges, Volume 9, 2022,100626, ISSN 2667-0100. [CrossRef]
- 8. C.W. Wisal Ahme. Lim, Effective recycling of disposable medical face masks for sustainable green concrete via a new fiber hybridization technique, Construction and Building Materials, Volume 344, 2022, 128245, ISSN 0950-0618 [CrossRef]
- 9. T. Ran, J. Pang and J. Zou. An Emerging Solution for Medical Waste: Reuse of COVID-19 Protective Suit in Concrete. Sustainability 2022, 14, 10045. [CrossRef]
- 10.M. A. Uddin, S. Afroj, T. Hasan, C. Carr, K.S. Novoselov, N. Karim, Environmental Impacts of Personal Protective Clothing Used to Combat COVID- 19. Adv. Sustainable Syst. 2022, 6, 2100176. 10.1002/adsu.202100176 [CrossRef]
- 11.Worldometer, World Population, (2022). Accessed: March 10, 2022). [Online]
- 12.C. Nzediegwu, S.X. Chang. Improper solid waste management increases potential for COVID-19 spread in developing countries. Resource. Conserv. Recycl., 161 (2020), Article 104947, <u>10.1016/J.RESCONREC.2020.104947</u>
- 13. N.U. Benson, D.E. Bassey, T. Palanisami, COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint Heliyon, 7 (2021), p. e06343
- 14.W. Ahmed, C.W. Lim, Effective recycling of disposable medical face masks for sustainable green concrete via a new fiber hybridization technique, Construction and Building Materials, Volume 344, 2022, 128245, ISSN 0950-0618 [CrossRef]
- 15.P.K. Mallick, Chapter 6 Thermoset matrix composites for lightweight automotive structures, Editor(s): P.K. Mallick, In Woodhead Publishing in Materials, Materials, Design and Manufacturing for Lightweight Vehicles (Second Edition), Woodhead Publishing, 2021, Pages 229-263, ISBN 9780128187128 [CrossRef]

16. H. Jamshaid, R. Mishra, A green material from rock: basalt fiber – a review, J. Text. Inst., 107 (2016)[CrossRef] 17. ASTM C39/C39M, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, (2020). [CrossRef] 18.H. Mohammadhosseini, Jamaludin, M. Yatim, Evaluation of the Effective Mechanical Properties of Concrete Composites Using Industrial Waste Carpet

Fiber, Ina. Lett. 2017 21. 2 (2017) 1–12. 10.1007/S41403-017-0016-X. [CrossRef]

THANKS FOR LISTENING!

2023

YUGDAR TÓFALO, Graciela E.

Important Note

> THIS IS AN ENGLISH AS A FOREIGN LANGUAGE ENGINEERING STUDENT PAPER. **READERS MAY MAKE USE OF THIS MATERIAL** AT THEIR OWN DISCRETION <

> This work is an EFL engineering student project. The pictures and content in this presentation are only used for educational purposes. If there is any copyright conflict, they will be immediately removed.