

PROYECTO FINAL PÉRDIDAS TÉCNICAS EN LÍNEAS DE SUBTRANSMISIÓN

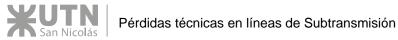
Autores

Ceballos, Luciano Musso, Javier Angel

Tutor

Marcangelo, Daniel

MAYO 2020


RESÚMEN EJECUTIVO

El siguiente proyecto tiene por objeto la estimación de las pérdidas técnicas existentes en un sistema eléctrico real con el fin de obtener una valorización monetaria de las mismas y realizar un análisis del impacto económico que tendrían sobre una propuesta de inversión.

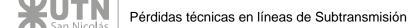
Las instalaciones a estudiar corresponden a un sistema de Subtransmisión en 33 KV que técnicamente alcanzó su máximo óptimo y puede saturar rápidamente debido al crecimiento constante que experimenta la región. Cómo solución se propone un proyecto en alta tensión (132 KV) del cual también se estiman las pérdidas técnicas y, luego de la correspondiente comparación, se verifica la factibilidad económica de su ejecución.

Para la estimación de pérdidas técnicas se utiliza el software NEPLAN, el cual realiza el análisis a partir de los valores de carga obtenidos desde el sistema SCADA de la distribuidora y los parámetros de línea y Estación Transformadora correspondientes a las instalaciones existentes y a las propuestas.

La evaluación económica final, con su correspondiente amortización, se realiza con una modelización de la demanda a 10 años, utilizando los datos de carga registrados en los últimos tres.

Índice

1 -	INTRODUCCIÓN	6
1	.1) – Problemática	6
1	.2) – Justificación	6
1	.3) – Objetivos	7
	1.3.1) – Objetivos Generales	7
	1.3.2) – Objetivos Específicos	7
2 -	MARCO TEÓRICO	9
2	.1) – Pérdidas de Energía	9
2	2.2) – Sistema de Subtransmisión	10
2	.3) – ET San Andrés de Giles	12
2	.4) – Línea de 33 KV Lujan - San Andrés de Giles	14
2	2.5) – Línea de 33 KV Mercedes – San Andrés de Giles	15
2	2.6) – Evolución histórica	16
	2.6.1) – Primer Repotenciación	17
	2.6.2) – Segunda Repotenciación	18
	2.6.3) – Tercera Repotenciación	20
2	2.7) – Síntesis	22
3 –	MARCO METODOLÓGICO	24
4 –	DESARROLLO	31
	.1) – Cálculo de la LAAT San Antonio de Areco – San Andrés de G	
4	2.2) – Características técnicas generales	
	4.2.1) - Conductor de potencia	36
	4.2.2) - Conductor de hilo de guardia	
4	.3) – Estados de carga	
	4.3.1) – Determinación de la zona	38
	4.3.2) – Tensiones mecánicas admisibles	39
	4.3.3) – Definición de zonas	40
	4.3.3.1) – Zona urbana	40
	4.3.3.2) – Zona suburbana	
	4.3.3.3) – Zona rural	
	4.3.3.4) – Cruce de rutas nacionales	41


4.3.3.5) – Cruce de FFCC	. 41
4.3.4) – Altura libre de los cables	. 41
4.3.5) – Tensiones máximas admisibles en el conductor	. 42
4.3.5.1) – Ecuación general de cambio de estado	. 42
4.3.5.2) – Tensiones máximas admisibles para cada estado	. 49
4.3.5.3) – Cálculo de Flecha y Tiro	. 52
4.3.6) – Tensiones máximas admisibles en el cable de guardia	. 55
4.3.6.1) – Ecuación general de cambio de estado	. 56
4.3.6.2) – Tensiones máximas admisibles para cada estado	. 60
4.3.6.3) – Cálculo de Flecha y Tiro	. 63
4.3.7) – Tabla de tendido de conductores	. 66
4.3.7.1) – Tabla de tendido para el conductor de potencia	. 66
4.3.7.2) – Tabla de tendido para el hilo de guardia	. 68
4.4) – Aisladores	. 70
4.4.1) – Elección del tipo de aislador	. 70
4.4.2) – Cálculo de la cantidad de aisladores	. 71
4.4.3) – Angulo de inclinación de la cadena de aisladores	. 72
4.5) – Cálculo del cabezal	. 73
4.5.1) – Distancias eléctricas	. 73
4.5.1.1) – Distancia eléctrica entre conductores en el centro del	
vano	. 74
4.5.1.2) – Distancia entre el conductor e instalaciones puestas a tierra	75
4.5.1.3) – Distancia entre ménsulas	
4.5.1.4) – Verificación de la longitud del péndulo	
4.5.1.5) – Longitud de la ménsula	
4.5.1.6) – Altura de montaje de las ménsulas	
4.5.1.7) – Altura de montaje de los conductores	
4.5.1.8) – Ancho del electroducto	. 81
4.5.2) – Altura del poste	. 82
4.6) – Cálculo mecánico del poste	. 85
4.6.1) - Poste de Suspensión Rural	. 86
4.6.1.1) – Cargas permanentes	. 87
4.6.1.2) – Cargas para estado de viento máximo (Estado N°2)	. 87
4.6.1.3 – Hipótesis normal FN1	. 91

4.6.1.4) – Hipotesis normal FN2	93
4.6.1.5) – Hipótesis normal FN3	93
4.6.1.6) – Hipótesis normal FN4	93
4.6.1.7) – Hipótesis Excepcional FE1	94
4.6.1.7.1) - Momento flector 1	94
4.6.1.7.2) – Momento flector 2	95
4.6.1.7.3) – Momento flector total	95
4.6.1.7.4) - Momento torsor	96
4.6.1.7.5) – Momento resultante	96
4.6.1.8) – Hipótesis Excepcional FE2	97
4.6.1.9) – Poste elegido	98
4.6.2) – Poste de Suspensión Urbano	99
4.6.3) - Poste de Retención Rural	100
4.6.4) – Poste de Retención Urbano	102
4.6.5) – Poste de Retención Angular	103
I.7) – Cálculo de las bases de empotramiento	105
4.7.1) – Momento de encastramiento Ms	107
4.7.2) – Momento de fondo Mb	111
4.7.3) – Momento de vuelco Mv	113
4.7.4) – Verificación de la fundación	113
4.7.5) – Fundación para Poste de Suspensión Rural	114
4.7.6) – Fundación para Poste de Suspensión Urbano	115
4.7.7) – Fundación para Poste de Retención Rural	115
4.7.8) – Fundación para Poste de Retención Urbano	116
4.7.9) – Fundación para Poste de Retención Angular	116
I.8) – Cálculo de costos de la LAAT San Antonio de Areco – S	an Andres
de Giles	117
4.8.1) – Cálculo de costos de materiales	117
4.8.2) – Cálculo de costos total	120
l.9) – Cálculo de la nueva ET San Andrés de Giles 132 KV	120
l.10) – Memoria descriptiva de la ET	121
4.10.1) – Campo de entrada 132 KV	122

4.10.2) – Campo de acople de 132 KV	. 124
4.10.3) – Campos de transformación	. 125
4.10.4) – Campo de acople de 33 KV	. 130
4.10.6) – Campo de acople de 13,2 KV	. 132
4.10.7) – Salidas de 13,2 KV	. 134
4.11) – Cálculo de PAT	. 135
4.11.1) – Consideraciones	. 135
4.11.2) – Características de la malla	. 136
4.11.3) – Procedimiento de verificación	. 137
4.11.3.1) – Determinación de los datos de campo	. 138
4.11.3.2) – Determinación de la Resistencia de Puesta a Tierra	
4.11.3.3) – Evaluación de las tensiones de paso y de contacto	. 138
4.11.4) – Desarrollo del cálculo	. 138
4.11.4.1) – Datos de campo	. 138
4.11.4.2) – Verificación térmica del conductor	. 139
4.11.4.3) – Cálculo de la resistencia de dispersión de malla	. 140
4.11.4.4) – Cálculo de la resistencia de dispersión de las jabalin	
4.11.4.5) – Cálculo de la resistencia mutua entre el grupo de	. 142
conductores de la malla y el grupo de jabalinas	. 143
4.11.4.6) – Cálculo de la resistencia del conjunto	. 144
4.11.4.7 – Cálculo de las tensiones de contacto	. 145
4.11.4.8) – Cálculo de la tensión de paso exterior	. 148
4.11.4.9) – Cálculo de la tensión de paso interior	
4.11.4.10) – Valorización de la tensión de malla	
4.11.4.11) – Valorización de la elevación del potencial de tierra	
4.12) – Cálculo de costos de la nueva ET San Andrés de Giles	
4.12.1) – Cálculo de costos de materiales	
12.2) – Cálculo de costos total	
– ANÁLISIS ECONÓMICO	. 155
5.1) – Valorización de pérdidas técnicas	. 155
5.1) – Valorización de pérdidas técnicas 5.2) – Flujo de fondos	. 155 . 158
5.1) – Valorización de pérdidas técnicas	. 155 . 158
5.1) – Valorización de pérdidas técnicas 5.2) – Flujo de fondos	. 155 . 158 . 162

5.2.3) – Otros escenarios	167		
5.2.3.1) – Escenario propuesto con dos transformadores	167		
5.2.3.2) – Escenario propuesto contemplando la construcción de			
una ET convencional	169		
6 - CONCLUSIÓN	171		
7 - REFERENCIAS	173		
8 - BIBLIOGRAFÍA	175		

9 - ANEXOS 177