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Abstract — This paper presents an overview of the proposed 

standard ISO/IEC/IEEE P21451-001 for sensor signals that is 

currently under development. The IoT, Internet of Things, is a 

reality. Most of things have sensors embedded without drawing 

distinction between industrial and consumer products. Things 

can be easily identified and the protocols that govern the traffic 

over the nets are well defined. However, what is difficult to define 

is the information that a thing with sensors should report. 

Therefore, the objective of this standard is to define a first 

approach to describe sensor signals, in a way that can be applied 

to any sensor extracting information from samples. 

The paper is divided into two main sections. The first one 

describes the basic algorithms that extract knowledge from 

samples. The second one shows the internal structure of the 

working group for normalizing these algorithms and the 

remaining challenges. 

Keywords — Standards; Sensor Signals; Internet of Things; 

IEEE 1451; . 

I. INTRODUCTION 

The world is inferred from sensor signals. Most of things 

have sensors embedded and communication between those is 

becoming even more essential. The number of connected 

devices is growing up faster and, nowadays, there are more 

things connected to the internet than people on earth [1]. The 

Internet of Things (IoT), is a new way for technologies to keep 

in contact with environment: devices would be giving and 

receiving data each other, working in a network of networks 

where the information is extracted from the sensors raw data. 

The IoT has the potential to change the world, just as the 

Internet did. If we had computers that knew everything there 

was to know things using data they gathered without any help 

from us we would be able to track and count everything, and 

greatly reduce waste, loss and cost. We would know when 

things needed replacing, repairing or recalling, and whether 

they were fresh or past their best. These facts are requiring an 

urgent redefinition of the smart sensor concept, at least in the 

field of standardization. Every day, smart sensors become 

smarter in the sense that there are more signal processing 

resources inside them [2]. Since the “intelligence” has 

emigrated toward the point of measurement, sensors can do 

much more than we usually have required from them; in order 

to obtain not simple samples, raw data, but directly 

meaningful and useful information on the acquired signal. In 

order to make the networks interchange more meaningful 

information or knowledge, a lot of work has to be done for 

smart sensors. Things can be easily identified into the 

networks. The protocols that control the traffic over the nets 

have been defined and established. What is not straightforward 

to define is the signal information that a transducer should 

report, especially parameters related with its own signal 

evolution.  

As an example, let’s consider a video camera. With signal 

processing, it will be the most complex sensor that humans 

have created. It detects people, faces, gestures, shapes, objects, 

scene description, text, weather conditions, movement, 

velocity and any pattern on the image. If these signal 

processing algorithms are executed into the camera, there will 

flow on the network knowledge at low bit rates instead of 

millions of bit per second without meaning. The lowest data 

rate is obtained through interrogations with yes/no 

answers to questions that require signal processing. Note that 

this approach is better than to compress the signal because it 

could be compressing a signal that has no meaningful 

information. 

What kind of knowledge should be included into the 

standard proposal? As a first approximation should be basic 

information of sensor signal shape, impulsive noise, noise, 

mean, tendency and detection of patterns. The aim is to 

include the same information that could provide a human 

being looking at the signal i.e. to be able to describe the signal 

and must be of interest for any signal sensor that has been 

digitized. 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Block Diagram of the proposal IEEE 21451 standard. (In green the part under developing by the IEEE Standards P21451-001 Working Group) 

 
The following sections present an outline of the proposal: 

it will be integrated in a new version of the standard IEEE 
1451 for smart sensors. In the Fig.1 a block diagram of the 
proposal standard is shown. Section II presents the algorithm 
description with emphasis in universal treatment to be applied 
to any sensor signal. These algorithms can be seen as a smart 
sampling process. The segmentation and labeling process will 
be described and it  conforms raw information to infer global 
behavior and to extract important features of the signal. 
Section III presents the structure of the working group in 
charge of development this standard. 

II. SIGNAL TREATMENT ALGORITHMS 

A. Segmentation 

The key process is the signal sampling. This process should 

be a consequence of the signal characteristics. A time domain 

algorithm is proposed as a building block for signal analysis. It 

is based on signal segmentation following of a labeling 

process. As a result, the smart transducer realizes what kind of 

signal it is measuring or generating from the sampling process. 

Computational cost of the proposed algorithms is low so they 

can be built into smart sensors and executed in real time to 

provide a normalized platform for sensor signal identification 

and sensory data cooperation. 

It is possible to sample the signal in many different ways, for 

example the compressive sampling is one of them [8]. The 

uniform sampling is the simplest way to digitize an analog 

signal. A strong point is that the time information is captured 

by the index of the digital data. Where is the information in an 

analog band limited signal? One way to get this embedded 

information is to observe the signal trajectory and compare it 

with known patterns. If we look at the signal in Fig. 2, we do 

not see isolated sampled, instead how the samples are related 

each other. 

 

 

 

 

 

 

 
 

Fig. 2. The uniform sampling gives us samples, but when we observe the 

signal we describe it on how samples relate each other. 

 

It is easy for the human observer to detect the minimum and 

maximum, to realize that the transition is smooth and to infer 

signal shape parameters.  

The sampling technique presented emulates a human 

observer in the sense that relates samples to infer global 

behavior. The key process is to compare the signal trajectory 

against linear trajectory. It is not necessary to do this for every 

pair of samples. Therefore, the first process is to segment the 

signal. Considering, at first glance, that a sample does not 

carry important information, it can be replaced by a linear 

interpolated sample. This operation generates an error, i.e., the 
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difference between the real and the interpolated sample. By 

computing the error for the next samples, the non-interpolated 

ones are tagged as essential when the error exceeds a 

threshold. Essential samples cannot be obtained from linear 

combination, therefore in some sense they carry more 

information. These samples are the boundaries of the 

segments. Let x(t) the analog sensor signal band limited to B 

hertz and sampled at a frequency of Fs with uniform sampling, 

where Fs is much greater than 2B. Since the signal is 

oversampled, there will be redundancy between adjacent 

samples. The algorithm starts interpolating the sample 

between two samples, i.e. interpolates sample 2 from 1 and 3. 

Then, the error, as the difference between the real sample and 

the interpolated sample, is computed. If the error is less than 

an interpolation error, the sample has no relative importance 

because its value can be obtained from its neighbors. Now, the 

sample 3 is interpolated from 1 and 5 and so on. If the error 

exceeds a threshold, the sample is tagged as important and the 

process starts again, now from this sample. Interpolation is 

achieved by linear interpolation. If no important sample is 

found during N samples, the Nth sample is tagged and the 

process starts again from this sample. Tagged samples will be 

the left and right samples of the segment. 

As a result of the segmentation algorithm, two vectors are 

obtained, the tagged or essential samples vector mark(n), and 

the temporal index vector tempos(n). Only a division by two 

is involved in the average computation. A more complete 

description of the algorithm is in [3]-[5]. 

 

B. Labeling 

 

Each time the difference is computed in the interpolation 

process, the sign of the error is stored. When the segment 

ends, based on the majority of error signs accumulation, the 

behavior inside the segment can be classified. The error sign is 

the clue to classify the segment. If the signal is oversampled, 

the trajectory of the real signal inside the segment is restricted, 

by the interpolation error, to four subspaces shown in Fig. 3. 

These trajectories are classified as d, e, f and g. 

If the segment reaches N samples without exceed the 

interpolation error, classes a, b or c are generated. Fig. 4 

summarizes the simplified trajectories. 

A new vector, class(n), is added to the sensor signal 

description, whose components are the segment class a, b, c, 

d, e, f, g, or h. The set of vectors mark(n), class(n) and  

tempos(n) in short MCT, conform the fundamental structure 

from which arises all the proposed algorithms. The MCT 

vectors can be seen as a smart sampling process where the 

relationship among essential samples is clearly stated by the 

class vector. Why it is necessary an oversampling frequency? 

In order to get a uniform behavior within the segment, i.e., 

most of the interpolation errors are all negative or they are all 

positive, an oversampling frequency is necessary. Under 

conditions of oversampling and interpolation error 

approaching to zero, the probability of occurrence of segments 

a, b, c and h tends to zero. Therefore, only four classes of 

segments are important: d, e, f and g. The sequence of them 

identifies the sensor signal. 
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Fig. 3. Depending on the values of extreme samples and how signal departs 

from linear behavior, there are four possible subspaces for the trajectory of an 

oversampled signal between tagged samples. 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Class segments are based on the value of the left and right samples 

and the interpolation error. In classes a, b and c, the segment ends due to it has 

reaches N samples.  

 

 

The vector class(n) captures only the shape information. For 

example, the pattern “gefd” captures a sinusoidal waveform. 

The frequency and amplitude can be obtained from the MCT 

vectors. Also the class(n) vector provides precise localization 

of the signal local maximums and minimums. Maximums 

occur at the union of “df”, “de”, “gf” and “ge” segments. 

Minimums occur at the union of “eg”, “ed”, “fg” and “fd” 

segments. Note that these maxs and mins are controlled by the 

interpolation error. 

III. OUTLINE OF THE PROPOSED STANDARD 

A. Structure of the proposed standard 

Fig. 5 presents a diagram of the proposed standard. The 

proposal is based on the MCT vectors. There is a need to 

synchronize these vectors with those from other transducers. 

To analyze data from different transducers a synchronization 

[9]-[11] algorithm has to be used. At this stage a simple 

synchronization algorithm has been chosen. A time stamp, e.g. 

milliseconds from midnight with a circular structure could be 

a solution. These vectors are the basis for all algorithms as it is 

shown in Fig. 6. The basic algorithms that can be included in 

the standard, as a first layer, are exponential, noise, impulsive 

noise, sinusoidal patterns, tendency and more reliable value. 

They, in turn, are the basis for more complex algorithms, 



 

 

second layer, which can be optionally included in this 

standard. A desirable feature would be to be able to send the 

MCT vectors to the system. With this feature, algorithms can 

be tested outside of the transducer and then embedded in. It is 

important to note that the MCT vectors allow reconstructing 

the sensor signal. Since it is known the simplified trajectories 

between essential samples, generating functions can be 

adapted to approximate the original signal. The simplest 

generating function is a straight line between the essential 

samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Block Diagram of the proposed standard. Two layers are proposed. 

 

B. Standard working group organization 

 

The standard working group has been divided into five 

subgroups to organize the huge task of normalizing sensor 

signals to be attractive to any kind of sensor.  

The objectives are: 

 

Subgroup 1: To define, propose, and validate first layer 

algorithms based on MCT vectors. Review the initial proposal, 

modify it and suggest changes. 

 

The main challenge in this group is how to organize the MCT 

vectors, i.e. memory assignment, buffer size and time stamp, 

in order to be input for first and second layer algorithms. 

Besides, the group has to define the data structure for first 

layer algorithms. Observe in Fig. 5 that MCT vectors are the 

main input for every algorithms, therefore the work inside this 

subgroup is essential. 

 

 
Fig. 6. Block Diagram of the Labeling Algorithm. 

 

 

Subgroup 2: To define and coordinate commands and data 

structure consistently with IEEE 1451 standards. Review and 

propose a time synchronization scheme for data. Normalize 

name of variables and data. 

 

This sensor signal treatment has to be inserted into an existing 

standard. The IEEE 1451 standard family is mature and still 

active. This group should consider memory requirements, data 

and CPU of this proposal with the existing structure of the 

standard IEEE1451. The signal treatment algorithms of layer 

one and two need to be parameterized from outside the 

transducer and data must be sent to / from them. This requires 

defining commands in concordance with the IEEE1451. 

 

Subgroup 3: To define, review and propose algorithms based 

on MCT vectors and first layer outputs for filtering, signal 

compression and prediction. 

 

The upper two blocks in layer two, Fig 5; Signal prediction 

and Smart filtering are the targets of this group. Since there is 

information about the shape of the signal, it is possible to 

predict signal behavior. For example, consecutive segments 

class “g” or “f” indicates that the signal tends to a stable value 

that can be predicted. Also, if has been detected dumped 

oscillations through “gefd” patterns, the long-term value can 

be predicted. 
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The MCT vectors describe completely the signal, i.e. from 

them it can be reconstructed. Linear interpolation between 

tagged samples is the simplest way to get the signal back, but 

there are other possibilities for reconstructing. 

Since that the original sampled signal lies in an 

interpolation-error controlled subspace, there is no possibility 

for aliasing. The reconstructed signal can be seen as a 

combination of a scaled and shifted version of two generating 

function: 

 

( ) ( / )
k k

x t a t a iϕ= −∑                      (1) 

 

Where 
( )tϕ

 is the normalized generating function for each 

subspace as shown in Fig. 7. When linear interpolation is used 

to rebuild the signal, the two generating functions converge to 

a straight line between essential samples. 

 

 
Fig. 7- Normalized generating functions for segments.  

Since the function passes exactly through the essential 

samples, there is continuity between segments and the first 

derivative coincides, Spline polynomials can also be used to 

reconstruct the signal within the segment. 

If the signal is reconstructed and the sampling process is 

applied again a new set of MCT vectors is obtained. These 

M’C’T’ could be a compressed version or a filtered version 

depending upon the input parameters and the number of 

iterations.  

As an example suppose that a sinusoidal signal contaminated 

with additive Gaussian random noise has to be detected, i.e. to 

estimate period and phase. From the MCT algorithm it is easy 

to estimate the period computing the time difference between 

local maximum. If the period is not the expected, the signal is 

rebuilt from MCT and  MCT algorithm is applied again. Fig.8 

shows experimental results after 10 iterations. It is important 

to remark that from the new set of MCT vectors the period and 

phase can be easily computed.  

Why smart filtering? Because, since there is knowledge about 

the signal behavior, the signal is filtered when is required. In 

the example of Fig. 8 the number of iterations could be 

controlled by the expected sinusoid period. 

 

Subgroup 4: To propose new algorithms that the group 

considers that they must be included. Define the data structure 

for embedding user defined application code and pattern 

learning algorithms. 

Figure 8- Sinusoid detection with noise. FS=22050, f=345 Hz SNR=7dB. 

Iterations=10. Interpolation error: 1%.  Red: original signal. Green: signal 

reconstructed from MCT vectors. 

 

The lower two blocks in layer two, Fig 5; Complex pattern 

detection and learning and User defined application code are 

the targets of this group. Layer two algorithms have access to 

MCT vectors and the outputs of layer one, and they are the 

building block to extract knowledge. As an example of pattern 

detection, the detection of QRS patterns in ECG signals was 

tested with excellent results [12]. 

 

The challenge in this subgroup is to define data structure to 

hold high level signal description that can be embedded into 

the transducer. 

 

Subgroup 5: To test and validate proposed algorithms using 

simulation software (MatLab, Octave, Scilab…) and C code 

for microcontrollers. 

 

This group has written code for 8 bit and 32 bits 

microcontrollers for MCT  algorithm. The proposed algorithm 

in each subgroup has to be tested and validated in this 

subgroup and this software will be part of the standard.  

 

The subgroups have started to work; each one of them has a 

leader that reports to the group coordinator. An IEEE central 

desktop is used by members to share noteworthy documents 

and, periodically, web meeting take place on WebEx to allow 

communication, coordination and collaboration between 

members of the same subgroup and different subgroups. 

The main challenge for this standard is that there is no 

previous work for describing a sensor signal in a universal 

way. 

IV. CONCLUSIONS 

We live in an interconnected world. Standards will be 

defined in the IoT in order to identify things and share 



 

 

meaningful information. Data flow will be unmanageable 

unless only processed information or knowledge being shared.  

Sensors are an important subset of things. In the near future, 

the sensor signal will be processed entirely in the point of 

acquisition. Therefore, in order to share information, there is a 

need for a standardized platform. Data grow faster than 

channels capacity, so the traffic over the network will be 

around of knowledge, extracted directly from the smart signal 

sampling process. 

The IEEE 1451 is a family of standards for connecting smart 

transducers to networks [6]. This proposed sampling scheme 

has been approved as a “Recommended Practice for Signal 

Treatment Applied to Smart Transducer: P21451-001”. It is 

under development by the IEEE Standards P21451-001 

Working Group. 
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