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Abstract- This paper presents a signal processing technique that 
employs oversampling and identification of important samples 
to determine signal behavior and tendency. Sensor signal 
windows of  random lengths are  vectorized and classified to fit 
into only eight predefined types, and in conjunction with time 
indexes vectors, they can predict future values, steady state 
value and an estimation of the sensor signal function. The 
techniques developed allow the representation of any class of 
sensor signal for further analysis. The computational cost is 
quite low so they can be implemented in real time into smart 
sensors with low cost microcontrollers. Therefore, it is also an 
ideal technique to preprocess the sensor signal to mark regions 
of interest to more sophisticated processes.  

 

I. INTRODUCTION 

Today, connecting a sensor to a data acquisition system 
involves a complex process. Sensors have become smart in 
the way that involve signal processing capability at the point 
of measurement, together with the digital data transmission. 
Sensors are the most important components in any 
monitoring and control system; they measure physical 
parameters and convert them into signals [1]. Without reliable 
information from the sensors, the system can not take right 
decisions. 

In order for the system to interpret the sensor data 
correctly, it must have access to a variety of parameters. 
These include the range, scale, and measurement units for the 
sensor, bandwidth, calibration details, and more. A lot of 
efforts have been carried out to standardize the connection of 
sensors. As a result, the IEEE 1451 standards were 
developped to automate this process by incorporating the 
necessary data as part of the sensor itself, having the sensor 
carry its own data allows the data acquisition system to 
automatically configure itself correctly [2]. [3].  

The information that a smart sensor can transmit to the 
control and monitoring system goes beyond the measured 
signal value. In the same way that  the IEEE 1451 standard, 
signal parameters themselves should be standardized.  For 
example, it would be of great interest to know signal behavior 
like tendency, shape, future values, steady state value, 
presence of impulsive noise, optimal sampling frequency, 
variance and mean value. Also it would be important to know 
where signal segments are suitable for additional or time 
consuming processes. Examples of such processes are high 

order statistics, wavelet, spectrum analysis and any other 
signal processing technique that  is not worth to process 
when, for example, the signal is constant.  
There is an explosion of interest in mining time series 
databases [4] [6]. As with most computer science problems, 
representation of the data is the key to efficient and effective 
solutions. The proposed algorithm is well suited for data 
mining processes and it is adapted to sensor signals where a 
control algorithm is applied based on sensor information. 
 

    

II. ALGORITHM DESCRIPTION 

A. Segmentation algorithm 
The signal preprocessing algorithm is based on the degree 

of redundancy that can be observed in an oversampled sensor 
signal. In a process of regular sampling, not all the samples 
have the same degree of importance [5]. Considering, at first 
glance, that a sample does not carry important information it 
is substituted by linear interpolated sample. This operation 
generates an error, i.e. the difference between the real and the 
interpolated sample. By computing the error for all the 
samples, the non-interpolated ones are tagged as significative 
when the error exceeds a threshold. Also, the sample time 
index is tagged and included as a new component of an index 
vector. 

The algorithm starts interpolating the sample between two 
samples, i.e. interpolates sample 2 from 1 and 3. Then, the 
error, as the difference between the real sample and the 
interpolated sample, is computed. If the error is less than a 
prefixed value, the sample has no relative importance due to 
the fact that its value can be obtained from its neighbors. 
Now, the sample 3 is interpolated from 1 and 5 and so on. 
Two kinds of errors are computed.  First, the replacement 
error and second, an accumulative error generated by the 
samples replacement process.  

If the error exceed a threshold, the sample is tagged as 
important and the process starts again now from this sample. 
The interpolation is achieved by linear interpolation. If no 
important sample is found at modulus N, the last sample is 
tagged and the process starts from this sample.  

To make the algorithm description more specific and clear, 
the pseudocode is presented as follow. Let )(nx , the sensor 
signal sampled at uniform sampling. The sampling rate 
chosen must greater than the Nyquist frequency, by at least a 



factor of 10. The oversampling is necessary if the segment 
shape analysis is  performed as it is shown in section B.  Let 

maxε   the total permissive error and iε  the sample 
interpolation error. 

  
Algorithm LIN1 
 
Initialization: 
 

2k =  
1n =  

0etotal =    ; accumulative error 
( ) ( )mark n x n=   ; tagged samples vector 

( )timepos n n=   ; time index vector  
 
Parameters: 
 

maxε     ; max accumulative error  
iε  ; max interpolation error 

N ; max segment size 
 
Procedure: 
 

LOOP FOREVER 
error=abs ( (x(n)+x(n+k))/2 – x(n+k/2)) 
etotal=etotal + error 

 

IF (error < iε  AND etotal < maxε    AND  k<N )  
 k=k+2 
ELSE 
 
 n=n+k/2 
 mark(n)=x(n) 
 timepos(n)=n 
 k=2 
 etotal=0 
  
END 

 
END 
 

If  none of the error conditions were found for N  
consecutive samples, the last sample is tagged as important 
and the segment is consider finished. As a result of the 
algorithm, two vectors are obtained, the tagged samples 
vector ( )mark n  and the time index vector ( )timepos n . 

The algorithm is extremely simple, nevertheless it allows a 
fast signal segmentation and a platform for the segment shape 
analysis. Only a division by 2 is involved in the average 
computation and in  the sample index.  

Two examples are shown. Fig 1. shows an oversampled 
sensor signal and the tagged samples obtained from the 
algorithm LIN1. Note that this signal portion can now be 
represented by two vectors of 7 elements, and the signal 
information is embedded in these vectors.  

 

Fig 1. Oversampled  sensor signal and tagged samples as  result of 
algorithm LIN1 with 

i
ε = 0.03 and  maxε  = 0.1. 

 

Fig 2. Signal sensor without oversampling and tagged samples as result 
of algorithm LIN1 with 

i
ε = 0.03 and  maxε  = 0.1. 

 
The number of elements, the samples time indexes, the 

samples value and the first difference of samples is  raw 
information that can be processed to determine signal 
behaviour as explained in section B.  

In Fig 2. a non-oversampled  sensor signal was processed 
by the algorithm.  This example is presented to remark how 
the tagged samples point to shape changes in the signal. Note 
also that the signal could be rebuilt from its vectors. 

B. Segment analysis algorithm 
Once the signal was processed by the algorithm LIN1, a 

second process called Segment Analysis, SA, can be 
executed. The main reason for the previous process is to 
obtain the signal vectors for the SA process. 

The goal of this algorithm is to analyze the signal behavior 
inside each segment. In this process the signal segments are 
considered independent from other segments. Let assume that 
the sensor signal was oversampled beyond its Nyquist 
frequency. Under this border conditions, the signal segment 
can experiment eight classes of behavior as shown in Fig 3. 

  



 
Fig 3. The eight classes of segment shape found in a oversampled sensor 
signal  as a result of algorithm SA. 

 
  

 
 

Fig 4. Algorithm SA for segment classification for obtaining eight 
predefined types. 

 
The classes a, b and c are result of the segment size 

constraint of N samples. Therefore, in order to determine the 
class it is only necessary to calculate the difference between 
the left and right samples. For the rest of the classes, the 

difference between the interpolated sample and the real 
sample together with the difference between extreme samples 
are the key to classify them. 

Fig. 4 shows the algorithm SA.  It is an efficient process, 
and can be computed inside of the algorithm LIN1, therefore 
does not require extra calculation.  The basic operation is 
based on the sign operator as shown in (1).  
 

2

1
( ) [ '( ) ( )]

k

k k
d if i s ig n x n x n

=

= −∑           (1) 

Where '( )x n is the interpolated signal; 1k , 2k are the left 
and right sample indexes for segment i  respectively, and 

2 1k k− is the segment size. 
With the signal segmentation and the segment classification 

processes, the sensor signal can be analyzed. In order to 
illustrate the algorithms, let analyze the signal   in Fig. 5. 
Once processed, this signal can be represented by the 
following vectors: 

 
 [1,6,13, 23,48,67,89,118,170]timepos =  

 
[2.05,2.116,2.174,2.183, 2.11,2.06, 2.03,2.01, 2.00]mark =

 
 [ , , , , , , , ]segment g g g e f f f f=  

 
With this raw information, a large amount of high-level 

processes can be carried out, like signal tendency or signal 
prediction. Moreover, the vectors could be the input to an 
artificial neural network, a Fuzzy logic system or to an 
artificial intelligent software. 
     

Fig 5. Algorithms LIN1 and SA applied to a test signal with iε = 0.02 and   

maxε = 0.07. 

  

C. Intra-segment analysis  
The techniques developed allow the representation of any 

class of sensor signal with simplicity while retaining a level 



of detail.  For further analysis of the signal, it is necessary to 
process the sequence of segments, taking into account both 
the duration of them and the class of segment. The 
relationship among segments provides us some clues about 
the overall behavior of the signal.  For example, with 
IF….THEN rules, the smart sensor can turn on an alarm after 
finding any of the following conditions: 

 
a) There are more than j consecutive class “d” 

segments (+exp+) with decreasing segments length. 
 

b) There are more than k consecutive class “e” 
segments (-exp+) with decreasing segments length. 

 
c) There are more than l consecutive class “h” 

segments (noised) (Probably a sensor failure). 
 

d) There are more than m consecutive class “g” 
segments (c-exp-) with increasing length segments 
and the predicted steady state exceeds a prefixed 
limit. 

 
e) There are more than n consecutive class “f” 

segments (c+exp-) with increasing length segments 
and the predicted steady state falls below a prefixed 
limit. 

 
   

Lets observe that the rules involve both the type and length 
of the segment. The segment length is an important parameter 
because it measures how the signal departs from a linear 
behavior, i.e. it measures the speed of change in the signal. 

More rules can be established depending on the specific 
application. For example, rules based on signal slope, 
impulsive noise and a specific patterns of segment classes. 

II EXAMPLES OF APPLICATION 

This section presents the signal analysis commonly found in 
monitoring and control systems. The most important case is 
exponential behavior because sensors related to measurement 
of analog signals found in a control systems show this class 
of signal shape.   

 

A. Function type  exp(-n) 
This type of signal is detected by the occurrence of 

consecutive segments type "g" or “f” with increasing 
(exponentially) lengths. Fig. 6 shows an example of this kind 
of function. The steady state value can be predicted, and it is 
an important value for control systems [7].   

Once the exponential behavior has been detected, the steady 
state value can be predicted using the tagged samples and the 
slope in these points as shown in Fig. 7. 

 
 

 
Fig. 6. The exponential behavior is detected through a sequence of 
segments class “g” of increasing length.  

 . 
 

 
Fig. 7. The steady state value is predicted as a function of the signal slope 
in points a and b. 
 
A general expression for the curve in Fig 7. is 
 
 /( ) ( ) t Tx t Xss Xss Xi  e−= − −  (2) 

Where Xss is the steady state value, and Xi the initial value. 
The derivative of x(t) respect to t at t=0 is 

 
The slope of the segments can be used as an approximation 

of the derivative in (3) applied at the points a and b. If we 
consider the derivative at point a, and using this point as the 
initial value we obtain 

  

0t
dx Xss Xi                                                              (3)
dt T=

−
=

Xss Xia                       Ma                                              (4)  
T
−

=



Where YaMa Xa= is the slope in point a.  Repeating the 

analysis now in point b and using this point as the initial 
value we obtain 

 

 
 
Where             is   the slope in point b. Solving 

(4) and (5) for Xss yields (6).  Observe that Xss is computed 
without knowing the time constant T.  

 
Therefore, the steady state value can be predicted using 

segment parameters like the left and right segment samples 
and the signal value at the segment extremes.  These values 
are outputs from the algorithm LIN1 i.e. the ( )mark n  and the 
time index ( )timepos n  vectors, and we need only two 
segments.  

B. Function type  exp(n) 
In this case, the detection is based on the occurrence of 

consecutive segments of type “d” or “e” with decreasing 
(exponentially) lengths as shown in Fig. 8. 

 

 
 
Fig. 8. The exponential behavior is detected through a sequence of 
segments class “d” of decreasing length. 
 

C. Optimal sampling 
In a time varying signal, the best way to deal with the 

correct sampling frequency is to filter beyond the region of 
interest in order to avoid aliasing. In most cases, the sampling 
frequency will be excessive respect to the signal bandwidth. 
In the proposed scheme, it is possible to find the lowest 
sampling frequency that avoids aliasing. Given a fixed error 

iε the optimal sampling for the sensor signal over a period of 
time is the sampling frequency multiplied by the shortest 
segment length. 

D. Shot noise detection 
 Since the signal is oversampled, the presence of noise 

could be caused by an interference signal or a sensor failure. 
 

 
 
 
Fig. 9. The detection of shot noise is carried out through an abrupt 
reduction in the segment length. 
 
Shot noise is detected by analyzing the sequence of segment 

lengths. Observe in Fig. 9 that the presence of impulsive 
noise causes an abrupt reduction of the segment length, and it 
can be easily detected. 

 

E. Mean  and variance  estimation 
The right and left samples represent the signal inside the 

segment. Considering that all the segments are class “b” or 
“c”, an approximation of the mean of the segment will be the 
average between the right and the left samples, i.e. it allows a 
fast mean computation. 

The variance can be approximated computing only the left 
and right samples because the inner samples are linear 
combination of them and do not add “randomness” to the 
signal. 

F. Noise detection 
A number of consecutive segments class “h” of short 

length could point out that the sensor signal is corrupted by 
noise.  

III EXPERIMENTAL RESULTS 

In order to test the algorithms, real sensor data were 
processed. We used a digital temperature sensor DS18S20 
with a resolution of 0.1 ºC. The temperature inside a tank was 
used to test the algorithms. In Fig. 10 and Fig. 11 we can 
observe the heating and cooling   curves, where the long term 
values were 90 ºC and 27.5 ºC respectively.  Note that there is 
a noise signal that introduces errors in the predicted values. 
Even then the prediction errors are below 3%. The segment 
classification algorithm worked correctly, but if noise is 
present, we must allow that some of the samples have the 
incorrect sign i.e. the determination of the classes must be 

Xss Xib                       Mb                                              (5)  
T
−

=

YbMb Xb=

Ma Xib - Mb Xia           Xss                                 (6)
Ma-Mb

=



based on the sign of the majority inner samples of the 
segment. 

  

 
Fig. 10. The heating curve of a temperature sensor placed in a tank at 90 

ºC. Also the tagged samples detecting   exponential behavior with iε = 1 

and   maxε = 10. 

 
Fig. 11. The cooling curve of a temperature sensor taked out from a  tank 
at 90 ºC. Also the tagged samples detecting   exponential behavior with 

iε = 1 and   maxε = 10. 
 

IV CONCLUSIONS 

A technique for preprocessing a sensor signal was 
presented. The proposed algorithms are simple but powerful 
and offer a variety of parameters that extract important 
embedded information from the sensor signal. These 
algorithms can be easily executed into smart sensors since the 
computational cost is quite low. 

A high degree of simplification is achieved with the 
segmentation of the signal into only eight classes. This is the 
key process to allow more sophisticated processes to be 
carried out. Some of them were presented in section II. Also, 
it is an excellent platform for data mining processes. 
Oversampling is necessary to get a high degree of correlation 
among samples. Under this condition, the signal segments are 
classified into only eight classes. 

The algorithms detect signal regions were further analysis 
is not worth to be carried out. So, it is well suited to mark 
subsets where other processes could be executed.  

The results in this paper emphasizes the fact that, in the 
same way  that the IEEE 1451 standard was achieved, it 
should be standardized signal preprocessing techniques to 
supplement the information provided by  smart sensors  to the 
control and monitoring system. 
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