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Abstract The objective of this work is to present a novel methodology based on the computation of a couple of geometric
characteristics of the position of the data points in 1D signal to propose an alternative estimation of signal entropy. The
conditions to be fulfilled by the signal are minimal; only those necessary to meet the sampling theorem requirement are
enough. This work shows some examples in which the proposed methodology can distinguish among signals that cannot
be differentiated by other in-use alternatives. Additionally an original example where the usual ordinal pattern algorithm
to compute entropy is not applicable, is presented and analyzed. The proposal developed through this work carries some
advantages over other alternatives and constitutes a true advancement in the pathway to compute the distribution function of
the sequential points of 1D signals later used to compute the entropy of the signal.
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1. Introduction

The quest to get an efficient method to compute the entropy of a data series is based upon the estimation of some
distribution function of the signal points. In this sense, the Bandt and Pompe [4] proposal is extensively used
with real success. In this methodology, the structure and correlation among the data points relies on the symbolic
dynamics of an alphabet associated with the sequence of points in the signal. References [14, 3] are examples of
books in the literature about ordinal patterns. For a wide sense and combined with symbolic dynamics, c.f. [15].

The benefits of the Bandt and Pompe methodology [4] are widely demonstrated, as can be found in works such
as [20, 21, 26, 27] and internal references. The analysis of the ordinal pattern selection is discussed in a clear
way by [16] as function of its variability. In other order, a review of the ordinal pattern methodology through its
twenty year of history was presented in [7], which results a very interesting and useful source of information. In
the seeking of recent research, ordinal patterns transitions networks (OPTN) constitute one of the trends as it can
be see in [8] and other variants such as [24].

†This work was partly supported by UTN-FRBA grant PID 8120.
∗Correspondence to: Andrea Rey (Email: arey@frba.utn.edu.ar). Center of Signal and Image Processing, Universidad Tecnológica Nacional
Facultad Regional Buenos Aires. 981 Medrano Avenue, Buenos Aires, Argentina (C1179 AAQ).

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2022 International Academic Press



C. BONINI, A. REY, D. OTERO, A. AMADIO, M. GARCŁA BLESA AND W. LEGNANI 999

However, there are aspects that demand some caution in its use. In general terms, for example, it cannot be
applied to very short data series, it requires the adjustment of two parameters known as the embedding time delay
and the embedding dimension or motif, and it does not produce a different result if it is applied to a synthetic signal
with linear or exponential growth.

Another inherent problem of the ordinal pattern methodologies in use, is the correct identification and counting
of the missing or forbidden patterns. To solve this issue, some ingenious solutions have been proposed, which can
be seen for example in [11] and [9], which overcome some of the drawbacks of this problem, but in no case resolve
it completely.

In this work, a novel methodology based on the strictly geometric aspects of the 1D signal or data series is
employed to redefine the way to construct the pattern counter for the distribution function of the data points later
used to calculate entropy.

It should be notice that this proposal can be applied to signals whose length cannot be analyzed using the Bandt
and Pompe methodology [4]. In addition, it does not require the fine tuning of any parameter and does not make
any assumptions about the distribution function of the data points coming from the signal nor about the nature of
the system that generates the signal. The problem of the missing or forbidden patterns does not appear since only
the present points of the data series are taken into account for the computation of the present approach.

Summing up, the requirements of this proposal are practically none, the only assumption that is necessary to be
satisfied is to fulfill the conditions of the sample theorem. Then, the methodology of the present work, which is
based on the geometric locations of the data points, can be applied to any good sampled signal.

To characterize the geometric structure of the signal, two new variables are introduced, named delta moment and
delta state, denoted by ∆M and ∆S respectively, and with these new variables a transformation from the 1D signal
to the 2D space of the patterns counter is defined.

The proposed new algorithm is sensible to noise and can be used to characterize incremental noise when it is
proportional to the signal amplitude.

The capacity of differentiation among several kinds of growing synthetic signals, which most of the current
methodologies do not differentiate, together with the ability to register particularities in the pattern distribution of
the chaotic and stochastic signals, suggests many potential uses of the present algorithm. In such a way, this result
encourages the use of the proposal contained in this work to be tested in many fields of 1D signals and time series
processing.

This work is organized as follows. Section 1 presents the introduction and motivation. The new geometric
pattern transformation (GPT) algorithm is introduced in Section 2, where the innovation in the pattern counting
is developed. Section 3 is devoted to show some applications, among them: synthetic signals to expose how the
new proposal can differentiate signals whose distribution patterns are undistinguished by other methodologies. In
Section 4, examples of chaotic and stochastic signals are presented to point out how the new methodology can
differentiate these group. An application to nuclear decay of the rotational states of deformed nuclei known as the
“back bending decay” is developed in Section 5 to show the advantage of using of the new scheme in case of short
data series. In Section 6, based on the GPT, a vector of entropy is computed to estimate the entropy of a given
signal whose coordinates correspond to the entropy of each pattern. Finally, Section 7 contains the conclusions of
the current proposal.

This work can be considered as an extension of the ordinal pattern methods to estimate the entropy of a 1D signal
in such a way that the principal characteristics of the present proposal can be highlighted as follows:

• The main advantage of the GPT is to transform a 1D series (signal or time series) to a plane which retrieves
structural details of the data points that constitutes the original series.

• It can be applied to very short length signals, that other methodologies of analysis are forbidden to be used.
• It can be used both in signals sampled at constant intervals and those sampled at irregular intervals, since the

interval between samples is not used at any time for the calculation of the new GPT variables.
• It does not require the fine tunning of any parameter, like the embedding dimension or the embedding time

delay employed for the computation of the permutation entropy.
• It is low computational demand since the GPT is a linear transformation that assigns to every three

consecutive data points in the signal, a pair in the ∆M ×∆S plane.
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• It is possible to distinguish among chaotic, stochastic and analytic signals.
• The problem of missing or forbidden patterns to compute the entropy, typically affecting the ordinal pattern

methods, is not present in the GPT algorithm since only the actual points of the signal are considered for the
computations.

• The vectorized form of the entropy obtained from the GPT can distinguish different types of colored noises
without having to transform the signal in the Fourier frequency domain.

• Every coordinate of the vector retrieves the entropy associated at a certain pattern in the ∆M ×∆S plane.

2. Geometric Pattern Transformation (GPT)

In this section we develop a new proposal named Geometric Pattern Transformation, with the aim to qualify and
quantify different structures that belong to the same permutation pattern given by the ordinal pattern methods. This
analysis is inspired by the fact that permutation patterns distribution is not sensitive to tiny variations of a given
sequence. Basically, this transformation when applied to one-dimensional series produces a cloud of points in a
two-dimensional space. Moreover, ordinal patterns define regions in this plane which can be used to establish the
behavior of the series within each area. The distribution of these points allows to extract more information from
the series, even when the number of values recorded in the signal is scarce.

Given a signal with values {yn}, recall that for an embedding number m = 3 and time delay τ = 1, the
permutation patterns are represented as shown in Figure 1.

Pattern 123

•

•

•

yn−2 yn−1 yn

Pattern 132

•

•

•

yn−2 yn−1 yn

Pattern 213

•

•

•

yn−2 yn−1 yn

Pattern 231

•

•

•
yn−2 yn−1 yn

Pattern 312

•

•

•

yn−2 yn−1 yn

Pattern 321

•

•

•
yn−2 yn−1 yn

Figure 1. Permutation patterns for m = 3 and τ = 1.

A natural question is whether different signal shapes from the same permutation pattern can be distinguished
through geometry conditions (see Figure 2). In an attempt to answer this query, a GPT is defined in the lines below.

•

•

•

yn−2 yn−1 yn

•

•
•

yn−2 yn−1 yn

•

•

•

yn−2 yn−1 yn

Figure 2. Different signal shapes sharing the same pattern 132.

For a given signal, partitions of length three are considered. Let yn−2, yn−1, yn be one of such partitions. The
corresponding state variation is defined by

∆S = (yn−1 − yn−2) + (yn − yn−1) = yn − yn−2. (1)

Moreover, the corresponding moment variation is defined by

∆M = (yn−1 − yn−2) + 2(yn − yn−1) = 2yn − yn−1 − yn−2. (2)
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Using this two measures of variation, the pair (∆M,∆S) can be associated to each partition (yn−2, yn−1, yn). In a
general context, it is deduced the existence of a linear transformation TMS : R3 → ∆M ×∆S given by

TMS(x, y, z) = (2z − y − x, z − x). (3)

Consider the following change of variables: {
t1 = y − x,

t2 = z − y,
(4)

from which it can be noticed that t1 + 2t2 = 2z − y − x and t1 + t2 = z − x. Thus, an element in the image of
TMS can be written as:

TMS(x, y, z) = (t1 + 2t2, t1 + t2) = t1(1, 1) + t2(2, 1). (5)

Let v1 = (1, 1) and v2 = (2, 1). Since they are linearly independent, it has been proved that B = {v1, v2} is a basis
of the image of TMS . The basis change from canonic basis E to B produces a new axis system, which is represented
in blue in Figure 3a. Let [P ]E and [P ]B denote the coordinates of the point P in the basis E and B, respectively. If
P belongs to the horizontal axis,

[P ]E = (x, 0) =⇒ P = (x, 0) = −x(1, 1) + x(2, 1) =⇒ [P ]B = (−x, x). (6)

In other words, if [P ]B = (t1, t2) and P is a point in the horizontal axis, then t2 = −t1. Thus, the line r, which is
plotted in red, has equation t2 = −t1.

∆M

∆S

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

L2

L1

v1 v2

r

(a) New coordinate system.

∆S

123

132

213

312

231

321

L2

L1

∆M
r

(b) Regions occupied by the permutation patterns, where the
extension of the regions are merely illustrative.

Figure 3. Regions in the ∆M ×∆S plane in terms of TMS .

The possible outcomes of TMS in terms of permutation patterns can be analyzed as follows. The coordinate
systems defined by L1 and L2, respectively generated by v1 and v2, and line r split the ∆M ×∆S plane into six
regions, where the patterns are located as can be seen in Figure 3b. It is immediate to derive a clockwise order
for the ordinal patterns: 123, 132, 231, 321, 312 and 213. Notice the reflection symmetry of the pairwise patterns
123-321, 132-312 and 231-213. The patterns fit into the following well-defined two-dimensional zones.
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Figure 4. Example of GPT applied to signal S1 (red) and S2 (blue).

• Pattern 123: yn−2 < yn−1 < yn =⇒ t1 > 0 ∧ t2 > 0 ∧ t2 > −t1.
• Pattern 132: yn−2 < yn < yn−1 =⇒ t1 > 0 ∧ t2 < 0 ∧ t2 > −t1.
• Pattern 231: yn−1 < yn < yn−2 =⇒ t1 > 0 ∧ t2 < 0 ∧ t2 < −t1.
• Pattern 321: yn < yn−1 < yn−2 =⇒ t1 < 0 ∧ t2 < 0 ∧ t2 < −t1.
• Pattern 312: yn < yn−2 < yn−1 =⇒ t1 < 0 ∧ t2 > 0 ∧ t2 < −t1.
• Pattern 213: yn−1 < yn−2 < yn =⇒ t1 < 0 ∧ t2 > 0 ∧ t2 > −t1.

With the aim to illustrate this proposal, a simple example is considered. Let S1 = {3, 7, 1, 5, 2, 9, 8, 0, 4, 1}
and S2 = {3, 6, 2, 5, 3, 9, 7, 0, 3, 1} be two signals. The points obtained after applying the GPT to both
signals are GPT(S1) = {(−8,−2), (2,−2), (−2, 1), (11, 4), (5, 6), (−17,−9), (0,−4), (−2, 1)} and GPT(S2) =
{(−5,−1), (2,−1), (−1, 1), (10, 4), (2, 4), (−16,−9), (−1,−4), (−1, 1)}. On the other hand, the ordinal patterns
with an embedding dimension equal to 3 for both signals are: 231, 312, 132, 213, 132, 321, 312 and 132, implying
the same Bandt and Pompe permutation entropy, which is equal to 0.833915. When these signals seem to be
indistinguishable using permutation entropy, it can be seen in Figure 4 that the distance from GPT points to the
coordinate origin varies strongly for patterns 132 and 231, motivating the analysis of our proposal.

Notice that the transformation given by (3) can be easily generalized as TMS : Rn → ∆M ×∆S defined by

TMS(y1, y2, . . . , yn) =

(
−1 −1 · · · −1 n− 1
−1 0 · · · 0 1

)(
y1 y2 · · · yn

)t
, (7)

where xt indicates the transpose of x.

3. GPT applied to continuous functions

In this section, the result of GPT is investigated when this transformation is applied to several simple and well
known cases. Let y = f(x) be a continuos function, which can be approximated by the Taylor polynomial of first
degree centered in x = x0 as follows:

f(x) ∼= f(x0) + f ′(x0)(x− x0), (8)

where f ′ denotes the derivative respect to variable x and the error is given by 0.5f ′′(ξ)(x− x0)
2 for a given ξ in

the interval defined by x and x0.

Stat., Optim. Inf. Comput. Vol. 10, September 2022



C. BONINI, A. REY, D. OTERO, A. AMADIO, M. GARCŁA BLESA AND W. LEGNANI 1003

The following notation is used: yn = f(xn) and y′n = f ′(xn). Given yn−2, yn−1, yn; three consecutive values in
the signal, the step between two observations can be seen as p = xn − xn−1 = xn−1 − xn−2. If p is sufficiently
small and using (8) with x0 = xn, it holds that:

yn−1 = f(xn−1) ∼= f(xn)− pf ′(xn) = yn − py′n, (9)

yn−2 = f(xn−2) ∼= f(xn)− 2pf ′(xn) = yn − 2py′n. (10)

The corresponding points in the ∆M ×∆S plane, after applying the GPT, can be expressed as:

[∆M,∆S] = [2yn − yn−1 − yn−2, yn − yn−2]. (11)

Thus, replacing by (9) and (10) into (11),

[∆M,∆S] ∼= [2yn − yn + py′n − yn + 2py′n, yn − yn + 2py′n] = [3py′n, 2py
′
n]. (12)

From (12), it is clear that

∆S ∼=
2

3
∆M. (13)

It is worth noticing that the goodness of the linear fitting depends of the values of the second derivative of the
involved signal.

With the aim to investigate the results of applying the GPT on well known continuous functions, the following
cases are considered.

• Linear function. For line y = ax+ b, the single point [3ap, 2ap] is obtained, where p is the step from which
the line is constructed.

• Quadratic function. Given y = ax2 + bx+ c, the line of equation ∆S = 2(∆M − ap2)/3 is obtained.
• Polynomial function of cubic degree. If y = ax3 + bx2 + cx+ d and p is sufficiently small, the line given

by the expression ∆S ∼= 2(∆M − 3ap3 − bp2)/3 is reached.
• Rational function. Given y = 1/xn (n = 1, 2, 3), the results of applying the linear model to the points
[∆M,∆S] for x ∈ [1, 100], with Pearson coefficient R = 1, are shown in Table 1.

• Logarithmic function. For logb(x) (b = 0.5, e, 10) and x ∈ [1, 100], the linear relation between ∆M and ∆S
with R = 1 is described in Table 2.

• Exponential function. For ex and e−x, it is easy to obtain the relation ∆S ∼= 2∆M/3 for p < 0.1.

As a conclusion, based on the evidences shown, the application of GPT to continuous functions seems to generate
a polynomial where the linear term predominates with a value close to 2/3, although it varies slightly with the p
size. Thus, this step could be a very important ingredient in the distribution of the points in the ∆M ×∆S plane.

In order to analyze the signal to noise ratio, two experiments were performed. In one of them, the signal is
contaminated with noise proportional to its amplitude. In the other case, the noise level is of constant intensity. In
particular, the GPT is very sensitive to the presence of noise, as it can be seen as follows. An interesting example
corresponds to a straight line embedded in a proportional noise to 0.005 of the signal amplitude. Although the
straight line is slightly contaminated, the GPT scatter plot shows a large dispersion (see Figure 5b). Figure 6a
shows the case of a contaminated quadratic parabola in the same way as the previous case. Notice that a small
disturbance in the parabola appears to be strongly amplified in the GPT, as it is shown in Figure 6b. The dispersion
in the cloud of points is originated for high values in the parabola and some of them may even be located in the left
bottom corner of the GPT scatter plot. This is a point that must be considered when studying GPT scatter plots, i.e.
how the type of noise may affect the signal.
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Table 1. Lineal regression of the GPT applied to f(x) = 1/xn (n = 1, 2, 3).

Function p Relation

1

x

10 ∆S = 0.9602∆M + 0.0043
1 ∆S = 0.7892∆M + 0.0008

0.1 ∆S = 0.6830∆M
0.01 ∆S = 0.6683∆M

0.001 ∆S = 0.6668∆M

1

x2

10 ∆S = 0.9602∆M + 0.0086
1 ∆S = 0.7892∆M + 0.0015

0.1 ∆S = 0.6830∆M
0.01 ∆S = 0.6683∆M

0.001 ∆S = 0.6668∆M

1

x3

10 ∆S = 0.9602∆M + 0.0128
1 ∆S = 0.7892∆M + 0.0023

0.1 ∆S = 0.6830∆M
0.01 ∆S = 0.6683∆M

0.001 ∆S = 0.6668∆M

Table 2. Lineal regression of the GPT applied to f(x) = logb(x) (b = 0.5, e, 10).

Function p Relation

log(x)

10 ∆S = 0.8428∆M − 0.0411
1 ∆S = 0.7147∆M − 0.0016

0.1 ∆S = 0.6729∆M
0.01 ∆S = 0.6673∆M

0.001 ∆S = 0.6667∆M

ln(x)

10 ∆S = 0.8428∆M − 0.0947
1 ∆S = 0.7147∆M − 0.0038

0.1 ∆S = 0.6729∆M − 0.0001
0.01 ∆S = 0.6673∆M

0.001 ∆S = 0.6667∆M

log1/2(x)

10 ∆S = 0.8428∆M + 0.1366
1 ∆S = 0.7147∆M + 0.0054

0.1 ∆S = 0.6729∆M + 0.0001
0.01 ∆S = 0.6673∆M

0.001 ∆S = 0.6667∆M

4. GPT applied to chaotic and stochastic signals

This section presents some examples in which the results of the GPT applied to different dynamical behaviors are
shown.

• Random uniform set. Applying the transformation to a uniform pseudo-random set, we obtain the scatter
plot shown in Figure 8 (left). Even though the GPT plot does not have its origin in random numbers,
the extreme values of the interval [0, b] determine the hexagon in which the scatter plot is developed.
Then, the GPT is determined in a space delimited by this hexagon, dependent on the expressed values
of the original signal. The lines that separate the patterns can be determined very easily as follows. In
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(a) Straight line contaminated with proportional uniform
random noise of level 0.005.
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(b) Plot of the GPT applied to the noised curve on the left
(scatter plot in blue) and to its noiseless version (red point
(2, 3)).

Figure 5. Effect of the GPT application to noised linear signal.
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(a) Quadratic increasing signal contaminated with a
proportional uniform random noise of 0.005 level.

(b) Plot of the GPT applied to the noised curve on the left
(scatter plot in blue) and to its noiseless version (red line of
slope 2/3).

Figure 6. Effect of the GPT application to noised quadratic signal.

order to study the regions occupied by the GPT applied to the random uniform signal in the interval
[0, b], the points V1 = (2b, b), V2 = (b, b), V3 = (−b, 0), V4 = (−2b,−b), V5 = (−b,−b) and V6 = (b, 0) are
considered. Moreover, if rij denotes the line that passes through Vi and Vj it can be seen that r12 : y = b,
r23 : y = (x+ b)/2, r34 : y = x+ b, r45 : y = −b, r56 : y = (x− b)/2 and r61 : y = x− b. It is going to be
proved that the boundaries of these regions are precisely these lines. Notice first that if x, y ∈ [0, b], then
−b ≤ x− y ≤ b. Notice that in this proof, the range of signal values -which are non-negative- is considered
to define the vertices instead of the range of GPT points.

– Region of the pattern 213 where yn−1 < yn−2 < yn:{
∆S > 0,

∆M − b ≤ ∆S < ∆M/2,
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where the left hand side of the second condition holds since

yn−1 − yn ≥ −b,

yn − yn−2 ≥ 2yn − yn−1 − yn−2 − b,

∆S ≥ ∆M − b.

– Region of the pattern 123 where yn−2 < yn−1 < yn:{
∆M/2 < ∆S < ∆M,

∆S ≤ b,

∆M/2 < ∆S < ∆M and ∆S ≤ b, where the second condition holds since ∆S = yn − yn−2 ≤ b.
– Region of the pattern 132 where yn−2 < yn < yn−1:{

∆S > 0,

∆M < ∆S ≤ (∆M + b)/2,

∆S > 0 and ∆M < ∆S ≤ (∆M + b)/2, where the right hand side of the second condition holds since

yn−1 − yn−2 ≤ b,

2(yn − yn−2) ≤ 2yn − yn−1 − yn−2 + b,

2∆S ≤ ∆M + b.

– Region of the pattern 231 where yn−1 < yn < yn−2:{
∆S < 0,

∆M/2 < ∆S ≤ ∆M + b,

where the right hand side of the second condition holds since

b ≥ yn−1 − yn,

2yn − yn−1 − yn−2 + b ≥ yn − yn−2,

∆M + b ≥ ∆S.

– Region of the pattern 321 where yn < yn−1 < yn−2:{
∆M < ∆S < ∆M/2,

∆S ≥ −b,

where the last condition holds since ∆S = yn − yn−2 ≥ −b.
– Region of the pattern 312 where yn < yn−2 < yn−1:{

∆S < 0,

(∆M − b)/2 ≤ ∆S < ∆M,

where the left hand side of the second condition holds since

−b ≤ yn−1 − yn−2,

2yn − yn−1 − yn−2 − b ≤ 2(yn − yn−2),

∆M − b ≤ 2∆S.
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Figure 7. Hexagon defined by the GPT applied to a random uniform signal in the interval [0, b].
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Figure 8. Application of GPT to a uniform pseudo-random signal of length 1000 (left) and to the signal formed by the first
1000 digits of

√
2 (right).

Now the area of each pattern is completely determined as the area of the corresponding triangle. The GPT
plot configures a set of points that generate figures in each pattern. Then the GPT configuration space is the
one shown in Figure 7.

• Chaotic Dynamic Equations. An interesting point is the application over chaotic systems such as the logistic
equation. Considering the special value for chaotic region λ = 3.9, the GPT is applied to the following
logistic equation:

yi+1 = λyi(1− yi). (14)

Inside the chaotic region (see Figure 9), the colored graph of patterns depicts a curve whose behavior is like
that of an attractor. At the same time, we note that the attractor often has only five colors in chaotic periods.
The absence of a particular pattern in the chaotic zones can be observed in Figure 10, in particular pattern
321 within the proposed scheme for an embedding dimension m = 3. It is possible to confirm this absence
by counting the patterns and coloring each one. This feature was also described in [25]. From another point
of view, if λ is considered in the range [3.7, 4.0], the pattern counting is shown in Figure 11. In particular,
it can be seen how the counting of pattern 321 (in light green) is always very close to 0. Figure 11 middle
and bottom show the results of the bifurcation diagram of the logistic equation and the Lyapunov exponent,
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respectively. It is worth noticing that the locations of the main windows of the ordered behaviour agree with
the lowest pattern counting presented in Figure 11 (top).
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Figure 9. Application of GPT to the logistic equation with λ = 3.9. Colors indicate every pattern as follows from Figure 3b.
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Figure 10. Mean pattern counting over 100 signals with different types of noise and the logistic equation with λ ∈ [3.90, 3.91].

• Discrete series. This section is devoted to some special discrete series. The first case to be analyzed is the
squared root of two. The begining of the corresponding numeric sequence is:

1− 4− 1− 4− 2− 1− 3− 5− 6− 2− 3− 7− 3− 0− 9− 5− 0− 4− 8− 8− · · ·

The result of the application of the GPT to this numeric series can be seen in Figure 8 (right). The GPT of
every data point rotates around line ∆S = 0.5000∆M + 0.0015 with a low correlation factor, R = 0.8661.
The values of the coefficients of the line and the correlation factor vary slightly with the number of digits
considered.
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Figure 11. For λ values from 3.70 to 4.00 and a step of 10−4 pattern counting of the logistic function (top), bifurcation
diagram (middle) and Lyapunov exponent (bottom).
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A similar result is obtained with the roots of 3, 5, 6 and 7. Another example selected to show the result of
the GPT is the well known golden number (1 +

√
5)/2. Considered as a number system with an irrational

base [5, 23], we obtain ∆S = 0.5044∆M + 0.0010 with R = 1.
Nothing special is observed for other irrational numbers, such as π for which ∆S = 0.4946∆M + 0.0031
(R = 0.8613) and e where ∆S = 0.4954∆M + 0.0005 (R = 0.8619).
A similar result is obtained with the first 1000 prime numbers: ∆S = 0.5922∆M + 1.7671, R = 0.8808.
Another discrete series is the Fibonacci sequence: ∆S = 0.6180∆M + β (R = 1), where β depends on the
number of data points of the signal analyzed, and β → 0 when this number increases.

• Coloured noises. To analyze the results of the GPT applied to colored noises, four different types of noises
according to their frequency spectrum were used: white Gaussian distributed, white uniform distributed, red
and violet noises. All of them were signals of 6000 data points generated according to [28]. The results
of the computation of the GPT are shown in Figure 10. The GPT corresponding to the white Gaussian
and uniform noises gave practically overlapping results, while for the red and violet noises the GPT results
were counter-phase, i.e. when one is maximum the other is minimum and vice versa. Even when one shows
a positive plateau, the other one shows a negative plateau. This is a striking result because, although the
different types of noise can be perfectly characterized by a traditional frequency analysis, with the proposed
methodology where only a calculation based on the geometry of the signal in the time domain is made,
indications of different frequency structures could be obtained without taking into account the frequency
domain. Comparing the GPT of the four noises with the logistic map for the coefficient equal to 4, i.e. in
the range well defined as chaotic, it can be observed that the result of the GPT is different. This fact seems
to give evidence that the proposed geometrical transformation would differentiate the behavior of a sensitive
chaotic system from the different types of stochastic signals.

5. GPT applied to a very short signal: an example of quantum mechanics

This section analyzes the utility of applying GPT to a short length signal. In general, signals have an
electromagnetic origin. The gamma radiation, emitted by excited atoms, molecules, and nuclei, when decaying
to the ground state, is also an electromagnetic signal. It is well known that energy levels in quantum systems are
discretely distributed in bound systems. Consequently the emitted radiation of energy is also quantified. Then,
when decay from a high energy level occurs, a radiation cascade with discrete values is usually generated. In
the following paragraphs, an application to nuclear decay originated in the rotation of the nucleus, called Back
Bending [22], is described. First, the simple case of the rotational states of a deformed nucleus will be analyzed. In
this case, the cascade is easily identifiable and the result obtained is very simple. Rotational energy levels EJ obey
the following expression [13]:

EJ =

(
h

2π

)2
J(J + 1)

2I
, J = 0, 2, 4, · · · (15)

where h is the Planck constant, J the quantum number corresponding to the angular momentum of the nucleus
and I the moment of inertia of the nucleus. The time series that can be analyzed using GPT arises from the
transition between the excited states corresponding to the expression (15). There are two possibilities: to analyze
the theoretical series given by (15) or the gamma cascade observed experimentally. In the first case, the moment
of inertia is assumed constant and the case is named as rigid rotator. In the second case, it will be shown that,
when the nucleus rotates, its shape changes and therefore the moment of inertia changes according to the amount
of angular momentum it possesses. For the rigid rotator, the relation J(J + 1) generates a very simple series for
EJ , the energy levels through which the rotation will pass,

EJ ≈ {0, 6, 20, 42, 72, 110, 156, 210, 272, 342, 420, 506, 600, 702, 812, 930, 1056}. (16)
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The energy jumps, that is, the energy of the gamma rays will be proportional to

∆EJ = Eγ ≈ 4J − 2. (17)

Applying the GPT to the series given by (17), the point (−16,−24) in the plane ∆M x∆S is obtained. The
coordinates of this point in the energy diagram depend on the real values of E2. It is important to note that if the
energy of the first excited state is taken as given by E2, the energies of the higher levels follow from (17) as [13],

EJ =
1

6
J(J + 1)E2 (18)

However, the experimental observation generated by (18) gives lower values for transitions than theoretically
predicted. The deviation can be explained by a centrifugal stretching of the nucleus, in such a way that taking
stretching into account, the ratios observed can be explained [12, 17, 2]. Let’s first look at the behaviour of the
170Hf gamma emission. This nucleus clearly presents the stretching of the moment of inertia. In Figure 12, the
behaviours of the gamma emission for the theoretical case of a rigid rotator and the one observed experimentally are
presented. This is a time series emitted with a time interval between 10−7 and 10−11 seconds, approximately [18].
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Figure 12. The effect of stretching the moment of inertia deforms the straight line of the theoretical rigid rotator for 170Hf
but there is no evidence of Back Bending decay.

Figure 13 shows the evolution of angular momentum using GPT. The rigid rotator locus corresponds to a point,
while the experimental values fall almost on a straight line.

Now, the 158Er will be analyzed. This element is considered a classic nucleus since it exhibits two well known
Back Bendings as it evolves with increasing angular momentum. Two effects overlap, the stretching and a sharp
and strong deformation for J = 12 and J = 26.

Figure 14 shows the evolution of the angular momentum as a function of the rotational energy in the usual
representation. The first Back Bending is located for J = 12, and the second one is placed for J = 26. Figure 15
shows the evolution of angular momentum using GPT. The emergence of two Back Bendings at J = 12 and J = 26
and the GPT corresponding to the experimental and theoretical data of the rigid rotator can be observed. The
theoretical nuclear aspects are discussed in the literature [1, 6]. GPT representation proves to be a powerful tool
for visualizing quantum cascades. In particular, the Back Bending of J = 26, outlined in Figure 14, is clearly
visualized in the GPT diagram.

Figure 15 shows the evolution of angular momentum using GPT. The emergence of two Back Bendings at
J = 12 and J = 26 can be clearly observed, including the GPT corresponding to the experimental and theoretical
data under the assumption of the rigid rotator.
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Figure 13. Evolution of angular momentum at 170Hf using GPT and comparison of experimental (blue dots) and theoretical
values (orange dot).
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Figure 14. Back Bending of the 158Er using theoretical values for the energy levels.

Finally, the rotational behaviour of the four-nucleus cascades showing Back Bending can be seen in the GPT
plot, in Figure 16. It is noteworthy that the evolution of all of them is concentrated in a kind of attractor that points
towards the theoretical states of a rigid rotator.

The proposed GPT tool allows the detection of an experimental quantum cascade and its relationship with the
theoretically expected evolution which, in the cases analyzed, consists of a single point. It should be noted that
GPT can be applied to a signal that consists of only a few data points. That it cannot be increased by expanding the
sampling frequency and due to the length of the data series limited by the nature of the experimental quantity of
excited states.
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Figure 15. Evolution of angular momentum at 158Er using GPT. The solid line is for tracking the order of data points
increasing the quantum number J . In addition, the theoretical value is displayed (square).
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Figure 16. GPT for four nucleus, enclosed in ovals, are the points belonging to Back Bending and the squares correspond to
the theoretical rigid rotation. The solid lines are shown in order so as to visualize the location of the GTP data points.

6. Entropic measure from the GPT

To compute a quantitative measure that can distinguish among different types of signals as well as distinct kinds
of function increasing, the following methodology is proposed. After applying the GPT to a signal, for every
point (δM , δS) in the ∆M ×∆S plane their polar coordinates (r, θ) are considered. From Figure 3b, the angles
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α1 = arccos(2
√
5/5), α2 = arccos(3

√
10/10) and α3 = 3π/4 are used to assign a pattern according to the rule:

pattern(δM , δS) = pattern(r, θ) =



pattern 213 if 0 ≤ θ < θ1,
pattern 123 if θ1 ≤ θ < θ2,
pattern 132 if θ2 ≤ θ < θ3,
pattern 231 if θ3 ≤ θ < θ4,
pattern 321 if θ4 ≤ θ < θ5,
pattern 312 if θ5 ≤ θ < 2π,

(19)

where θ1 = α1, θ2 = θ1 + α2, θ3 = θ2 + α3, θ4 = θ3 + α1 and θ5 = θ4 + α2.
Given an interval I = [a, b] ⊂ R and a positive integer N , the N -partition of I is defined as

πN (I) =

N−1⋃
i=0

Ai, (20)

where A0 = [a, a+ L] and Ai = (a+ iL, a+ (i+ 1)L] for i = 1, . . . ,N − 1 provided that L = (b− a)/N .
Let D = {∥(δM , δS)∥/(δM , δS) ∈ ∆M ×∆S} where ∥·∥ denotes the euclidean 2-norm. The N -partition of the

interval I = [min(D),max(D)] is built with

N = max{M ∈ Z+/∀A interval in πM(I) : A ∩D ̸= ∅}. (21)

It is worth noticing that the elements in D represent the distance between the points obtained by the
GPT and the coordinate origin in the ∆M ×∆S plane. Given a pattern ρ, the sets Tρ = {(δM , δS) ∈ ∆M ×
∆S/pattern(δM , δS) = ρ} and Dρ = {∥(δM , δS)∥/(δM , δS) ∈ Tρ} are defined. Thus, a probability density function
is defined as follows

pi =
amount of elements in Dρ ∩Ai

amount of elements in Dρ
, (22)

for i = 0, . . . ,N − 1. The normalized entropy of the pattern ρ is then computed by

Hρ =
1

ln(N )

N−1∑
i=0

pi ln(pi). (23)

Finally, a vector of entropy for a signal is obtained by

−→
H = (H213, H123, H132, H231, H321, H312). (24)

The case of an empty pattern counting is denoted by the symbol ⊘ in the corresponding coordinate of
−→
H .

Table 3 shows the results of
−→
H for well known synthetic signals, where each components is the mean of 100

independent trials. It can be seen that for the polynomial functions two options for this vector are possible. This
property is explained as follows. It is clear that β is a root of the considered functions of this type. Assume βl and
βr in the domain of the time series are such that βl is the maximum value that satisfies the condition x < β and
βr is the minimum value verifying x > β. Thus, if f(βl) < f(βr) ,the null component in

−→
H is H213; otherwise it

is H312. With the aim to compare the results obtained using the present proposal with a classical methodology, the
Bandt and Pompe permutation entropy was also computed using an embedding dimension equal to 3 and 1 as the
embedding time delay.

In order to illustrate the behavior of the vector of entropy in terms of the length of the signal, the functions
f1(x) = ex, f2(x) = ln(x) and f3(x) = x−1 are considered in the domain [1, 10]. It is straightforward that five
components in

−→
H are empty, except for H123 for f1 and f2, and H321 for f3, which are positive. Figure 17 shows

that there exists a tendency of these values to stabilize as the length of the signal grows.
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Figure 17. Tendency of the non-empty and non-zero component of the vector of entropy in terms of signal length.

Table 3. Average Bandt and Pompe entropy (BP) and vector of entropy for well known continuous functions with domain
[1, 10], where α > 0, 1 < β < γ < 10, 1 ≤ δ ≤ 2, 2 ≤ ε ≤ 10 and 2 ≤ ζ ≤ 3.

Function BP H213H213H213 H123H123H123 H132H132H132 H231H231H231 H321H321H321 H312H312H312

f(x) = αx 0.00 ⊘ 0.00 ⊘ ⊘ ⊘ ⊘

f(x) = −αx 0.00 ⊘ ⊘ ⊘ ⊘ 0.00 ⊘

f(x) = (x− β)2 0.36 0.00 0.92 ⊘ ⊘ 0.99 ⊘
⊘ 0.92 ⊘ ⊘ 0.96 0.00

f(x) = (x− β)x2 0.27 0.00 0.98 ⊘ ⊘ 0.50 ⊘
⊘ 0.98 ⊘ ⊘ 0.68 0.00

f(x) = x(x− β)(x− γ) 0.37 0.00 0.98 ⊘ 0.00 0.76 ⊘
⊘ 0.98 0.00 ⊘ 0.63 0.00

f(x) = x−δ 0.00 ⊘ ⊘ ⊘ ⊘ 0.53 ⊘

f(x) = logε(x) 0.00 ⊘ 0.87 ⊘ ⊘ ⊘ ⊘

f(x) = ζ x 0.00 ⊘ 0.68 ⊘ ⊘ ⊘ ⊘

The comparison of the results of the vector of entropy when applied to different types of noises involves the study
of white noise distributed uniformly in the interval [0, 1] and coloured noises -gaussian white, red, violet- with µ = 0
and σ = 1. The mean values of 100 trials are shown in Figure 18. These means allow us to determine that for all the
considered cases, the values of H132 and H312 are lower than the other four components. The uniform white noise
shows a notorious higher entropy compared to the coloured noises. The deviation is 0.0183 for the uniform white
noise and nearly four times larger for the rest of the noises. It is evident that none of the components of the vector
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of entropy vanishes for coloured noises. However, it appears to be a tendency that may allow us to distinguish
among them. The valleys located at the patterns 132 and 312 can be explained by the distribution of the GPT points
in the hexagon and the way in which the vector of entropy is computed since it distinguishes the distance between
the points and the origin of coordinates instead of their position the plane. In other words, many of the GPT points
in the corresponding triangles are concentrated in a few numbers of concentric rings which produce a low value
of entropy. The opposite case arises for the triangles occupied by the patterns 123 and 321 for which the entropy
presents peaks. Another interesting remark is that the entropy is symmetric for the patterns opposite to the vertex
(see Figure 7), which may be caused since the same number of pieces in the partition covers the same area of these
pairs of triangles, as well as the point clouds in every triangle have a similar dispersion. This property can also
be appreciated in Figure 19 that shows the densities of the components of

−→
H for the considered noises. The case

of uniform white noise is clearly identified since all the entropy components achieve the largest values in the six
components. Moreover, it can be noticed that red noise is characterized by smaller values in components H123 and
H321. On the other side, gaussian white and violet noises can be distinguished since the last ones show a significant
greater value in components H132 and H231.
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Figure 18. Mean of vector of entropy for different types of noise.

To check the values obtained with the vector of entropy proposed in the present work, this vector was calculated
on two well established examples, the Chua oscillator [10] and the Rössler oscillator [19] for the usual parameters
values, in such a way to ensure the chaotic behaviour. Table 4 shows the results for the three variables of
each oscillator. In the first column, the Bandt and Pompe entropy was calculated, using the previously defined
parameters. It can be easily observed that, for each variable, the powerful Bandt and Pompe methodology gives
an expected value for the signals of each chaotic system, which are practically the same entropy value, while the
values in the vector of entropy differentiate both oscillators clearly. The last row of Table 4 exhibits the values
in the logistic equation for the parameter settled to 4, where the differences with the two other chaotic systems
considered can be appreciated.

The experiments were developed in a computer with processor Intel© Core™, i7-6700K CPU 3.40GHz, 16GB
RAM, System Type 64-bit operating system. Figure 20 shows the elapsed time (in seconds) consumed in the
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Figure 19. Vector of entropy components density for uniform white noise (top left), gaussian white noise (top right), red
noise (bottom left) and violet noise (bottom right).

Table 4. Bandt and Pompe entropy and vector of entropy for different chaotic signals.

Signal BP H213H213H213 H123H123H123 H132H132H132 H231H231H231 H321H321H321 H312H312H312

Chua x 0.49 0.23 0.93 0.11 0.23 0.92 0.03

Chua y 0.50 0.49 0.95 0.40 0.47 0.95 0.41

Chua z 0.50 0.21 0.92 0.10 0.22 0.92 0.08

Rössler x 0.40 0.00 0.95 0.00 0.12 0.80 0.00

Rössler y 0.42 0.25 0.90 0.00 0.00 0.90 0.13

Rössler z 0.42 0.00 0.43 0.14 0.13 0.39 0.00

Logistic 0.85 0.63 0.68 0.53 0.89 ⊘ 0.38
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vector of entropy computation for different signal lengths. Meanwhile, these times almost vanish for the Bandt and
Pompe methodology. It can be seen that they increase for long series when our proposal is applied. However, the
computational cost is no extremely expensive compared with the stronger differentiation that can be obtained.
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Figure 20. Elapsed time (in seconds) consumed to compute the vector of entropy.

7. Conclusions

The present work develops two perspectives, one focused on the introduction of a Geometric Pattern
Transformation and the other one concerned with the definition of a vector of entropy based on this GPT.

It is worth mentioning that in the application of this proposal it is not necessary to make any assumption about
the nature of the signal or the statistical distribution of its data points. In this sense, one of the most significant facts
of the present GPT for the computation of signal entropy is that it does not require the adjustment of any parameter.

The GPT can be applied to very short data series as was indicated in the example of the Back Bending quantum
reaction in Section 5. The new methodology has the capability to differentiate structural signal characteristics
belonging to similar patterns. The problem of the missing or forbidden patterns does not appear in the use of the
GPT due to the fact that the proposed approach takes into account only the true points constituting the signal. The
simplicity of the GPT algorithm is efficient in computational terms in such a way that it can be implemented in real
time signal analysis.

Some of the interesting features of the vector of entropy are listed as follows: i) The computation of the signal
entropy from the GPT contributes to differentiate chaotic from random signals under analysis. ii) The construction
of a vector of entropy associated with the signal patterns allows us to describe the main characteristics of the signal
shape in a compact way. iii) Entropy computation is based upon strictly geometric features of the signal, in such
a way that it does not require any assumption about the signal nature nor other characteristics of the dynamics
process.

Further lines of research can include the exploration of the alternatives of patterns counting algorithms, the
incorporation of sub patterns to do a fine tuning of entropy computation, and other variants to segment every region
generated by the GPT.

Stat., Optim. Inf. Comput. Vol. 10, September 2022



C. BONINI, A. REY, D. OTERO, A. AMADIO, M. GARCŁA BLESA AND W. LEGNANI 1019

Supplementary material

For reproducibility the code implemented in this work is available at https://arey1911.github.io/GPT/
Tutorial.html.
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