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ABSTRACT

The aim of this study is to formulate a new methodology based upon informational tools to detect patients with cardiac arrhythmias. As it
is known, sudden death is the consequence of a final arrhythmia, and here lies the relevance of the efforts aimed at the early detection of
arrhythmias. The information content in the time series from an electrocardiogram (ECG) signal is conveyed in the form of a probability
distribution function, to compute the permutation entropy proposed by Bandt and Pompe. This selection was made seeking its remarkable
conceptual simplicity, computational speed, and robustness to noise. In this work, two well-known databases were used, one containing
normal sinus rhythms and another one containing arrhythmias, both from the MIT medical databank. For different values of embedding
time delay τ , normalized permutation entropy and statistical complexity measure are computed to finally represent them on the horizontal
and vertical axes, respectively, which define the causal plane H × C. To improve the results obtained in previous works, a feature set composed
by these two magnitudes is built to train the following supervised machine learning algorithms: random forest (RF), support vector machine
(SVM), and k nearest neighbors (kNN). To evaluate the performance of each classification technique, a 10-fold cross-validation scheme
repeated 10 times was implemented. Finally, to select the best model, three quality parameters were computed, namely, accuracy, the area
under the receiver operative characteristic (ROC) curve (AUC), and the F1-score. The results obtained show that the best classification model
to detect the ECG coming from arrhythmic patients is RF. The values of the quality parameters were at the same levels reported in the available
literature using a larger data set, thus supporting this proposal that uses a very small-sized feature space to train the model later used to classify.
Summarizing, the attained results show the possibility to discriminate both groups of patients, with normal sinus rhythm or arrhythmic ECG,
showing a promising efficiency in the definition of new markers for the detection of cardiovascular pathologies.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0118717

To detect arrhythmic electrocardiogram (ECG) signals, the corre-
sponding points in the Shannon permutation entropy and statis-
tical complexity plane were computed and considered as a feature
space to train three machine learning classification algorithms.
The best results were achieved with the random forest methodol-
ogy after a 10-times 10-fold cross-validation scheme was applied
to compute the corresponding quality parameters.

I. INTRODUCTION

The number of deaths worldwide reported by the World Health
Organization (WHO) was 55.4 million in 2019. Fifty five percent
of them were related to top ten causes. Ischemic heart disease
and stroke were the world’s biggest killers, causing about 16% and
11% of total deaths worldwide, respectively (for more information,
cf. Ref. 1). It is important to point out that an arrhythmia does not
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necessarily mean an irregularity of the heart rate, since the heart can
frequently have regular arrhythmias with absolute stability, such as
a tachycardia or a flutter, where the heart rate is within a normal
range.2 A diagnosis of arrhythmia in itself does not mean an evident
pathology. In fact, in healthy subjects, the sporadic presence of cer-
tain arrhythmias can occur. For the American Heart Association,3

some arrhythmias are so brief (a temporary pause or a premature
beat) that the overall heart rate or rhythm is not affected at the clin-
ical level. However, if arrhythmias last longer, these may cause the
heart rate to be too slow, too fast, or become erratic—so the heart
pumps less effectively. Cardiac arrhythmias are classified according
to their place of origin, underlying mechanism, electrocardiographic
pattern, or the clinical point of view.

The greatest relevance of arrhythmias is related to an associa-
tion with sudden cardiac death.4 It is also important to remember
that frequent arrhythmias (especially atrial fibrillation) may lead to
embolism, including cerebral embolism, often with severe conse-
quences. Sometimes, fast arrhythmias may trigger or worsen a heart
failure;5 and the incidence of the majority of arrhythmias increases
progressively with age and they are not frequent in children.6

It is important to point out that the ECG signals are obtained
in a non-invasive way, and are widely available for use in medical
research. In particular, single lead ECG signal acquisition is useful
in wearable applications (see for example, Refs. 7 and 8 and within
references).

An arrhythmia may or may not be suspected before the ECG is
performed. Sometimes, a patient describes a change in heart rhythm
suggestive of an arrhythmia, but nothing appears on the surface
of the ECG tracing, even if an arrhythmia is detected during the
physical examination.

The possibility of linking the diagnosis of arrhythmia with mea-
sures of information theory that provide some orientation about
the dynamic process of this manifestation concerning a reference
state considered as healthy is a fact that partly motivated the present
study. Entropy and statistical complexity were the variables selected
to test the hypothesis, constituting the H × C plane. Both are widely
used in contemporary signal analysis. Assuming, as indicated in
Ref. 9, that a progressively diseased cardiovascular system decom-
plexes, we attempt to detect which are the locations in the H × C
plane for both classes of interest: normal rhythm ECGs and arrhyth-
mias. Computer learning algorithms are then implemented to obtain
more robust results. Since mobile monitoring devices (holter and
recorders) require in all cases the validation of specialists for the
final reports, the present research could contribute to performing
the first step to distinguish between records of healthy people, and
those which require more detailed analysis in the diagnostic stage
once the patients hand over their acquisition devices in the health
care centers. This might be done once the study has been extended
to a substantial number of patients to be validated accordingly and
has been sufficiently analyzed in the specialized medical community.

In the following sections, the probability distribution func-
tion (PDF) of ordinal pattern permutations proposed by Bandt and
Pompe is computed using embedding time delay values ranging
from 1 to 35. Then, the normalized Shannon entropy and the statis-
tical complexity measure based on the Jensen–Shannon divergence
are calculated to define the points in the H × C plane. Finally, three
conceptual different and well-known supervised machine learning

techniques are tuned in order to discriminate arrhythmic patients
from those with a normal sinus rhythm.

II. MATERIALS AND METHODS

The concept of entropy was first introduced in the theory of
communications by Shannon10 as a tool to measure the degree of
organization in a system with physical properties. Nowadays, it has
become one of the most emblematic notions to quantify information
of a dynamical system. This definition was extended to dynamic sys-
tems by Kolmogorov11 and amended by Sinai12 due to its application
of symbolic encoding of phase space. In Ref. 5, the authors provided
a number of entropy interpretations emerged from a wide range of
science and technology topics, such as, disorder, state space volume,
and lack of information.

Let X(t) = {xt : t = 1, . . . , M} be a time series of M observa-
tions of the variable X. Its associated PDF is given by P = {pi :
i = 1, . . . , N}, where N is the number of possible states of the system

under study and
∑N

i=1 pi = 1. Then, Shannon entropy is defined as

S[P] = −

N
∑

i=1

pi ln(pi). (1)

Expression (1) can be seen as a measure of the uncertainty related to
the physical process described by P. When S[P] = 0, it means that
the underlying structure is fully deterministic, so that the knowl-
edge of the process is maximal at this instance. On the opposite
corner, for maximal uncertainty, such as an uncorrelated stochas-
tic process with uniform distribution, the knowledge of the dynamic
system is minimal, which implies that all the states have the same
probability of occurrence. This PDF is denoted by Pe = {pi = 1/N :
i = 1, . . . , N} (cf. Refs. 13–15). It is worth noting that no distribu-
tion is required to be known since the calculus is based on the state
probabilities.

The well-known normalized Shannon entropy is defined by

H[P] =
S[P]

S[Pe]
=

S[P]

ln N
(2)

and satisfies 0 ≤ H[P] ≤ 1.
In order to introduce a definition of complexity in physics, it

is crucial to consider it as an indicator of plausible undetected pat-
terns that depict the system as dynamic.16 In Ref. 17, it is suggested
that a kind of distance to a reference PDF must be included in the
complexity computation. Thus, the disequilibrium can be defined by

Q[P] = Q0D[P, Pe], (3)

where Q0 is a normalization constant and D is a stochastic distance.
In this work, D is considered as the Jensen–Shannon divergence
given by

DJS[P, Pe] = S

[

P + Pe

2

]

−
1

2
S[P] −

1

2
ln(N), (4)

for which

Q0 = −2

[

N + 1

N
ln(N + 1) − 2 ln(2N) + ln(N)

]−1

. (5)
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It can be observed that the disequilibrium vanishes when the
distribution of the time series resembles a cloud of uniformly sparse
points, which is maximized when the time series is periodic.

Thus, the complexity can be measured as a combination
between the information inherent to the system and its disequi-
librium. Explicitly, using Eqs. (3) and (2), the complexity can be
computed as follows:

C[P] = Q[P]H[P]. (6)

The qualitative information extraction without parametric
model assumptions and temporal ordering structure quantifies the
degree of complexity in terms of expression (6). Hence, this statisti-
cal complexity allows us to identify different levels of periodicity and
chaos.18

Since both information measures mentioned above are cal-
culated in terms of a PDF, the approach proposed by Bandt and
Pompe19 is used. This methodology consists in obtaining the prob-
abilities related to the ordinal dynamism of the elements in a time
series. Consider the time series X(t). If m > 1 represents the embed-
ding dimension and τ the embedding time delay given by the
length of the interval between two consecutive observations in the
resampling, then M − m + 1 overlapping partitions of length m are
constructed as follows:

s → {xs−τ(m−1), xs−τ(m−2), . . . , xs−τ , xs}, (7)

with s = m, m + 1, . . . , N. For each s, the permutations of the set
{0, 1, . . . , m − 1} are denoted by πj = {r0, r1, . . . , rm−1} and given by
the ordering xs−τ rm−1 ≤ xs−τ rm−2 ≤ . . . ≤ xs−τ r0 . For j = 1, . . . , m!,
the permutation πj has the following probability of occurrence:

pj(πj) =
#{s is of type πj}

M − m + 1
. (8)

The condition M ≫ m! is necessary to ensure statistical reliabil-
ity and a proper dissimilitude for deterministic and stochastic
systems.20

If PDF given in Eq. (8) is replaced in Eq. (2), an extension of
Shannon entropy is obtained, which is called permutation entropy
(PE). One of the main advantages of this technique lies in that there
is no need of a statistical model for the signal, so that there are no
assumptions about the nature of the underlying process. Besides,
most of these models are prone to outliers.

A. Data set

The collection of ECG time series studied in this work was
obtained from the PhysioNet platform managed by members of the
Computational Physiology Laboratory of the Massachusetts Insti-
tute of Technology, and it is available at https://physionet.org/. This
set contains 18 normal sinus rhythms ECGs from 5 men and 13
women who were found to have had no significant arrhythmias21

and 48 long-term recordings of ECG belonging to patients with car-
diac arrhythmias from 26 men and 22 women, 37 of whom were
taking medication.22 Since the original records of arrhythmic ECGs,
which last half an hour, consist of about 650 K samples, and the nor-
mal ECG records correspond to 24-h holter’s information, only the
first 650 K samples were considered for the normal sinus rhythm

TABLE I. General characteristics of the ECG database.

Normal sinus Cardiac
rhythm arrhythmias

Recordings 18 48
Males 5 26
Females 13 22
Sampling acquisition
frequency 128 Hz 360 Hz
Record’s length
(time in min/samples) 85/650 K 30/650 K

records, which means a duration of 85 min per record approxi-
mately. These characteristics are summarized in Table I. An example
of a normal sinus rhythm and a cardiac arrhythmic ECG recording
are exhibited in Fig. 1.

In many research studies, the authors apply a noise filter. How-
ever, the interest in the present study is to analyze the information
and structure of the ECG signal in the raw form. This decision is
inspired by the work.23

B. Definition of the feature space

As mentioned above, for the computation of PE two parameters
are required. Due to the length of the signals of interest, an embed-
ding dimension m = 6 is chosen. This value option is motivated by
a reasonable statistical estimation of the ordinal patterns related to
the number of data in the signal, as well as the recommendation in
the specific literature (e.g., Refs. 24 and 25). In practice, for the selec-
tion of τ , it is usual to adopt a value suggested by experimental tests
developed by scientists and researchers from the available literature.

FIG. 1. Examples of normal and arrhythmic ECG signals, respectively, named
“16273” from the MIT-BIH Normal sinus rhythm database and “100” from the
MIT-BIH Arrhythmia database.
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However, this habit has drawbacks as the strong dependence of PE
on the sampling frequency26 or the need of an expert advice.

In Ref. 27, the authors based the computations with τ = 15.
Due to the absence of a unique criterion for τ selection and with the
aim to improve the results obtained in this work, automatic methods
to select a proper embedding time delay can be found in references
such as Refs. 24, 25, and 28. The implementation of these algorithms
yielded similar values for τ in terms of the type of ECG signal.

The feature space from which the classifier is going to learn
is defined as follows. For each ECG signal in the database intro-
duced in Sec. II A and for a fixed τ value varying in the range of
1, 2, . . . , 35, the PE and the complexity are computed. Finally, every
signal is labeled as “normal” or “arrhythmia” referring to the origi-
nal database. This means that the group of patients can be divided
into two classes.

From now on, the PE will be simply denoted by H and the com-
plexity using Jenssen–Shannon divergence by C. Therefore, a point
in the H × C plane is associated to every ECG signal. It is known
that for a given value of H, the possible values for C are bounded
between two curves denoted by Cmin and Cmax.29 This particularity
is illustrated in Fig. 3 for all the signals under analysis and for some
values of τ .

C. Classification models

The approach to improve ECG classification using machine
learning techniques has been used for several years now. The main
research effort made was focused on the feature space constructed
from time variables, a kind of signal transform or a combination
of both. In that sense, a valuable source of information is com-
piled in Ref. 30. Considering the wide set of algorithms applied,
there are cases in which the researchers use methods based on neu-
ral networks, Markov chain models, support vector machine, and
multilayer sensor classifiers, as can be seen in Refs. 31–34.

To detect arrhythmias in the ECG database, three well-known
supervised classification techniques are applied: random forest (RF),
support vector machine (SVM,) and k nearest neighbors (kNN).
This selection is inspired in the dissimilar intrinsic properties of
the three approaches, based on decision trees, hyperplanes, and
distances. Thus, these differences contribute to a strong differen-
tiation and clear comparison. It is worth mentioning that in spite
of the small sample size, the results obtained by machine learning
techniques can be reliable as argued in Ref. 35.

RF36 is a method that uses sets of decision trees on either splits
with randomly generated vectors or random subsets of training data,
and computes the score as a function of these different components.
In the classification context, the prediction made by random for-
est results from the most frequent class in the set of predictions
obtained per every decision tree. Bagging with decision trees can be
considered a special case of random forest depending on how the
sample is selected (bootstrapping). Being an ensemble model, vari-
ance is reduced compared to training a single tree. Pruning is not
necessary to avoid potential over-fitting as in the use of a single tree,
since the samples used to train the individual trees in the forest are
bootstrapped.

The SVM,37 initially thought as a binary classification algorithm
in an n-dimensional space, attempts to find a hyperplane, i.e.,

FIG. 2. Workflow.

FIG. 3. Scatterplot in the plane H × C with the boundary curves Cmin and Cmax

for different values of τ .
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an n − 1-dimensional subspace, which can be used to separate
the regions occupied by elements in each class. The hyperplane
is a curve that splits the feature space in such a way that the
margin—distance between the data points in the two different
groups—is maximized. The name of this technique is due to data
points closest to the hyperplane are called support vectors. SVM
performs very well with higher-dimensional data sets and is one
of the most memory-efficient classifiers. Despite this algorithm is
originally in the linear context, the kernel trick allows us to extend
its application to other frameworks. Although this methodology
is very stable, it is not recommended if the sample size is large
and it may not be suitable in the presence of overlapped or noisy
data.

The kNN38 classifies an object by a majority vote of the object’s
neighbors, in the space of input parameters, i.e., the new object is
assigned to the most common class among its k nearest neighbors.
This non-parametric method is simple to implement, robust to noisy
training data, and effective if training large data sets. On the con-
trary, it is necessary to determine the value of k and the computation
cost is high as it needs to compute the distance from each instance

to all the training samples. This kind of classifier is memory-based
and requires no model to be fit. Despite its simplicity, the kNN
algorithm has been successful in a large number of classification
problems, even if each class has many possible prototypes or the
decision boundary is very irregular.

For a deeper treatment and more details of these classifiers, see
Refs. 39–41. In this work, packages randomForest,42

e1071
43

and kknn,44 from R language, were used to implement these clas-
sifiers.

A 10-fold cross-validation repeated ten times was applied to
each model for tuning the following hyperparameters:

• the number of variables randomly sampled as candidates at each
split in RF, denoted by “mtry,” where the number of trees is fixed
as 500;

• the type of kernel—linear, polynomial or radial—and cost c of
constraints violation in SVM, as well as the degree d in polyno-
mial kernel and the constant factor γ in both, polynomial and
radial kernels; and

• the maximum number of neighbors k in kNN.

FIG. 4. H × C plane: maximum andminimum complexity curves (continuous green lines), normal sinus rhythm ECGs and ECGs from patients with arrhythmia, and dynamical
systems to locate a diversity of behaviors in this plane following Ref. 9.
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D. Classifier quality indicators

A positive label is assigned to arrhythmic ECG records. The
possible predictions can be: true positive (TP), true negative (TN),
false positive (FP), or false negative (FN). The classification qual-
ity indicators to be used are accuracy, the area under the receiver
operating characteristics (ROC) curve (AUC), and the F1-score.
Accuracy is defined as the proportion of well predicted data; i.e.,
(TP + TN)/(TP + FP + TN + FN). The area under the ROC curve
(AUC) can be regarded as the probability that the classifier ranks
a random positive observation more highly than a random nega-
tive observation (cf. Ref. 45). AUC ranges from 0 (all predictions
are wrong) to 1 (all predictions are correct). The F1-score is the
harmonic mean between the precision given by TP/(TP + FP),
and the recall defined by TP/(TP + FN). Thus, F1 = 2(precision ·

recall)/(precision + recall).
As a summary of Sec. II, the workflow developed in this

research is presented in Fig. 2. Besides, for the reproducibility
of the results of the present work, the implemented codes are
freely available at https://github.com/arey1911/ECG-classification-
by-HxC-plane.

III. RESULTS AND DISCUSSION

Beginning with the formulation of the feature set calculated
from the ECG time series of patients with cardiac normal sinus
rhythms and arrhythmic ones from the Physionet database, a cloud
of points is built as the feature space providing information for the
classification process. As it is shown in Fig. 3, ECGs with a nor-
mal sinus rhythm show, in their waveform, a higher PE, and a lower
statistical complexity measure for τ = 1. In addition, there is a con-
firmation that there is a displacement of the cloud of points from the
patients with cardiac arrhythmia toward the space of a larger statis-
tical complexity measure and a smaller PE. That feature was also
found in Ref. 27. All the points are placed in the plane H × C within
the area limited by the two boundary curves Cmin and Cmax. Those
coming from the arrhythmic ECG group remain in a zone occupied
above the k-noises boundary, approximately k = 2.5, as shown in
Ref. 9. In Fig. 4, the clouds of points corresponding to both classes
are located with a low level of overlap. This fact encourages the use of
a computer learning algorithm to increase the efficiency of a classifi-
cation model distinguishing both groups of ECG signals. Most ECG
recordings from patients with diagnosed arrhythmia have coordi-
nates in the H × C plane that place them above the dashed blue
curve on which the k-noises fall, whereas ECGs from normal sinus
rhythm recordings are located below the aforementioned line. These
relative locations in the H × C plane would indicate that the arrhyth-
mia dynamic behavior of the cardiac system would cause a decrease
in the entropy value with a consequent increase in the correspond-
ing statistical complexity value. This fact suggests that the disease
renders the cardiac regulatory system less capable of regulation,
an effect that coincides with the behavior of cardiovascular disease
states that have been reported in the literature. As was pointed out
in Ref. 46, the loss of complexity in physiological signals is related
to a disease process or aging. In this particular case, the lower sig-
nal entropy could contribute to explain the underlying mechanism
that drives a healthy cardiovascular system to develop an arrhyth-
mia. In turn, the increment of the statistical complexity in the case

of arrhythmic records was verified in Ref. 47, locating atrial fibrilla-
tion ECGs records in an H × C region over the fractional Brownian
motion locations, thus providing partial confirmation of the results
of the present research. Continuing with this reasoning, the normal
sinus rhythm ECG group is located close to the region charac-
terized by the random processes, whose main characteristic is the
high level or variation. In contrast, the arrhythmia disease shows a
lower variability as indicated by the lower entropy level, the points
approaching the regions that begin to be occupied by the chaotic
systems. The chaotic behavior is supposed to try to set a degree of
order. In other words, if the system shows a chaotic behavior, then
there is some order. Meanwhile, noise does not introduce order but
randomly distributes frequency spectra.

TABLE II. Best models for each value of τ after a 10-fold cross-validation repeated

10 times. The best, average, and worst values are, respectively, highlighted in green,

blue, and red.

τ Accuracy Best model

1 0.944 RF, mtry = 2
2 0.737 SVM radial, c = 0.5, γ = 6.992
3 0.744 SVM radial, c = 1, γ = 4.508
4 0.815 SVM linear, c = 1
5 0.798 SVM linear, c = 1
6 0.905 kNN, k = 5
7 0.822 RF, mtry = 2
8 0.869 SVM linear, c = 1
9 0.912 SVM linear, c = 1
10 0.925 SVM linear, c = 1
11 0.933 SVM linear, c = 1
12 0.927 SVM radial, c = 1, γ = 4.181
13 0.924 SVM polynomial, c = 1, d = 3, γ = 0.1
14 0.895 SVM polynomial, c = 1, d = 2, γ = 0.1
15 0.892 SVM polynomial, c = 1, d = 3, γ = 0.1
16 0.884 SVM polynomial, c = 1, d = 3, γ = 0.1
17 0.934 RF, mtry = 2
18 0.942 SVM linear, c = 0.5
19 0.916 SVM linear, c = 1
20 0.908 SVM polynomial, c = 0.5, d = 1, γ = 0.1
21 0.879 SVM linear, c = 1
22 0.881 SVM radial, c = 1, γ = 0.106
23 0.867 SVM polynomial, c = 0.25, d = 3, γ = 0.1
24 0.858 SVM radial, c = 0.5, γ = 16.961
25 0.877 RF, mtry = 2
26 0.871 SVM radial, c = 1, γ = 0.115
27 0.880 SVM polynomial, c = 1, d = 1, γ = 0.1
28 0.886 SVM linear, c = 0.25
29 0.887 SVM linear, c = 1
30 0.889 SVM linear, c = 0.25
31 0.880 SVM radial, c = 1, γ = 0.09
32 0.911 SVM radial, c = 1, γ = 17.95
33 0.882 RF, mtry = 2
34 0.880 SVM linear, c = 1
35 0.885 SVM linear, c = 0.25
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FIG. 5. Histograms of each feature according to the type of ECG for different
values of τ .

Notice that the behavior described above does not hold for
τ = 2. In the case τ = 22, the points in the plane belonging to each
group of ECG signals are not so clearly separated as in the case
of τ = 1. The point locations in the H × C plane might justify the
results shown in Table II.

Although the peaks in the histograms of the PE entropy are
separated as it is shown in Fig. 5 for τ = 1 and τ = 22, the strong
overlapping between the two distributions is notorious, especially
in the first case. On the other hand, the histograms for the statisti-
cal complexity measure computed with these two values of τ , which
are presented in the same figure, show a clear separation between
their peaks, which is more evident for τ = 1. However, the nor-
mal sinus rhythm ECG group also has a second modal peak whose
position is aligned with the one reached by the peak of the other
group. This feature may explain a certain degree of deficiency in the
classification quality of the normal ECG group. As a consequence
of these graphics, the statistical complexity measure appears to be
the most meaningful data set variable to train the classifier. Again,
these properties are not verified for τ = 2, where the entropy and
complexity histograms suggest a misunderstanding between the two
classes.

The best models after the hyperparameter tuning using a 10-
fold cross-validation repeated 10 times are exhibited in Table II,
as well as the accuracy obtained in each case. It can be seen that
the maximum, minimum and mean values for accuracy are 0.944

FIG. 6. Values of the quality indicators of the models using different classifiers
after implementing a 10-time 10-fold cross-validation for different values of τ .

for τ = 1; 0.737 for τ = 2; and 0.881 for τ = 22, respectively.
In this sense, these three values of τ are considered as refer-
ences to exemplify several characteristics throughout the present
study.

With the aim to illustrate the behavior of the three classifica-
tion techniques proposed, the values of accuracy, AUC and F1-score,
after applying 10-fold cross-validation for τ = 1, 2, 22, are shown in
Fig. 6. Besides, the best results for every value of τ are summarized
in Fig. 7. It can be noticed that the best performance was achieved by
the RF model using τ = 1, for which the average accuracy is 0.952,
the average AUC is 0.900, and the average F1-score is 0.971. With
the aim to compare existing results in the available literature, but
without the depth of a review, it is worth noticing that in Ref. 23
using SVM, kNN, RF, and other two different options, with the same
database, the overall accuracy values range from 0.725 to 0.944 and
the F1-scores run from 0.391 to 0.662. It is important to keep in
mind that those results were obtained using a larger feature space
than the one of our proposal.

As indicated in Ref. 48, PE could be susceptible to the presence
of noise. Hence, the authors suggest being careful in the application
of these tools to time series for which the signal-to-noise ratio is
low. Since the complexity decreases for noisy signals, our method
is extremely sensitive to noise perturbation. In this sense, it is note-
worthy that the conclusions obtained in this study are biased by the
presence of noise superposed to ECG traces.
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FIG. 7. Values of the quality indicators of the best model for each τ using a
10-times 10-fold cross-validation.

IV. CONCLUSION

This research has two cornerstones. The first one consists of
the fact that it is possible to use a reduced set of features formed
by informational measures to classify signals of ECGs coming from
normal sinus rhythms and arrhythmias. The second one is that the
classification model presented in this work has an explaining charac-
ter of the process which leads from health to disease, under the light
of dynamical systems. With reference to the first cornerstone, this
work presents the possibility to use only the H × C plane as a fea-
ture space to train classifiers with the aim to construct models. Not
only is the reduced dimension of the feature space a clear advantage
of this proposal, but also the interpretation of the features selected
gives an important insight into the dynamical characteristics of the
disease process. In reference to the second cornerstone, the lower
entropy values and higher complexity values contribute to under-
standing the mechanism by which arrhythmias occur. This would
indicate a dismissing capacity of the cardiovascular system to con-
trol the dynamics of the heart, given by the variation in the values of
the Shannon permutation entropy between normal sinus rhythms
and arrhythmic records. On the other hand, the increment of the
statistical complexity would show the emergence of more structures
in the shape of ECG signals from patients with arrhythmia. Since the
selection of the embedding time delay and of the embedding dimen-
sion are two relevant aspects to consider for the calculations of the
permutation distributions leading to the permutation entropy, in the
present work this choice was carried out in a way based on the bibli-
ographic background and its subsequent application to the data used

in the study. The value of the embedding dimension was chosen
based on the selection of the signal length to obtain the improved
experimental statistics from the data series, while the embedding
time delay was varied on a range based upon the criteria existing
in the literature and the optimum value was selected based on the
best performance obtained by the classifier.

It should be noted that the points in the H × C plane that cor-
respond to fractional Brownian motion and k-noises constitute an
approximated border which makes it possible to differentiate the
cloud of points of both ECG groups of interest.

At the stage of formulating the models, the selected classifica-
tion algorithms cover a wide spectrum of the most frequently used
ones in contemporary research. This is because one of them is based
on decision trees, such as Random Forest, another one uses distance
calculation, such as kNN, and the remaining one looks for the best
hypersurface to be used to separate the analysed classes. The promis-
ing results obtained by the computational performance during the
calculation of Shannon Permutation Entropy and Statistical Com-
plexity, added to the use of a single channel of ECG recordings,
motivate us to consider as feature work, the formulation of a pilot
protocol for home follow-up of patients clinically suspected of suf-
fering from arrhythmia. The used databases have been employed in
a wide variety of scientific studies, so their validity has been demon-
strated. However, given their small size, it is essential to increase
the number of cases from both databases to improve the statisti-
cal aspects of the proposal and to test it on larger sets, if possible,
coming from different sources.
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