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14 Abstract 

15 Gastropods shell shape has been proposed as a good indicator of environmental changes 

16 while geometric morphometric (GM) is a powerful tool to detect such changes. Shell 

17 shape pattern in adults of Buccinanops deformis was proved to be correlated with imposex 

18 incidence and maritime traffic in populations of Patagonia. We explore through GM the 

19 shell shape variation of B. deformis intracapsular embryos in pre-hatching stages of 

20 development, in two populations with contrasting maritime traffic and imposex incidence. 

21 Embryonic shell shape from polluted and unpolluted areas were significantly different in 

22 apex, lateral, aperture and siphonal channel zones. The same shell shape pattern was 

23 observed previously in B. deformis adult specimens. Our results demonstrate that the shell 

24 shape is an early biomarker that could be used as a tool to detect the response to 

25 environmental changes during intracapsular embryonic development. The early 

26 exposition to contaminants could influence the concomitant fitness of adult gastropods.

27

28 Capsule summarizing main findings: The embryonic shell shape varies as a response 

29 to environmental pollution during intracapsular development.

30

31 Keywords: geometric morphometrics; maritime traffic; buccinanops; embryonic 

32 development; patagonia; imposex, antifouling paints

33

34 Introduction 



2

35 Studies using shell shape as an indicator of changes in the environment are increasing 

36 (Harayashiki et al., 2020a). Geometric morphometrics (GM) turned out to be a useful tool 

37 for detecting subtle changes in response to environmental stressors (Conde-Padín et al., 

38 2009; Conde-Padín et al., 2007; Sepúlveda and Ibáñez, 2012). It is known that persistent 

39 pollutants, industrial waste and drugs cause morphological changes and deleterious 

40 effects on marine organisms (His et al., 1999a; Matthiessen et al., 1995; Mensink et al., 

41 1996; Zhu et al., 2011). In this sense, mollusks are among the most sensitive indicators 

42 in response to stressors such as tributyltin, heavy metals and polyaromatic hydrocarbons 

43 (Jobling et al., 2004; Oehlmann and Schulte-Oehlmann, 2003; Rittschof and McClellan-

44 Green, 2005). 

45 During the developmental process, many marine gastropod species protect their 

46 offspring by encapsulating early stages of development from environmental stressors 

47 such as salinity, desiccation, predation, pollution, etc. (Rawlings, 1994; 1999). However, 

48 little is known about the effectiveness of such encapsulation against pollutant molecules 

49 (Averbuj et al., 2017; Untersee, 2007). 

50 In Patagonia, the nassariid gastropod Buccinanops deformis (King, 1832) named as 

51 Buccinanops globulosus in previous works (Averbuj et al., 2017; Primost et al., 2015a; 

52 Primost et al., 2016, among others cited in this study), has been reported to present a 

53 highly sensitive response to environmental pollution (Bigatti et al., 2009; Giulianelli et 

54 al., 2020). B. deformis presents internal fertilization and the females carry the 

55 encapsulated offspring attached to their shells until the moment of hatching (Averbuj et 

56 al., 2014). This species lives on sandy bottoms and feeds mainly on carrion; the 

57 populations inhabiting Northern Patagonian gulfs showed reproductive and physiological 

58 alterations when exposed to anthropogenic pollutants. Gastropods exposed even to low 

59 levels of Tributyltin (TBT) are affected by imposex phenomenon (Gibbs and Bryan, 

60 1986), defined as a superimposition of male sexual secondary characteristics. In 

61 particular, B. deformis populations registered 100% of imposexed females in harbor areas 

62 of Puerto Madryn (Primost, 2014). In this zone, moderate levels of polyaromatic 

63 hydrocarbons (PAHs) and heavy metals such as cadmium and lead were detected in 

64 sediments and organisms (Primost et al., 2018; Primost et al., 2017). Deleterious effects 

65 and morphological alteration could be observed in B. deformis offspring induced by 

66 moderate pollutant inputs (Averbuj et al., 2017; Márquez et al., 2017; Primost et al., 

67 2015a; Primost et al., 2016). Moreover, gastropod inhabiting areas where maritime traffic 

68 and human activity are high showed shifts in the enzymes associated with detoxification 
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69 (Primost et al., 2015c), and in some morphological and reproductive aspects (Primost et 

70 al., 2015a). Although recent researches have shown that encapsulated embryos may 

71 respond to external stimuli (Solas et al., 2015) due to the presence of a semipermeable 

72 membrane in the egg capsule walls (Bigatti et al., 2014), it remains uncertain to what 

73 degree these morphological and physiological alterations observed in adults could be 

74 transferred to offspring during intracapsular development.

75 GM was used in B. deformis and Odontocymbiola magellanica (Gmelin, 1791) from 

76 Patagonian region, to study the shell shape variation related to the presence of pollutants 

77 (Márquez et al., 2011; Primost et al., 2016). In B. deformis, the shell shape in areas of 

78 high maritime traffic is globose with a shorter spire and a smaller relative size of the shell 

79 aperture. In contrast, the opposite shape (fusiform, elongated spired shell and bigger 

80 relative size of the aperture) is found in individuals from low maritime traffic areas 

81 (Primost et al., 2016). This pattern of shell shape variation was confirmed by comparing 

82 living populations of B. deformis with those inhabiting the same areas in pre-Hispanic 

83 times, where anthropic (including any maritime) activities were absent (Márquez et al., 

84 2017).

85 Due to previous knowledge about B. deformis reproductive strategies, shape shell 

86 alterations and high sensitivity to marine pollution, the species is an optimal model of 

87 study. This work aimed to study if the shell shape in pre-hatching B. deformis embryos is 

88 affected by environmental pollution.

89

90 Materials and methods 

91 In order to compare two sites with contrasting anthropogenic activities, the same 

92 sampling sites studied in Primost et al. (2016) were chosen: one site is located within the 

93 urban area of Puerto Madryn city (LPBH) where two important harbors and intense 

94 maritime activity are present; loading and unloading of raw materials derived from the 

95 aluminum industry, fishery products, and tourism are common activities in the area 

96 (APPM, 2017). The other site is Cerro Avanzado (CA) beach, 15 km away from Puerto 

97 Madryn city. CA is an area where maritime traffic is low (only a few small boats for 

98 recreational purposes), and human activities are scarce. Data from recent studies have 

99 reported that imposex incidence in Buccinanops deformis from CA beach is null, and 

100 TBT levels were not detectable in sediments or gastropods tissues (Del Brio et al., 2016; 

101 Primost, 2014). Both LPBH and CA are inside of Nuevo gulf and have the same 

102 oceanographic characteristics (Bökenhans, 2014).
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103 B. deformis egg masses were hand-gathered by scuba diving during the spawning 

104 season in summer. The egg masses consist of a variable number of egg capsules attached 

105 to the female shell (Figure 1A) by a short stalk (Averbuj et al., 2014; Penchaszadeh, 

106 1971). The spawning season ranges from September to March; by the end of this season, 

107 pre-hatching individuals are still observed inside the egg capsules. At the end of the 

108 intracapsular embryonic development, which last approximately four months, the 

109 embryos have a complete and colorful shell, and the egg capsules open easily even when 

110 a gentle pressure is applied.

111 Once the first hatched individuals in the field were observed (newly hatched 

112 individuals are visible at low tides), we proceeded to sample the egg masses attached to 

113 the females. In total, 20 females carrying egg capsules were carefully collected by scuba 

114 diving at each site (10 from LBPH and 10 from CA). Once in the laboratory, the embryos 

115 were excapsulated (artificially removed from the egg capsule). Egg capsules with 

116 multiple embryos were not used for this study (following Primost et al., 2015a). 

117 For this study, a total of 190 embryos (92 from LPBH and 98 from CA) were numbered 

118 and photographed in apertural view, under a Carl Zeiss binocular magnifying glass 

119 equipped with AxioVision Rel.4.5 software (© Copyright Carl Zeiss Imaging Solutions). 

120 Before photographs were captured, the embryonic shell shape was digitalized using the 

121 same 2D-configuration of 12 landmarks, and 9 semilandmarks (Figure 1B), following 

122 Primost et al. (2016) and Márquez et al. (2017). Sliding semilandmarks were performed 

123 using TPSRelw software (Rohlf, 2004), employing the algorithm which minimizes the 

124 deformation between each specimen and the mean shape (Bookstein, 1997; Gunz and 

125 Mitteroecker, 2013; Gunz et al., 2005). After sliding the semilandmarks, all landmark 

126 configurations were superimposed by a Generalized Procrustes Analysis to remove 

127 translation, rotation and scale information (Rohlf and Slice, 1990; Slice et al., 1996). 

128 Centroid Size (CS) was used to scale the landmarks configurations to unit CS and was 

129 calculated as a proxy to size. Centroid size was calculated as the square root of the sum 

130 of the squared distances from the landmarks to the centroid, which they define (Zelditch 

131 et al., 2004).
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132

133 Figure 1. Buccinanops deformis female carrying its encapsulated embryos. Egg capsules 
134 are attached to the female shell (A). Landmarks (white dots) and semilandmarks (grey 
135 dots) in B. deformis embryos (B). 
136
137 The relationship between shape and size (allometry) was tested using a multivariate 

138 regression (pooled within-site) between dependent variables (aligned individuals) and CS 

139 as an independent variable. To know and test for the maximum differences of the embryos 

140 shell shapes between sites (LPBH and CA), a discriminant analysis (DA) was performed. 

141 We estimated the readability of discrimination using a leave-one-out cross-validation 

142 procedure. Finally, to test for differences in the shell shape means between the two sites, 

143 we calculated a Hotelling T-square with a permutation test (1000 permutation runs). All 

144 GM statistical analyses were made in MorphoJ v.1.06d (Klingenberg, 2011).

145

146 Results

147 Embryos shell allometry was statistically significant (p= 0.003). The percent shape 

148 variation explained by size increment was 2.4%; thus, we performed all subsequent 

149 analyses with allometric corrections using the residual regression scores as new shell 

150 shape variables. 

151 The discriminant analysis (DA) showed that the range of shell shapes was different 

152 between sites. As there are only two groups, there is a single axis of shape differences 

153 and values are indicated with histogram bars proportional to their frequency (Figure 2). 

154 The mean shell shapes were statistically significant (p <0.0001, T-square= 189.333) 

155 between LPBH and CA individuals. The mean shell shape from LPBH was more globular 

156 than the CA site. The embryos from the polluted site presented shells with lateral 
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157 expansion, retracted apex and aperture with a little extension of the siphonal channel. The 

158 embryos from the unpolluted site were represented by the opposite (slender) shape change 

159 (Figure 2). The cross-validated classification analysis showed that 71.1% and 73.46% of 

160 the LPBH and CA individuals, respectively, were correctly classified. 

161

162 Figure 2. Discriminant analysis of Buccinanops deformis embryos shell shape 
163 differences between polluted (LPBH) and unpolluted (CA) sites. Frequencies of the 
164 discriminant scores predicted by a jackknife (leave-one-out) cross-validation are shown 
165 using histogram bars. Unpolluted (red vector) and polluted (light blue vector) mean 
166 shapes are visualized using wireframe drawings magnified 2 times.
167

168 Discussion

169 Environmental pollution is associated with chronic effects on organisms, including 

170 shell shape alterations in marine gastropods. In particular, butyltin compounds 

171 (tributyltin-TBT- and derivatives) have been extensively studied due to the chronic 

172 effects they pose on non-target organisms such as marine gastropods. Physiological 

173 disorder, imposex development, oxidative stress and morphological and reproductive 

174 alterations have been attributed to TBT bioaccumulation in Patagonian marine gastropods 

175 (Bigatti and Carranza, 2007; Bigatti et al., 2009; Del Brio et al., 2016; Primost et al., 

176 2015a; Primost et al., 2016; Primost et al., 2015b; Primost et al., 2015c). From 2005 

177 onwards, the use of GM techniques in marine gastropods has increased to detect shell 

178 shape changes (Harayashiki et al., 2020a). Moreover, GM applied to ecotoxicology 

179 studies has allowed a new and complementary analysis that became a potent tool for 

180 estimating the impact of anthropic stress (Harayashiki et al., 2020b; Márquez et al., 2011; 

181 Núñez et al., 2012; Piñeira et al., 2008; Savriama et al., 2015). 

182 In this work, through GM techniques we were able to detect that the pattern of shell 

183 shape changes in Buccinanops deformis embryos, a pattern which is similar to the one 
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184 displayed by the adults from the same populations when they are exposed to a variety of 

185 environmental pollutants typically associated to maritime traffic. The variation in the 

186 adults shape was related to the intensity of marine traffic and concomitant pollution as 

187 well as to the levels of imposex and stress indicators in the same harbor area (Márquez et 

188 al., 2017; Primost et al., 2016). In agreement with the hypothesis of Márquez et al. (2017), 

189 we propose that the globular shape presented in embryos from the polluted area could 

190 reduce body contact with the sediment where the hatched juveniles will live in. Therefore, 

191 the globular shell shape reported in previous works in marine gastropods exposed to 

192 maritime pollutants appears as a sustained response to pollution in such cases (Márquez 

193 et al., 2017; Primost et al., 2016).

194 Encapsulated development partially isolates the embryos from the surrounding 

195 environment (Chaparro et al., 1999). Despite being encapsulated, deleterious effects in 

196 embryos produced by exposure to environmental pollutants were reported (Beiras and 

197 Bellas, 2008; Bellas, 2008; Wu et al., 2014). It is known that small organic molecules can 

198 pass through the egg-capsule wall of marine gastropods (Bigatti et al., 2014; Leroy et al., 

199 2012). Thus, it is likely that the egg capsules of B. deformis exchange substances with the 

200 surrounding medium. In this sense, a LD50 % TBT experiment determined that 

201 excapsulated embryos mortality of B. deformis was significantly higher than that of 

202 encapsulated ones (Averbuj et al., 2017). 

203 In bivalve mollusks, marine pollutants such as TBT and its derivatives can be 

204 transferred from females to larvae during oogenesis (Inoue et al., 2006). Variable levels 

205 of pollutants such as PAH, PCB and TBTs have been recorded in the gonads of marine 

206 gastropod females and egg capsules from polluted areas, as well as in early stages of other 

207 invertebrate species (Bellas, 2007; Cima et al., 1996; Goldberg et al., 2004; His et al., 

208 1999b; Stroben et al., 1992). Taking into account these results, we proposed that shell 

209 shape variations in gastropods embryos from harbor areas could be caused both due to 

210 maternal transference and environmental exposure of egg capsules during the 

211 development phase.

212 Particular attention should be given to populations living in high maritime traffic areas 

213 where a variety of persistent pollutants are concentrated in environmental matrices such 

214 as water and sediment, and bioaccumulated through the food webs compromising 

215 consumers health. Given the results achieved, and taking into account the background on 

216 mollusks bioaccumulation capacity, we recommend performing more studies of 
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217 pollutants transference in trophic webs and maternal transfer, especially for shellfish 

218 resources as B. deformis.

219 Our results showed that the adults and embryos from the same site presented the same 

220 shell shape variation, indicating that the environmental conditions influence the shape of 

221 B. deformis adults since early stages of development. Consequently, we suggest that the 

222 globular shell shape in B. defromis could be used as an inexpensive biomarker to control 

223 and prevent the commercialization and consumption of gastropods from polluted sites. 

224
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