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Self-assembly of self-propelled magnetic grains

Marcos A. Madrid"?*, Ramiro M. Trastorza>**, Ariel G. Meyral’z’***, and C. Manuel Carlevaro'2**

'Instituto de Fisica de Liquidos y Sistemas Biolégicos CONICET - CCT La Plata, La Plata, Argentina.
*Departamento de Ingenieria Mecénica, UTN - FRLP, Berisso, Argentina.

Abstract. In this work, we study bidisperse mixtures of self-propelled magnetic particles of different shapes
via discrete element method simulations. We show how these particles self-assemble into clusters and how
these clusters depend on the ratio of the mixture, the magnetic interaction, and the shape of the grains. It is
found that the mix ratio of the system controls the cluster size. Besides, the intensity of the magnetic dipoles
and the shape of the grains in the mixture rule the average number of neighbors in contact and the shape of the
clusters. By varying the intensity of the interactions, globular, linear and branched clusters were obtained.

1 Introduction

The advances made in the last decade in the field of ac-
tive matter gave rise to very important applications in self-
propelled systems [1-4]. How these systems self-organize
or self-assemble is a topic of great interest [5, 6]. Applica-
tions of these ideas have been extended to active granular
matter [7, 8]. These materials can self-assemble in differ-
ent patterns or clusters of different shapes and sizes [9, 10].

Another aspect of interest is to understand how gran-
ular matter self-organizes when in addition to the contact
forces, a longer range force is added, for example, mag-
netic interaction [11, 12].

In this work, we present 2D discrete element simula-
tions of magnetic disks and triangles. We perform simula-
tions of binary mixtures of self-propelled grains with dif-
ferent permanent magnetic dipoles (repulsive/attractive).
We analyze the final configuration after a long period of
time of each simulated system using tools from network
theory when varying particle types, mix ratio and interac-
tion intensities.

2 Model and simulated systems
2.1 The model

The system consists of a 2D forty-sided regular polygon
platform of area A (xy plane) over which we randomly
place binary mixtures of 300 perfectly rigid grains. The
grains are disks or regular (equilateral) triangles of the
same area a in order to keep the packing fraction con-
stant and we vary the proportion of each type of grain
in the binary mixture. We also define two different mag-
netic dipoles, vertically oriented and antiparallel (positive
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and negative direction of z-axis, respectively) which pro-
duces an attractive force between the particles of different
types, and a repulsive force when the particles are of the
same type. By varying the ratio between them, we vary
the forces intensity.

2.2 Interaction forces and system dimensions

The non-contact interaction force between two grains due
to magnetic dipoles is given by:
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with o, 8 = 1,2, and nty = pofie, nig = Hpiip, being
Hes t a unitary vector and u, and pg the intensity of their
magnetic dipole, yo = 47 x 10~ Hm™! and rgp is the vec-
tor that connects the center of the two given magnetic par-
ticles. Additionally, the friction forces grain-grain, grain-
wall, and grain-base are also considered.

The reference system is composed of binary mixtures
of N = 300 magnetic disks, with N; disks that have n7;
and N, have n7, magnetic dipole, being #7; and »7, antipar-
allel. The diameter of the disks are d, and initially they are
randomly placed in the simulation box. The forty-sided
polygon is circumscribed in a circle of diameter D = 45d.
We consider the weight of each disk as a reference force
F,, = mg, where m is the mass and g the gravity constant.
Consequently, the friction force, the force due to the im-
pulses, and the magnetic force are defined as: Fy = vF,,

Finp = 5.41F,, and F,,, = 1.62F,‘,yq/1ﬂr§ﬂ/|r§ﬁ|5 (where
rf:ﬁ = rap/d), respectively. It is remarked that triangles and
disks have the same friction force with the base because
they have the same area and density.

The simulation time step is set to df =
0.003132+/(d/g) s and the simulations were stopped
when the total kinetic energy was less than 0.135F,d

Joule or simulation time extends to 10°d¢. The friction
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coefficient between grains, and between grains and the
base and walls is set to v = 0.5. The coefficient of
restitution is 0.1.

For each simulation run, the particles of each mixture,
disks-disks (DD), triangles-triangles (TT), or their mix-
tures (DT and TD), are randomly located in the simula-
tion box. Each particle is self-propelled as it is periodi-
cally subjected to impulses in a given fixed direction. Af-
ter a given time-lapse, 31.324/(d/g), these impulses are
stopped and the system is allowed to relax. The data is
then extracted from that final relaxed configuration. As we
have already mentioned, we carried out all the simulations
keeping the packing fraction constant ¢ = Na/A = 0.149
and we change the mix ratio of particles ¢;/¢,, being
¢i = N,-a/A, i= 1,2

We used Box2D for the DEM simulations [13], which
has been successfully used to study granular flow [14],
clogging [15], force networks [16], tapping [17], granu-
lar dampers [18], stick-slip [19], and soil mechanics [20].
This software library uses a constraint solver to handle
contact and collision dynamics of rigid bodies. For each
time step, an iterative algorithm is used to solve constraints
on overlaps and friction between bodies through a La-
grange multiplier scheme [20, 21]. The Coulomb criterion
is implemented for the solid friction for grain-grain, grain-
wall and grain base interactions, with the static and dy-
namic coeflicients having equal numerical values. Energy
dissipation is considered using a restitution coefficient in
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Figure 1: Snapshots for y;/u, = 1, and three mix ratios of
each simulated mixtures.
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Figure 2: Snapshots for y; /p, = 5, and three mix ratios of
each simulated mixtures.

the collision solver. After computing all the contact forces,
the Newton-Euler equations of motion are integrated, for-
ward in time, using a symplectic Euler algorithm [21].

3 Results and discussion

Self-assembled clusters are analyzed using graphs theory.
For each cluster, we built a graph where the nodes are the
grains (of type 1 or 2), and an edge will be created for each
pair of grains in contact. The degree of a particular node i
can be computed as:

ki = ZN:AU 2

J=1

being A;; the elements of the adjacency matrix A. The
element A;; is 1 if the particles i and j are in contact and 0
otherwise. N is the total number of nodes. An important
property is the global mean degree of the network:

(k) = Z k; 3)

Thereby, (k) is also known as the average osculation or
kissing number [22]. The maximum value for a monodis-
perse mixture of disks in 2D systems is (k) = 6. Summa-
rizing, (k;) accounts for the mean number of grains that are
in touch with grains of type i.
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In this section, we study the effect on the final self-
assembled structures due to: shapes of the grains, mag-
netic interactions ratio, and mix ratio. Analyzed shapes
are disks, triangles, and their mixtures, intensities of inter-
action are (p = 1 and 1 < y;/u; < 5, and mix ratio are
0.053 < ¢1/¢> < 1.0 (see Figs. 1 and 2). For each setup
configuration, we ran a set of 50 simulations with different
initial seeds. The results presented here are the average
over these sets of simulations.
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Figure 3: Mean degree for particles of type 1 as a function
of w1 /u,, for the three mix ratios values ¢; /¢, simulated:
a) 0.053, b) 0.333 and c¢) 1.00. Shaded areas denote stan-
dard deviation of the mean.

It is worth remembering that magnetic interactions are
repulsive for grains of the same type, while grains of dif-
ferent type are attracted each other (F,,,, and F,,,, are re-
pulsive, but F,,,, and F,,,, are attractive).

As areference system, we now discuss a mixture of N;
disks with 7 = (0,0, 1) and N, disks with & = (0,0, -1).
In Fig. 1, there are snapshots for three different ¢,/¢»

when pu;/up=1.0 while in Fig. 2 can be seen snapshots
for the same three mix ratios but 1 /15=5.0.

For low values of ¢;/¢, (for all simulated w;/u, ra-
tios), the self-assembled clusters are mainly monomers or
dimmers, i. e.: clusters composed by one grain of type 1
surrounded by grains of type 2 (see blue curve in Fig. 3a).
However, it can be seen that the mean degree (k| ) increases
as the ratio yu;/u, does. This tendency can be observed
for the value ¢/¢> = 0.333, nevertheless, this radically
changes when ¢, /¢, — 1.0, in fact it is reversed, because
clusters become larger but linear (compare first row (DD),
third column (¢; /¢, = 1) panel of Fig.1 with the same of
Fig.2). This behavior is a consequence of the two compet-
ing effects: the repulsion between grains of the same type
and the attraction when they are of a different type. Be-
sides, if the stoichiometric relationship ( ¢;/¢») is the ap-
propriate, the assembled cluster can achieve the maximum
degree (in the case of DD mixtures is k; = 6). This is only
possible if the attraction force F,,,, overcomes the repul-
sion force F,,,,). Conversely, if the repulsion F,,,, is weak,
as it is when u;/up = 1.0, the clusters are globular (see
Fig.1 panel DD row for ¢;/¢» = 1). When p;/pp = 1.0
and ¢/¢, — 1.0 clusters are globular with a square ar-
rangement, but for y;/u, — 5.0 clusters become linear
(see Fig.2 panel DD row for ¢;/¢, = 1). Then, keep-
ing F,,, constant, when u; /iy — 5.0, the value of F,,,
increases and this determines the shape of the clusters.
All the simulated mixtures show nearly the same behav-
ior, but with subtle differences between them. In the case
of TT and DT mixtures, (k;) is never greater than 4, be-
ing the DT mixtures the cases which show minor variation
in (k;). For the TD mixtures, systems with small ¢;/¢@»
and pu; /up = 1.0, the value of (k) is nearly 3, however it
sharply increases when p; /uy > 3.0, reaching their maxi-
mum values. This behaviour is due to a synergetic effect
between geometry, interactions and packing fraction. The
attractive magnetic force is maximum when a given disk
is in contact with a triangle in the middle of its side. It
is energetically favoured to set three disks in each side of
a given triangle (maximizing the attraction). Then, other
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Figure 4: Some representative self-assembly structures ob-
tained in the simulated systems, which depend on the value
of the control parameters: grain shape, mix ratios and in-
tensities of the magnetic force.
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three disks can be easily located at the vertices of the trian-
gle due to the generated well in the potential energy land-
scape produced by the magnetic interaction. It must be no-
ticed that, disks attached to the triangle are not in contact
with each other. This situation minimizes the repulsion
potential energy. The excess of disks, type 2, around each
triangle (¢, /¢>» < 1.0) completes the necessary conditions
to produce a mixture with a larger kissing number.

4 Conclusions

In this work, we study three important factors that govern
the self-assembly of self-propelled magnetic grains: mix
ratio, dipolar interaction, and shape.

Regarding mix ratio, for small ratios of ¢;/¢», it is
more likely to find monomers and dimers than any other
structures. Bigger clusters are obtained if this ratio is in-
creased. The dipolar interactions could drive the kissing
number (k;). This can be observed, for instance, when
u1/pz2 — 1.0 the values of (k;) are next to 3 for all the sim-
ulated mixtures. However, when u; /i, — 5.0 the value of
(k1) rises up to 6, which is the maximum kissing number
in 2D for monodisperse disks systems, while in the case
of triangle mixtures the maximum number of neighbours
in contact can be 12 (for TT), but it is not energetically
favorable. Regarding the shape, it allows controlling the
variation of (k) in the case of pure disks or triangles-disks
mixtures, while for pure triangles and disks-triangles cases
(k1) is lower than 4.0 and remains roughly constant, inde-
pendently of ¢ /¢, and p; /5.

The implication of the present research is that the as-
sembled structures (see Fig. 4) can be tuned by choosing
the correct mix ratio and interaction. The shape (disks or
triangles) can be used to modify the probability of find-
ing a particular pattern and/or a local arrangement (i. e.:
square or triangular clusters). Future research should con-
sider the potential effects of different shapes, and study a
wider set of parameters.
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