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Abstract

Validation of three-dimensional (3D) sloshing models is a relevant task in
order to guarantee the correctness of numerical predictions. In this work,
attention is focused on assessing the 3D free surface (FS) evolution when an
Arbitrary Lagrangian-Eulerian method is applied to solve sloshing problems.
The computational scheme consists of three stages: (i) solve the incompress-
ible Navier-Stokes equations over a single fluid domain with a FS; (ii) deter-
mine the FS displacements from the velocity field computed at (i); and (iii)
update the mesh with a computational mesh dynamic problem. The study
aims to evaluate the global mass-conservation strategy reported in this work
for long term simulations. The forced sloshing cases present moderate FS
displacements with complex wave pattern behaviours. Specifically, sloshing
in a tank with a stepped shape in the bottom and two sloshing cases of a
rectangular tank are presented. The numerical results are compared with
experimental data to evaluate the performance of the proposed model.
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1. Introduction

Free Surface (FS) flows are typical problems in fluid mechanics, as well
as in engineering applications, such as ship hydrodynamics [1], open channel
flows [2], and sloshing in tanks [3, 4, 5]. As a consequence, several numerical
methods were developed to predict FS displacements, as well as the behaviour
of the liquid beneath or around that particular interface.

Different approaches have been developed to solve sloshing problems. An-
alytical solutions are found in the literature assuming incompressible and
irrotational flows. In such a case, potential flow theory can be used to solve
the governing equations where the free surface is described using low-order
asymptotic [6] and multimodal [7] methods. These techniques have been ap-
plied to study the sloshing in tanks with different shapes and filling levels
[8, 9].

In recent decades, many efforts have been devoted to computationally
model the fluid dynamics including interfaces between fluids and free sur-
faces [10]. Several numerical methods have been developed to particularly
address long-term free surface analysis in the framework of different dis-
cretization schemes, i.e., finite difference, finite volume, finite element, mesh-
free and boundary elements formulations. A short but not exhaustive list
of works illustrating different kinds of techniques developed to describe free
surface flows is as follows: the volume of fluid (VOF) [11, 12, 13, 14, 15], level
set (LS) [16, 17, 18], Eulerian-Lagrangian [19, 20], deforming domain [21, 22],
smooth particle hydrodynamics [23, 24, 25, 26], particle finite element [27],
and boundary elements [5]. To improve the performance of the methods,
the above techniques have been coupled, resulting in hybrid or mixed formu-
lations, e.g., mixed LS and VOF methods [28, 29] or the particle level set
method [30], and others [31, 32].

These works describe fixed-mesh as well as moving-mesh techniques [33].
In general, in the fixed-mesh methods, the numerical domain involves the
liquid and the gaseous phase, represented with a fixed discretization, while
the interface is determined in a particular way depending on the applied
technique. These methods allow the resolution of problems with interface
breaking or folding and with large displacements. The moving-mesh methods
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are proposed in such a way that the interface, which constitutes a bound-
ary of the numerical domain, is explicitly modelled with certain entities, i.e.,
nodes or faces of elements, as in Arbitrary Lagrangian-Eulerian (ALE) meth-
ods [34, 19], where the domain generally consists of a single fluid phase and
its shape changes in time due to the FS displacements. These methods have
been extensively used for solving sloshing problems, with the contributions
of [35, 36] and [37] as recent examples. This kind of ALE technique has the
advantage to analyze one single fluid domain preserving the sharp descrip-
tion of the interface. In contrast, the LS technique is a two fluid flow domain
technique and requires an additional variable to track the interface.

Currently, the validation of the proposed models is an important task in
order to guarantee accurate and predictive simulations. To this end, efforts
have been made to contrast the numerical results with experimental data [13,
22, 20, 14, 38, 25, 26].

In the present work, a previously reported ALE technique [39] is im-
proved with a mass-preserving algorithm blackfor long term simulations, as
well as the transport of the interface is now solved with a stabilized method
for 3D cases. In contrast with the cases reported in [39], the present for-
mulation allows to solve sloshing cases with lower fluid viscosity. The mesh
motion is modelled using a particular Computational Mesh Dynamics (CMD)
technique. This technique, presented by López et al. [40], and initially de-
veloped for moving interfaces without shape change, is novelly applied to FS
fluid flows. The developments are programmed in the in-house code PETSc-
FEM [41], which is based on finite element libraries developed for parallel
computing using the Message Passing Interface [42] and the Portable Exten-
sible Toolkit for Scientific Computation (PETSc) libraries [43]. The proposed
tool is applied to model three three-dimensional (3D) forced sloshing tests.
The first test is the sloshing of a tank with a stepped-shape bottom. This
case generates very complex wave patterns that are a challenge to model
and to contrast the results with experimental data. The second and the
third tests are moderate-amplitude cases in a rectangular tank shaken with
two different oscillating frequencies; the predictions are also validated with
experimental data.

The distinctive aspects of the work are summarized as follows:

• 3D one-phase mass-preserving stabilized ALE technique.

• mesh dynamics based on minimal distortion principle is extended to
free surfaces general motion on a boundary.
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• report of the sloshing in a tank with a stepped-shape bottom.

• experimental validation of the model.

The work is organized as follows. In Section 2, the governing equations
are presented, as well as the numerical methods adopted for solving each
stage. Section 3 describes experimental and numerical studies for the tank
with stepped-bottom geometry and harmonic horizontal excitation. Section
4 is devoted to the numerical solution of a harmonically excited rectangular
tank with moderate free surface displacements, where the performance of the
mass conserving stage and mesh convergence are analysed. Finally, Section
5 summarizes the conclusions of the work.

2. Governing Equations

The FS flows solved by the proposed ALE strategy require the solution
of three problems in each time step. The first one consists in solving the
Navier-Stokes (NS) equations with a Finite Element Method (FEM). The
second problem provides the displacements of the FS nodes according to the
velocities from the NS solver, solving a transport problem with FEM and
including a volume control strategy. Finally, the domain mesh is modified
by a CMD model to account for the FS displacements.

2.1. Navier-Stokes equations
The ALE form of the NS equations solved over a fluid domain Ω in time

t ∈ (0, T ] can be written as

ρ (∂tu+ c · ∇u− f)−∇ · σ = 0 ; (1)
∇ · u = 0 ; (2)

where u is the fluid velocity, f is the body force, and ρ is the fluid density.
The convective velocity c is defined as c = u − û, where the mesh velocity
is û. The fluid stress tensor σ = σ(u, p) is

σ = −pI + T ; (3)

where in the isotropic term p is the pressure and I the identity tensor. Fur-
thermore, the deviatoric term is T = 2µε, i.e., it is linearly related to the
strain rate ε = ε(u) = 1

2
(∇u+∇Tu), being µ the fluid dynamic viscosity.
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The boundary conditions are given by

u = uD on ΓD; (4)
σ · n = t on Γt; (5)

with ΓD the Dirichlet contour, as in solid walls, and Γt the traction contour,
such that Γ = ΓD ∪ Γt and ΓD ∩ Γt = ∅. The contour Γt constitute the
interface between fluids, representing here the FS, ΓFS, where the equilibrium
condition is written as

σl · n = σg · n on ΓFS. (6)

where the liquid and the gas stress tensors are σl and σg, respectively, and
n is the FS normal vector.

Assuming negligible viscosity and density for the gas, T · n = 0 and
p = Patm on ΓFS. Then, the traction forces are t = −Patm n over the FS,
where Patm is the atmospheric pressure.

Viscous dissipation is taken into account with a simple turbulence model
that consists of replacing µ by a simple algebraic model to represent the
turbulent viscosity µt = min(µ + l2mixρ

√
2ε : ε, µmax), given a mixing length

lmix and a cutoff value µmax. The cutoff value is set in µmax = 0.1 kg (m s)−1

for water, while the mixing length can be estimated as lmix = Ct h. In
the present ALE method, and due to the mesh deformation, the elemental
mixing length would change with mesh size during the analysis. Then, a
fixed value is adopted, considering a mean h value in the non-deformed mesh
and a typical value for Ct close to 0.18, taking the Smagorinsky turbulence
parameter as a reference [44]. Based on our previous experience using level
set type techniques in fixed mesh finite element analyses, this approach helps
to stabilize the solution at the shear boundary on the free surface. Besides,
the cutoff viscosity avoids excessive dissipation when large lmix values are
assigned. This aspect is also present in the one-phase ALE analysis for
free surface flow problems. This model was previously applied to sloshing
analyses, see [45, 33, 20] and references therein, as well as similar ones are
reported in the literature [46, 47, 29].

The PETSc-FEM [41] NS solver with streamline upwind/Petrov-Galerkin
(SUPG) [48] and pressure stabilizing/Petrov-Galerkin (PSPG) [49] stabiliza-
tions is chosen to solve Eqs. (1,2). The time integration is performed using
a θ-method, typically with θ = 0.55. The convergence order for the present
ALE-FEM approximation is (O)(h2), as reported in [39].
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2.2. Free surface displacements
The displacement of each node j of the interface is measured over a fixed

direction of unit vector ŝj, giving the node position xj in time t as in [39]

xj(t) = x0,j + ηj(t) ŝj ; (7)

where the initial position of the node is x0,j, and ηj is a scalar magnitude
representing the nodal displacement along ŝj, see Fig. 1(a). Note that the
displacement directions given by ŝj are provided only for the nodes of the FS,
and are chosen normal to the interface at rest, particularly the x3−coordinate
in the examples to be shown. Then, the free surface represented is single-
valued, i.e. only one interface position is given for each ŝj, in such a way it
is not possible to represent folding or detachment of the fluid.

The kinematic FS condition is applied to determine the scalar coordinate
η,

u · n = ∂tη · n over ΓFS; (8)

where η = η ŝ, giving
∂tη =

u · n
ŝ · n . (9)

From here, the problem to be solved is

∂tη + u‖ · ∇̂η = s in ΓFS (10)

where η = ηD over Γ′D, and the velocity normal to the reference direction is
u‖ = 1

ŝ·n [u1; u2]
T , while

∇̂η =

[
∂η

∂x1
;

∂η

∂x2

]T
; (11)

and s = u3/(ŝ · n) is the source term given by the fluid velocity in the x3
direction. Furthermore, ΓFS in Eq. (8) is the (ndim − 1)-dimension domain
representing the FS and corresponding to a ndim domain for the fluid flow
Ω, as shown in Fig. 1(b). Dirichlet boundary conditions for the hyperbolic
problem represented by Eq. (10) could be given on a boundary of the FS.
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Figure 1: Domains and contours for ALE formulation (a) and free surface nodal displace-
ments notation (b).

2.3. Mass-conserving strategy
The numerical loss of mass is a well-known fact to be considered in al-

gorithms proposed to describe free surfaces and moving interfaces problems.
Different mass preserving strategies have been proposed in the literature ac-
cording to the used discretization scheme, see [33]. Some of these schemes
require the definition of external user-defined parameters, while others are
automatically set [50, 51]. The first scope of all formulations is to correctly
reproduce experimental or numerical free surface evolution taken as reference
to validate the models.

Here, a mass-conserving global scheme is applied to maintain the initial
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volume of the domain, particularly for long-time simulations, which is anal-
ogous to that introduced in [45] for a LS method. The approach consists in
correcting the elevation η0j for each FS node over the node j at time t, as
follows:

ηj(t) = η0j (t) + Cvol Dvol(Vn − V0) (12)

where ηj(t) is the corrected FS elevation, Cvol is a dimensionless correcting
coefficient, Dvol is the horizontal projection of the interface, Vn is the current
total volume, and V0 is the initial total volume. As the numerical scheme
is explicit, Cvol < 0.5 has to be adopted to avoid numerical instabilities.
In particular, the range [0.05, 0.1] has been tested, giving satisfactory mass
conserving results without appreciable differences in the solution for any case.
The present strategy guarantees that the mass is globally preserved. In cases
where the interface is highly distorted or split, cases not considered in the
present overall free surface method, local mass conserving algorithms should
be considered.

The SUPG stabilization [48] is applied to solve Eq. (10), using the advection-
diffusion solver of the PETSc-FEM code, in which numerical diffusivity can
be activated in the case that numerical instabilities appear. The time inte-
gration for such equations is also performed using a θ-method, with θ = 0.7
for the examples shown here. The elevation field is updated each time step,
requiring the velocity field u‖ for the nodes placed over the free surface,
and the source term s. Next, the mass-conserving strategy corrects η with
Eq. (12) and sends the current field to the mesh-moving instance as an im-
posed displacement.

2.4. Mesh movement
Once the FS nodal displacements are computed, as detailed in Sec. 2.2,

the position of the mesh internal nodes have to be determined. To this
purpose, there are typical alternatives to account for the deformation of the
domain boundaries, reported in the literature. The most expensive choice
is the remeshing of the domain, which also introduces errors due to the
interpolation of nodal values from the old to the new mesh, in each time
step or periodically during a simulation. Other authors perform an algebraic
mesh update, limited to small FS displacements and structured meshes, see
e.g. [52]. Another alternative consists of solving an auxiliary problem, such as
a pseudo-elastic problem [53, 35, 54], a Laplace problem [36], or minimizing
the elemental distortion of the mesh [40].
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The present ALE method is prepared to work with the last alternative,
i.e., solving an auxiliary problem for updating the internal nodal positions.
For the moderate FS displacements of interest, the CMD proposed by López
et al. [40] is chosen, which is based on the minimization of a global functional
representing the distortion of the mesh defined as

F (x) =
∑
e

Fe(x), with Fe(x) = 1/qne (13)

where the sum extends to all elements in the mesh, qe is an element quality
indicator, and n ∈ N. As n→∞, the mesh distortion tends to the distortion
of the ‘worst’ element in the mesh. In particular, the element quality indica-
tor considered here is a geometrical indicator defined for simplicial elements
(triangles in 2D and tetrahedra in 3D) as

qe = Cq
Ve∑
j l

ndim
e,j

(14)

where le,j is the length of the j−edge of the element, Ve is the element volume,
Cq = 4

√
3 for triangles and Cq = 36

√
2 for tetrahedra. The value of the

normalization constant Cq indicates that the equilateral simplicial element
represents the optimal shape. For non-simplicial elements, the strategy is
applied through the decomposition of the element into simplices. A drawback
with this strategy occurs when the quality indicator tends to zero, since in
such a case, the functional tends to infinity. This means that, e.g., the
method does not work with a tangled mesh. According to Eq. (14), qe → 0
when Ve → 0 and

∑
j l

ndim
e,j is bounded below (i.e., the simplex is not collapsed

to a single point). Therefore, the functional is regularized by replacing Ve in
Eq. (14) by the following positive and strictly increasing function:

h(Ve) =
Ve +

√
V 2
e + 4δ2

2
(15)

where the parameter δ represents the value of the function when Ve = 0. For
δ > 0, the singularity in the functional is removed, and as δ → 0, h(Ve)→ Ve
for Ve > 0. Hence, an untangling mesh strategy is achieved by defining a
decreasing sequence for the values of δ such that δ → 0 when the iteration
number tends to infinity. Details of the mesh untangling and smoothing
algorithm are presented in [55].
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The sloshing problems considered in this work present moderate FS dis-
placements, for which the CMD strategy based on the minimization of the
element distortions is utilized. This CMD strategy was previously applied
to the resolution of fluid-structure interaction problems, where some portion
of the fluid domain boundary represents the interface with either a rigid or
deformable solid. Hence, the application to free surface problems represents
a challenge for the CMD strategy since the deformable boundary is governed
now by the equations of fluid motion. Some features of the FS could be the
presence of surface waves, high values or rapid changes in curvature, among
others. These features represent local deformations to which the CMD strat-
egy must accommodate to the mesh nodes to obtain a valid mesh. In limiting
cases, when the interface tends to fold or break, and regarding that free sur-
face nodes move only in x3 direction, there may not be a valid mesh to fit the
new shape of the domain, and the mesh movement stage does not converge.
In these cases, the method fails instead of providing unphysical results. In
the following, the robustness of the proposed CMD strategy is tested in slosh-
ing cases with complex wave patterns and high FS elevations in comparison
with the depth of the water.

At every time step, the mesh movement is solved as an steady case, con-
sidering the free-surface position with respect to the reference configuration,
i.e., the initial mesh. Hence, the mesh movement at each time step is inde-
pendent of previous time steps.

3. Forced sloshing of a tank with a stepped-shape bottom

3.1. Experimental work
A forced sloshing experiment in a tank with a stepped-shape bottom

is proposed to evaluate the depth change effect on the wave pattern. The
tank geometry and experimental set-up are shown in Fig. 2. The free surface
evolution is captured using ultrasonic sensors located at certain points: sensor
1 at the middle of the shallow region, sensor 2 on the step and sensor 3 at the
middle of the deeper part, as sketched in Fig. 2 (top). The experiments are
also recorded using a high-speed camera at 120 frames per second. From such
videos, the free surface is evaluated using image capturing techniques, with
an error of ±0.5 mm for the free surface position, which is of the same order
as the error for ultrasonic sensors. The free surface history obtained from
sensors and videos are compared and used to assess the repeatability and the
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reliability of the experiments. The experimental technique was developed
and applied to other sloshing problems, e.g, [20, 33, 45, 56, 57].

h = 0.05m

L = 0.80m

a

w = 0.10m

D = 0.10m

x1

x3
x2

1 2 3

P1
P2

(a)

(b)

Figure 2: Tank geometry with sensor positions (1 to 3) and pressure numerical gauges (P1
and P2) (a). Experimental set-up (b) for the stepped-bottom tank.

The experimental data (obtained from a set of five test to warrant repeata-
bility within experimental error) are reported with the numerical results in
Section 3.2.

3.2. Simulation
As a single-phase strategy is used, only the volume occupied by the fluid

(water) is considered the domain, with the sizes given in Fig. 2(top) and
w = 0.025 m instead of 0.10 m in the real tank. Due to no experimental
evidence of 3D effects along the width of the tank has been observed, we
can define that the results do not present strong dependence on w; hence,
the simulations are made using a reduced w for saving computational time.
The reference mesh is generated with 26540 linear tetrahedral elements of
maximum size he = 8 mm.
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Perfect slip boundary conditions are imposed on the lateral walls to solve
the Navier-Stokes equations, i.e., u · n = 0, while bottom and step velocities
are null, i.e., u = 0. The dynamics of the mesh is solved with imposed
displacements on the FS, and with perfect slip conditions over walls and at
the bottom of the tank. As there are no entrances or exits of the fluid, the
FS advection problem has no boundary conditions to impose.

The movement of the system is induced by a horizontal acceleration in
x1−direction with an amplitude of 7.5 mm and frequency f = 0.45 Hz. The
vertical gravitational acceleration is g = −9.81 m s−2 in the x3 direction.

The water properties are dynamic viscosity µ = 0.001 kg (m s)−1 and
density ρ = 998.2 kg m−3. For the turbulence model, a mixing length
lmix = 0.75 mm and a cutoff value for the turbulent viscosity of µmax =
0.1 kg (m s)−1 are adopted.

The simulations were carried out with a time step ∆t = 0.005 s, with a
final time of Tf = 150 s. Initial conditions correspond to the tank at rest,
i.e., with horizontal FS and null velocities in the whole domain. For the
volume-preserving strategy, the correcting coefficient was set in Cvol = 0.05.

The amplitude of the displacements η of the free surface in the three sen-
sor positions are plotted in Fig. 3. The displacements at sensor 1 and sensor
3 positions show higher amplitudes than those measured by sensor 2. The
registers show several peaks for every period T of the table movement, from
the effect of the bottom step placed in the middle of the tank, where some
vortices are shed. The free surface displacements show phase regularity; how-
ever, the patterns are not uniform in amplitude, neither in the experimental
results nor in the numerical results.

In Fig. 4, the numerical results are compared with the ultrasonic sensor
register and image post-processing from the experiment. Furthermore, the
table displacements are shown for the numerical tests and the image post-
processing. The signals of sensors 1 and 3 are both well reproduced by the
numerical approach, mostly regarding the phase of the movements, while
amplitudes are partially reproduced. It should be noted that there are dis-
crepancies between the ultrasonic sensors and the image post-processing for
the same instants.

The Fast Fourier Transform (FFT) has been applied to the experimental
(ultrasonic) and numerical signals in order to identify the main frequencies
involved in the movement; see Fig. 5. As expected, during the time periodic
regime, the imposed frequency of 0.45 Hz and the corresponding multiples
are present in both data sets. The magnitude of the amplitudes obtained at

12



each frequency, depends on the imposed amplitude of the tank motion. In
the reported case, the imposed amplitude is enough to activate the harmonic
frequencies in the free surface response. This fact is a measure of the disorder
on the free surface induced by the tank geometry and the imposed tank
motion. In the case that one of the activated frequencies coincides with
a natural frequency of the tank, it can promote 3D effects. This fact was
not found in the analyzed case. In addition, the first natural frequency was
experimentally found in the range of [0.47− 0.5] Hz, and its value computed
using linearized potential theory is 0.48 Hz using a two-dimensional model.
In addition, many natural frequencies are analytically obtained within the
range of those plotted in Fig. 5, i.e., lower than 5 Hz (see Table 1). In spite
of that, no coincidences between such natural frequencies and the reported
by the FFT analyses of the sensor signals were found. Nevertheless, some
of the frequencies displayed in Fig. 5 are closer to natural frequencies of the
system, this fact could justify the significant peaks reached at harmonics of
the imposed frequency.

Mode Frequency [Hz] Mode Frequency [Hz] Mode Frequency [Hz]
1 0.48 10 3.10 19 4.32
2 0.99 11 3.26 20 4.43
3 1.37 12 3.41 21 4.54
4 1.75 13 3.56 22 4.65
5 2.04 14 3.69 23 4.76
6 2.31 15 3.83 24 4.87
7 2.53 16 3.96 25 4.97
8 2.74 17 4.08
9 2.92 18 4.20

Table 1: Natural frequencies for the bottom stepped tank computed using linearized po-
tential theory.

Figure 6 shows some snapshots of the experiment on the left for some
instants of a period T , while the numerical results are shown in the right
column for the same instants. There, the free surface patterns agree in each
pair of images for every instant.

The pressure obtained numerically at some representative points is shown
in Fig. 7 for the same time range as in Fig. 4. Taking as reference the level
of the free surface at rest, the pressures in points P1 and P2 are plotted
in Fig. 7(a). This figure shows a relatively low maximum amplitude, and
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null pressures when the fluid level is lower than the reference, with higher
peaks at the shallow side, P2, and alternate behavior of the gauges due to
the imposed table movement. Fig. 7(b) to 7(d) shows the pressure evolution
at the bottom of the tank. The pressure shown in Fig. 7 (b) at position of
Sensor 1, is ranged from 350 to 630 Pa. In Figs. 7(c) and (d), at position
of Sensors 2 and 3 respectively, pressure shows values from 850 to 1090 Pa,
approximately. These pressure evolutions are consistent with the pressure
determined from the instantaneous column of fluid (computed considering
the Figs. 4). Such pressure is also plotted in Fig. 7(b) to 7(d) as a reference.
Differences between pressures and such a reference could be understood as
the dynamic effects induced by the motion.

Finally, the pressure fields for three instants of a table movement period
T are represented in Fig. 8. Snapshots show the strong dependency of the
pressure field on the fluid depth.
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Figure 3: Numerical FS displacements η in the three reference positions.
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Figure 4: Free surface displacements: ultrasonic and image experimental measurements
and numerical simulation. The shake table displacement experimentally measured and
numerically imposed are also shown.
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4. Sloshing in a rectangular-based tank

Two sloshing cases are formulated in an acrylic tank with a rectangular
section of aspect ratio 2:1 placed over a shake table, as shown in Fig. 9(a).
The tank width and depth are L1 = 0.388 m and L2 = 0.183 m, respectively,
and the water level is D = 0.10 m. Four ultrasonic sensors A, B, C and D
are placed as indicated in Fig. 9(b).

The water density is ρ = 998.2 kg m−3 and the dynamic viscosity is
µ = 0.001 kg (m s)−1.

Boundary conditions for the NS problem are null velocities at the bottom
of the tank (u = 0) and perfect slip conditions on vertical walls (u · n = 0.)
Such conditions were satisfactorily applied and analysed in numerical solu-
tions previously reported in [45] for 3D cases. This is given by the negligi-
ble effect of the boundary layer [13, 36], mostly due to its small thickness
yl = O(

√
ν/f), according to [47]. For the mesh dynamics, imposed displace-

ments of the FS are given from the free surface solver, while the bottom
nodes are fixed and the lateral walls are free to move over the corresponding
planes.

The acceleration from gravity is g = −9.81 m s−2 in the x3 direction,
and the system is excited by a horizontal acceleration of amplitude 10 mm
in the x1 direction. Each example is excited at a different frequency, f1 =
1.28 Hz in the quasi-2D sloshing of Sec. 4.1, and f2 = 2.10 Hz in the near-
resonance 3D sloshing of Sec. 4.2. Further information about the modes and
the corresponding natural frequencies of this system can be found in the
literature [20, 45].

4.1. Quasi-2D sloshing
The purpose of this example is to show the ability of the method to

account for large amplitude displacements and sensitivity with respect to
the coefficient Cvol in the volume-preserving stage. Furthermore, free surface
displacements are contrasted with previously reported results [20].

The mesh-moving numerical results have been obtained with three dif-
ferent discretizations, each one characterized with a maximum hmax, a mean
hmean, and a refined href mesh sizes, the last one in the neighborhood of the
interface. The three meshes, composed by tetrahedral elements, have been
created with the same rates hmax/hmean = 2 and hmean/href = 2. Mesh
1 is composed of 1628 elements of mean element size hmean = 20 mm, and
is solved with a time step of ∆t1 = 0.012 s and lmix = 3.6 mm. Mesh 2
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is composed of 31825 elements of mean element size hmean = 10 mm, and
is solved with a time step of ∆t2 = 0.006 s and lmix = 1.8 mm. Mesh
3 counts 113870 elements, with hmean = 5 mm and is solved with a time
step of ∆t1 = 0.003 s and lmix = 1 mm. For the three cases, the volume-
preserving parameters are the same, with Cvol = 0.05, and the cutoff viscosity
is set in µmax = 0.1 kg (m s)−1. Mixing length values have been adopted as
lmix = Cthmean, with Ct ≈ 0.18.

The forced sloshing is applied from the beginning up to 120 s, when the
horizontal acceleration is stopped, and then, the decay is registered up to
a final time of 150 s. Figure 10 shows the free surface displacement η with
respect to the configuration at rest for positions A and B in time, where three
stages can be distinguished: initial transient, from 0 to 7 s; time-periodic,
between 7 s and 120 s; and decay, from 120 s to the end of the simulation.

Some snapshots corresponding to near-maximum free surface displace-
ments are shown in Fig. 11, where the nearly 2D behaviour of the case is
apparent. The initial and deformed meshes are included in Fig. 12. The free
surface ascends approximately 60% of the initial depth and descends up to
30%. Some low-amplitude ripples appear in the free surface near extreme
laterals, where horizontal free surface velocities are very low, for meshes 2
and 3.

A comparison among experimental and different numerical results for this
case is presented in Fig. 13 for control points A and B. The experimental
results, wherein only confirmed measurements are reported, are well repro-
duced in phase; however, amplitudes are well compared only with meshes
2 and 3, and being the most refined mesh the one that provides the best
approximation to the experimental results.

The mass-conserving stage is evaluated for the present example, solved
with mesh 3. Comparing the results up to tc = 20 s, the mass loss is 6.8%
with Cvol = 0, while for Cvol = 0.05 it is 0.07%. For Cvol = 0, i.e., no volume
control is applied, the mass loss reduces the depth of fluid in the domain from
100 mm to 93.2 mm, and the amplitude of the movement is also influenced
(reduced) from the change in the conditions for the sloshing dynamics, as
shown in Fig. 14. An alternative to reduce mass variations can be time and
mesh refinement; however, the computing times significantly increase with
such proposals.

Finally, Fig. 15 shows the velocity magnitude and direction for some
instants of a period, corresponding to the maximum displacements to left
and to right, the same as in Fig. 12, as well as an intermediate stage.
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4.2. Near-resonance 3D sloshing
The sloshing case with f2 = 2.10 Hz shows 3D behaviour both experi-

mentally and numerically, associated with a (1, 1) resonance mode of inviscid
frequency f = 2.12 Hz, as described in the literature [45]. It should be noted
that the 3D free surface movement is excited by a horizontal acceleration in
the x1 direction.

The problem is solved over a uniform mesh composed of 50877 tetrahedral
elements of mean element size h2 = 6 mm, with the same boundary conditions
as in Sec. 4.1, time step ∆t = 0.01 s, lmix = 0.8 mm, µmax = 0.1 kg (m s)−1

and Cvol = 0.05. Initial conditions are null velocities and displacements.
After a few periods of movement, a three-dimensional FS deformation is
developed.

The numerical results are compared to experimental measurements of
the FS displacements at the four sensor positions. Figure 16 shows the free
surface displacements for two seconds from experimental and numerical mea-
surements during the time periodic stage, where displacements ηA and ηC are
coincident in phase, and ηB and ηD are in counter-phase with respect to the
former. Therefore, the 3D behaviour of the system is verified. In both data
sets, the amplitudes are less regular in the numerical solution, and negative
amplitudes are more pronounced in the ALE solution. Nevertheless, the ηA
measurements are less than ηC values, in magnitude, for both numerical and
experimental results, and similarly for ηB and ηD.

Figure 17 represents the displacements at each probe at time t against
the displacements at the same probe at time t + T for 20 s in the time-
periodic regime, where T = f−12 is the period of the imposed movement.
With these graphical data representations, the maximum elevations and falls
of the movement are identified and the regularity of the phase is evaluated,
showing that the points are located close to the 1 : 1 diagonal.

An alternative representation consists of comparing the displacements at
probe A with those at the rest of the probes, as shown in Fig. 18, where
the dots represent the data from the time-periodic regime for 10 s. This
representation is performed for the ALE results and the LS results obtained
in [45]. Displacements ηA are compared to displacements ηB in Fig. 18 (top),
showing the counter-phase of the movement at each position. In Fig. 18
(centre), dots are grouped close to the 1:1 diagonal, given that ηA and ηC
show similar behaviour; i.e., because the movement is a (1,1) mode, the
displacements at the A and C probes are in phase. Finally, the comparison
between ηA and ηD in Fig. 18 (bottom) shows behaviour similar to that
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in Fig. 18 (top); however, there is more dispersion, which is caused by the
differences in amplitude of the movement of A and B with respect to C and
D. Furthermore, using the time sequence in these graphs, the orbit and
the corresponding sense of rotation are identified and sketched in dashed
lines with the corresponding arrows. The LS results have been transformed,
assuming a rotation of π in the x3−coordinate for the position of the probes.
The reason is because the mode (1,1) can be developed symmetrically with
respect to the centre of the tank. In each corresponding diagram, the orbits
turn in the same direction. As a particular case, the comparison of ηA and
ηB of the top show a crossing in the orbit near the origin of the diagram. The
experimental results lack registers for intermediate displacements, so there is
no experimental confirmation of this particular behaviour.

The differences between displacements are plot in Fig. 19: 0.5(ηA−ηB) vs.
0.5(ηC − ηD) (top), 0.5(ηA− ηB) vs. 0.5(ηC − ηB) (middle), and 0.5(ηA− ηB)
vs. 0.5(ηC − ηA) (bottom). The dots are represented with data from the
time-periodic regime along 10 s, and the time sequence allows identifying an
orbit in each diagram, representing the evolution of the movement inside the
tank. With both numerical methods and with the probe location rotation
aforementioned for the LS results, the orbits turns in the same direction.

The comparison among the two numerical results, ALE and LS, and the
experimental measurements show satisfactory coincidences. The ALE dis-
placements show more dispersion in the amplitudes, while the LS results are
extremely regular and require an ad hoc initial condition to develop this spe-
cial free surface oscillating mode. Unlike the LS strategy, which solves the
water and the air phases, the present proposal models only the liquid part of
the system, resulting in lower computational costs.

A FFT was performed for the experimental sensor registers in the time
periodic regime, registering peaks at the imposed value of 2.1 Hz and others
at 4.2 Hz, 6.3 Hz, and 8.4 Hz. The same analysis of the numerical results
show the higher peak at 2.1 Hz, followed by 4.2 Hz, 6.3 Hz, and 8.4 Hz.
In the last case, some lower peaks are registered in the range [1.95, 2.0] Hz,
which are associated to the natural frequencies of modes (0,1) or (2,0), which
are 1.99 Hz and 1.93 Hz, respectively [45].

In Fig. 20, some snapshots of the experiment (left) are compared with the
numerical results (right) during a period of excitation in the time-periodic
stage. Some FS ripples also appear in the present example, both in the
experimental and numerical FS.

The pressures computed under the sensor positions are plotted in Figs. 21
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(a-d), together with the same parameter obtained with LS [45] for two oscil-
lating periods of the table, represented with dashed thin lines. The pressure
ranges registered are well compared with a reference pressure of 980 Pa at the
bottom of the tank at rest. Pressure amplitudes obtained with the present
model show slightly higher amplitudes than those obtained with LS, which
is expected due to the higher free surface displacements obtained with ALE,
as shown in Fig. 18. Particularly, under sensors C and D, there are two close
peaks for each period in the ALE results, and a single peak in the case of
LS. Here, as in [47] for a 2D-like sloshing, the double-peak can be explained
as follows: first peak is due to a stagnation of the fluid when the table is
reaching the end of the movement to +x1 and the free surface rises on the
left, e.g. under Sensor D at 110.4 s; then, there is a slight pressure drop;
following, a new increase of pressure is registered when the tank is moving
to the opposite side and the fluid drops on the left of the tank. A similar
situation arises under Sensor C, that is placed at the opposed side of the
tank with respect to Sensor D (see Fig. 9), when the shake table moves to
the opposite side. Pressures under sensors A and B show a more pronounced
double-peak in both of the numerical methods than in C and D. This is con-
sistent with the free surface behavior: peaks of C and D take place close to
the corresponding peaks in A and B, respectively.

5. Conclusions

A 3D strategy for one-phase fluid flow with a free surface, based on an
arbitrary Lagrangian-Eulerian method, has been improved with the aim of
solving long-term viscous sloshing problems with moderate displacements.
The performance of the algorithm has been assessed through comparisons
with experimental measurements and other numerical results.

The contributions of the work with respect to previous versions of the
numerical method are the mass-conserving enforcement and the application
of the three-dimensional strategy for mesh displacements based on minimal
element distortion.

A horizontally excited bottom-stepped tank experimental study is in-
troduced, where free surface displacements of water are measured by three
probes using ultrasonic sensors and confirmed with image post-processing of
the recorded experiences.

The mass-conserving strategy is tested for different values of the free pa-
rameter Cvol, showing that long time problems are not accurately reproduced
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without the mass control. Furthermore, appropriate values for the correcting
coefficient are given.

The CMD strategy shows robustness for moderate free surface displace-
ments, including up to 60 % in positive displacements, as well as for small
amplitude free surface perturbations, even dealing with tangled meshes.

The ability of the method to solve three-dimensional sloshing problems
is shown for the 3D near-resonance case, where the three-dimensional mode
is developed without any particular initial condition.

The free surface numerical results presented are all contrasted to exper-
imental measurements, exhibiting good fits for all cases. The sloshing in
a rectangular-based tank is also compared with other numerical methods,
resulting in good agreement between strategies for the two frequencies anal-
ysed.
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Figure 5: Comparison of experimental and numerical frequencies from FFT of sensor
signals.
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Figure 6: Comparison of experimental (left) and numerical (right) shapes for the free
surface for some instants of a period T . From top to bottom: 0.250T , 0.300T , 0.375T ,
0.400T , and 0.500T .
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Figure 6 (Cont.): Comparison of experimental (left) and numerical (right) shapes for the
free surface for some instants of a period T . From top to bottom: 0.600T , 0.625T , 0.700T ,
0.750T , and 0.800T .
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Figure 6 (Cont.): Comparison of experimental (left) and numerical (right) shapes for the
free surface for some instants of a period T . From top to bottom: 0.875T , 0.900T , and T .
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Figure 7: Pressure numerically obtained: (a) at points P1 and P2 (see Fig. 2 (a)) consid-
ering the level of the free surface at rest as reference; (b) to (d) at the bottom of the tank
at positions of sensors 1 to 3, respectively.
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(a) 0.250T

(b) 0.625T

(c) 0.900T

Figure 8: Pressure fields for some instants of a period T.
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Figure 9: Tank dimensions (a) and sensor positions (b), with s = 25 mm, error ±1mm.
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Figure 10: Free surface displacements obtained for f1 = 1.28 Hz with mesh 2.
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(a) Maximum free surface displacement
to right, experimental

(b) Maximum free surface displacement
to left, experimental

Figure 11: Maximum displacements in stationary regime for f1 = 1.28 Hz. Lateral view.
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(a) Initial state, mesh 1 (b) Initial state, mesh 2 (c) Initial state, mesh 3

(d) Max. displacement to
right, mesh 1

(e) Max. displacement to
right, mesh 2

(f) Max. displacement to
right, mesh 3

(g) Max. displacement to
left, mesh 1

(h) Max. displacement to
left, mesh 2

(i) Max. displacement to
left, mesh 3

Figure 12: Initial and deformed domain for maximum free surface displacements for f1 =
1.28 Hz. Lateral view for the three meshes.
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(b) Control point B

Figure 13: Comparison between ultrasonic register and the three ALE meshes, for control
points A and B in the quasi-2D sloshing with f1 = 1.28 Hz.

40



0 2 4 6 8 10 12 14 16 18 20

−40

−20

0

20

40

60

80

Time (s)

η
(m

m
)

Cvol = 0; Cvol = 0.05

Figure 14: Free surface displacement η measured at control point A for mesh 3 with and
without the mass-conserving effect.
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(a) t = 13.40 s

(b) t = 13.60 s

(c) t = 13.79 s

Figure 15: Velocity magnitude and direction in time periodic regime for some time steps
in the case with f1 = 1.28 Hz and mesh 3, y = 0.183 m.
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Figure 16: Free surface displacements during 2 s for f2 = 2.1 Hz. Experimental measure-
ments (dots) and numerical results (lines).
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Figure 17: Free surface displacements comparison: η(t) vs. η(t + T ) along 20 s, for f2 =
2.1 Hz. The diamonds are the ALE results and the circles are experimental measurements.
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Figure 18: Displacements ηA vs. ηB (top), ηC (middle) and ηD (bottom), during 5 s for
f = 2.1 Hz in the time periodic regime. Diamonds are the ALE results, while black symbols
have been obtained with LS [45]. Dashed lines with arrows sketch the time sequence of
the orbits. 45
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Figure 19: Displacements analysis: 0.5(ηA − ηB) vs. 0.5(ηC − ηD) (top), 0.5(ηA − ηB) vs.
0.5(ηC−ηB) (middle), 0.5(ηA−ηB) vs. 0.5(ηD−ηA) (bottom), along 20 s, for f2 = 2.1 Hz.
Diamonds are the ALE results, while black symbols have been obtained with LS [45].
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Figure 20: Comparison of experimental (left) and numerical (right) shapes for the free
surface at some instants of a period T for f2 = 2.10 Hz.47
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Figure 21: Pressure numerically obtained at the bottom of the rectangular tank, under
sensor positions A-D (see references in Fig. 9 (a)). The table displacements are represented
out of scale, with dashed lines.
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