ONAIISI

www.sanfrancisco.utn.edu.ar '

Octavo Congreso Nacional de
Ingenieria Informatica/Sistemas de informacion
CONAIISI
5y 6 de noviembre de 2020

Universidad Tecnoldgica Nacional,

Facultad Regional San Francisco

Memoria de Trabajos

Comité Organizador CONAIISI 2020

Comision Ejecutiva RIISIC 2020
e Coordinador: Mag. Juan Carlos Calloni UTN FR San Francisco
e Coordinador Suplente: Lic. Augusto Nasrallah UTN FR Tucuman
e Secretarios Titulares
e Ing. Roberto Sotomayor - Universidad Fasta
e Ing. Gastdén Martin - FICH Universidad Nacional del Litoral
e Secretarios Suplentes
e Calc. Liliana Estela Rathmann - Universidad Atlantida Argentina Mar de Ajo
e Ing. Marcela Viviana Fernandez - UTN FR Mendoza
e Ing. Patricia Zachman - Universidad Nacional del Chaco Austral

Comision Permanente RIISIC
e Dr. Ing. Marcelo Marciszack (UTN FR Cérdoba)
e Ing. Luis Perna (UTN FR Delta)
e Ing. Andrés Bursztyn (UTN FR BA)
e Dr. Daniel Riesco (UNSL)
e Ing. Beatriz Gallo (UCASAL)
e Ing. Roberto Mufoz (UTN Regional Cordoba)
e Ing. Osvaldo Marcovecchio (Universidad Atlantida Argentina)
e Dr. Carlos Neil (UAI)
Autoridades Universitarias
Universidad Tecnolégica Nacional
Rector: Ing. Héctor Eduardo Aiassa
Vicerector: Ing. Haroldo Tomas Avetta
Facultad Regional San Francisco — UTN
Decano: Ing. Esp. Alberto Toloza
Vice Decano y Director Dpto. Ingenieria en Sistemas de Informacion: Ing. Esp. Gabriel Cerutti

Comité Organizador Local
Coordinador Comité Local: Esp. Ing. Gabriel Cerutti
Coordinador Comité Académico: Mag. Juan Carlos Calloni
Coordinadora Comité Operativa: Ing Claudia Verino
Coordinador OCS (Open Conference Systems): Dr. Mario Groppo

Comité Operativo y Técnico Asistentes técnicos en presentaciones orales
Emanuel Molina Apendino Carolina
Mauro Enrico Saldarini Javier
Sergio Felissia Carrizo Claudio
Martin Ponce Chiapero Ivan

Carlos Carrara Emanuel Molina
Andrés Giraudo Franco Pomiro
Tatiana Karlich Hernan Aquilano
Ezequiel Fusero Mdnica Depetris
Laura Vaudagna Florencia Francescato
Adrian Calorio Noelia Binotto
Trossero Mauricio Verino Claudia

Antonela Calloni
Candela Ojeda

Comité Académico
CHAIRS

Aplicaciones Informaticas y de Sistemas de Informacidén

Ing. Nelson Roberto Sotomayor - Universidad FASTA

Dra. Milagros Gutierrez - UTN F.R. Santa Fe

Dr. Elias Todorovich - Universidad Nacional del Centro de la Provincia de Buenos Aires

Aspectos legales y profesionales

Dra. Ana Garis - Universidad Nacional de San Luis
Ing. Gaston Martin - Universidad Nacional del Litoral
Ing. Andrés Bursztyn - UTN F.R. Buenos Aires

Bases de Datos

Dr. Aldo Vechietti - UTN F.R. Santa Fe

Magter. Vilallonga Gabriel - Universidad Nacional de San Luis
Magter. Pablo Garcia - Universidad Nacional de La Pampa

Educacién en Ingenieria

Dra. Herminia Beatriz Parra de Gallo - Universidad Catdlica de Salta

Dr. Carlos Gerardo Neil - Universidad Abierta Interamericana

Lic. Sandra Cirimelo - Universidad FASTA, Universidad Nacional de Mar del Plata

Ingenieria de Sistemas, Ingenieria de Software y Gestion de proyectos
Dr. Pablo Fillottrani - Universidad Nacional del Sur

Dr. Marcelo Martin Marciszack - UTN F.R. Cérdoba

Ing. Felipe Evans - Universidad Nacional de Mar del Plata

Redes - Sistemas Operativos - Fundamentos Informaticos - Seguridad
Dr. Mario A. Groppo - UTN F.R. Cérdoba

Dr. Germdn Montejano - Universidad Nacional de San Luis

Dr. Cicerchia, Cesar Daniel - Universidad de la Defensa Nacional

Trabajos de catedra

Ing. Patricia Raquel Cristaldo - UTN F.R. Concepcion del Uruguay
Ing. Paula Andrea Zanetti - Universidad Marina Mercante

Esp. Roberto Miguel Mufioz - UTN F.R. Cordoba

Trabajos de Final de Catedra

Ing. Patricia Paola Zachman - Universidad Nacional de Chaco Austral
Ing. Norberto Gaspar Cena - UTN F.R. Villa Maria

Mg. Marisa Perez - UTN F.R. San Francisco

Trabajos de Investigacion de Estudiantes extra-catedra
Calc. Liliana Rathmann - UAA

Lic. Augusto Nasrallah - UTN F.R. Tucuman

Ing. Guillermina Rosana Nievas - Universidad Catdlica de Salta

Aballay Patricia
Abratte Pablo

Acosta Nelson

Acuia Borobach César
Agliero Martin

Aguirre Jesus

Albanez Herrera Daniel
Alvez Carlos

Amar Eduardo

Ambort Daniel

Amor Matias Nicolas
Andriano Natalia
Angeleri Paula Maria
Antonini Sergo Andres
Apolloni Javier
Apolloni Ruben

Arce José Francisco
Arenas Maria Silvina
Armando Silvana
Arroyo Arzubi Alejandro Luis
Aspis Analia

Astudillo Hernan

Aubin Verdnica Inés
Baigorria Lorena
Ballarin Virginia Laura
Ballejos Luciana
Barrera Maria Alejandra
Bascolo Alejandro
Battaglia Nicolas
Bavera Francisco
Becker Pablo

Belloni Edgardo Anibal
Bengochea Ignacio
Bentin Marcela Paola
Berdun Luis

Bergamini Maria Lorena
Bernardis Hernan
Berdn Mario

Bertossi Valeria lliana
Bigatti Cristian German
Blanco Néstor

Blas Maria Julia
Bogado Verénica
Boggio Maria Alejandra
Bollati Verdnica Andrea
Bracalenti Tomas
Braun German

Breslin Roberto
Bressano Mario Osvaldo
Bruno Oscar R.

Bruno Oscar R.

Budan Paola Daniela
Bursztyn Andrés
Caceres Nélida Raquel
Caliusco Maria Laura
Calloni Juan Carlos
Canali Luis

EVALUADORES

Divan Mario José

Echazu Alejandro Luis
Encinas Diego

Eribe Roberto Angel
Escudero Federico Nicolds
Estayno Marcelo

Eterovic Jorge Esteban
Evans Felipe

Farfan José Humberto
Faure Omar Roberto
Favro Daniel Ignacio
Fennema Marta Cristina
Fernandez David Alejandro
Fernandez Jacqueline
Fernandez Marcela Viviana
Ferreyra Juan Pablo
Fillottrani Pablo

Flores Soledad Fabiana
Fraga Alvaro Luis

Frias Pablo Sebastian
Funes Ana

Gaetan Gabriela

Galoppo José Luis

Garay Laura Adriana
Garbarini Ramiro Walter
Garcia Berta

Garcia Mario Alejandro
Garcia Pablo

Gastafaga Iris

Genin Fernando
Gentiletti Gerardo Gabriel
Gerzel Stella Maris
Giandini Roxana Silvia
Gibellini Fabian Alejandro
Giordano Lerena Roberto
Golobisky Maria Fernanda
GOmez Sergio Alejandro
Gonnet Silvio

Gonzalez Amarillo Angela Maria
Groppo Mario A.

Gualpa Mariano Martin
Guatelli Renata Silvia
Guerrieri Ruben Alberto
Gutiérrez Maria Milagros
Guzman Analia

Hadad Salomon Rosana
Hasbani Carlos Natalio
Herrera Daniel Rodolfo
Herrera Norma Edith
Igarza Santiago

Istvan Romina Mariel
Jewsbury Alejandra
Joselevich Maria

Juarez Gustavo Eduardo
Kabusch Andrés

Kabusch Andrés Ricardo
Kloster Miriam Cristina

Nievas Guillermina Rosana
Nigro Alberto Maria
Novara Pablo

Odetti Maria Alejandra
Oliva Juan Facundo
Olsina Luis

Ortiz Maria Cecilia
Paccor Gaston Pablo
Pacheco Federico

Padua Wilson

Paez Sergio Ramon
Panizzi Marisa Daniela
Papa Maria Fernanda
Parra De Gallo Herminia Beatriz
Pascal Andres Jorge

Paz Menvielle Maria Alejandra
Pedroni Juan Pablo
Peralta Mario Gabriel
Perez Marisa Norma
Perez Norma Beatriz
Perez Sofia Beatriz
Perna Luis Horacio
Pessolani Pablo

Pinto Noelia

Poliche Maria Valeria
Pollo-Cattaneo Maria Florencia
Poncio Silvia Victoria
Pons Claudia

Portillo Rosana Marcela
Procopio Demian
Prodolliet Jorge Adrian
Pytel Pablo

Quinteros Sergio
Quispe José Rolando
Rapallini Ulises M. A.
Rathmann Liliana Estela
Redolfi Javier

Repetti Nicolas

Retamar Maria Soledad
Ribotta Gabriela Del Fatima
Rico Carlos Alberto

Rico Mariela

Ridao Marcela Natividad
Riesco Daniel

Riva Fabiana Maria
Rojas Cristina

Rolddn Luciana
Romandetta Anibal Julio
Romero Daniel

Romero Gilda R.
Romero Lucila

Romero Soledad

Roqué Luis

Rosenzvaig Federico
Rottigni Gisela

Rottoli Giovanni Daian
Rubio Diego

Canavesio Maria Mercedes
Carabelli Luis Maria

Carballo Carlos

Carbonari Daniela

Cardenas Marina Elizabeth
Cardoso Alejandra Carolina
Carignano Maria Celeste
Carrizo Claudio

Casalini Clara

Casanova Carlos

Casanova Pietrobani Carlos Anto
Casanovas Eduardo
Casanovas Ines

Casatti Martin

Cassani Matias Alberto
Castellaro Marta

Castillo Angel Fabian

Castillo Julio

Castillo Pefia Fabian

Castro Alicia

Castro Claudia Susana
Castro Lechtaler Antonio Ricardc
Castro Marcelo

Caymes Scutari Paola

Cena Norberto Gaspar

Cenci Karina

Césari Matilde Inés

Chiodi Gustavo Alberto
Cicerchia Cesar Daniel
Cipriano Marcelo

Cirimelo Sandra

Cocconi Diego Alejandro
Conde Sergio Daniel
Constable Leticia Edith
Constanzo Bruno

Corso Cynthia Lorena

Cortez Alberto

Crespo Abel

Cristaldo Patricia Raquel
Crotti Patricia Susana
Cuenca Pletsch Liliana Raquel
Cukierman Uriel

Curti Hugo Javier

Damiano Luis Esteban

Dania Claudia Estela

Daniele Marcela E.

Dasso Aristides

De Battista Anabella Cecilia
De Federico Sara Ester

De Gregorio Matias Sebastian
De San Pedro Maria Eugenia
Degiampietro Maria Gabriela
Del Fresno Mariana

Delgado Andrea Fabiana
Destefanis Maria Laura

Di Gianantonio Maria Alejandra
Di lorio Ana Haydée Haydée

Kowalski Victor Andrés

La Red Martinez David Luis
Lacquaniti Edgardo Luis
Lado Silvana Inés

Lamperti Sabrina Bibiana
Lasso Marta

Leale Guillermo

Ledesma Ernesto Esteban
Lema Maria Gabriela
Leone Horacio

Lesser Nestor Eugenio
Liberatori Héctor Pedro
Liberatori Marcelo Sadi
Liporace Julio César

Lopez De Luise, Maria Daniela
Lopez Nocera Marcelo Ubaldo
Lucero Nancy Del Carmen
Lucero Ucasal Nancy
Ludueia Veronica

Lujan Vega Luis

Luz Clara Bibiana Beatriz
Mac William Maria Irene
Macaione Rosa Eufracia
Maldonado Calixto Alejandro
Mana Franco

Marciszack Marcelo Martin
Marsiglia Silvana Carolina
Martin Maria De Los Angeles
Martinez Duque Dennis
Martinez Liliana Inés
Martinez Maria Roxana
Martinez Roxana

Martinez Sergio Luis
Massa Stella Maris

Medel Ricardo

Medina Oscar Carlos
Meles Judith

Meloni Brenda Elizabeth
Mendez Garabetti Miguel
Meschino Gustavo Javier
Mina Hector Omar

Mira Natalia Carolina
Miranda Enrique Alfredo
Miranda Natalia Carolina
Molina Silvia

Monferrato Marcelo
Montejano German
Montezanti Diego Miguel
Moralejo Raul Omar
Morcela Antonio

Moreno Juan Carlos
Moyano Claudia Patricia
Mugetti Mare José Oscar
Mufioz Roberto Miguel
Mussetta Sebastian Norberto
Nadal Jorgelina Cecilia
Nasrallah Augusto José
Nazar Patricia

Rubiolo Mariano

Ruhl Analia Lorena

Ruiz De Mendarozqueta Alvaro
Ruiz Diaz Soledad

Rustan Silvina

Saclier Lucas Javier

Saldarini Javier

Sanchez Alejandro

Sanchez Cecilia

Sanchez Ernesto

Sanchez Reynoso Maria Laura
Sanchez Rivero Victor David
Sandobal Verdn Valeria Celeste
Sardi Duilio Agustin

Sarli Juan Leonardo

Savi Cecilia Andrea

Schab Esteban Alejandro
Servetto Arturo Carlos
Simieli Mariana Paola

Simieli Paola

Sitnyk Martin Enrique

Solis Isidro

Soria Mercedes

Sosa Zitto Rossana Elizabeth
Soto Juan Manuel
Sotomayor Nelson Roberto
Stefanoni Maria Eugenia
Stegmayer Georgina

Storti Mario

Straccia Luciano Nicolas
Strub Ana Maria

Suarez Maria De Las Mercedes
Such Victor Eduardo

Talamé Maria Lorena

Testa Oscar Alfredo
Todorovich Elias

Tolaba Ana Carolina

Tolaba Miguel Nestor
Tomaselli Gabriela

Torres Chapeta Alexis Olvany
Torres Gladys Mabel Del Valle
Toselli Paula Andrea

Tosselli Laura Ramona
Trettel Marta Cecilia

Varela Laura Veronica
Vazquez Alejandro

Vazquez Juan Carlos
Vecchietti Aldo

Vegetti Marcela

Verino Claudia Mariela

Vitri Hernan

Vitturini Maria Mercedes
Yennerich German

Yuan Rebeca Judith
Zachman Patricia Paola
Zanetti Paula Andrea

Zohil Julio

Zuiiga Mariela

Octavo Congreso Nacional de Ingenieria
Informatica/Sistemas de informacion

CONAIISI

5y 6 de noviembre de 2020

Universidad Tecnoldgica Nacional, Facultad
Regional San Francisco

Memoria de Trabajos

Claudia Verino, Juan Carlos Calloni, Gabriel Cerutti, Alfonsina E. Andreatta
(Compiladores)

San Francisco, Cérdoba - Argentina, Marzo de 2021

Octavo Congreso Nacional de Ingenieria Informatica/Sistemas de Informacién: CONAIISI.
5y 6 de noviembre de 2020 / Claudia Verino, Juan Carlos Calloni, Gabriel Cerutti,
Alfonsina E. Andreatta; compilado por Claudia Verino , Juan Carlos Calloni, Gabriel Cerutti,
Alfonsina E. Andreatta. - 1a ed. -

Ciudad Auténoma de Buenos Aires: Universidad Tecnoldgica Nacional.
Facultad Regional San Francisco, 2021.
Libro digital, PDF

Archivo Digital: descarga
ISBN 978-950-42-0202-8

1. Sistemas de Informacion. 2. Ingenieria Informatica. I. Verino, Caludia, Calloni, Juan
Carlos, Cerutti, Gabriel, Andreatta, Alfonsina E. comp.
CDD 004.07

Octavo Congreso Nacional de Ingenieria Informatica/Sistemas de informacién
CONAIISI

5y 6 de noviembre de 2020

Universidad Tecnoldgica Nacional, Facultad Regional San Francisco

Memorias de trabajo

Disefio de Tapa: Maria Laura Vaudagna

:| I i|8||||||||
| 202

q

sv: X

FACULTAD { %

Fedl RUTN: .., (e

. . SAN FRAMNCISCO 0 i
Auspiciantes: it e et S » r

Identification of user stories in software issues records applying pre-trained
natural language processing models.

Francisco Javier Peiia, Maria Luciana Rolddn, Maria Marcela Vegetti
Instituto de Desarrollo y Diseiio
INGAR (CONICET / UTN)

{fpveitia, lroldan, mvegetti}@santafe-conicet.gov.ar

Abstract

In the last decades, agile development methods have
been increasingly adopted by the software industry. User
stories are one of the primary development artifacts for
agile project teams. Issue Management Systems are
widely used by software development teams to generate
user stories, and organize them in meaningful fragments:
epics, themes, and sprints. In addition, these tools enable
generating any kind of issues, like bugs, change requests,
tasks, etc. The responsibility for correctly categorizing
an issue is in the hands of the team members, so it is a
task prone to errors and frequently omitted due to lack of
time or bad practices. Thus, a current problem is that
many issues in projects remain uncategorized or
mislabeled. Several studies have shown that it is
common to find the uncategorized user stories of a
software project in large volumes of issues records
maintained by Issue Management Systems. In this work,
we present two Neural Network models for text
classification that were implemented for the
identification of user stories in issue records.

1. Introduction

Issue tracking, often called bug tracking, is the
process of keeping track of the open development issues
in a software development project [1]. An Issue
Management System (IMS), also called issue tracker
system, is a computer application designed to help ensure
software quality and support to programmers and other
stakeholders in the issue tracking process. The term
“issue” is attributed to the unit of work to make an
improvement in a computer system. In addition, it
describes most of the types of tasks that are needed to be
tracked when developing a computer system [1].

Today most of software development organizations
have adopted agile development methodologies like
SCRUM, Kanban and XP. Most of these agile
methodologies recommend capturing requirements

111

through user stories [2], which are frequently managed
in an IMS, such as Jira. These systems allow
development teams to organize a collection of user
stories in meaningful fragments: epics, themes and
sprints.

By using an IMS it is possible to store and manage
other issues besides user stories, such as bugs, change
requests, enhancements, new requirements, tasks, etc.
Although these systems offer to the user the possibility
of explicitly categorizing the type of an issue, the
decision to select the category of a new issue is up to the
person who creates the issue, and this information is
often omitted or incorrectly specified, making it difficult
their later identification. This means that a great deal of
user stories ends up buried in repositories with large
volumes of data and various types of "issues".

The correct identification of user stories is of interest
to software engineering for several reasons. For
organizations that have multiple related projects, it is
important to count with an integrated requirements base.
Requirements engineering activities are no longer
associated with an individual system development
process and thus an individual project [3]. In contrast, it
is viewed as an independent activity executed across
multiple projects and product developments. Therefore,
an approach to identifying in a repository the issues that
constitute "user stories" is useful to retrieve them,
regardless they were categorized or not as "user stories."

For members of software project teams that are IMS
users, having a tool for the automatic categorization of
incidents in user stories would save time and error
occurrences, which improves the quality of the project
documentation.

On the other hand, as the user stories are often poorly
written in practice and exhibit inherent quality defects, a
research trend is the application of computational
linguistic techniques to these user stories to solve classic
challenges in requirements engineering, such as the
formulation of high quality requirements or the creation
of better models of system functionalities [2]. However,
findings from these studies are dependent on the quality

of labels assigned to issue reports. Therefore, as a starting
point to apply these approaches, it is necessary to have
correctly identified user stories, which must be recovered
from large volumes of data.

For all the above, it is necessary a proposal to
effectively identify "user stories" immersed in large issue
logs repositories. In order to reach such objective, in this
work, we propose two different models of Neural
Networks for text classification using the Python library,
TensorFlow [4], and carried out a comparison between
them. The first model is called EIMo [5] and the second
one BERT [6], being both of them pre-trained models
published by Google through the TensorFlow-Hub [7]
platform.

This paper is organized as follows. Section 2 reports
some related works. Section 3 presents some theoretical
concepts of the methods used for a better understanding
of this work. Then, in Section 4, some details about the
datasets generated and used are discussed and the
implemented models are presented. In Section 5, the
main results obtained by testing the different models are
presented and a comparison is offered that takes into
account various aspects such as accuracy of the models,
syntactic analysis and semantic analysis capability.
Finally, in Section 6, conclusions are drawn.

2. Related Works

One of the features provided by most IMS is the
possibility to define a set of labels/tags to classify the
issues and, at least in theory, facilitate their management.
Several authors have explored the use of labels to
categorize issues in IMS. In [8] the authors analyzed a
population of more than three million of GitHub projects
and give some insights on how labels are used in them.
Their results reveal that, even if the label mechanism is
scarcely used, using labels favors the resolution of issues.
They also conclude that not all projects use labels in the
same way (e.g., for some labels are only a way to
prioritize the project while others use them to signal their
temporal evolution as they move along in the
development workflow).

In a study conducted on closed issue reports of three
open source software systems from Jira, it has been
observed that the label given to the issue reports about
bug or improvement is not correct [9]. The authors
manually classified more than 7000 closed issue reports
from five popular open source software systems to
analyze the accuracy of already labeled reports. Their
findings state that 33.8% of closed issue reports are
misclassified. Moreover, manual analysis of issues is
time consuming, tough and may be error prone.

Thung et al. manually classified a dataset and applied
machine learning algorithms for bug classification [10].
In [11] an automated approach is proposed to label an
issue either as bug or other request based on fuzzy set
theory. The labeling of bug reports is done in three

112

phases. First, text from the bug reports is preprocessed.
Second, the Fuzzy technique is applied and third the
labeling is done using scores obtained after fuzzification.
In [12], the authors selected seven projects in GitHub and
built classification models based on issue information,
text description and comments, in order to improve the
maintenance tasks for development teams. Text
information was preprocessed with text data mining
techniques and information retrieval. Then, they
evaluated the performance of classifiers with several
metrics. They conclude that very suitable classifiers may
be obtained to label the issues or suggest the most
suitable candidate labels.

The aforementioned contributions employed datasets
obtained from repositories of IMS used just for software
development, and not for project management. For that
reason, the focus of these works has been on the correct
classification or labeling of defects or bugs. However,
our work employs datasets obtained from IMS
repositories used to manage both project and software
development; that is, they include issues related to
requirements' definition, such as the "user stories".

In the last years, a research trend has emerged
regarding the application of computational linguistic
techniques to user stories to solve classic challenges in
requirements engineering, such as the formulation of
high quality requirements or the creation of better models
of system functionalities [2]. A related line of research is
the extraction of conceptual models from natural
language (NL) requirements, which can help to identify
dependencies, redundancies, and conflicts between
requirements from lengthy textual specifications. To
extract meaningful models from NL requirements,
researchers have been proposing heuristic rules for the
identification of entities and relationships whenever the
text matches certain patterns of the given language
(usually English). For example, in [13] is proposed an
automated approach based on natural language
processing that extracts conceptual models from user
story requirements. In another work, [14] proposed an
approach to generate i* models from user stories. In
addition in [15] are made contributions towards mapping
user stories and use case models. Also in [16], user
stories are used to extract quality attributes for early
architecture decision making. As these proposals require
user stories as input, mislabeled user stories greatly
impact the results of such studies. So, to envisage better
results from these studies on user stories, it is required to
correctly label issues either as ‘user stories or ‘non-user
stories.

3. Background

This section introduces the concept of user stores and
types of neural networks architectures in which the
models developed in this work are based. First, it
describes the Bidirectional Long Short-Term Memory
Recurrent Neural Networks and then Natural Language

Processing with Neural Networks. Then, it also the two
strategies for applying pre-training in linguistic models
are introduced.

3.1. User stories

Outside the world of software, a user story could be
referred as a customer’s testimonial or narrative,
however it has a whole different meaning for software
professionals. In terms of software development, a user
story is a short description of something or a piece of
software it is supposed to do, told from the perspective
of the person who desires the new feature. Although
going back to its beginnings, user stories were proposed
as unstructured text but with some size restrictions [17],
nowadays it is followed a compact template for write
them. This template captures who is it, what it expect
from the system feature, and optionally why it is
important [18]. Although many different templates
exists, 70% of practitioners use the template “As a (type
of user) , I want (goal), [so that (some reason)]” [2].

Example 1:
As a visitor,
I want to purchase an event ticket

Example 2:

As an event organizer,

I want to search for new events by favorited organizers,
So that I know of events first

Example 3:

As an event organizer,

I want to receive an email when a contact form is
submitted,

So that I can respond to it

3.2. Bidirectional Long Short-Term Memory
Recurrent Neural Networks

Recurrent Neural Network (RNN) architectures have
recently become a typical and famous neural networks
model because of its capabilities to process sequential
inputs and learn its dependencies [19]. An RNN is a type
of neural network where the connections between
neurons form a directed graph making a temporal
sequence trough time steps feeding each hidden state to
the next time step as shown in Fig. 1. This allows the
network to have a dynamic temporal behavior, unlike
common networks, RNNs can use an internal state
(memory state) to process sequences of inputs. However,
they have problems with long-term dependencies due to
gradient vanishing [19].

113

hl-j ht~: h(-l h(
t t
...... | }_. | }_. | I_. I |
t t t
Xt3 Xt-2 Xt1 Xt

Fig. 1 Recurrent Neural Network, from [19]

Long short-term memory (LSTM) is a recurrent
neural network architecture type that avoids the problem
of gradient vanishing. LSTM is augmented by recurrent
gates called "forgetting" gates, preventing the backward
propagation error from vanishing or exploding. In this
type of networks errors can go backward through a
virtual unlimited number of layers unfolded in space. As
is shown in Fig. 2, the internal memory cell C_t is
controlled by a set of gate networks, including a forget
gate network f, an input gate network i and an output gate
network o. The forget gate network controls how much
information of internal cell C_t should be passed into the
next time step. The input gate network is used to scale
the input block u to the internal cell. This means that
LSTM can learn tasks that require memory of events that
happened thousands of times in previous training steps,
thus being able to handle long-term dependencies.

h l

C; A 3 LS€T;\I Cv‘[
Al I 2 “'é 0,
h { Ll 4

X

Fig. 2 Schematic of the LSTM, from [19]

Bi-directional ~Recurrent Neuronal Networks
(BRNN) have a specific structure. The state neurons of a
regular RNN are split in a part that is responsible for the
positive time direction (forward states) and a part for the
negative time direction (backward states), as shown in
Fig. 3. These outputs of two types of states are not
necessarily connected to inputs in the opposite states
[11]. Using both time directions in same network, input
information in the past (t-1 in Fig. 3) and the future (t+1
in Fig. 3 of the currently evaluated time frame (t) can be
used to minimize the objective function without the need
for delays, unlike common RNN that require these
"delays" to include future information.

FORWARD
STATES

BACKWARD|
STATES

t-1 t t+1

Fig. 3 . General structure of the bidirectional
recurrent neural network (BRNN) shown unfolded in
time for three-time steps, from [11]

3.3. Natural Language Processing with Neural
Networks

Natural Language Processing (NPL) is a subfield of
linguistic, computer, information engineering and
artificial intelligence sciences dedicated to the interaction
between computer equipment and human natural
language, particularly how computer pro-grams process
and analyze large amounts of information. The problems
often ad-dressed with these techniques are speech
recognition, understanding natural language such as
sentiment analysis, text generation, automatic text
summarization, and automatic entity recognition [12].
Although there exist several natural language processing
techniques, in the last years, there has been a great boom
in the use of Deep Learning models [12] because of their
ability to capture the syntactic and semantic information
of words in large unlabeled bodies of text. Word vectors
(also called word embeddings) are a standard component
found in most current NLP system architectures [12].
Word embeddings are vectors of real numbers that
represent terms correlating relative similarities with
semantic similarities [20], generally learned by neural
networks.

3.4. Transfer learning

It is common that, different NLP tasks entail a great
effort in terms of time and computing power
consumption, so as an alternative to create a model from
scratch or too general, the transfer learning technology
has emerged [21]. Transfer Learning(TL) is a machine
learning method with the perspective of providing a
better and faster solution with less effort for collecting
the needed training information and re-use it in another
similar model [21]. In [21] it is defined as: “Given a Ds
domain and a source Ts learning task, and a Dt domain
and target Tt learning task, the TL aims to enhance
learning of the target predictive function f(x) in Dt using
the knowledge in Ds and Ts, where Ds # Dt, or Ts #Tt”.
Word embeddings are a good example of transfer
learning since they are generally learned by neural
networks in a domain for a learning task and these
learned word embeddings can be applied in a different
domain for other learning tasks, hence, those vectors of

114

real numbers are transferred from a model to another
model.

3.5. Embeddings from Language Models

Word representations, such as Word Embeddings, are
a key component in many neural language models [22].
ELMo (Embeddings from Language Models)
incorporates a form of deep word representation based on
a feature-based approach, where each token is assigned a
representation that is a function of the entire input
sequence [22]. The vectors derived from a trained LSTM
network with a pair of linguistic models are used in a long
text corpus. These representations are a function of all
the layers of a Bidirectional Linguistic Model (biLM)
[22]. ELMo looks at the entire sentence before assigning
each word in its embedding. It uses a bi-directional
LSTM trained on a specific task, to be able to create
contextual word embedding. The ELMo LSTM, after
being trained on a massive dataset, can then be used as a
component in other NLP models that are for language
modelling. In [5], an implementation of a module with
this architecture and an application trained in 1 billion
words is presented. This module returns as output a set
of fixed embeddings for each LSTM layer, the learned
aggregation composed by 3 layers, and a mean-pooled
vector representation of the input.

3.6. Attention models and Transformer

Attention mechanisms have become an integral part
of sequential modeling in various tasks, allowing the
modeling of dependencies regardless of the distance
between input and output sequences, these are generally
used with some type of RNN [23]. These models use the
so-called attention functions, which are nothing more
than a function that can be described as the mapping of a
query and a set of identifier-value pairs to an output,
where the query, the identifiers and the values are all
vectors. The output is calculated as the weighted sum of
the values where the weight of each value is calculated
by a query compatibility function with the corresponding
identifier[23]. In [23] the explanation of various types of
attention functions, such as "Scaled Dot-Product
Attention", "Multi-Head Attention" and "Self- Attention"
can be seen.

As part of these models emerges the "Transformer"
[23], a model completely based on the Self-Attention and
Multi-Head Attention that for first time does not use
alienated RNNs or convolutions, it follows an encoder-
decoder architecture completely connected between its
layers, the encoder maps an input sequence of symbol
representations to a continuous representation, then the
decoder generates an output of the symbols for each
element at a time.

Its complete architecture and explanation can be seen
in [23] and in [24] a notebook implementation can be
obtained.

3.7. Bidirectional Encoder Representations
from Transformers

There are two strategies for applying pre-training in
linguistic models, the characteristics-based approach and
the parameter adjustment approach [25]. Feature-based
models such as ELMo [22] use architectures that include
pre-trained representations as additional features. On the
other hand, models that use parameter resetting introduce
parameters to specific tasks trying to simplify and adjust
all the pre-trained parameters. However, current
techniques based on the parameter matching approach
use unidirectional linguistic models [25].

BERT(Bidirectional Encoder Representations from
Transformers) [25] alleviates this problem by making use
of a masked linguistic model. The linguistic model masks
some of the input tokens and aims to predict the original
id of the vocabulary by linking the contexts from the right
and left, hence it is bidirectional.

In [6], it can be found an implementation and
examples of use of a module that fits this architecture
trained in Wikipedia and BookCorpus. Assuming that the
entries are pre-processed as required by this module
implementation, it returns as output representations of
each token in the input sequence and an entire grouped
representation of the entry.

4. Proposed models for identifying user
stories

This section describes the two recurrent neural
network models developed to identify user stories in
issue management systems records. Additionally, the
details about the generation of the dataset employed to
train and test both models are given.

4.1. Dataset

To train the models, data were taken from public
sources that contain issues from real software
development projects [26][27]. These sources contain
positive examples of user stories (sentences in the format
described previously) and negative examples (erroneous
user stories or sentences with a similar syntaxis to user
stories but with a different purpose).

To obtain a larger data set suitable for testing the
models, an algorithm was implemented [28] for
generating additional negative examples by splitting and
mixing positive examples into random parts using the
Tokenizer of TensorFlow. This implementation is
available in [28]. In order to differentiate the examples to

115

which each classification class belonged, a manual
classification work was performed, which may have
introduced to the model some human error index since
there was no record of the previously classified data. The
resulting dataset includes a total of 7997 positive and
negative examples, of which 2618 are positive as those
shown in Table 1, and the rest are negative as those
shown in Table 2. Therefore, a binary classification
problem is presented, where the issues classified as user
stories belong to the positive (1) class and the rest to the
negative (0) class. The whole obtained dataset can be
found in [29].

Table 1. Sample of positive examples in the dataset

No. | Issue Class
As a Carequality implementer, I want
| CONNECT to leverage the Carequal- 1

ity framework so I can exchange with
other Carequality participants

As a CONNECT administrator, I want
2 | the ability to logout of the admin GUI 1
application

As a CONNECT administrator, I want
3 | CONNECT to push audits and events 1
via web services

As a CONNECT Adopter I need
CONNECT to be database independ-
ent and support different databases
such as Oracle.

As a CONNECT Adapter, I want to be
able to respond to requests and receive
responses to requests asynchronously
in addition to synchronously

As a CONNECT adopter, I want a
sourceless distribution option to ena-
ble to me to configure how connect is
packaged and deployed

Table 2. Sample of negative examples in the dataset
No. Class
1 0

Issue

Add enable/disable exchange refresh
function to Exchange Manager GUI
Add details should anchor tag you
2 | back to the expanded section that you 0

added from.
3 Add JUnit tests for mail classes for 0
Mail package
i want to take a dataset offline so that
4 | i can perform a long running mainte- 0
nance or migration procedure
5 as a url to social networks so that i can 0
6 | asnecessary including title date s lan- 0

guage s and other facets

4.2. ELMo model

Using ELMo it allows to take advantage of its pre-
trained embeddings for transfer and tune the previous
learnt knowledge (see sections 2.4 and 2.5) to this model
along with the aforenamed advantages of BRNN-LSTM
architectures. The second implemented neural network
for identification of user stories is a model based in
ELMo embeddings. In it, a customized Keras layer was
used for Tensor Flow. The implementation of the
mentioned layer was taken from [30] and later integrated
and adjusted to our model were issues are passed to the
model as X_n inputs. Besides, a dropout layer was added
to the model for preventing overfitting and a sigmoid
activation function f. Fig. 6 illustrates a general view of
the whole sequential model using ELMo module.

For this implementation Tensor Flow 1.14 was used
due to support and compatibility problems of the module
with TensorFlow2.0 and the Tensor Flow-Hub library[7].

EMBEDDINGS

s DROPOUT
Inputs {

(,\\
()
\

-/
~
)

X — () -

|

()nnn (

\ N
) IRSK

Output

ELMo Layer

Xn —* \i
O %

Fig. 1. The proposed model using ELMo module

—>Y

l

~
)
)

/(_

4.3. BERT model

As an alternative to the ELMo model, it could be used
BERT, a module that uses bidirectional encoders for
transformers. The use of transformers could improve the
semantic analysis of the issues, since these models are
capable of learn were to focus the “attention” in
sentences. Also, since BERT is bidirectional it can
analyze the whole sentence regarding its length learning
long term dependencies. For this model it was adapted
another custom class as a Keras layer for integrate into
this model taken from [31]. After the inputs are
preprocessed obtaining the ids for the tokens and their
respective masks, these are fed to the BERT layer, then a
dropout layer it is used for preventing overfitting also and
finally a sigmoid function as it is shown in Fig. 7.

For the implementation of this model, Tensor Flow
1.14 was used as well since there are some compatibility
issues with TensorFlow2.0 and the Tensor Flow-Hub
library [7].

Ids
idy —»
idy —»

id, —
e
Inputs _ Xn —»

X 5 - Masks }

Ko d mp —

DROPOUT

L DENSE

X3 — —s My —

BERT
Layer

Xe —| pre- |—o my —»
—*| process —* - —»

my

Segments

Fig. 2. The proposed model using BERT module

5. Results

All the models were trained with a random sample of
the dataset. Then, in every training step iteration (epoch)
are analyzed the values of accuracy and loss against
values of accuracy (val_ accuracy) and loss (val_loss)
during validation to check how well it is generalizing the
model. Finally, the models are tested with new examples
that were not analyzed during training or validation to
obtain more realistic accuracies.

5.1. Results obtained using the ELMo module

The ELMo model is used as follows. The dataset it is
randomly divided in 70% for training and 30% for
testing, where the 25% of the training set is used for
validation (see the full implementation in [32]). After 34
epochs of 23 seconds each one, an accuracy of 0.9607 in
validation it is obtained. An analysis of the performance
of this model shows a better performance than the
previous one without a relevant overfitting (Fig. 3 and
Fig. 4).

0975
. N
0.950 el
0925 /
0.900 /
g 0875 /
0850 /
0.825 |
|
0.800 | — &C
| val_acc
0.775 1 . . r . . .
0 S 10 15 20 p) 30 s
Epochs

Fig. 3. Accuracy analysis for the model using ELMo

116

- l0ss

val_loss

loss

0 5 10 15 20 5 30 B
Epochs

Fig. 4. Loss analysis for the model using ELMo

Testing the user stories examples in Table 3, which
are out of the training and validation dataset, the results
listed in Table 3, in the column titled “Probability of
being a User Story using ELmo” were obtained. From
these results, several observations can be made:

e The model has improved quite significantly
identifying short user stories like the first ex-
ample.

e Besides orthographic errors or unknown words
the model continues generalizing correctly, as
it is seen in the User Story 7 example.

e Regarding the User Story 5 example, despite
there have been used similar words before for
user stories, this sentence is not a positive ex-
ample and therefore the model returns a low
probability, which it is correct.

Table 3. Testing new examples in the ELMo and

As a IA tester, I want
7 to wrtie yv1th 0.8843
ortografics errors to

test efficiency

0.9195

An administrator will
audit event via the

8 | system
administration
module

0.0044 0.0021

As a developer the
default build should
9 take less than 5 0.0008

minuts

0.0166

BERT models
Probabitity | Prebability
No. Issue of being a [ojf be?tg .
User Story serotory
using ELmo using BERT

As a developer, I

1 | want to implement 0.9155 0.9935
tests
As a tester, I want to

) implement tests so i 0.6258 0.9910
can assure the
softwares quality
as an administrator i

3 | want a gui admin for | 0.9973 0.8623
configuration options
A tester want to

4 implement tests so he 0.0038 0.0012
can assure the
software quality
I want a developer

s | asmuchasgood | 000 1o 0151
tester so I have a
good team

From the exposed results regarding the ELMo model,
it can be concluded that a model with an accuracy of 0.96
accuracy is obtained. Furthermore, despite having an
accuracy similar to the previous model, it can be said that
it gives better results in terms of semantic and syntactic
evaluation of the context of the cases. However, due to
its higher complexity, it takes a little bit longer to train.

5.2. Results obtained using the BERT module

The BERT model is used as follows. The dataset it is
randomly divided in 70% for training and 30% for
testing, where the 25% of the training set is used for
validation (see the full implementation in [33]) after
preprocessing the entries. Then, after 7 epochs of 4
minutes each one, an accuracy of 0.9676 in validation it
is obtained. An analysis of the performance of this model
shows a better performance than the previous one
without a relevant overfitting (Fig. 5 and Fig. 6).

acc
=}
@0
o
Y

0.88

0861 / =
/ val_acc

0 1 2 3 4 5 6
Epochs

Fig. 5. Accuracy analysis for the model using
BERT

117

0.35 \ — loss
val_loss
0.30 X
0.25 ‘x\
2
< 020 \
G
015 \\
.
010 o ——
0 1 2 3 4 5 6
Epochs

Fig. 6. Loss analysis for the model using BERT

Testing the user stories examples in Table 3, which
are out of the training and validation dataset, the results
listed in Table 3, in the column titled “Probability of
being a User Story using BERT” were obtained. From
these results, several observations can be made:

e The model has a slightly improve identifying
short user stories like the first example.

e Besides orthographic errors or unknown words
the model continues generalizing correctly, as
it is seen in the User Story 7 example.

e Regarding the User Story 5 example, the
model returns a lower probability making sure
that this is not a positive example.

5.3. Comparison using ELMo vs BERT

After implementing the two different models and
having evaluated their results, a comparison can be made,
regarding the test accuracy (acc), the complexity, the
training time (tr-effort), the syntactic analysis (parsing),
and semantic analysis (semantic). Table 4 shows the
results of the comparison.

Table 4. Comparing ELMo and BERT models

com- tr- . .
Model acc plexity effort parsing | semantic
ELMo 0.96 high high high middle
BERT 0.97 high high high high

As it can be observed in Table 4, the two tested
models obtained almost the same accuracy, the BERT
model has a slightly superior accuracy. Although BERT
has a higher complexity if there are compared the times
and number of training epochs of each model is noticed
an improvement in the semantic interpretation, while the
parsing analysis of issues is similar for both models as it
is shown in Table 4.

6. Conclusions

In this work, two different neural network models were
implemented for the identification of user stories in large

118

volumes of data. From the results obtained using both
models, we analyzed which is better for classification of
Issues records. We found that the BERT model is the one
that best fits the problem posed, managing to classify the
Issues in user stories with an efficiency of approximately
97%. Besides, the BERT model is able to analyze the text
both syntactically and semantically. This work could be
the entry point to apply any other automatic process that
applies other NLP techniques that aim to analyze user
stories within Issues logging systems. A future work is to
improve the employed dataset by increasing the number
of cases and finding a better balance between positive
and negative classes, and then trying to train the models
again in order to improve the results.

References

[1] C. Henderson, Building Scalable Web Sites, no. May.

O’Reilly Media, 2006.
(2]
(3]

G. Lucassen, Understanding User Stories. 2017.

K. Pohl, Requirements Engineering: Fundamentals,
Principles, and Techniques, 1st ed. Springer
Publishing Company, Incorporated, 2010.

[4] “TensorFlow.”

TensorFlow,
https://www tensorflow.org/.

Tensorflow Hub - Google, “Elmo-Tensorflow Hub,”
2018. https://tthub.dev/google/elmo/3.

Tensorflow Hub - Google,
TensorFlow Hub,”
https://tfhub.dev/google/bert_uncased_L-12_H-
768_A-12/1.

T. Hub, “TensorFlow
https://www .tensorflow.org/hub.

J. Cabot, J. L. C. Izquierdo, V. Cosentino, and B.
Rolandi, “Exploring the use of labels to categorize
issues in Open-Source Software projects,” in 2015
IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2015
- Proceedings, Apr. 2015, pp. 550-554, doi:
10.1109/SANER .2015.7081875.

(3]

(6]

“Bert_uncased -
2019.

[7] Hub.”

(8]

[9] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a
feature: How misclassification impacts bug
prediction,” in Proceedings - International
Conference on Software Engineering, 2013, pp. 392—

401, doi: 10.1109/ICSE.2013.6606585.

[10] F. Thung, D. Lo, and L. Jiang, “Automatic defect
categorization,” in Proceedings - Working Conference
on Reverse Engineering, WCRE, 2012, pp. 205-214,

doi: 10.1109/WCRE.2012.30.

[11] I. Chawla and S. K. Singh, “An automated approach
for bug categorization using fuzzy logic,” in ACM
International Conference Proceeding Series, Feb.
2015, vol. 18-20-Febr, pp. 90-99, doi:

10.1145/2723742.2723751.

J. M. Alonso-Abad, C. Lépez-Nozal, J. M. Maudes-
Raedo, and R. Marticorena-Sanchez, “Label
prediction on issue tracking systems using text

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

mining,” Prog. Artif. Intell.,vol. 8,no. 3, pp. 325-342,
Sep. 2019, doi: 10.1007/s13748-019-00182-2.

G. Lucassen, M. Robeer, F. Dalpiaz, J. M. E. M. van
der Werf, and S. Brinkkemper, “Extracting conceptual
models from user stories with Visual Narrator,”
Requir. Eng., vol. 22, no. 3, pp. 339-358, 2017, doi:
10.1007/s00766-017-0270-1.

R. Mesquita, A. Jaqueira, C. Agra, M. Lucena, and F.
Alencar, “US2StarTool: Generating i* models from
user stories,” CEUR Workshop Proc., vol. 1402, no.
istar, pp. 102-108, 2015.

P. S. Wautelet Y, Heng S, Hintea D, Kolp M,
“Bridging User Story Sets with the Use Case Model,”
Link S, Trujillo JC Proc. ER Work., pp. 127-138,
2016, doi: 10.1007/978-3-319-47717-6 11.

F. Gilson, M. Galster, and F. Georis, “Extracting
Quality Attributes from User Stories for Early
Architecture Decision Making,” Proc. - 2019 IEEE
Int. Conf. Softw. Archit. - Companion, ICSA-C 2019,
pp. 129-136, 2019, doi: 10.1109/ICSA-
C.2019.00031.

M. Cohn, User Stories Applied: For Agile Software
Development, 1st ed., vol. 284. Boston: Pearson
Education, Inc, 2004.

Y. Wautelet, S. Heng, M. Kolp, and 1. Mirbel,
“Unifying and extending user story models,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), vol. 8484
LNCS, pp. 211-225, 2014, doi: 10.1007/978-3-319-
07881-6_15.

W. Xia, W. Zhu, B. Liao, M. Chen, L. Cai, and L.
Huang, “Novel architecture for long short-term
memory used in question classification,”
Neurocomputing, vol. 299, pp. 20-31, 2018, doi:
10.1016/j.neucom.2018.03.020.

M. Sahlgren, “A brief history of word embeddings
(and some clarifications) | LinkedIn,” 2015.
https://www linkedin.com/pulse/brief-history-word-
embeddings-some-clarifications-magnus-sahlgren/
(accessed Oct. 29, 2019).

Y. P. Lin and T. P. Jung, “Improving EEG-based
emotion classification using conditional transfer
learning,” Front. Hum. Neurosci., vol. 11, no. June,
pp. 1-11,2017, doi: 10.3389/fnhum.2017.00334.

M. Peters et al., “Deep Contextualized Word
Representations,” Proc. NAACL. Assoc. Comput.
Linguist. (ACL);, pp. 2227-2237, 2018, doi:
10.18653/v1/n18-1202.

A. Vaswani et al., “Attention is all you need,” Adv.
Neural Inf. Process. Syst.,vol. 2017-Decem, no. Nips,
pp- 5999-6009, 2017.

G.Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush,
“OpenNMT: Open-Source Toolkit for Neural
Machine Translation,” in Proceedings of ACL 2017,
System Demonstrations, 2017, pp. 67-72, doi:
10.18653/v1/P17-4012.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding,” no. Mlm,

119

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

2018, [Online]. Available:

http://arxiv.org/abs/1810.04805.

CONNECT, “Navegador de incidencias - Issue
Tracker CONNECT,” 2019.
https://connectopensource.atlassian.net/issues/?jql=or
der by created DESCé&startIndex=50 (accessed Oct.
30,2019).

Mendeley, “Requirements data sets (user stories),”
vol. 1, Jul. 2018, doi: 10.17632/7ZBK8ZSD8Y.1.

F. 1. Pena
“fjpena35226/augmentingdataset_userstories.”
https://github.com/fjpena35226/augmentingdataset_u
serstories (accessed Aug. 04,2020).

Veitia,

F. J. Pefia Veitia, “Identifying User Stories in Issues
records,” vol. 1. Mendeley, Apr. 14, 2020, doi:
10.17632/BWIMD35C29.1.

J. Zweig, “keras-elmo/Elmo Keras.ipynb at master -
strongio/keras-elmo,” 2018.
https://github.com/strongio/keras-
elmo/blob/master/Elmo Keras.ipynb (accessed Oct.
31,2019).

J. Zweig, “keras-bert/keras-bert.ipynb at master -
strongio/keras-bert,” 2019.
https://github.com/strongio/keras-
bert/blob/master/keras-bert.ipynb (accessed Oct. 31,
2019).

F. J. Pefia Veitia,
“fjpena35226/rnn_EIMo_userstories_recognition,”
2019.
https://github.com/fjpena35226/rnn_EIMo_userstorie
s_recognition.

F. J. Pefia
“fjpena35226/bert_userstories_recognition.”
https://github.com/fjpena35226/bert_userstories_reco
gnition (accessed Mar. 24, 2020).

Veitia,

	libro jornadas CONAIISI 2020
	compilado area 1 ISISOY.pdf
	267-793-1-DR

	111Binder1.pdf
	portada nuava

