Simultaneous optimization of methane conversion and aromatic yields by catalytic activation with ethane over $\mathrm{Zn}-\mathrm{ZSM}-11$ zeolite: The influence of theZn-loading factor

Oscar A. Anunziata*, Jorgelina Cussa, Andrea R. Beltramone
Grupo Fisicoquímica de Nuevos Materiales, CITeQ, Facultad Regional Córdoba, Universidad Tecnológica Nacional, 5016 Córdoba, Argentina

A R T I CLE

Article history:

Received 30 October 2010
Received in revised
form 28 April 2011
Accepted 28 April
2011
Availabde ponline 12

Keywords
:
Experime
nt design
Respons
e Surface
Two
response
s
Methane activation
Zn-
loading
factor

I N F OABSTRACT
Experiment design-response surface methodology (RSM) is used in this work to model and optimize two responses in the process of activation of methane (C1) using ethane (C2) as coreactant into higher hydro- carbons, over Zn -containing zeolite catalysts. The application of this methodology provides insights into a more comprehensive understanding of the influence attributed to from the different factors. In this study we analyze the influence of the C1 molar fraction (C1/C1 + C2), the reaction temperature and the Zn -loading factors. The responses analyzed were as follows: Y1: C1 conversion (mol\% C) and Y2: aromatic hydrocarbon yields (mol\% C). The response surfaces were obtained with the Box-Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the two objective functions, C1 conversion of 48.6 mol\% C and aromatic yields of $47.2 \mathrm{~mol} \% \mathrm{C}$, were obtained employing, a higher temperature, $0.2-0.4$ molar frac- tion of C 1 and the catalysts with a higher Zn^{2+} content.

