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Validity of capillary imbibition models in paper-based
microfluidic applications
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Abstract Paper-based microfluidics has grown continuously over the last few
years. One of the most important characteristics of paper-based microfluidic de-
vices is the ability to pump fluids with the single action of capillary forces. However,
fluid flow control in paper-based microfluidic devices has been studied primarily
through empirical approaches; and as paper-based microfluidic devices have be-
come more complex, more general and precise models of fluid flow are required.
Particularly difficult to model are unsaturated flow conditions, which are critical
to the overall performance of paper-based analytical devices, which may contain
pre-adsorbed reagents such as indicator particles or antibodies. In this work we
propose an objective test and a discussion on the suitability of different models
(including a novel model derived here from LET-based models) that represent
fluid imbibition dynamics in paper substrates. We reproduce experimental fluid
fronts with the best parameter fits of the different models to show their actual
capabilities to represent the moisture content function and present an analysis
of propagation of uncertainties to obtain a final objective quantification of the
quality of model fits. This objective analysis will endow the paper-based microflu-
idics community with objective information about modeling tools to improve the
designs and performance of these devices.
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Raúl Urteaga
Instituto de F́ısica del Litoral (IFIS Litoral, UNL–CONICET).
Güemes 3450, S3000GLN Santa Fe, Argentina.

Pablo A. Kler
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1 Introduction

Paper-based microfluidics has grown continuously over the last decade, mainly due
to its capabilities for the implementation of portable chemical and biochemical
assays (Salentijn et al., 2018). The advantages offered by paper-based analytical
devices have been extensively reported in the literature (Ozer et al., 2020), yet
they may be summarized as: low costs of manufacturing, transport, operation
(due to small reactant volumes), and final disposal; along with compatibility with
different detection methods (sometimes involving mobile devices (Hassan et al.,
2020)) that make them easy-to-use by untrained personnel (Kim et al., 2020). The
most important and attractive of all the characteristics of paper-based microfluidic
devices is the ability to pump fluids without any external power supply, with the
single action of capillary forces due to the wicking nature of cellulose fibers (Modha
et al., 2021). Capillary flow in paper-based microfluidic devices has been exploited
since the first works at the beginning of 20th century (Yetisen et al., 2013), later on
with the widespread use of lateral flow assays (Berli and Kler, 2016), and recently in
more complex applications (Mora et al., 2019). Especially when considering these
recent developments that involve complex multi-layer, multi-step, experimental
layouts (Schaumburg and Berli, 2019), an accurate and precise control of the fluid
flow is critical.

Unfortunately, fluid flow control in paper-based microfluidic devices has been
studied mainly through empirical approaches due to the following two reasons (Franck
et al., 2021): (i) as mentioned before, manufacturing processes are affordable, and
multiple experiments with different layouts and operational conditions can be con-
ducted simultaneously within reasonable timeframes (Yamada et al., 2017); and
(ii), as far as paper is an intricate porous structure of intertwined fibers, predic-
tions of flow behaviors are particularly challenging and, presently, no robust and
validated mathematical models are available (Schaumburg et al., 2018b). This em-
pirical approach has certainly been effective for lateral flow assay configurations
and simple devices, but as paper-based microfluidic devices have become more
complex, more general and precise models of fluid flow are required (Lim et al.,
2019).

At this point, we can discriminate between saturated and unsaturated flow
conditions. It is frequent in the paper-based microfluidics community to employ
simplified mathematical models of devices operating under saturated flow condi-
tions, i.e. when all the operational domain of the device is completely wet (Schaum-
burg et al., 2018a). When saturated flow conditions are assumed, Darcy’s Law is
sufficient for modeling the flow, with the permeability remaining constant, only
pressure boundary conditions are enough to obtain a valid solution for the ve-
locity field (Gerlero et al., 2021). However, considering a fully saturated domain
precludes the local effects of capillarity. Moreover, unsaturated flow conditions
are those that are actually critical for the analytical performance of paper-based
devices in general, which in many practical cases contain pre-adsorbed reactants
such as reporter particles or antibodies (among others) that are transported by
the infiltrating fluid front (Rath and Toley, 2020).

Unsaturated flow conditions during imbibition processes are extremely com-
plex and were initially studied by using models based on the Lucas–Washburn
Equation (Elizalde et al., 2016; Pan et al., 2021). Such models are appropriate to
determine the position of the wetting front in an averaged manner in the presence
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of one-dimensional infiltration, but are not capable at all of describing the observ-
able shapes of such fronts, nor can they be applied in two- or three-dimensional
domains (Bear and Cheng, 2010). In order to precisely describe fluid fronts dur-
ing imbibition processes, the dependence of capillary pressure and permeability
with saturation must be adequately accounted for (Santagata et al., 2020). It
is worth noting that it is not only saturation that is important for these ap-
plications: the flow velocity field, itself obtained from derivatives of saturation,
enables further modeling of scalar transport with convection–diffusion–reaction
equations (Gamazo et al., 2016), crucial for the design of paper-based microfluidic
analytical devices.

The Richards Equation (Richards, 1931) is the most accepted for describing
fluid flow in unsaturated porous media (Hertaeg et al., 2020). When paper-based
microfluidic devices are considered, a special case of the Richards Equation occurs
in which gravity can be neglected (due to the usual positioning of devices and/or
the negligible effect of gravity verified through the extremely low Bond numbers
and extremely large wetting lengths (Das and Mitra, 2013). For spontaneous capil-
lary flow, we can reduce the Richards Equation in terms of the volumetric moisture
content (θ) to obtain:

∂θ

∂t
= ∇ · (D(θ)∇θ) . (1)

This equation is known as the moisture diffusivity equation, and the key condition
for the success of this equation as a valid model for imbibition flow is the mois-
ture diffusivity function D(θ) (Bear and Cheng, 2010). Hydraulic models for D(θ)
such as those by Brooks and Corey (1964) and by Van Genuchten (1980) provide
parametrized closed-form expressions for such function. Details about these mod-
els can be found on their original works cited here as well as in the supporting
information for this paper.

Adequately solving eq. 1 can provide an outstanding tool for sensible improve-
ments on the design of complex paper-based microfluidic devices. The success
of this numerical process is subject to the usage of a robust and correct model
for D(θ) and the implementation of an efficient numerical tool for solving eq. 1
with different D(θ) functions. When defining a robust and correct model for D(θ),
it is important to mention here that the most recognized models (the already
mentioned Brooks and Corey (1964) and Van Genuchten (1980) models) were
originally developed considering common soil components (e.g. sand, rocks, clay)
as substrates. Clearly, the microscopic structure of paper differs from these soil
components, so that special considerations may need to be made in order to ob-
tain adequate results from such models. A limited amount of work has been done
trying to characterize paper substrates by following these classical soil-oriented
models, without reaching consistent and reproducible results (Perez-Cruz et al.,
2017; Rath et al., 2018; Rath and Toley, 2020). The same situation occurred when
using other alternative models (Cummins et al., 2017; Ruoff et al., 1959, 1960;
Philip, 1955). An objective test of the suitability of these models for paper-based
microfluidic applications is still missing (Terzis et al., 2018).

More recently, an alternative set of correlations has been presented by Lome-
land et al. (2005). These phenomenologically driven models with the name “LET”
are targeted towards multiphase fluid flow in soils as well, but also particularly
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for applications in enhanced oil recovery (Lomeland and Ebeltoft, 2008; Lome-
land, 2018). The large amount of parameters present in the LET models allows
for simplifications to produce a new model with fewer parameters compatible with
paper-based microfluidic applications. We introduce here a model based on such
simplification called “LETd”, whose mathematical foundations can be found in
the next section.

In this work, we propose objective testing and a discussion on the suitability
of different contemporary D(θ) models for representing the fluid flow imbibition
dynamics in paper substrates. First, we conducted careful experiments to obtain
an accurate measure of the imbibition process under controlled conditions. Then,
we attempt reproduce these experimental fluid fronts by finding the best param-
eter fits of the models, showing the actual capabilities of each model to represent
the moisture content function θ(x, t) as a function of space and time. Addition-
ally, an experimental data–driven reconstruction of the D(θ) function is presented
and compared with the D(θ) function obtained for each model, providing more
information about the suitability of the methods for the whole range of θ and the
correctness of the assumptions made for the LETd model. Afterwards, we present
an analysis on the propagation of uncertainties to characterize the robustness of
the models in representing the experimental data under different experimental
conditions, and finally we provide an objective quantification of the effect of such
uncertainties in the quality of the model fit through an exhaustive (local) error
estimation.

Experimental conditions to match the most frequently used in paper-based
microfluidics—lateral flow in Whatman No. 1 paper—were chosen. The main re-
sult of this work is the confirmation that the LETd model can effectively represent
fluid flow imbibition front in the whole range of θ, obtaining more consistent re-
sults when compared with classical models, but also offering a more suitable math-
ematical expression for further modeling of capillary imbibition in more complex
domains, including use of the flow velocity field for coupled scalar transport prob-
lems. Through this confirmation, the paper-based microfluidics community has
new tools to improve designs of contemporary devices as well as to adequately
face new challenges in this key technology field.

2 Mathematical background

2.1 Mathematical description of lateral flow.

For our model problem, we adopt lateral flow conditions1 in an unsaturated flow
problem governed by eq. 1 as follows: for any coordinate x defined on a semi-infinite
one-dimensional spatial domain (0,∞), find for any instant t in the temporal
domain [0,∞) the moisture content profile θ := (x, t) 7→ R that satisfies the

1 The set of physicochemical hypotheses of this model is described in the supporting infor-
mation.
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initial–boundary value problem:
∂θ

∂t
=

∂

∂x

(
D(θ)

∂θ

∂x

)
, in (0,∞)× [0,∞),

θ − θi = 0, on t = 0, for any x ∈ (0,∞),

θ − θb = 0, on x = 0, for any t ∈ [0,∞).

(2)

By considering θi as the initial moisture content and θb equal to the porosity
θs, this problem models the imbibition of a rectangular strip of material in contact
with liquid at x = 0, i.e. the configuration known as lateral flow in paper-based
microfluidics. In practice, θb cannot be exactly equal to θs because the expressions
used for D(θ) are usually singular at θ = θs (Bear and Cheng, 2010). Hence,
θb = θs − ε with ε = 1× 10−7.

2.2 Boltzmann transformation.

A convenient property of eq. 2 is that its solutions are self-similar, and the problem
as a whole is susceptible to a similarity transformation known as the Boltzmann
transformation (Boltzmann, 1894; Bear and Cheng, 2010). The transformation
means that a solution θ, which is a function of x and t, can also be expressed
in terms of a single new variable φ—known as the Boltzmann variable—instead,
defined as:

φ =
x√
t
. (3)

The Boltzmann transformation is useful in many ways. First, it can be applied
to experimental observations of lateral flow to reduce the dimensionality of the
data. Furthermore, it serves as a verification that eq. 1 is sufficient for a thorough
description of unsaturated flow in the studied material. Finally, it can be leveraged
to solve eq 2 more easily, as it is the case with the numerical tool purposely selected
for our analysis (Gerlero et al., 2020).

An additional property of the Boltzmann transformation is that it allows one
to obtain D(θ) from a known differentiable solution to eq. 2 via the integral ex-
pression, effectively solving the inverse problem:

D(θ) = −1

2

dφ

dθ

∫ θ

θi

φdθ. (4)

This method was first proposed for fluid flow in porous media by Bruce and
Klute (1956) and is known as Boltzmann–Matano analysis in the general study
of diffusion (Tumidajski and Chan, 1996). It must be noted that the use of this
method alone to solve an inverse problem is generally limited in precision when θ
is known as discrete experimental data (Bruce and Klute, 1956; Cummins et al.,
2017) unless the solution is also approximated with an closed-form expression (Es-
pejo et al., 2014; Evangelides et al., 2010, 2005).
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2.3 Description of the LETd model

Based on the LET family of correlations for special core analysis (Lomeland, 2018),
we propose a similar expression to approximate the experimental diffusivity. We
define the LETd model as:

D(θ) = Dwt
SLwp

SLwp + E(1− Swp)T
, (5)

where Swp = Sw−Swir

1−Swir
= θ−θsSwir

θs−θsSwir
. Dwt (re-scaling factor), L, E, T and Swir are

parameters in the LETd model and Sw is defined as the moisture content divided
by the material’s porosity (see the supporting information for more details).

3 Materials and methods

3.1 Imbibition experiments

Measurement of initial moisture content. Solving eq. 2 requires one to know the
initial condition in the medium. The initial moisture content in the paper can be
estimated by comparing the air-dry and oven-dry weights of the material. For this,
paper discs of Whatman No. 1 paper (Whatman grade No. 1, 120 mm discs, Cityva,
Marlborough, USA) were initially weighed in ambient conditions. Afterwards, the
discs were heated in an oven (KO-30CRS, Buenos Aires, Argentina) at 105 °C. The
paper was left to dry overnight and weighed again immediately following removal
from the oven. Finally, the discs were weighed once again after 24 hours of being
left under ambient conditions.

Lateral flow experiments. Paper-based devices were fabricated using craft-cutting
and hot lamination (DASA LM330, DASA SRL, Buenos Aires, Argentina). Rect-
angular (30 mm × 10 mm) strips of Whatman No. 1 paper were cut along the
machine direction. Paper strips were laminated in film pouches (150 µm thick,
Binderplus, Santa Fe, Argentina) at 135 °C, at a speed of 3.5 mm s−1. A small
section 3 mm in length was left exposed on one side to act as the reservoir for the
imbibition. When comparing this lamination strategy with similar setups based on
wax printing, the former provides remarkably higher stability for the fluid front
flow, avoiding distortions in the shape of the front caused by the hydrophobic
boundaries created in wax-printed channels; as discussed, for example, by Hong
and Kim (2015).

The devices were placed horizontally on a surface illuminated with a white
backlighting LED panel akin to the one used by Urteaga et al. (2018). Transmitted
light was captured from above by using a high-resolution digital camera (Canon
EOS Rebel T5, Canon Inc., Tokyo, Japan) connected to a PC. The camera was
positioned vertically 20 cm over the surface and manually focused. Images of the
strips with a spatial resolution of about 20 µm per pixel were captured in intervals
of 5 seconds.

Deionized water (from an inverse osmosis purifier Osmoion, Apema SRL, Villa
Domı́nico, Argentina) was then deposited on the reservoir of each strip. We took
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note of the time of start of imbibition on each device to the nearest half second.
The devices were then left untouched until the steady state was reached with
the paper fully saturated everywhere. In all cases, the first image was captured
5 seconds after the start of imbibition. This time is considerably larger than the
timescale involved in the early imbibition regimes reported in the literature (Das
et al., 2012); consequently, such regimes are excluded from the analysis.

Figure 1A shows a diagram of the paper-based devices and experimental setup
used for the imbibition experiments. Figure 1B is a composite of images captured
during the imbibition of a strip—each 5 seconds apart—, where the effect of mois-
ture content on light transmission can be observed.

A B

Fig. 1 A Diagram of the paper-based devices and experimental setup for the lateral flow
experiments. B Sequence of images captured during imbibition of single device (images are
cropped in width).

Porosity measurements To estimate the porosity, the paper-based devices used in
the lateral flow experiments were weighed both before the imbibition and imme-
diately after the experiments—i.e., when still fully saturated and after carefully
drying the leftover water in the reservoirs.

Data processing of lateral flow experiments We developed a Python program to an-
alyze the images and extract the equivalent water content profile. To approximate
the distribution in moisture content in each strip, we assume a linear relationship
between a normalized intensity of transmitted light Ỹ and water uptake in the
paper (Urteaga et al., 2019; Vincent et al., 2017). The experimentally observed
moisture content can then be expressed as:

θexp = θi + (θs − θi)Ỹ , (6)

so that Ỹ = 0 at air-dry conditions (θ = θi) and Ỹ = 1 when the paper is fully
saturated with water (θ = θs). Ỹ is further defined as:

Ỹ =
Y − Yi
Ys − Yi

, (7)
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where Y represents the intensity of each pixel on the strip as captured in a certain
image, Yi the intensity of that same point in the initial condition, and Ys is the
intensity when fully saturated. All these values are previously normalized by the
average intensity of a strip that remains always dry to control any change in
ambient lighting between images.

Values of Ỹ in the captured images are then averaged in the direction perpen-
dicular to the flow. Subsequently, and being careful to consider only those images
where the wetting front is yet to reach the end of the strip—so that the semi-
infinite definition of eq. 2 holds—, we apply the transformation eq. 3. We verified
that Ỹ values extracted from different images of each strip approximately coincide
when expressed in terms of Boltzmann variable φ. This observed self-similarity
serves as a further confirmation that eq. 2 can model the physical phenomenon
under observation.

We repeated this processing step using the data from lateral flow in three differ-
ent paper-based devices. We then combined the data from the three experiments,
while allowing for a correction factor in φ to control for small differences in the
overall speed of the imbibition across the different devices (Elizalde et al., 2016)
while still capturing the overall shape of the water distribution profiles. In the final
step we grouped the datapoints in 141 windows of 15 µms−1/2 in φ and used the
averages from the three devices to compute the final observed values and stan-
dard deviations, the latter after being passed through a uniform filter spanning
ten windows.

Experimental data–driven diffusivity reconstruction. The Bruce and Klute method
was used to obtain an approximation of the diffusivity function D(θ) that would
explain the experimental data. For this, the experimental average curve was passed
through an isotonic regression (Chakravarti, 1989) and subsequently interpolated
with a PCHIP (Fritsch and Carlson, 1980) monotonic spline to enable the evalu-
ation of eq. 4.

3.2 Numerical solver and parameter estimation

Parameter estimation was performed by iteratively solving eq. 2 whilst varying
the desired parameters, with the goal of obtaining the best fit to the experimental
data as measured with least squares weighted by the uncertainties in the experi-
mental data. Problems were solved with Fronts (Gerlero et al., 2020), a specialized
numerical package able to find the required solutions to eq. 2 by taking advantage
of the Boltzmann transformation.

The BlackBoxOptim (Feldt, 2019) package was used to find values for the
unknown parameters by repeatedly invoking the solver and assessing the solutions.
For this, a method of the differential evolution family was run in parallel. The
optimization is configured to finish after 10 000 steps of the differential evolution
algorithm, where each step will cause Fronts to be invoked at least once.

Exploiting the diffusive nature of the problem, parameters that are constant
factors in D (e.g. Ks/α in Brooks and Corey and Van Genuchten, and Dwt in
LETd) are not explored by the same optimizer. Instead, an intermediate opti-
mization layer is introduced in the process that finds the best constant factor by
scaling the solutions in φ, which can be done without additional solver calls.
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Overall, the scheme turned out to be very efficient, with the entire process
of fitting the parameters for the models we examined taking only between 10
and 40 minutes on a MacBook Pro (Apple Inc., Cupertino, Calif., USA) notebook
computer equipped with a Core i7-3615QM (Intel Corporation, Santa Clara, Calif.,
USA) processor and 8 GB of system RAM.

After the optimizer finishes, values of the parameters are rounded to four sig-
nificant figures for easier reporting and fed again to the solver before computing
the reported value of the reduced chi-square (χ2

ν) statistic (Taylor, 1997).

3.3 Estimation and propagation of uncertainties

MCMC for Bayesian Inference. To estimate the uncertainty in the parameters
x ∈ RNp, a Bayesian framework was employed. More specifically the Markov Chain
Monte Carlo (MCMC) method (Brooks, 1998; Brooks et al., 2011) was used to
compute the Bayes’ rule,

P(x|D) =
P(D|x)P(x)

P(D)
, (8)

where for simplicity we consider D := θexp obtained from Equation 6. P(D) :=
σexp is referred to as evidence quantifying the variability of the observed data D.
P(x) represents the prior ”knowledge” for each model parameter (independently
from the data D). P(D|x) is the likelihood function (revealing the discrepancies
between the observed data D and a function of the solution to eq. 2 evaluated in
a fixed sample taken from the distribution of x). Successive computations of eq. 8
result in a Markov chain that asymptotically converges to the kernel of the density
distribution of the uncertain parameter x that best fit the data D, in other words
P(x|D). In this manuscript the MCMC was implemented using the Python library
PyMC3, and adopting the SLICE sampler presented in the work of Salvatier et al.
(2016).

Emulators vs. simulators. Surrogate models (or emulators) were employed to
replace the simulator calls when the number of execution turns not feasible to
be performed. In this work Polynomial Chaos Expansions (PCEs) (Nagel and
Sudret, 2016; Gratiet et al., 2016) were tailored to obtain the same responses that a
simulator can return. In general, PCE emulators map the parameters’ uncertainty
P(x|D), to different Quantities of Interest (QoI) adopting a polynomial structure.
For any output quantity Y the associated PCE emulator is written in terms of a
truncated polynomial expansion, yielding the next definition:

YPC :=

N−1∑
i=0

ψi(x) yi, (9)

where ψi(x) represents the orthonormal basis and YPC is the approximation of the
random response of the QoI. The number of terms N considered in the expansion
is a function of the number of uncertain inputs and the polynomial degree Pd given

by N =
(Np+Pd)!
Pd!Np!

. The coordinates yi that fix the polynomial expansion written in

eq. 9 are obtained minimizing the difference between Y and YPC . The uncertainty
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quantification will be materialized in the evaluation of statistical moments like the
expected value and variance of the QoI. They are computed as:

E[Y] :=

∫
Y π(x) = y0, (10)

V[Y] :=

∫
(Y − E[Y])2 π(x) =

∑
i>0

yi
2, (11)

where π(x) =
∏Np

i πi(xi), and πi(xi) is the marginal probability distribution
functions (i.e. πi(xi) := P(xi|D)). The evaluation of expected value and variance
results in simple polynomial operations.
Uncertainty decomposition. Global (variance based) Sensitivity analysis was
used to assess how the input parameters xi ∈ x and also interactions between
them contribute to a particular output quantity Y, adopting the Sobol sensitiv-
ity indices (Sobol, 2001; Saltelli et al., 2008). The first order Sobol index (also
known as main Sobol index), expresses how a certain uncertain input xi directly
contributes to the variance of the output Y. It is given by the following expression:

Si :=
V[E[Y|xi]]

V[Y]
. (12)

The first order Sobol index neglects eventual interactions between two or more
different uncertain inputs. To estimate the changes on V[Y] considering first and
high-order interactions of the i-th uncertain input, the total Sobol index (Saltelli
et al., 2008) is used, which is given by:

STi := 1− V[E[Y|x−i]]
V[Y]

, (13)

where x−i denotes the set of all inputs except xi.
In this paper, the computational implementation of the PCE emulators was

performed using the Python library ChaosPy presented in the work of Feinberg
and Langtangen (2015).

4 Results and discussion

4.1 Experimental results

Initial moisture content. From the oven-drying experiments, we were able to es-
timate the air-dry volumetric moisture content θi of Whatman No. 1 paper at
0.025±0.002. The stability of the obtained results was verified for θi within the
reported range of uncertainty (0.023–0.027). We note that, in the absence of this
consideration, an initial condition of θ = 0 would appear to be a sensible assump-
tion. However, with all of the hydraulic models under study, this condition will
result in zero diffusivity and therefore no flow in the domain, a fact that is obvi-
ously unrealistic—unless one also accepts negative values for θr or Swir, which is
unconventional, or is willing to introduce other assumptions (Rath et al., 2018).
By measuring the actual moisture content in air-dry condition, we do not require
any of these workarounds.
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Porosity. By comparing the initial (air-dry) and saturated weights of the paper-
based devices, we measured a porosity of 0.70± 0.06. The general methodology of
this measurement and its result are in line with those reported by others (Rath
et al., 2018; Cummins et al., 2017) for Whatman No. 1 paper, and we will therefore
adopt the value θs = 0.7.

Lateral flow wetting profile. Experimental data were processed as previously de-
scribed. Intermediate and final results of data processing appear in Figure 2. Figure
2A shows the intensity profiles at different times for a single device. Figure 2B
displays the final results in water content versus the Boltzmann variable, plotting
the average across the three devices and the standard deviation. The observed self-
similarity of profiles at different times is subsequently reflected in the low standard
deviations along the final profile.

5 10 15 20 25
x [mm]

0.00

0.25

0.50

0.75

1.00

Y
[

]

A t = 22.5 s
t = 27.5 s
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t = 42.5 s
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]

B
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Std. dev.

Fig. 2 A Intermediate results of data processing in a single paper-based device. B Final results
of data processing (average water content and standard deviation, expressed in the Boltzmann
variable). The low values of standard deviations are a consequence of the self-similarity of the
profiles taken at different times.

Parameter estimation. With the experimental wetting profile as the objective, we
ran our parameter estimation study to find the best fits that can be obtained
with each of the candidate models. These results are reported in Table 1 and in
Figures 3 and 4. The figures show, respectively, the wetting profiles and diffusivity
functions of the different fitted models compared to the experimental data.

From Figure 3 it is straightforward to infer that the Brooks and Corey model
was unable to match the experimental curve, while the Van Genuchten model is
able to reproduce most of the expected profile—but the approximation breaks
down with a sharp corner at the transition to initial conditions. In contrast, the
LET-based models—both the one based on existing LET correlations as well as
our own LETd function with fewer parameters—can approximate the experimental
profile very closely at all points.

The reduced chi-square values shown in Table 1 confirm that Brooks and Corey
model is not acceptable, and that LET models yield results that are somewhat
better than those obtained with the Van Genuchten model.
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The comparison of the diffusivity functions D(θ) obtained for each model is
presented in Figure 4. These results verify the observations made in Figure 3, i.e.
the LET-based models appear to be better match the reconstructed D(θ) in the
entire domain of θ. For its part, the Brooks and Corey model only matches the
curve twice, and the Van Genuchten model increasingly strays from the experi-
mental D(θ) as θ goes below 0.4. Analyzing these results, we find it remarkable
how LET-based models are able to reproduce D(θ) well across its whole range
of validity. It is also important to note that the differences between the LETx +
LETs and LETd models are minor, demonstrating the validity of the considera-
tions made when proposing the LETd model. In light of this, for further analysis
we will disregard the LETx + LETs model and consider only LETd, which uses
three fewer parameters. Additionally, we used the four obtained D(θ) functions to
predict the flow velocity profiles at different times. The smoothness of the LETd
velocity curves should make this model is better posed for coupled scalar transport
models with convection–diffusion–reaction equations. These results are reported
in the supporting information.

Table 1 Final results of parameter estimation using Fronts and the experimental data.

Model Parameters χ2
ν

Brooks and Corey

n 0.2837

691
l 4.795
θr 2.378 × 10−5

Ks/α 3.983 × 10−6 m2 s−1

Van Genuchten

n 8.093

1.7
l 2.344
θr 0.004 943

Ks/α 2.079 × 10−6 m2 s−1

LETx + LETs

Lw 1.651

1.0

Ew 230.5
Tw 0.9115
Ls 0.517
Es 493.6
Ts 0.3806
Swir 0.016 80

KsPcir/γ 8.900 × 10−3 m2 s−1

LETd

L 0.004 569

1.5
E 12 930
T 1.505

Swir 0.028 36
Dwt 4.660 × 10−4 m2 s−1
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Fig. 3 Best fits of the imbibition profiles represented with the Boltzmann variable for the
different models considered in this work.
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Fig. 4 Comparison of the experimental reconstructed D(θ) and the diffusivities of the different
models with the best fit parameters.
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Finally, in order to demonstrate the applicability of these results in the de-
sign and manufacturing of paper-based microfluidic devices, we perform a cross
validation experiment on different geometries (Tirapu-Azpiroz et al., 2018). We
constructed different numerical prototypes based on OpenFOAM® (Horgue et al.,
2015) using the model parameter sets reported in Table 1. These numerical pro-
totypes were compared with the experimental results obtained for each geometry.
Details and results of this validation step can be found in the supporting informa-
tion.

4.2 Model adjustment considering uncertainty in observed data

Each diffusion model contains parameters with (and without) an associated physi-
cal meaning. The uncertain response of the diffusion models is analyzed considering
variability on the parameters without physical meaning. In a more general case,
we are interested in exposing the difficulties to obtain unique values for the pa-
rameters n and l for the Brooks and Corey, and Van Genuchten models. As well
as the L, E, T tuple for the LETd model. Taking into account the experimental
variability, the MCMC was executed adopting uniform priors for each uncertain
input. These uniform priors were upper and lower bounded taking the best fit
values reported in Table 1 allowing total variations of 70% with respect to their
nominal value. The execution of the MCMC provided a 20000-long Markov chain
for each uncertain parameter. The kernel density estimates are shown in Figures 5,
6, and 7, for the Brooks and Corey, Van Genuchten and LETd models, respectively.
The density distribution associated to the Brooks and Corey model presented for
both non-physical parameters multi-modal shapes revealing the strong limitations
of the model to determine a unique stable pair of n and l, that best fits the exper-
imental data. In particular, we can note that the best fit values reported in Table
1 have a very small frequency for the n parameter and its rejected in the l density
estimate, as shown in Figure 5.
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n ×10−1

0.0

2.5

5.0

7.5

D
en

si
ty

×101

5.0 5.5 6.0
l

0

2

4

Fig. 5 Posterior distributions for each Brooks and Corey non-physical parameters.

The Van Genuchten model presented a mixture of density distribution func-
tions, n has a more symmetric distribution than the l parameter. In both cases
the best fit values reported in Table 1 were excluded from the posterior density
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estimates as depicted in Figure 6. In both cases, the best fit rejection, suggests
that the there are many other local minimums that satisfies the fitting requests.
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Fig. 6 Posterior distributions for each Van Genuchten non-physical parameters.

The samples obtained from the Markov chains considering the LETd model
presented asymmetric shapes for the three parameters, and exposed multi-modal
density distributions for the E and T parameters. In Figure 7 the LETd model
reduces the probability to recover the best fit value shown in Table 1 only for the
L parameter, while (in contrast to the previous models) for parameters E and T
best fit values are contained by the density distributions.
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Fig. 7 Posterior distributions for each LETd non-physical parameters.

4.3 Effects of uncertainties in QoIs

Here, the QoI studied was the L2(Ω) error between the experimental observation
and the numerical model evaluation performed with Fronts, i.e.:

L2(Ω) = ‖θexp(φ)− θ(φ)‖2. (14)

We performed a similar analysis for the absolute error between the experimental
observation and the Fronts model evaluation, employing the three diffusion models.



16 Gabriel S. Gerlero et al.

However, the results are not included here, since they are equivalent to the findings
exposed for the L2(Ω) error.

The QoI was chosen to evaluate the capabilities of different hydraulic models
to reproduce the experimental imbibition fronts in paper substrates. As expected,
if a model evaluation returns values near zero for the QoI means that such model
have a good capability to recover the experimental observation. Whereas, non-
negligible values for the QoI, exposes its limitations. In this manuscript, the PCE
emulators were calibrated considering third order polynomials for the Brooks and
Corey and Van Genuchten models and a second order polynomial for the LETd
model. Additionally, the emulators were adjusted with 300 successful deterministic
evaluations. These PCE settings ensure that the error between the simulators and
the emulators are small enough to use the emulators. During the calibration of the
PCE emulators several failures happened when solving eq. 2 by drawing samples
from the MCMC posterior density distributions. The LETd model had a degree
of success of 100%, the Van Genuchten reported an 88% success rate, and the
Brooks and Corey had a 43% rate of success. In this context, the LETd model
demanded 300 model evaluations to fit the PCE. Whereas, the Van Genuchten and
the Brooks and Corey models requested 340 and 693 deterministic evaluations to
fit the PCE emulators, respectively.

Figure 8 shows the estimated uncertainty for each model analyzing the L2(Ω)
error. The kernel distribution estimate for the analyzed QoI reveals the same
non-symmetric and proper shapes for the Brooks and Corey and LETd models
certifying that the error estimates are always upper bounded with an abrupt lower
threshold. In particular, the Brooks and Corey model had inferior quality response
in terms of accuracy and uncertainty propagation. Whereas, the LETd model
had better performance in terms of accuracy and uncertainty propagation; the
Van Genuchten model presented L2(Ω) errors clustered around a unique value
revealing almost no uncertain behavior. Yet, the error values where clustered near
the worst cases that the LETd model can achieve. In addition to this, the estimated
uncertainty adopting the Van Genuchten model shows a sharp upper-bound with
a smooth decay towards smaller values of the L2(Ω). This fact exposes that the
parametric uncertainty shifted the best fit settings mentioned in Table 1 to a
different minimal configuration.
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Fig. 8 Comparison between the uncertain response of Fronts, considering the Brooks and
Corey, Van Genuchten and LETd models with the experimental data

The Table 2 shows the Sobol indices analyzing the variability of the L2(Ω)
error, considering the non-physical parameters of each diffusion model. The Brooks
and Corey sensitivity analysis states clearly that the variability of the QoI can be
reduced by only improving the estimation of the l parameter. A similar sensitivity
pattern is recognized on the Van Genuchten Sobol indices. Although the L2(Ω)
error has small variability adopting the Van Genuchten diffusion model, the Sobol
indices reveals that variance reductions are exclusively conditioned to improving
the estimation of l. In the case of the LETd model, the L2(Ω) variability can be
reduced minimizing the fluctuations of the E and T parameters. Moreover, the
LETd model presents interactions between the parameters E and T , constraining
the variability reduction to appropriate results of E and T .

Table 2 Sensitivity analysis results considering the three diffusion models.

Sobol index Brooks and Corey Van Genuchten LETd

Main n : 1.29 × 10−3 l : 9.96 × 10−1 n : 7.03 × 10−17 l : 1.00 L : 1.97 × 10−5 E : 7.76 × 10−1 T : 2.23 × 10−1

Total n : 3.26 × 10−3 l : 9.98 × 10−1 n : 3.83 × 10−11 l : 1.00 L : 2.19 × 10−3 E : 7.75 × 10−1 T : 7.14 × 10−1

5 Summary and Conclusions

An objective testing and a discussion about the suitability of different contem-
porary D(θ) models for representing fluid flow dynamics in paper substrates was
presented. We obtain experimental data from carefully designed lateral flow ex-
periments in Whatman #1 paper. The extent and quality of these measurements
are evidenced by the excellent results in self-similarity of the profiles, with a very
low standard deviation obtained for all the collected data. We reproduced those
experimental fluid fronts with the best parameter fits of the models showing the
limitations and capabilities of each model to represent the moisture content func-
tion θ(φ). We used the Fronts solver, which showed remarkable efficiency in solving
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eq. 2: over ten thousand invocations for model fitting and twenty thousand invo-
cations for uncertainty quantification, for each model, in less than an hour of total
computing time.

Additionally, we presented an adapted model targeted to paper-based microflu-
idic applications based on LET model, with a reduced number of parameters yet
still showing an excellent performance in terms of accuracy and robustness. We
demonstrated the favorable characteristics of the LETd model through a data-
driven reconstruction of D(θ) and its comparison with different models. From this
study, we conclude that the simplifications made to obtain the LETd model from
the original LET-based models do not affect the ability to accurately represent the
experimental D(θ) in the whole domain of θ. This situation cannot be reproduced
with the Van Genuchten model for θ > 0.4, nor with the Brooks and Corey model
for almost the entire domain of θ. Additional studies were performed with differ-
ent geometries in order to confirm the validity of the reported model parameters
beyond lateral flow, yet also establishing the suitability of the LET-based models
to adequately model both fluid front profiles and flow velocity profiles.

An analysis on the propagation of uncertainties allowed us to characterize the
robustness of the models for representing the experimental data under different
experimental conditions. With the exception of E and T , all deterministic best
fit parameters obtained with Fronts were not included into the different density
distribution associated to the models. Additionally, non-trivial uncertainty prop-
agation was found only with the LETd model. These facts reflect the lack of
robustness of the classical models under variations of the experimental data. In
other words, when using classical models to fit experimental imbibition data, a
small variation of the measured values will produce completely different tuples of
ideal parameters, and maybe several of them will show similar fit performances.

Finally, after the presented analysis, it is possible to confirm that LETd model
can effectively represent fluid flow imbibition front in the whole range of θ, yielding
more robust and reproducible results than classical models when complex contem-
porary paper-based microfluidic devices are studied.
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