
Vol.:(0123456789)

SN Applied Sciences           (2020) 2:374  | https://doi.org/10.1007/s42452-020-2171-z

Research Article

Modeling and simulation framework for quality estimation of web 
applications through architecture evaluation

María Julia Blas1  · Horacio Leone1 · Silvio Gonnet1

Received: 3 December 2019 / Accepted: 3 February 2020 
© Springer Nature Switzerland AG 2020

Abstract
The explosive growth of the cloud computing industry in recent years has paying attention to problems related to 
software services quality. Given that quality models serve as frameworks for quality evaluation, this paper proposes a 
modeling and simulation framework that measures properties derived from ISO/IEC 25010 quality model as main quality 
concerns of cloud computing applications. The simulation models are obtained by translating the architectural design 
to an equivalent functional description that, with aims to obtain the quality evaluation, explores all possible compo-
nent states. Moreover, the framework automatically builds the simulation models using a set of predefined behaviors 
as components descriptors. Such models are combined with an experimental frame in a simulation scenario that helps 
to estimate quality employing the performance of the architectural design. Therefore the simulation process is hidden 
to software architects, providing an evaluation process able to be executed by any developer without knowledge of 
discrete-event simulation. Two general architectures are used as case study in order to show how works the modeling 
and simulation framework.

Keywords Cloud computing applications · Discrete-event simulation · Software quality evaluation · Routed DEVS 
formalism

1 Introduction

Cloud computing is a model for enabling convenient, on 
demand network access to a shared pool of configurable 
computing resources that can be rapidly provisioned and 
released with minimal management effort or service pro-
vider interaction [1]. Then, cloud computing applications 
(CCA) can be studied as software services.

Cloud-providers are able to seamlessly update their 
cloud applications without requiring users to install any 
sort of upgrade or patch since all cloud software resides 
on servers located in the provider’s data centers [2]. Thus, 
consumers no longer need to invest in infrastructure. 
Using the cloud infrastructure, a customer can get access 

to their applications anytime, and from anywhere, through 
a connected device to the network [3]. However, due to 
the increasing demand for cloud services and many con-
sumers deploying and hosting Information Technology 
services to cloud computing it is difficult for consumers 
to select the services appropriate to their needs [4]. Unlike 
many software vendors, if a new company puts up a com-
petitive service of higher quality, customers will almost 
immediately shift their application to the new service once 
they discover it [5]. Then, customers expect a certain level 
of maturity in software products and services, a level that 
turns software quality into a competitive advantage [6]. To 
remain competitive, software services must deliver high 
quality applications. Hence, developers must ensure the 
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software quality using conventional quality features prior 
deploying the CCA in the environment.

Software quality evaluation is a complex activity. 
According to IEEE [7], the software product quality refers 
to the degree to which a system, component, or process 
meets specified requirements. As software size and com-
plexity grows, the quality evaluation becomes a problem. 
The intrinsic features of CCA require more rigorous quality 
measurements than traditional software products [8].

In this context, it is important to understand that an 
early software quality evaluation has more value than a 
later evaluation of source code. In early stages of soft-
ware development, the challenge is achieve an adequate 
quality level to guarantee the application acceptance. 
However, there is little guidance available to help quality 
engineers to understand their applicability in the cloud 
service quality delivery chain [9]. Conventional method-
ologies do not effectively support the dynamic required in 
the quality properties evaluation of the cloud computing 
environments based on specific features such as scalabil-
ity. This lack of guidance challenges software and quality 
engineers to develop new solutions for quality measure-
ment. These solutions should be seen as complementary 
evaluation techniques of the traditional ones. This paper 
proposes a new simulation framework for estimating the 
CCA quality using the architectural description for struc-
turing the simulation model. The components used for 
building the architecture are obtained from cloud com-
puting patterns. All simulation models are specified using 
DEVS [10] and RDEVS [11]. The main objective is to provide 
a Modeling and Simulation (M&S) framework that allows 
studying a restricted set of quality properties over the CCA 
design prior its implementation.

This paper is organized as follows: Sect. 2 resumes the 
evaluation approaches commonly used for studying soft-
ware products quality and distinguishes them from the 
one presented in this paper; Sect. 3 summarizes of CCA 
structure including the quality properties and architectural 
patterns used as basis of the framework; Sect. 4 presents 
the design and implementation of the M&S framework; 
Sect. 5 details two case study based on comprehensive 
CCA architecture patterns; finally, Sect. 5 is devoted to the 
conclusions, final remarks and future research.

2  Quality evaluation in cloud computing

One of the main concerns of software engineering is the 
production of high quality software systems and thus soft-
ware quality evaluation has always been a critical task for 
software professionals [12]. Hence, quality is important 
and it can be improved (no matter if the software product 

under development is a standalone program or web-
based application).

In this context, software quality models are a well-
accepted means to support the quality management of 
software systems [13]. According to Roy et al. [9], software 
quality engineering requires the use of a quality model 
with the capacity to support both definitions of quality 
requirements and their evaluation. Then, quality models 
are the cornerstone of a product quality evaluation system 
[7]. Ideally, quality evaluations should be guided by quality 
models. A quality model is a standard taxonomy of qual-
ity attributes. Key features of CCA distinguish their qual-
ity attributes from conventional software quality proper-
ties. However, in both cases there are static and dynamic 
properties. Consequently, quality evaluation methods 
estimate distinct types of quality properties. Moreover, 
quality attributes are not mutually exclusive; rather, they 
tend to interact with each other. The value of one qual-
ity attribute may depend on the value of another quality 
attribute. Then, an important part of any quality evaluation 
method is the identification of the suitable subset of qual-
ity attributes. Quality evaluation methods do not use the 
same subset of quality attributes.

Actually several authors have proposed quality models 
for cloud computing environments. In [14] authors claim 
that “existing conventional quality models are not com-
petent enough for providing all software service specific 
features”. Therefore, they present a quality model to assess 
the quality of software as a service on cloud computing 
environments around quality properties. However, they do 
not state how to use the quality model for quality evalu-
ation. From this point of view, Bardsiri and Hashemi [15] 
provide a list of quality of service metrics that helps to 
study cloud services. A similar approach is developed in 
[8] were authors derive quality attributes from key features 
of cloud computing services and propose using the result 
of the measurement process as quality indicator. However, 
such evaluation requires a runnable version of the appli-
cation (given that dynamic quality properties cannot be 
measured until the application is effectively executed). 
Then, the quality evaluation is performed after the soft-
ware implementation.

In [16] the authors discuss a web quality evaluation 
method to assess web sites and applications. The paper is 
focused in fulfil quality requirements in web development 
projects and evaluate requirements in operational phases. 
The main concern of the authors is discovering absent 
features or poorly implemented requirements. Again, the 
quality evaluation is performed in late phases of the devel-
opment process. Moreover, Lew et al. [17] propose extend-
ing the ISO 25010 standard to incorporate new character-
istics and concepts in a flexible modeling framework. The 
final framework contributes towards a flexible, integrated 
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approach to evaluate web applications. The operability 
and learnability of a real web application are evaluated 
using the framework proposed by the authors.

In these researches, waiting until late in the develop-
ment process may reduce the impact of the effectiveness 
and efficacy of any software quality improvement actions 
and increase their cost [18]. However, models available in 
later phases are expected to be more accurate than those 
available in earlier phases. Then, both models are needed. 
In fact, the study performed in [19] concludes that tools, 
metrics and evaluation research are needed to provide 
useful and trust worthy cloud computing services that 
deliver appropriate quality of service. Even when late qual-
ity evaluation is better than nothing, early quality evalu-
ation may improve the development process in several 
ways. For example, an early identification of the set of soft-
ware modules that is likely to be faulty helps practitioners 
take timely actions to improve the quality of these mod-
ules and reduce development costs in the remainder of 
the development process [18]. The earlier quality require-
ments are considered, the less effort is needed later in the 
software lifecycle to ensure a sufficient software quality 
levels [20].

The notion of software architecture has emerged as the 
appropriate level to deal with software qualities because 
sets the boundaries for the quality of the resulting sys-
tem. Bass et al. [21] define software architecture as “the 
structure or structures of the system, which comprise 
software components, the externally visible properties of 
those components, and the relationships among them”. 
Hence, there is no such thing as an inherently good or bad 
architecture [21]. A good architecture is one that meets 
all its requirements. Then, architecture evaluation of soft-
ware products plays a central role in quality evaluation 
because it leads to correct designs that meet the set of 
quality requirements. Considering that Dobrica and Nie-
mela [22] suggest that there are three phases of interest 
to architecture evaluation (early, middle, and post deploy-
ment), most architecture evaluation methods are able to 
be used across the development process. The issue, how-
ever, is getting the information required to perform the 
evaluation.

There are two basic classes of evaluation techniques 
available at the architecture level: questioning and meas-
uring [21]. Questioning techniques generate qualitative 
questions to be asked over architecture design. These 
techniques are applicable to any quality property and 
their selection is not based on quality models. Com-
monly, questioning includes scenarios, questionnaires, 
and checklists. On the other hand, measuring techniques 
suggest quantitative measurements performed over the 
architecture such as metrics, prototypes and experiences. 
These techniques are used to answer specific questions 

and, therefore, usually are addressed to specific software 
qualities. Then, measuring techniques are not as broadly 
applicable as questioning techniques [22].

Both types of techniques (questioning and measuring) 
can be seen as conventional methods for software archi-
tecture evaluation. For example, the Software Architecture 
Analysis Method [23] evaluates design quality attributes 
by ranking candidate architectures on how well they sup-
port representative task scenarios. However, ones the 
architecture is implemented no further evaluation process 
can be performed to ensure its alignment with the quality 
attributes. Another example is the evaluation proposed 
by Morasca and Lavazza [18], where authors estimate the 
faultiness of a software module at any point during devel-
opment by using measures collected up to that time. They 
built faultiness models combining code measures and 
design measures in order to improve software quality by 
faultiness estimation models used at design time. In this 
case, the evaluation method can be used in several devel-
opment phases but its only concern is the measurement 
of an exclusive attribute.

All the conventional evaluation methods are useful to 
evaluate CCA software architectures. However, the evo-
lution of cloud computing environments requires more 
flexible quality evaluations methods that adjust to the 
expected dynamic of the applications [24, 25]. Evaluating 
the performance of cloud provisioning policies, applica-
tion workload models, and resources performance mod-
els in a repeatable manner under varying system and user 
configurations and requirements is difficult to achieve [26]. 
Hence, new quality evaluation methods arise to be used 
as complement of the conventional ones.

For example, in [27] authors propose fuzzy logic control 
to evaluate the quality of cloud services. The results dem-
onstrate that this approach performs an accurate evalua-
tion of quality in service-oriented cloud computing. This 
type of evaluation is focused on cloud services as holistic 
perspective of CCA. A similar type of evaluation is given 
by Garg et al. [28] as a framework that measures the qual-
ity and prioritizes cloud services. Such framework helps 
to create healthy competition among cloud providers to 
satisfy their service level agreement by improving their 
quality.

A different solution is developed in [26] where the 
authors propose an extensible simulation toolkit that 
enables modeling and simulation of cloud computing 
systems and application provisioning environments. The 
toolkit supports both system and behavior modeling of 
cloud system components such as data centers, virtual 
machines and resource provisioning policies. In this sense, 
the simulation appears to be a feasible solution for quality 
estimation as an alternative to conventional approaches. 
However, the toolkit proposed by the authors is devoted 
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to physical components. Therefore, it is not useful for 
the modeling and simulation of software application 
components.

This paper proposes a simulation framework that allows 
measuring quality attributes of CCA using a discrete event 
approach. The simulation models are obtained by translat-
ing the composition designed at architectural level into a 
set of models (devoted to the behavior and structure of 
these components). Then, the developers do not need to 
build the simulation model. Moreover, both functional and 
non-functional characteristics must be taken into consid-
eration in the development of a quality software system 
[29]. That is way most evaluation methods need an exe-
cutable version of the software product prior to estimate 
quality attributes. The addition of functional implementa-
tion as part of the evaluation justifies that models avail-
able in later phases are more accurate than those available 
in earlier phases. The M&S framework developed allows 
replacing the software product implementation in early 
phases of development by the simulation of well-known 
architectural component functionalities. Therefore this 
solution provides an evaluation method that presumes 
functionality without using its implementation. Given 
that the architectural representation is relevant in qual-
ity prediction and effort estimation [22], the architectural 
components included in the framework are controlled by 
a metamodel that defines CCA architectural patterns. The 
quality properties selected for the evaluation process are 

constrained by the ISO/IEC 25010 quality model [7]. Then, 
the framework allows measuring the behavior of CCA at 
design phase with aims to estimate the final product qual-
ity. Moreover, it can be used in late phases of development 
to assess the impact of architectural changes over actual 
quality (not necessarily obtained by the framework).

Table 1 resumes main differences among the quality 
evaluation approaches presented in this section follow-
ing the criteria: novelty, use of quality models, number of 
properties evaluated by the method, and development 
phase where is applicable.

3  Cloud computing applications (CCA)

The objectives of the cloud computing paradigm are to 
increase capacity and capabilities at runtime without 
investing in new infrastructure, licensing new software, 
and training new recruits [30]. To accomplish these objec-
tives, the cloud computing model delivers information 
technologies as customizable services. The model provides 
a pool of abstracted, virtualized, dynamically-scalable, 
managed computing power, storage, platforms, and ser-
vices that are delivered on demand to external customers 
over the Internet [24].

Commonly, cloud computing architectures are 
designed as layered structures [2, 31–33]. Layered archi-
tectures are a well-known architectural pattern in which a 

Table 1  Comparison of quality evaluation methods for software products

Novelty Fixed to 
a quality 
model

Number of proper-
ties evaluated by the 
method

Development phase where is applicable

Conven-
tional 
method

New method 
(complemen-
tary)

One property Multiple 
proper-
ties

Before implementa-
tion

After implementation

Jagli et al. [14] X X
Lee et al. [8] X X X X
Morasca and Lavazza 

[18]
X X X X

Olsina and Rossi [16] X X X X
Lew et al. [17] X X X X
Bardsiri and Hashemi 

[15]
X X X

Questioning tech-
niques

X X X

Measuring tech-
niques

X X X (e.g. metrics) X (e.g. prototypes 
and experiences)

Wang et al. [27] X X X
Garg et al. [28] X X X X
Calheiros et al. [26] X X X X
M&S framework (this 

paper)
X X X X X
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layer is conceived as a coherent set of related functionality 
[21]. In a strictly layered structure, layer n may only use the 
services of layer n – 1. However, strictly layer structures 
are not often used in real architectures. Figure 1 depicts a 
generic representation of cloud computing environments 
as five-layer architecture [30, 32].

Each layer should be interpreted as follows:

• The hardware layer (layer 1) is responsible for managing 
the physical resources of the cloud, such as physical 
servers, routers, switches, power and cooling systems.

• The software kernel layer (layer 2) is responsible to allo-
cate hardware resources (set at layer 1) to cloud users 
in an efficient, quick and smooth way.

• The software infrastructure layer (layer 3) creates a pool 
of storage and computing resources by partitioning 
the physical resources using virtualization technolo-
gies. This layer is commonly divided in three catego-
ries: Infrastructure-as-a-Service (IaaS) that refers to 
on-demand provisioning of computational resources; 
Data-as-a-Service (DaaS) that allows users to store an 
enormous amount of data on remote servers; and Com-
munication-as-a-Service (CaaS) that provides secure, 
reliable, and fast communication services for users.

• The software environment layer (layer 4) provides an 
application development platform and a set of Appli-
cation Programming Interfaces (APIs) to minimize the 
burden of deploying applications directly into virtual 
machine containers. Developers use these APIs as 
Platform-as-a-Service (PaaS) in order to program their 
applications without worry about hardware-software 
interactions.

• The application layer (layer 5) is the one that hosts the 
applications. Users can easily access such applications 
through a web client, even with limited processing and 
storage capabilities. This type of access is denoted as 

Software-as-a-Service (SaaS). The SaaS service provides 
the modeling of software deployment where users can 
run their applications without installing it in their com-
puters [3].

Following the architectural structure described in Fig. 1, 
the CCAs are deployed at the top level. Then, their soft-
ware architecture must be designed using services of lay-
ers 1–4. However, given that services from underlying lay-
ers are devoted to managing distinct aspects of the CCA 
execution, the set of elements used to design the architec-
ture needs to be arranged considering the functional and 
non-functional requirements.

Non-functional requirements, as opposed to functional 
ones, do not express any functionality to be implemented 
[34]. Given that systems qualities are often expressed as 
non-functional requirements -also called quality attrib-
utes-, such requirements are recognized as very important 
factor to the success of software project [35–37]. Then, the 
ability to specify the quality properties required in a CCA 
is an important issue for consumers and service provid-
ers. Quality models are powerful tools that allow identify-
ing the main quality properties to be evaluated in CCA. 
Moreover, the non-functional requirements are pervasive 
in descriptions of design patterns [38]. Software architects 
use design patterns to maintain balance between func-
tional and non-functional requirements. Therefore, the 
M&S framework proposed in this paper uses architectural 
patterns to define the set of elements to be used in the 
CCA architectural description.

The following subsections describe the quality proper-
ties and design patterns of CCAs that were used as base-
lines for building the M&S framework.

3.1  Quality properties

Different from traditional applications, the CCA can lev-
erage the automatic-scaling feature to achieve better 
performance, availability and lower operating cost [32]. 
Therefore, traditional quality models need to be modified 
to include quality properties of CCA.

In [39] authors use ontologies as model descriptor of 
quality schemes. A quality scheme is defined as “a set of 
triplets over a software product definition where each ele-
ment is composed by a software attribute, the software 
metric that should be used to its measurement and the 
quality subcharacteristic that should be evaluated over 
it”. The ISO/IEC 25010 quality model is used to bind the 
properties included in the scheme.

Quality schemes are generic documentation mecha-
nisms designed to describe the quality properties required 
in a software product and, therefore, their structure can be 
used to support quality documentation. Given that CCA 

Fig. 1  Cloud computing layered architecture
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quality evaluation implies the definition of quality proper-
ties, a CCA quality scheme can be defined to support the 
non-functional specification of this software product type. 
Using quality schemes as documentation strategy for CCA 
provides the quality agreement required for building the 
quality evaluation required as part of the M&S framework.

In recent years, several authors have studied the quality 
features of CCA [6, 8, 40–43]. Hence, in order to define a 
baseline for the CCA quality scheme, a set of twelve prop-
erties was selected: reusability, availability, scalability, ser-
vice customizability, functional feature commonality, non-
functional feature commonality, infrastructure utilization, 
invocation time, service stability, service accuracy, resource 
coverage and robustness of service. Then, each quality prop-
erty was defined using the quality scheme concepts to 
get a feasible abstraction of the CCA quality domain. For 
example, invocation time was included in the CCA qual-
ity scheme as an instance of software attribute because it 
refers to a measurable property –and the software attribute 
is defined as “an entity that can be verified or measured in 
the software product” [44].

Ones all quality properties were defined as elements of 
the quality scheme, each software attribute was related 
to a metric that defines its measurement method. These 
metrics were obtained from literature [8]. The ontology 
concepts allow defining properly the metrics documenta-
tion. It also allows studying metrics relationship with aims 
to obtain information related to their application. In order 
to complete the definition, each pair (attribute, metric) was 
related to a quality subcharacteristic of the ISO/IEC 25010 
quality model.

Table 2 resumes the CCA quality scheme used as evalua-
tion goal of the M&S framework. The elements highlighted 
in italics depict the original quality properties to be evalu-
ated in CCA.

3.2  Software architecture: design and patterns

Architectural design is a creative process where you 
design a system organization that will satisfy the func-
tional and non-functional requirements of a system 
[45]. Several authors argue that architectural decisions 
are the core of software architectures [46–48]. Jansen y 
Bosch [49] define an architectural design decision as “a 
description of the set of architectural additions, subtrac-
tions and modifications to the software architecture, 
the rationale, and the design rules, design constraints 
and additional requirements that (partially) realize one 
or more requirements on a given architecture”. Soft-
ware architectures have evolved from structural rep-
resentations to decisions centered design models [50]. 
Therefore, the design patterns aid in documenting and 

communicating proven design solutions to recurring 
problems [38]. Given that non-functional requirements 
play a fundamental role when software architects need 
to make informed decisions [51], the architectural pat-
terns show singular power in linking functional and non-
functional consequences of an architectural approach 
together [52].

An architectural style defines a family of systems in 
terms of a pattern of structural organization. From this 
definition, architectural patterns solve regular prob-
lems by linking architectural elements into structural 
descriptions. Specifically, architectural styles determine 
the vocabulary of components and connectors that can 
be used in instances of the style, together with a set of 
constraints on how they can be combined.

Researches have study architectural patterns over tra-
ditional software products for years [53, 54]. However, 
the architectural styles useful in the CCA domain are 
not fully understood yet. A prominent approach in this 
field is the one proposed in [33], where authors describe 
architectural patterns that allow modeling CCA architec-
tures using a restricted set of architectural styles. This 
approach involves both infrastructure and application 
design. Therefore, it gives a complete definition of the 
elements required for building CCA architectures. In 
this sense, CCA application patterns allow building web 
applications solutions by abstracting the infrastructure 
components into independent ideal scenarios (scenar-
ios where infrastructure components execute software 
requirements without any constrain). Therefore, such 
patterns are useful to identify the set of components 
and connectors that provide an appropriate abstraction 
of the CCA software architecture.

With aims to define a representation of the CCA soft-
ware architecture, the application patterns proposed in 
[33] were used as start point for the architectural design. 
Hence, a subset of patterns was analyzed in terms of their 
components and connectors to get a full definition of 
their structure. These architectural elements were used to 
build a conceptual metamodel that allows to validate the 
CCA patterns over architectural designs. Specifically, three 
types of components were identified:

(1) Application components Architectural elements used 
to define the functional requirements of the CCA. 
There are two types of application components: 
components used to define domain functionalities 
(domain-specific components), and components fre-
quently used as standard templates in the develop-
ment of CCA (e.g. load balancer and message queue).

(2) Management components Architectural elements 
used to automatically manage the behavior of the 
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Table 2  CCA quality scheme

a ET = TSIT – WT where WT = waiting time
b CR = TR – IR where IR = number of incorrect responses
c AT = TT – FT where FT = service failure time
d Tf = TF – FNF where TF = total number of faults

Quality characteristic Quality subchar-
acteristic

Software attribute Metric

Name Equation

Performance efficiency Time behavior Invocation time Time behavior from user 
perspective

TBU =
ET

TSIT

ET = execution timea

TSIT = total service invocation time
Resource utiliza-

tion
Infrastructure utili-

zation
Hardware resources utiliza-

tion
HRU =

AR

PR

AR = amount of allocated resources
PR = amount of pre-defined resources

Reliability Maturity Service accuracy Replies accuracy RA =
CR

TR

CR = number of correct responsesb

TR = total number of requests
Availability Robustness of 

service
Service robustness SR =

AT

TT

AT = available timec

TT = total time
Fault tolerance Service stability Coverage of fault tolerance CFT =

FNF

TF

FNF = number of faults without becoming 
failures

TF = total number of faults
Coverage of failure recov-

ery
CFR =

RF

Tf

RF = number of failures remedied
Tf = total number of failuresd

Scalability Resource coverage Coverage of scalability
COS =

1

k
×

k
∑

i = 1

ARi

TRRi

k = number of allocation requests
ARi = amount of allocated resources of the ith 

request
TRRi = total amount of requested resources of 

ith request
Maintainability Reusability Service customiz-

ability
Coverage of variability CV =

VPCCA

VPDVPCCA  = number of variation points realized in 
the application

VPD = number of variation points in the 
domain

Functional feature 
commonality

Functional commonality
FC =

1

n
×

n
∑

i = 1

RFCi

Tr

n = number of functional features
RFCi = number of requirements applying the 

ith functional feature
Tr = total number of requirements analyzed in 

the domain
Non-functional 

feature common-
ality

Non-functional common-
ality NFC =

1

m
×

m
∑

i = 1

RNFCi

Tr

m = number of non-functional features
RNFCi = number of requirements applying the 

ith non-functional feature
Tr = total number of requirements analyzed in 

the domain
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CCA by monitoring the behavior of the application 
components.

(3) Functional components Architectural elements that 
exhibit elemental responsibilities used to define com-
plex functionalities in application components.

Table 3 resumes the main elements included in the UML 
description of the metamodel. Such UML description 
defines the set of classes, relationships and attributes used 
for modeling the CCA software architecture. In order to 
include the design constraints related to the architectural 
patterns, the UML description was complemented with 
OCL constraints. Such constrains help to verify the archi-
tecture designed from the UML description in terms of the 
CCA patterns.

Given that architectural components are defined in 
terms of their behavior as part of the pattern, the M&S 
framework uses the elements defined in the metamodel 
as functional sketch of the simulation model.

4  The simulation framework for cca 
architectures

Figure  2 depicts the structure of the M&S framework 
designed to estimate the quality of CCA products using 
the architectural design.

The infrastructure of the framework is defined in Java. 
Specifically, the Eclipse IDE1 is used at the bottom layer to 
support the modeling and simulation tasks.

For modeling the CCA architecture, the framework 
employs a CCA plugin for Eclipse developed using the 
components and connectors defined in the CCA meta-
model (described in Sect. 3.2). Such plugin was imple-
mented using two projects from the Eclipse Modeling 
Project2: EMF/GMF [55, 56] and Sirius.3 The Eclipse 

Table 3  Elements used for modeling the software architectures of CCA 

Type Architectural element Description

Type Subtype

Component Application Domain-specific Its behavior is explicitly defined using a sequence of functional components
Load balancer Determines the number of synchronous accesses to the CCA 
Message queue Determines the number of asynchronous accesses to the CCA 

Management Elastic load balancer The number of synchronous accesses to the application is used to determine the 
instances of the component

Elastic queue The number of asynchronous accesses to the application is used to determine the 
instances of the component

Provider adapter Wraps the provider interfaces into an abstract interface to be used within the scope 
of the distributed application

Configuration manager Application components should use a centrally stored configuration to provide a 
unified behavior

Elastic manager Monitors the utilization of cloud resources on which application component 
instances are deployed

Functional Processing Processing functionality is split into separate function blocks and assigned to inde-
pendent components

Batch processing Requests are delayed until environmental conditions make their processing feasible
User interface Bridge between the synchronous access of the human user and the asynchronous 

communication used with components
Data access Coordinates data manipulation if different storage offerings are used
Data abstractor The style of data representation is adjusted to allow data retrieved from storage 

offerings to be eventually consistent
Idempotent processor Ensures that duplicate messages and inconsistent data do not affect application 

functionality
Connector External link Unidirectional Connection that links application components in a single direction

Bidirectional Connection that links application components in two opposite directions
Special Links among management and domain-specific components that handle special 

data, such as number of instances and resources allocation
Internal link Sequential Links among functional components that determine the execution flow of domain-

specific components

1 Available at http://www.eclip se.org/.
2 Available at https ://eclip se.org/model ing/.
3 Available at https ://eclip se.org/siriu s/.

http://www.eclipse.org/
https://eclipse.org/modeling/
https://eclipse.org/sirius/
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Modeling Framework (EMF) was used to deploy the UML 
description of the metamodel in terms of Java classes, 
while the Graphical Modeling Framework (GMF) was 
used to define the graphical notation attached to archi-
tectural components. Additionally, the Sirius project 
was adopted to allow building a CCA architecture using 
the graphical elements defined for the metamodel. Sec-
tion 4.1 presents this graphical modeling tool based on 
Eclipse.

For simulation purposes, the framework employs DEVS-
JAVA [57–59] which support the execution of models writ-
ten in Java. Moreover, the CCA framework uses the Routed 
DEVS (RDEVS) framework detailed in [11] to structure the 
simulation models of the CCA architecture. The Routed 
Discrete Event System Specification formalism [11] is a 
subclass of DEVS [10, 60] that provides a solution for rout-
ing problems over discrete event models. The software 
architecture simulation can be studied using the routing 
problem perspective. Then, RDEVS models allow defin-
ing the behavior required for each architectural element 
in terms of their functionality (without worry about the 
interactions among components). In this case, the rout-
ing information manages the events flow. Then, a unique 
model can be used in several simulation instances sur-
rounded with different routing information in order to get 
distinct CCA situations.

The CCA simulation scenarios combine simulation mod-
els specified using DEVS and RDEVS formalisms. While 
RDEVS models represent the CCA architecture to be evalu-
ated, the DEVS models are used to explicitly define the 
experimental frame needed to control the quality estima-
tion. Sections 4.2 and 4.3 describe how RDEVS formalism is 
used for building the CCA simulation model along with the 
structure designed for modeling the simulation scenarios.

4.1  Software modeling tool for designing CCA 
architectures

The software modeling tool was designed as a graphical 
representation of the CCA metamodel. The UML descrip-
tion was implemented as an Ecore model using the EMF 
plugin. Moreover, the OCL constrains were added to the 
Ecore model as a set of constrains that verifies the cor-
rectness of the metamodel instances (i.e. the CCA models). 
The graphical notation of the architectural elements was 
added with the GMF tool. Both specifications (Ecore model 
and graphical notation) were linked in a single software 
plugin for Eclipse using Sirius as intermediate.

Given that software architectures are defined as 
graphical designs, the plugin developed allows mod-
eling CCA software architectures through the graphical 
notation of the architectural elements. Therefore, archi-
tects can use these elements to build their designs with-
out carry out an explicit instantiation of the metamodel. 
Figure 3 shows a screenshot of the CCA plugin that high-
lights four sections. The project explorer (Sect. 1) details 
the Eclipse project where the architectural design is 
build. The properties of the project are defined by the 
architect in order to identify the CCA related to the 
design. Section 2 is the design area in which the archi-
tect must depict the CCA architecture. The available 
architectural elements are detailed in the tools palette 
(Sect. 3). This palette contains the graphical representa-
tion of all architectural elements defined in the meta-
model (i.e. components and connectors) grouped by 
type and subtype. Finally, the table detailed in Sect. 4 
allows defining properties for each architectural element 
included in the CCA design.

In order to define an instance of the metamodel, the 
architects build a CCA design using the tools palette and 
the properties table. The compliance of their designs can 
be verified employing the OCL constrains that ensure the 
correctness of the architectural patterns. This gives a struc-
tural evaluation of the design. Such evaluation provides 
an early assessment of the CCA architecture designed in 
terms of well-established patterns that ensure a good 
implementation of non-functional requirements. If the 
plugin detects pattern violations, it shows a warning mes-
sage to the architect. This message does not prohibit con-
tinuing the quality evaluation. The architect should decide 
whether to maintain the actual design or change it before 
executing the quality evaluation.

Fig. 2  Software modules that compose the M&S framework
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4.2  RDEVS as modeling and simulation formalism 
for CCA software architecture

Software architectures can be seen as a set of components 
along with the connections among them. Such connections 
are defined in terms of interactions. That is, two architectural 
elements A and B are connected if and only if they need to 
interact with each other to solve some type of user request. 
Therefore, architectural connections represent all possible 
interactions among components.

When a user request needs to be solved, a subset of 
architectural interactions is used to navigate among com-
ponents. Moreover, in a CCA scenario multiple replicas of 
the same component are distributed among all available 
resources. If each architectural component is reflected as a 
simulation model with its own behavior, then all its replicas 
must exhibit the same behavior. However, although there is 
a defined behavior for each type of component, the inter-
actions among them depends on the user request. Then, 
the requests flow among components depends on the rep-
licas available to execute the processing required for solv-
ing the user petition. That is, the same type of user request 
can take different routes (i.e. to be processed by different 
replicas) even when all the requests are solved in the same 
cloud computing environment. As a result, the route of each 
request (that is, the events flow) is given by the structural 
connections among components but, also, it is influenced by 
the available replicas. Therefore, the components behavior 

should consider routing information related to its replicas. 
Only the connections with feasible replicas for the request 
type will be valid.

In this context, the interactions are defined structurally 
at the architectural level but their effective use as routes is 
given at request level. These properties allow studying the 
simulation of CCA software architectures as a routing prob-
lem and, therefore, the RDEVS formalism proposed in [11] is 
applicable for building the simulation models.

In order to define a simulation model based on the archi-
tectural design, each simulation model required for the CCA 
simulation is obtained by mapping the components of the 
metamodel with a defined behavior. Such mapping allows 
building independent models that can be coupled follow-
ing the structural definition (that is, the CCA software archi-
tecture) using the metamodel connections. Moreover, since 
the RDEVS models use routing information to manage the 
events flow, the simulation models can use the request type 
as support information to redirect events across couplings.

4.2.1  Getting RDEVS models from the CCA software 
architecture

The RDEVS formalism is based on three types of simulation 
models: essential model, routing model and network model. 
Each model helps to define a structure among elements 
that provides a simulation scenario for the modeling a 
routing problem.

Fig. 3  CCA modeling software tool
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The RDEVS essential model defines the behavior of rout-
ing components. Formally, its structure is equivalent to the 
DEVS atomic model definition. In order to represent the 
CCA simulation, the behavior of all architectural compo-
nents defined in the CCA metamodel were explicitly for-
malized as essential models. Moreover, each type of archi-
tectural component was defined as an essential model 
that exhibits its own behavior according to its architectural 
definition. Since management components require an infra-
structure deployment to be managed, an ideal scenario 
was used as a first attempt for quality evaluation. Each 
architectural element defined as management compo-
nent in the metamodel was detailed as an essential model 
that helps to organize the instances of application com-
ponents. Meanwhile three types of essential models were 
defined in order to represent application components. Two 
of them were used to represent the behavior of common 
components (load balancer and message queue). The third 
one was defined abstractly as the functional definition of 
domain-specific components (detailed by a sequence of 
functional components) in terms of the behavior expected 
by the interactions of its internal functions (including all 
possible internal states). From this perspective, each func-
tion (represented architecturally as functional component) 
can be executed as processing, processing with faults or 
inactive by failure. Then, the essential model attached to 
a domain-specific component is obtained by translating 
all the possible internal states that follows the sequence 
of functional components that compose it. Each func-
tional component is defined considering its own behavior 
in order to maintain its responsibility. By following this 
approach, the functional components provide the behav-
ior definition of domain-specific components without need 
to build new simulation models for specific CCA modules. 
Moreover, the translation proposed among functional 
and domain-specific components helps to build automati-
cally the simulation model of any software functionality 
required in CCA architectures without need to provide any 
other information about its execution.

In RDEVS formalism, the routing model defines the basic 
simulation component used as part of the routing process. 
It embeds the routing component behavior as an opera-
tional description of its own behavior. Then, the essential 
model is embedded in the definition of the routing model 
as one of the main components required for its specifi-
cation. Besides the essential model, the routing model 
includes information related to the input events accept-
ance and the output events destination. Such informa-
tion is called routing information. Therefore, the routing 
model is defined as a simulation model that exhibits the 
essential model behavior only when input events should 
be accepted agreeing to its routing information. Further-
more, the output events are created following the output 

function of the essential model and including the routing 
information required to get their destination. Hence, sev-
eral routing models can be defined using the same essential 
model with different routing information. As consequence 
of this combination, each routing model will exhibit differ-
ent behavior in terms of the input event acceptance and 
the output events destination. Such flexibility allows build-
ing distinct simulation model configurations employing 
the same definition of the component behavior.

If the CCA simulation model is seen as the routing pro-
cess to be solved in terms of a routing problem, each node 
composing the routing problem should be seen as the 
equivalent RDEVS routing model. Therefore, each replica of 
the architectural components available over the infrastruc-
ture resources should be interpreted as a routing model. 
Such routing models are composed by the essential models 
defined for the related architectural component.

Finally, the RDEVS network model describes a complex 
simulation model that provides a structure over the indi-
vidual components in order to depict a routing process 
among them. Its definition includes a set of routing mod-
els and the couplings among them. Each routing model 
can be interpreted as a node. The couplings among nodes 
are defined as all-to-all connections in order to leave the 
routing task to the routing information defined in each 
node. In this sense, the simulation model that depicts the 
structure of the CCA software architecture was defined as 
a network model composed by the routing models obtained 
from the replicas designed by using the set of available 
components.

Table 4 summarizes the RDEVS models designed for 
each architectural component included in the CCA met-
amodel. By using the translation proposed in the table, 
the simulation models designed with RDEVS formalism 
provides a generic structure in terms of the architecture 
without consider the events flow as part of the defined 
behavior. Therefore, the routing information can be modi-
fied without need to adapt the behavior of the essential 
models that represents the architectural components.

4.3  CCA simulation scenario as a combination 
of DEVS and RDEVS models

A simulation scenario was defined to provide a solution 
for the quality estimation based on the CCA simulation 
model. Such scenario is depicted in Fig. 4. As figure shows, 
the simulation model to be evaluated is called CCA Archi-
tecture. Such model is obtained by automatically translat-
ing the CCA software architecture (that is designed using 
the CCA metamodel) to the equivalent simulation model 
defined as a RDEVS network model. However, given that 
the routing problem is attached only to the software 
architecture model, the experimental frame was designed 
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using DEVS formalism [10]. Both models are coupled in 
terms of three types of events: request, out-of-use and 
component-state.

The request event is used to test the CCA Architecture 
employing different types of user request. When this type 
of event is taken as input event in the CCA Architecture, the 
evaluation process is performed over such request. After 
finishing its processing, the request event is sent as output 
event of the CCA Architecture. This output event includes 
all the measures obtained during the processing. If the 
state of architectural components changes during the 

processing, the CCA Architecture sent a component-state 
event to notify this situation to the experimental frame.

In this context, the experimental frame was defined as a 
DEVS coupled model composed by three internal models: 
request generator, out-of-use generator and MRM (metrics 
measurement model). The request generator was defined as 
a DEVS coupled model that produces the user requests to 
be processed in the architecture. Five types of simulation 
models were defined in order to get distinct behaviors. 
Most user behaviors can be studied from the continuous 
perspective (as workloads). Then, the simulation models 
proposed in [61] combines continuous and discrete mod-
els with aims to describe common workloads performed 
by CCA users. These models were included in the M&S 
framework as available request generator models to be 
used in simulation scenarios.

The out-of-use generator and MRM were designed as 
DEVS atomic models. The out-of-use generator produces 
an out-of-use event that ends the simulation execution. 
This event is produced when the remaining time is zero. 
When the CCA Architecture receives an out-of-use event, it 
stops the processing and leaves the simulation models in 
inactive state. This mechanism ensures that the metrics 
measurement process is executed only when simulation 
models are active.

Table 4  RDEVS models that represent each type of element required for the CCA simulation

CCA software architecture RDEVS model that represents it

Element Type Subtype

Architectural component Application Domain-specific An essential model built using the sequence of states 
defined from the functional components included in the 
component

Load balancer An essential model specifically defined to exhibit the load 
balancer behavior

Message queue An essential model specifically defined to exhibit the mes-
sage queue behavior

Management Elastic load balancer An essential model defined specifically to represent the 
behavior of each management component over an ideal 
infrastructure

Elastic queue
Provider adapter
Configuration manager
Elastic manager

Functional Processing A state inside the essential model that represents the 
domain-specific component where the functional compo-
nent is used as part of the defined sequence. Each compo-
nent maintains its functional definition in order to provide 
a specific functionality

Batch processing
User interface
Data access
Data abstractor
Idempotent processor

Replica Architectural component A routing model composed by the essential model defined 
for the architectural component detailed in the replica 
along with its routing information

Software architecture – A network model composed by a set of architectural replicas 
defined as routing models

Fig. 4  Simulation scenario used in the framework
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Finally, the MRM model is used to calculate the set of 
metrics presented in Table 2. The events flow proposed 
between the CCA Architecture and experimental frame 
allows measuring direct metrics (Table 5). These metrics 
are grouped to get the final quality evaluation. Such qual-
ity evaluation is centered in the original quality properties 
modeled in the quality ontology [39]. Given that the MRM 
model uses a specific set of events to estimate multiple 
quality metrics; the M&S framework provides a solution 
that allows evaluating several quality properties using the 
software product architecture. The measures obtained 
during the simulation are stored in a CSV file to provide 
an analyzable output.

5  Case study: building the simulation model 
for two CCA software architectures

Most web applications use N-tier architecture style to 
arrange its components. In this context, two-tier and 
three-tier distributions are commonly used in CCA soft-
ware architectures. Both distributions were studied using 
the M&S framework to ensure the accuracy of the simula-
tion models.

A two-tier cloud application implements the CCA sepa-
rating the data tier from the presentation and business 
logic tier. Meanwhile, a three-tier cloud application needs to 
be able to scale presentation, business logic, and data han-
dling independently (because the requirements of these 
functions regarding the necessary number of application 

component instances to handle workload differ greatly). 
Figure 5 shows both distributions using the patterns pro-
posed by Fehling et al. [33].

Even when both architectures use the same com-
ponents, the communication paths that describe the 
expected execution must know the number of replicas 
available for the processing. In the two-tier cloud appli-
cation (Fig. 5a) an elastic load balancer determines the 
number of required instances of application components 
and provisions and decommissions them as needed (to 
ensure an appropriate number of instances for the num-
ber of user accesses). These application components 
handle accesses by users, workload processing, and data 
access in a holistic fashion. Instead, in the three-tier cloud 
application (Fig. 5b) the elastic load balancer provisions 
or decommissions presentation application components 
using the number of requests sent to the presentation 
tier. After handling the request and validating the nec-
essary user inputs the presentation component sends 
the request to the message queue for the business logic 
tier. When one of the business logic components is idle, 
it consumes the message from the queue and processes 
the message. After processing the message, it sends the 
data to be stored to the message queue for the data tier.

Then, the simulation models that denote both CCA 
software architectures need to represent multiple 
instances of some components in order to direct the 
events flow. However, the architectural components 
scale without modifying the architecture design. So, the 
simulation models should be tested with several num-
bers of replicas to study their performance in multiple 
simulation scenarios.

In order to evaluate the CCA software architectures, 
both structures were modeled with the M&S framework. 
Figures 6 and 7 shows the architectural models designed 
using the plugin described in Sect. 4.1. If the architecture 
is built from scratch, the modeling plugin can be used 
also as software support tool for the design task. Given 
that both CCA architectures are conceived as predefined 
patterns, the modeling was performed only to obtain the 
component structures required for building the simula-
tion models.

After defining the architectures, the M&S framework is 
able to apply automatically the set of translation rules to 
get the equivalent RDEVS network model for each CCA 
architectural design. Table 6 resumes the number of RDEVS 
models obtained in each case by applying a defined num-
ber of replicas for application components.

As table shows, building the simulation models apply-
ing an automatic translation reduces the number of tasks 
assigned to the software architect. If the task of building 
the simulation models manually had assigned to the soft-
ware architect, the time spend in the design phase will 

Table 5  Direct metrics obtained by the framework during the simu-
lation

a A wrong solution is given when some architectural component 
exhibits the processing with faults state
b The CCA is inactive when all replicas of an architectural compo-
nent exhibit the fault state
c A fault is a temporal issue that can be solved. A failure is a fault 
that cannot be solved and, therefore, the component needs to be 
replaced by a new replica
d Replicas created to solve a fault

Variable Description Unit

ET User request processing time Time
TSIT Total time to solve a user request Time
TR Number of requests solved Requests
IR Number of requests with incorrect 

response or  solutiona
Requests

FT Inactive  timeb Time
TT Operative time Time
FNF Number of faults that are not  failuresc Faults
TF Number of faults Faults
RF Number of failures  solvedd Failures
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increase. By using the framework, the architect only needs 
to configure some parameters and the simulation models 
are automatically created from the architectural design 
according to the number of replicas desired for each appli-
cation component to be scale out.

Then, the framework builds the simulation models 
using the translation rules designed for the architectural 
components involved in the architecture design. Such 
translation leads to simulation models that ensure the 
accuracy of the RDEVS formalism. Moreover, the transla-
tion process is hidden to architects in order to maintain 
independence between modeling and simulation tasks. 
This independence provides an appropriate separation 
of skills required for CCA software architects. That is, the 
software architects only need to develop the architecture 
using the available components without worry about 
how such design will be mapped to the RDEVS simulation 
model. Therefore, this abstraction allows both architects 
and developers to use the M&S framework without any 
knowledge of discrete event simulation.

The RDEVS network models obtained from the transla-
tion process executed from the architecture design were 
used in several simulation scenarios to evaluate their per-
formance. Multiple simulations were carried out with aim 

to validate the accuracy of the simulation models devel-
oped for representing the CCA architectures. Thus, the 
behavior of the proposed simulation models is related to 
the benefits of the architectural design patterns used as 
basis while building the architecture.

In this context, the main characteristics derived from 
a greater number of tiers used as part of an architectural 
design include: (1) the possibility of replicating and scal-
ing independently each of the defined application com-
ponents; and (2) the impact of the faults and failures over 
the replicas scaled out at application level.

In a two-tier architecture, the only way to process 
a request is using an instance of the application com-
ponent (in Fig. 5a such component is depicted by the 
presentation and business logic tier). Once the available 
resources are full (therefore, they cannot allocate new 
replicas), new requests cannot be processed until some 
component is released from its assigned task. On the 
other hand, the three-tier architecture (Fig. 5b) can scale 
out each tier as independently. Such distribution allows 
release application components while different func-
tions are executed.

Furthermore, in the two-tier architecture each replica 
built for an application component has the responsibility 

Fig. 5  CCA software archi-
tectures commonly used in 
N-tier distribution modeled by 
Fehling et al. [33]
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of executing all the functions included in its behavior. 
The presence of some fault or failure during its execution 
leads to an application error that must be solved because 
it interferes with a high-level component. However, given 
that in the three-tier architecture the functions are broken 

down (giving a set of application components that exe-
cute a restricted set of functionalities), the presence of 
some fault or failure does not necessarily entail an error 
at application level.

Fig. 6  Screenshot of the two-tier architecture modeled with the framework

Fig. 7  Screenshot of the three-tier architecture modeled with the framework
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In order to exploit both scenarios, several simulations 
were executed using different availability for the maxi-
mum number of replicas to be allocated. Four scenarios 
were carried out with numberOfReplicas = 5, numberOf-
Replicas = 10, numberOfReplicas = 20 and numberOfRepli-
cas = 50. In all scenarios executed, the request-generator 
model was configured with the same type of user behavior 
in order to allow results comparison.

First, the number of requests attended by the CCA was 
studied. Figure 8 presents the number of user requests 
processed inside the CCA during the simulation. As can 

be seen, in the case of Fig. 8a there is a steep slope that 
disappears as the number of replicas available increases 
(Fig. 8b–d). This can be due to two reasons: (1) lack of 
application components availability; or (2) failure states 
in undefined application components. In the first case, 
incoming requests are discarded as a consequence of the 
lack of replicas that must process their content in order to 
get a user response. These requests remain in the simula-
tion model, making the slope of the curve grow (Fig. 8a). 
Another possibility is that some application component 
goes into a failure state. Therefore, the requests assigned 
to such component are discarded (because the compo-
nent is not able to process them). Then, these requests are 
lost within the application, making the slope of the curve 
grow (Fig. 8a). By analyzing the metric Tf (total number of 
failures) in different executions with the same configura-
tion it is observed that the existence of this slope is not 
only derived from the presence/absence of failure states. 
Even, the slope is present in the absence of faults. Further-
more, as it is illustrated in Figs. 8b–d, if the number of rep-
licas is increased the slope disappears and the number of 
requests in the application is limited.

A similar behavior is observed for the three-tier archi-
tecture (Fig. 9). However, the slope in Fig. 9a is smaller than 
the one presented in Fig. 8a. The number of requests that 

Table 6  Number of simulation models created automatically by the 
M&S framework with aims to represent two and three tiers archi-
tectures

a Number of RDEVS models required to build a single network 
model composed by N instances (replicas) of the application com-
ponents

Model Number of RDEVS  modelsa

Essential 
models

Routing models Net-
work 
models

Two-tiers application 3 2 + N 1
Three-tiers application 7 6 + 3N 1

Fig. 8  Requests being process by the two-tiers architecture. a numberOfReplicas = 5, b numberOfReplicas = 10, c numberOfReplicas = 20, d 
numberOfReplicas = 50
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are discarded in the three-tier architecture is smaller than 
in the two-tier architecture. Hence, the performance of the 
three-tier architecture is better than the architecture of 
two-tiers.

Figure  10 shows the average number of requests 
answered TR (total number of requests) in the cases ana-
lyzed over an increasing number of available replicas. As 
can be seen, when the number of replicas increases from 
5 to 10, there is a significant difference in the value of TR 

for the two-tier architecture. This is because some of the 
discarded requests in a configuration with numberOfRep-
licas = 5 are processed correctly in a configuration with 
numberOfReplicas = 10.

In the case of five available replicas it is evident that 
the model of the three-tier architecture has a better 
performance for the general processing of the requests 
(Fig. 10). This is consistent with the analysis performed in 
terms of the requests processed/discarded in both design 

Fig. 9  Requests being process by the three-tiers architecture. a numberOfReplicas = 5, b numberOfReplicas = 10, c numberOfReplicas = 20, d 
numberOfReplicas = 50

Fig. 10  Comparison between the average requests solved by both 
CCA architectures

Fig. 11  Comparison between the average requests solved by both 
CCA architectures in a new configuration of the request-generator 
model
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structures. However, in cases of 10, 20 and 50 replicas the 
value of TR is similar in both architectures. In order to verify 
that this similarity is due to the fact that the configura-
tion of the models does not allow a greater scalability of 
the requests, alternative scenarios were executed modi-
fying the behavior used in the request-generator model. 
Figure 11 presents the same analysis using a new config-
uration in the request-generator model. As figure shows, 
the two-tier architecture model presents significant dif-
ferences with respect to the three-tier model when there 
are 5 and 10 replicas of the application components. 
In cases of 20 and 50 replicas, the number of instances 
implemented seems to be enough to process all the 
requests. Then, the difference between the TR values is 
not visualized.

Then, the analysis performed in order to study the 
behavior of both architectures from the number of replicas 
required for application components is reliable in com-
parison with the expected behavior of the design patterns 
they represent.

In order to test the handling of failure states, sev-
eral simulations were also performed. The simulations 
were executed with different values of the failureProb-
ability parameter related to functional components 
included in the architecture (failureProbability = 0.5 and 

failureProbability = 1). In all cases, the number of available 
replicas remained fixed in numberOfReplicas = 25.

As an example, Figs.  12 and 13 show the results 
obtained for the SR (service robustness) metric in four exe-
cutions using failureProbability = 0.5. The SR metric refers 
to the relationship between the total operation time and 
available time of the CCA service. When all the replicas of 
the same application component go into failure state, the 
system is not available and, therefore, it will not be able 
to process new requests (SR = 0). Then, a value near to 1 
indicates that it is highly probable that, at a given time, the 
system is in service. As can be seen, the three-tier architec-
ture maintains a high SR level (SR = 1) for a period of time 
greater than the one exhibit in the two-tier architecture. 
Making the same comparison with failureProbability = 1, 
the three-tier architecture presents better performance 
than the two-tier model. Such behavior is due to the sepa-
ration of the responsibilities in the three-tier pattern that 
provides a smaller impact of failure states at functional 
component over the CCA. In the case of two tiers, a failure 
in any of the functional components involved in the design 
of an application component will result in the failure of 
the all application. However, in the three-tier architecture 
the independence among application components pro-
vide also independence among functional components. 
Then, failure states at functional component level will only 

Fig. 12  SR in the two-tier architecture with failureProbability = 0.5
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impact on the application component related to it (not to 
all the application as in the two-tier model).

Moreover, it is observed that when increasing the 
probability of failure, the number of processed requests 
is reduced in both cases (Fig. 14). Then, when the model is 
in failure state the system solves a lower number of user 
requests. Again, the designed simulation models have 
reflected a behavior consistent with what is expected in 
the design patterns they represent.

6  Conclusions and future research

In this paper we present a modeling and simulation frame-
work that provides an evaluation model for quality estima-
tion in early stages of development for cloud computing 
applications. By using the software architecture as sketch, 
the framework provides an engineering solution that helps 
to study the performance of cloud application designs by 
measuring a defined set of quality properties. As software 
architectures are defined from architectural patterns, 
architectural components included in the framework were 
obtained from the study of real architectural patterns. 
The translation between architectural components and 
simulation models is performed as a hidden process that 
maps predefined simulation models to the architectural 
structure outlined by the design. Further, the same design 
can be tested using different number of instances of the 
application components (defined as component replicas) 
to study their deployment over the resources.

The framework can be used as support tool in software 
engineering processes to improve the quality of the final 
cloud application using an early estimation across the 
development. One of the main advantages of the frame-
work is the possibility to study the performance of sev-
eral designs without implementation effort. The software 

Fig. 13  SR in the three-tier architecture with failureProbability = 0.5

Fig. 14  Average requests processed with failure states
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architect can experiment with the CCA design to improve 
its final proposal with aims to fulfil the quality expecta-
tions. Moreover, the framework can also be used to study 
how architectural changes can improve the performance 
of already existing architectures. On the other hand, the 
limitations are related to the predefined set of architec-
tural components. Even when new components could 
be added to the metamodel, such addition will always 
require a new mapping with a new simulation model. 
Also, although the framework is limited to a defined set of 
quality measures, since the CCA Architecture model is built 
considering all possible states of architectural components 
and the events flow is managed by the simulation formal-
ism, new quality properties can be added. Such addi-
tion will probably involve changes over the MRM model 
included in the experimental frame in order to calculate 
new metrics.

The authors are currently using the framework to evalu-
ate a variety of cloud applications in order to obtain new 
quality properties to be included as part of the framework. 
Thereby, the addition of new metrics combining new sim-
ulation models with the existent ones is a current research. 
Thus, given that the simulation performed by the frame-
work is only attached to software components, the addi-
tion of infrastructure resources is another research area to 
be exploited as future work. Actually, authors are study-
ing the possibility of linking the modeling and simulation 
framework as a software level description of infrastructure 
models developed using CloudSim [26].
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