
Vol.:(0123456789)

SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z

Research Article

Modeling and simulation framework for quality estimation of web
applications through architecture evaluation

María Julia Blas1 · Horacio Leone1 · Silvio Gonnet1

Received: 3 December 2019 / Accepted: 3 February 2020
© Springer Nature Switzerland AG 2020

Abstract
The explosive growth of the cloud computing industry in recent years has paying attention to problems related to
software services quality. Given that quality models serve as frameworks for quality evaluation, this paper proposes a
modeling and simulation framework that measures properties derived from ISO/IEC 25010 quality model as main quality
concerns of cloud computing applications. The simulation models are obtained by translating the architectural design
to an equivalent functional description that, with aims to obtain the quality evaluation, explores all possible compo-
nent states. Moreover, the framework automatically builds the simulation models using a set of predefined behaviors
as components descriptors. Such models are combined with an experimental frame in a simulation scenario that helps
to estimate quality employing the performance of the architectural design. Therefore the simulation process is hidden
to software architects, providing an evaluation process able to be executed by any developer without knowledge of
discrete-event simulation. Two general architectures are used as case study in order to show how works the modeling
and simulation framework.

Keywords Cloud computing applications · Discrete-event simulation · Software quality evaluation · Routed DEVS
formalism

1 Introduction

Cloud computing is a model for enabling convenient, on
demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and
released with minimal management effort or service pro-
vider interaction [1]. Then, cloud computing applications
(CCA) can be studied as software services.

Cloud-providers are able to seamlessly update their
cloud applications without requiring users to install any
sort of upgrade or patch since all cloud software resides
on servers located in the provider’s data centers [2]. Thus,
consumers no longer need to invest in infrastructure.
Using the cloud infrastructure, a customer can get access

to their applications anytime, and from anywhere, through
a connected device to the network [3]. However, due to
the increasing demand for cloud services and many con-
sumers deploying and hosting Information Technology
services to cloud computing it is difficult for consumers
to select the services appropriate to their needs [4]. Unlike
many software vendors, if a new company puts up a com-
petitive service of higher quality, customers will almost
immediately shift their application to the new service once
they discover it [5]. Then, customers expect a certain level
of maturity in software products and services, a level that
turns software quality into a competitive advantage [6]. To
remain competitive, software services must deliver high
quality applications. Hence, developers must ensure the

* María Julia Blas, mariajuliablas@santafe-conicet.gov.ar; Horacio Leone, hleone@santafe-conicet.gov.ar; Silvio Gonnet,
sgonnet@santafe-conicet.gov.ar | 1Instituto de Diseño y Desarrollo INGAR, Consejo Nacional de Investigaciones Científicas y Técnicas -
Universidad Tecnológica Nacional, Avellaneda 3657, 3000 Santa Fe, Argentina.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-2171-z&domain=pdf
http://orcid.org/0000-0001-9629-6763

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z

software quality using conventional quality features prior
deploying the CCA in the environment.

Software quality evaluation is a complex activity.
According to IEEE [7], the software product quality refers
to the degree to which a system, component, or process
meets specified requirements. As software size and com-
plexity grows, the quality evaluation becomes a problem.
The intrinsic features of CCA require more rigorous quality
measurements than traditional software products [8].

In this context, it is important to understand that an
early software quality evaluation has more value than a
later evaluation of source code. In early stages of soft-
ware development, the challenge is achieve an adequate
quality level to guarantee the application acceptance.
However, there is little guidance available to help quality
engineers to understand their applicability in the cloud
service quality delivery chain [9]. Conventional method-
ologies do not effectively support the dynamic required in
the quality properties evaluation of the cloud computing
environments based on specific features such as scalabil-
ity. This lack of guidance challenges software and quality
engineers to develop new solutions for quality measure-
ment. These solutions should be seen as complementary
evaluation techniques of the traditional ones. This paper
proposes a new simulation framework for estimating the
CCA quality using the architectural description for struc-
turing the simulation model. The components used for
building the architecture are obtained from cloud com-
puting patterns. All simulation models are specified using
DEVS [10] and RDEVS [11]. The main objective is to provide
a Modeling and Simulation (M&S) framework that allows
studying a restricted set of quality properties over the CCA
design prior its implementation.

This paper is organized as follows: Sect. 2 resumes the
evaluation approaches commonly used for studying soft-
ware products quality and distinguishes them from the
one presented in this paper; Sect. 3 summarizes of CCA
structure including the quality properties and architectural
patterns used as basis of the framework; Sect. 4 presents
the design and implementation of the M&S framework;
Sect. 5 details two case study based on comprehensive
CCA architecture patterns; finally, Sect. 5 is devoted to the
conclusions, final remarks and future research.

2 Quality evaluation in cloud computing

One of the main concerns of software engineering is the
production of high quality software systems and thus soft-
ware quality evaluation has always been a critical task for
software professionals [12]. Hence, quality is important
and it can be improved (no matter if the software product

under development is a standalone program or web-
based application).

In this context, software quality models are a well-
accepted means to support the quality management of
software systems [13]. According to Roy et al. [9], software
quality engineering requires the use of a quality model
with the capacity to support both definitions of quality
requirements and their evaluation. Then, quality models
are the cornerstone of a product quality evaluation system
[7]. Ideally, quality evaluations should be guided by quality
models. A quality model is a standard taxonomy of qual-
ity attributes. Key features of CCA distinguish their qual-
ity attributes from conventional software quality proper-
ties. However, in both cases there are static and dynamic
properties. Consequently, quality evaluation methods
estimate distinct types of quality properties. Moreover,
quality attributes are not mutually exclusive; rather, they
tend to interact with each other. The value of one qual-
ity attribute may depend on the value of another quality
attribute. Then, an important part of any quality evaluation
method is the identification of the suitable subset of qual-
ity attributes. Quality evaluation methods do not use the
same subset of quality attributes.

Actually several authors have proposed quality models
for cloud computing environments. In [14] authors claim
that “existing conventional quality models are not com-
petent enough for providing all software service specific
features”. Therefore, they present a quality model to assess
the quality of software as a service on cloud computing
environments around quality properties. However, they do
not state how to use the quality model for quality evalu-
ation. From this point of view, Bardsiri and Hashemi [15]
provide a list of quality of service metrics that helps to
study cloud services. A similar approach is developed in
[8] were authors derive quality attributes from key features
of cloud computing services and propose using the result
of the measurement process as quality indicator. However,
such evaluation requires a runnable version of the appli-
cation (given that dynamic quality properties cannot be
measured until the application is effectively executed).
Then, the quality evaluation is performed after the soft-
ware implementation.

In [16] the authors discuss a web quality evaluation
method to assess web sites and applications. The paper is
focused in fulfil quality requirements in web development
projects and evaluate requirements in operational phases.
The main concern of the authors is discovering absent
features or poorly implemented requirements. Again, the
quality evaluation is performed in late phases of the devel-
opment process. Moreover, Lew et al. [17] propose extend-
ing the ISO 25010 standard to incorporate new character-
istics and concepts in a flexible modeling framework. The
final framework contributes towards a flexible, integrated

Vol.:(0123456789)

SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z Research Article

approach to evaluate web applications. The operability
and learnability of a real web application are evaluated
using the framework proposed by the authors.

In these researches, waiting until late in the develop-
ment process may reduce the impact of the effectiveness
and efficacy of any software quality improvement actions
and increase their cost [18]. However, models available in
later phases are expected to be more accurate than those
available in earlier phases. Then, both models are needed.
In fact, the study performed in [19] concludes that tools,
metrics and evaluation research are needed to provide
useful and trust worthy cloud computing services that
deliver appropriate quality of service. Even when late qual-
ity evaluation is better than nothing, early quality evalu-
ation may improve the development process in several
ways. For example, an early identification of the set of soft-
ware modules that is likely to be faulty helps practitioners
take timely actions to improve the quality of these mod-
ules and reduce development costs in the remainder of
the development process [18]. The earlier quality require-
ments are considered, the less effort is needed later in the
software lifecycle to ensure a sufficient software quality
levels [20].

The notion of software architecture has emerged as the
appropriate level to deal with software qualities because
sets the boundaries for the quality of the resulting sys-
tem. Bass et al. [21] define software architecture as “the
structure or structures of the system, which comprise
software components, the externally visible properties of
those components, and the relationships among them”.
Hence, there is no such thing as an inherently good or bad
architecture [21]. A good architecture is one that meets
all its requirements. Then, architecture evaluation of soft-
ware products plays a central role in quality evaluation
because it leads to correct designs that meet the set of
quality requirements. Considering that Dobrica and Nie-
mela [22] suggest that there are three phases of interest
to architecture evaluation (early, middle, and post deploy-
ment), most architecture evaluation methods are able to
be used across the development process. The issue, how-
ever, is getting the information required to perform the
evaluation.

There are two basic classes of evaluation techniques
available at the architecture level: questioning and meas-
uring [21]. Questioning techniques generate qualitative
questions to be asked over architecture design. These
techniques are applicable to any quality property and
their selection is not based on quality models. Com-
monly, questioning includes scenarios, questionnaires,
and checklists. On the other hand, measuring techniques
suggest quantitative measurements performed over the
architecture such as metrics, prototypes and experiences.
These techniques are used to answer specific questions

and, therefore, usually are addressed to specific software
qualities. Then, measuring techniques are not as broadly
applicable as questioning techniques [22].

Both types of techniques (questioning and measuring)
can be seen as conventional methods for software archi-
tecture evaluation. For example, the Software Architecture
Analysis Method [23] evaluates design quality attributes
by ranking candidate architectures on how well they sup-
port representative task scenarios. However, ones the
architecture is implemented no further evaluation process
can be performed to ensure its alignment with the quality
attributes. Another example is the evaluation proposed
by Morasca and Lavazza [18], where authors estimate the
faultiness of a software module at any point during devel-
opment by using measures collected up to that time. They
built faultiness models combining code measures and
design measures in order to improve software quality by
faultiness estimation models used at design time. In this
case, the evaluation method can be used in several devel-
opment phases but its only concern is the measurement
of an exclusive attribute.

All the conventional evaluation methods are useful to
evaluate CCA software architectures. However, the evo-
lution of cloud computing environments requires more
flexible quality evaluations methods that adjust to the
expected dynamic of the applications [24, 25]. Evaluating
the performance of cloud provisioning policies, applica-
tion workload models, and resources performance mod-
els in a repeatable manner under varying system and user
configurations and requirements is difficult to achieve [26].
Hence, new quality evaluation methods arise to be used
as complement of the conventional ones.

For example, in [27] authors propose fuzzy logic control
to evaluate the quality of cloud services. The results dem-
onstrate that this approach performs an accurate evalua-
tion of quality in service-oriented cloud computing. This
type of evaluation is focused on cloud services as holistic
perspective of CCA. A similar type of evaluation is given
by Garg et al. [28] as a framework that measures the qual-
ity and prioritizes cloud services. Such framework helps
to create healthy competition among cloud providers to
satisfy their service level agreement by improving their
quality.

A different solution is developed in [26] where the
authors propose an extensible simulation toolkit that
enables modeling and simulation of cloud computing
systems and application provisioning environments. The
toolkit supports both system and behavior modeling of
cloud system components such as data centers, virtual
machines and resource provisioning policies. In this sense,
the simulation appears to be a feasible solution for quality
estimation as an alternative to conventional approaches.
However, the toolkit proposed by the authors is devoted

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z

to physical components. Therefore, it is not useful for
the modeling and simulation of software application
components.

This paper proposes a simulation framework that allows
measuring quality attributes of CCA using a discrete event
approach. The simulation models are obtained by translat-
ing the composition designed at architectural level into a
set of models (devoted to the behavior and structure of
these components). Then, the developers do not need to
build the simulation model. Moreover, both functional and
non-functional characteristics must be taken into consid-
eration in the development of a quality software system
[29]. That is way most evaluation methods need an exe-
cutable version of the software product prior to estimate
quality attributes. The addition of functional implementa-
tion as part of the evaluation justifies that models avail-
able in later phases are more accurate than those available
in earlier phases. The M&S framework developed allows
replacing the software product implementation in early
phases of development by the simulation of well-known
architectural component functionalities. Therefore this
solution provides an evaluation method that presumes
functionality without using its implementation. Given
that the architectural representation is relevant in qual-
ity prediction and effort estimation [22], the architectural
components included in the framework are controlled by
a metamodel that defines CCA architectural patterns. The
quality properties selected for the evaluation process are

constrained by the ISO/IEC 25010 quality model [7]. Then,
the framework allows measuring the behavior of CCA at
design phase with aims to estimate the final product qual-
ity. Moreover, it can be used in late phases of development
to assess the impact of architectural changes over actual
quality (not necessarily obtained by the framework).

Table 1 resumes main differences among the quality
evaluation approaches presented in this section follow-
ing the criteria: novelty, use of quality models, number of
properties evaluated by the method, and development
phase where is applicable.

3 Cloud computing applications (CCA)

The objectives of the cloud computing paradigm are to
increase capacity and capabilities at runtime without
investing in new infrastructure, licensing new software,
and training new recruits [30]. To accomplish these objec-
tives, the cloud computing model delivers information
technologies as customizable services. The model provides
a pool of abstracted, virtualized, dynamically-scalable,
managed computing power, storage, platforms, and ser-
vices that are delivered on demand to external customers
over the Internet [24].

Commonly, cloud computing architectures are
designed as layered structures [2, 31–33]. Layered archi-
tectures are a well-known architectural pattern in which a

Table 1 Comparison of quality evaluation methods for software products

Novelty Fixed to
a quality
model

Number of proper-
ties evaluated by the
method

Development phase where is applicable

Conven-
tional
method

New method
(complemen-
tary)

One property Multiple
proper-
ties

Before implementa-
tion

After implementation

Jagli et al. [14] X X
Lee et al. [8] X X X X
Morasca and Lavazza

[18]
X X X X

Olsina and Rossi [16] X X X X
Lew et al. [17] X X X X
Bardsiri and Hashemi

[15]
X X X

Questioning tech-
niques

X X X

Measuring tech-
niques

X X X (e.g. metrics) X (e.g. prototypes
and experiences)

Wang et al. [27] X X X
Garg et al. [28] X X X X
Calheiros et al. [26] X X X X
M&S framework (this

paper)
X X X X X

Vol.:(0123456789)

SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z Research Article

layer is conceived as a coherent set of related functionality
[21]. In a strictly layered structure, layer n may only use the
services of layer n – 1. However, strictly layer structures
are not often used in real architectures. Figure 1 depicts a
generic representation of cloud computing environments
as five-layer architecture [30, 32].

Each layer should be interpreted as follows:

• The hardware layer (layer 1) is responsible for managing
the physical resources of the cloud, such as physical
servers, routers, switches, power and cooling systems.

• The software kernel layer (layer 2) is responsible to allo-
cate hardware resources (set at layer 1) to cloud users
in an efficient, quick and smooth way.

• The software infrastructure layer (layer 3) creates a pool
of storage and computing resources by partitioning
the physical resources using virtualization technolo-
gies. This layer is commonly divided in three catego-
ries: Infrastructure-as-a-Service (IaaS) that refers to
on-demand provisioning of computational resources;
Data-as-a-Service (DaaS) that allows users to store an
enormous amount of data on remote servers; and Com-
munication-as-a-Service (CaaS) that provides secure,
reliable, and fast communication services for users.

• The software environment layer (layer 4) provides an
application development platform and a set of Appli-
cation Programming Interfaces (APIs) to minimize the
burden of deploying applications directly into virtual
machine containers. Developers use these APIs as
Platform-as-a-Service (PaaS) in order to program their
applications without worry about hardware-software
interactions.

• The application layer (layer 5) is the one that hosts the
applications. Users can easily access such applications
through a web client, even with limited processing and
storage capabilities. This type of access is denoted as

Software-as-a-Service (SaaS). The SaaS service provides
the modeling of software deployment where users can
run their applications without installing it in their com-
puters [3].

Following the architectural structure described in Fig. 1,
the CCAs are deployed at the top level. Then, their soft-
ware architecture must be designed using services of lay-
ers 1–4. However, given that services from underlying lay-
ers are devoted to managing distinct aspects of the CCA
execution, the set of elements used to design the architec-
ture needs to be arranged considering the functional and
non-functional requirements.

Non-functional requirements, as opposed to functional
ones, do not express any functionality to be implemented
[34]. Given that systems qualities are often expressed as
non-functional requirements -also called quality attrib-
utes-, such requirements are recognized as very important
factor to the success of software project [35–37]. Then, the
ability to specify the quality properties required in a CCA
is an important issue for consumers and service provid-
ers. Quality models are powerful tools that allow identify-
ing the main quality properties to be evaluated in CCA.
Moreover, the non-functional requirements are pervasive
in descriptions of design patterns [38]. Software architects
use design patterns to maintain balance between func-
tional and non-functional requirements. Therefore, the
M&S framework proposed in this paper uses architectural
patterns to define the set of elements to be used in the
CCA architectural description.

The following subsections describe the quality proper-
ties and design patterns of CCAs that were used as base-
lines for building the M&S framework.

3.1 Quality properties

Different from traditional applications, the CCA can lev-
erage the automatic-scaling feature to achieve better
performance, availability and lower operating cost [32].
Therefore, traditional quality models need to be modified
to include quality properties of CCA.

In [39] authors use ontologies as model descriptor of
quality schemes. A quality scheme is defined as “a set of
triplets over a software product definition where each ele-
ment is composed by a software attribute, the software
metric that should be used to its measurement and the
quality subcharacteristic that should be evaluated over
it”. The ISO/IEC 25010 quality model is used to bind the
properties included in the scheme.

Quality schemes are generic documentation mecha-
nisms designed to describe the quality properties required
in a software product and, therefore, their structure can be
used to support quality documentation. Given that CCA

Fig. 1 Cloud computing layered architecture

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z

quality evaluation implies the definition of quality proper-
ties, a CCA quality scheme can be defined to support the
non-functional specification of this software product type.
Using quality schemes as documentation strategy for CCA
provides the quality agreement required for building the
quality evaluation required as part of the M&S framework.

In recent years, several authors have studied the quality
features of CCA [6, 8, 40–43]. Hence, in order to define a
baseline for the CCA quality scheme, a set of twelve prop-
erties was selected: reusability, availability, scalability, ser-
vice customizability, functional feature commonality, non-
functional feature commonality, infrastructure utilization,
invocation time, service stability, service accuracy, resource
coverage and robustness of service. Then, each quality prop-
erty was defined using the quality scheme concepts to
get a feasible abstraction of the CCA quality domain. For
example, invocation time was included in the CCA qual-
ity scheme as an instance of software attribute because it
refers to a measurable property –and the software attribute
is defined as “an entity that can be verified or measured in
the software product” [44].

Ones all quality properties were defined as elements of
the quality scheme, each software attribute was related
to a metric that defines its measurement method. These
metrics were obtained from literature [8]. The ontology
concepts allow defining properly the metrics documenta-
tion. It also allows studying metrics relationship with aims
to obtain information related to their application. In order
to complete the definition, each pair (attribute, metric) was
related to a quality subcharacteristic of the ISO/IEC 25010
quality model.

Table 2 resumes the CCA quality scheme used as evalua-
tion goal of the M&S framework. The elements highlighted
in italics depict the original quality properties to be evalu-
ated in CCA.

3.2 Software architecture: design and patterns

Architectural design is a creative process where you
design a system organization that will satisfy the func-
tional and non-functional requirements of a system
[45]. Several authors argue that architectural decisions
are the core of software architectures [46–48]. Jansen y
Bosch [49] define an architectural design decision as “a
description of the set of architectural additions, subtrac-
tions and modifications to the software architecture,
the rationale, and the design rules, design constraints
and additional requirements that (partially) realize one
or more requirements on a given architecture”. Soft-
ware architectures have evolved from structural rep-
resentations to decisions centered design models [50].
Therefore, the design patterns aid in documenting and

communicating proven design solutions to recurring
problems [38]. Given that non-functional requirements
play a fundamental role when software architects need
to make informed decisions [51], the architectural pat-
terns show singular power in linking functional and non-
functional consequences of an architectural approach
together [52].

An architectural style defines a family of systems in
terms of a pattern of structural organization. From this
definition, architectural patterns solve regular prob-
lems by linking architectural elements into structural
descriptions. Specifically, architectural styles determine
the vocabulary of components and connectors that can
be used in instances of the style, together with a set of
constraints on how they can be combined.

Researches have study architectural patterns over tra-
ditional software products for years [53, 54]. However,
the architectural styles useful in the CCA domain are
not fully understood yet. A prominent approach in this
field is the one proposed in [33], where authors describe
architectural patterns that allow modeling CCA architec-
tures using a restricted set of architectural styles. This
approach involves both infrastructure and application
design. Therefore, it gives a complete definition of the
elements required for building CCA architectures. In
this sense, CCA application patterns allow building web
applications solutions by abstracting the infrastructure
components into independent ideal scenarios (scenar-
ios where infrastructure components execute software
requirements without any constrain). Therefore, such
patterns are useful to identify the set of components
and connectors that provide an appropriate abstraction
of the CCA software architecture.

With aims to define a representation of the CCA soft-
ware architecture, the application patterns proposed in
[33] were used as start point for the architectural design.
Hence, a subset of patterns was analyzed in terms of their
components and connectors to get a full definition of
their structure. These architectural elements were used to
build a conceptual metamodel that allows to validate the
CCA patterns over architectural designs. Specifically, three
types of components were identified:

(1) Application components Architectural elements used
to define the functional requirements of the CCA.
There are two types of application components:
components used to define domain functionalities
(domain-specific components), and components fre-
quently used as standard templates in the develop-
ment of CCA (e.g. load balancer and message queue).

(2) Management components Architectural elements
used to automatically manage the behavior of the

Vol.:(0123456789)

SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z Research Article

Table 2 CCA quality scheme

a ET = TSIT – WT where WT = waiting time
b CR = TR – IR where IR = number of incorrect responses
c AT = TT – FT where FT = service failure time
d Tf = TF – FNF where TF = total number of faults

Quality characteristic Quality subchar-
acteristic

Software attribute Metric

Name Equation

Performance efficiency Time behavior Invocation time Time behavior from user
perspective

TBU =
ET

TSIT

ET = execution timea

TSIT = total service invocation time
Resource utiliza-

tion
Infrastructure utili-

zation
Hardware resources utiliza-

tion
HRU =

AR

PR

AR = amount of allocated resources
PR = amount of pre-defined resources

Reliability Maturity Service accuracy Replies accuracy RA =
CR

TR

CR = number of correct responsesb

TR = total number of requests
Availability Robustness of

service
Service robustness SR =

AT

TT

AT = available timec

TT = total time
Fault tolerance Service stability Coverage of fault tolerance CFT =

FNF

TF

FNF = number of faults without becoming
failures

TF = total number of faults
Coverage of failure recov-

ery
CFR =

RF

Tf

RF = number of failures remedied
Tf = total number of failuresd

Scalability Resource coverage Coverage of scalability
COS =

1

k
×

k
∑

i = 1

ARi

TRRi

k = number of allocation requests
ARi = amount of allocated resources of the ith

request
TRRi = total amount of requested resources of

ith request
Maintainability Reusability Service customiz-

ability
Coverage of variability CV =

VPCCA

VPDVPCCA = number of variation points realized in
the application

VPD = number of variation points in the
domain

Functional feature
commonality

Functional commonality
FC =

1

n
×

n
∑

i = 1

RFCi

Tr

n = number of functional features
RFCi = number of requirements applying the

ith functional feature
Tr = total number of requirements analyzed in

the domain
Non-functional

feature common-
ality

Non-functional common-
ality NFC =

1

m
×

m
∑

i = 1

RNFCi

Tr

m = number of non-functional features
RNFCi = number of requirements applying the

ith non-functional feature
Tr = total number of requirements analyzed in

the domain

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z

CCA by monitoring the behavior of the application
components.

(3) Functional components Architectural elements that
exhibit elemental responsibilities used to define com-
plex functionalities in application components.

Table 3 resumes the main elements included in the UML
description of the metamodel. Such UML description
defines the set of classes, relationships and attributes used
for modeling the CCA software architecture. In order to
include the design constraints related to the architectural
patterns, the UML description was complemented with
OCL constraints. Such constrains help to verify the archi-
tecture designed from the UML description in terms of the
CCA patterns.

Given that architectural components are defined in
terms of their behavior as part of the pattern, the M&S
framework uses the elements defined in the metamodel
as functional sketch of the simulation model.

4 The simulation framework for cca
architectures

Figure 2 depicts the structure of the M&S framework
designed to estimate the quality of CCA products using
the architectural design.

The infrastructure of the framework is defined in Java.
Specifically, the Eclipse IDE1 is used at the bottom layer to
support the modeling and simulation tasks.

For modeling the CCA architecture, the framework
employs a CCA plugin for Eclipse developed using the
components and connectors defined in the CCA meta-
model (described in Sect. 3.2). Such plugin was imple-
mented using two projects from the Eclipse Modeling
Project2: EMF/GMF [55, 56] and Sirius.3 The Eclipse

Table 3 Elements used for modeling the software architectures of CCA

Type Architectural element Description

Type Subtype

Component Application Domain-specific Its behavior is explicitly defined using a sequence of functional components
Load balancer Determines the number of synchronous accesses to the CCA
Message queue Determines the number of asynchronous accesses to the CCA

Management Elastic load balancer The number of synchronous accesses to the application is used to determine the
instances of the component

Elastic queue The number of asynchronous accesses to the application is used to determine the
instances of the component

Provider adapter Wraps the provider interfaces into an abstract interface to be used within the scope
of the distributed application

Configuration manager Application components should use a centrally stored configuration to provide a
unified behavior

Elastic manager Monitors the utilization of cloud resources on which application component
instances are deployed

Functional Processing Processing functionality is split into separate function blocks and assigned to inde-
pendent components

Batch processing Requests are delayed until environmental conditions make their processing feasible
User interface Bridge between the synchronous access of the human user and the asynchronous

communication used with components
Data access Coordinates data manipulation if different storage offerings are used
Data abstractor The style of data representation is adjusted to allow data retrieved from storage

offerings to be eventually consistent
Idempotent processor Ensures that duplicate messages and inconsistent data do not affect application

functionality
Connector External link Unidirectional Connection that links application components in a single direction

Bidirectional Connection that links application components in two opposite directions
Special Links among management and domain-specific components that handle special

data, such as number of instances and resources allocation
Internal link Sequential Links among functional components that determine the execution flow of domain-

specific components

1 Available at http://www.eclip se.org/.
2 Available at https ://eclip se.org/model ing/.
3 Available at https ://eclip se.org/siriu s/.

http://www.eclipse.org/
https://eclipse.org/modeling/
https://eclipse.org/sirius/

Vol.:(0123456789)

SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z Research Article

Modeling Framework (EMF) was used to deploy the UML
description of the metamodel in terms of Java classes,
while the Graphical Modeling Framework (GMF) was
used to define the graphical notation attached to archi-
tectural components. Additionally, the Sirius project
was adopted to allow building a CCA architecture using
the graphical elements defined for the metamodel. Sec-
tion 4.1 presents this graphical modeling tool based on
Eclipse.

For simulation purposes, the framework employs DEVS-
JAVA [57–59] which support the execution of models writ-
ten in Java. Moreover, the CCA framework uses the Routed
DEVS (RDEVS) framework detailed in [11] to structure the
simulation models of the CCA architecture. The Routed
Discrete Event System Specification formalism [11] is a
subclass of DEVS [10, 60] that provides a solution for rout-
ing problems over discrete event models. The software
architecture simulation can be studied using the routing
problem perspective. Then, RDEVS models allow defin-
ing the behavior required for each architectural element
in terms of their functionality (without worry about the
interactions among components). In this case, the rout-
ing information manages the events flow. Then, a unique
model can be used in several simulation instances sur-
rounded with different routing information in order to get
distinct CCA situations.

The CCA simulation scenarios combine simulation mod-
els specified using DEVS and RDEVS formalisms. While
RDEVS models represent the CCA architecture to be evalu-
ated, the DEVS models are used to explicitly define the
experimental frame needed to control the quality estima-
tion. Sections 4.2 and 4.3 describe how RDEVS formalism is
used for building the CCA simulation model along with the
structure designed for modeling the simulation scenarios.

4.1 Software modeling tool for designing CCA
architectures

The software modeling tool was designed as a graphical
representation of the CCA metamodel. The UML descrip-
tion was implemented as an Ecore model using the EMF
plugin. Moreover, the OCL constrains were added to the
Ecore model as a set of constrains that verifies the cor-
rectness of the metamodel instances (i.e. the CCA models).
The graphical notation of the architectural elements was
added with the GMF tool. Both specifications (Ecore model
and graphical notation) were linked in a single software
plugin for Eclipse using Sirius as intermediate.

Given that software architectures are defined as
graphical designs, the plugin developed allows mod-
eling CCA software architectures through the graphical
notation of the architectural elements. Therefore, archi-
tects can use these elements to build their designs with-
out carry out an explicit instantiation of the metamodel.
Figure 3 shows a screenshot of the CCA plugin that high-
lights four sections. The project explorer (Sect. 1) details
the Eclipse project where the architectural design is
build. The properties of the project are defined by the
architect in order to identify the CCA related to the
design. Section 2 is the design area in which the archi-
tect must depict the CCA architecture. The available
architectural elements are detailed in the tools palette
(Sect. 3). This palette contains the graphical representa-
tion of all architectural elements defined in the meta-
model (i.e. components and connectors) grouped by
type and subtype. Finally, the table detailed in Sect. 4
allows defining properties for each architectural element
included in the CCA design.

In order to define an instance of the metamodel, the
architects build a CCA design using the tools palette and
the properties table. The compliance of their designs can
be verified employing the OCL constrains that ensure the
correctness of the architectural patterns. This gives a struc-
tural evaluation of the design. Such evaluation provides
an early assessment of the CCA architecture designed in
terms of well-established patterns that ensure a good
implementation of non-functional requirements. If the
plugin detects pattern violations, it shows a warning mes-
sage to the architect. This message does not prohibit con-
tinuing the quality evaluation. The architect should decide
whether to maintain the actual design or change it before
executing the quality evaluation.

Fig. 2 Software modules that compose the M&S framework

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z

4.2 RDEVS as modeling and simulation formalism
for CCA software architecture

Software architectures can be seen as a set of components
along with the connections among them. Such connections
are defined in terms of interactions. That is, two architectural
elements A and B are connected if and only if they need to
interact with each other to solve some type of user request.
Therefore, architectural connections represent all possible
interactions among components.

When a user request needs to be solved, a subset of
architectural interactions is used to navigate among com-
ponents. Moreover, in a CCA scenario multiple replicas of
the same component are distributed among all available
resources. If each architectural component is reflected as a
simulation model with its own behavior, then all its replicas
must exhibit the same behavior. However, although there is
a defined behavior for each type of component, the inter-
actions among them depends on the user request. Then,
the requests flow among components depends on the rep-
licas available to execute the processing required for solv-
ing the user petition. That is, the same type of user request
can take different routes (i.e. to be processed by different
replicas) even when all the requests are solved in the same
cloud computing environment. As a result, the route of each
request (that is, the events flow) is given by the structural
connections among components but, also, it is influenced by
the available replicas. Therefore, the components behavior

should consider routing information related to its replicas.
Only the connections with feasible replicas for the request
type will be valid.

In this context, the interactions are defined structurally
at the architectural level but their effective use as routes is
given at request level. These properties allow studying the
simulation of CCA software architectures as a routing prob-
lem and, therefore, the RDEVS formalism proposed in [11] is
applicable for building the simulation models.

In order to define a simulation model based on the archi-
tectural design, each simulation model required for the CCA
simulation is obtained by mapping the components of the
metamodel with a defined behavior. Such mapping allows
building independent models that can be coupled follow-
ing the structural definition (that is, the CCA software archi-
tecture) using the metamodel connections. Moreover, since
the RDEVS models use routing information to manage the
events flow, the simulation models can use the request type
as support information to redirect events across couplings.

4.2.1 Getting RDEVS models from the CCA software
architecture

The RDEVS formalism is based on three types of simulation
models: essential model, routing model and network model.
Each model helps to define a structure among elements
that provides a simulation scenario for the modeling a
routing problem.

Fig. 3 CCA modeling software tool

Vol.:(0123456789)

SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z Research Article

The RDEVS essential model defines the behavior of rout-
ing components. Formally, its structure is equivalent to the
DEVS atomic model definition. In order to represent the
CCA simulation, the behavior of all architectural compo-
nents defined in the CCA metamodel were explicitly for-
malized as essential models. Moreover, each type of archi-
tectural component was defined as an essential model
that exhibits its own behavior according to its architectural
definition. Since management components require an infra-
structure deployment to be managed, an ideal scenario
was used as a first attempt for quality evaluation. Each
architectural element defined as management compo-
nent in the metamodel was detailed as an essential model
that helps to organize the instances of application com-
ponents. Meanwhile three types of essential models were
defined in order to represent application components. Two
of them were used to represent the behavior of common
components (load balancer and message queue). The third
one was defined abstractly as the functional definition of
domain-specific components (detailed by a sequence of
functional components) in terms of the behavior expected
by the interactions of its internal functions (including all
possible internal states). From this perspective, each func-
tion (represented architecturally as functional component)
can be executed as processing, processing with faults or
inactive by failure. Then, the essential model attached to
a domain-specific component is obtained by translating
all the possible internal states that follows the sequence
of functional components that compose it. Each func-
tional component is defined considering its own behavior
in order to maintain its responsibility. By following this
approach, the functional components provide the behav-
ior definition of domain-specific components without need
to build new simulation models for specific CCA modules.
Moreover, the translation proposed among functional
and domain-specific components helps to build automati-
cally the simulation model of any software functionality
required in CCA architectures without need to provide any
other information about its execution.

In RDEVS formalism, the routing model defines the basic
simulation component used as part of the routing process.
It embeds the routing component behavior as an opera-
tional description of its own behavior. Then, the essential
model is embedded in the definition of the routing model
as one of the main components required for its specifi-
cation. Besides the essential model, the routing model
includes information related to the input events accept-
ance and the output events destination. Such informa-
tion is called routing information. Therefore, the routing
model is defined as a simulation model that exhibits the
essential model behavior only when input events should
be accepted agreeing to its routing information. Further-
more, the output events are created following the output

function of the essential model and including the routing
information required to get their destination. Hence, sev-
eral routing models can be defined using the same essential
model with different routing information. As consequence
of this combination, each routing model will exhibit differ-
ent behavior in terms of the input event acceptance and
the output events destination. Such flexibility allows build-
ing distinct simulation model configurations employing
the same definition of the component behavior.

If the CCA simulation model is seen as the routing pro-
cess to be solved in terms of a routing problem, each node
composing the routing problem should be seen as the
equivalent RDEVS routing model. Therefore, each replica of
the architectural components available over the infrastruc-
ture resources should be interpreted as a routing model.
Such routing models are composed by the essential models
defined for the related architectural component.

Finally, the RDEVS network model describes a complex
simulation model that provides a structure over the indi-
vidual components in order to depict a routing process
among them. Its definition includes a set of routing mod-
els and the couplings among them. Each routing model
can be interpreted as a node. The couplings among nodes
are defined as all-to-all connections in order to leave the
routing task to the routing information defined in each
node. In this sense, the simulation model that depicts the
structure of the CCA software architecture was defined as
a network model composed by the routing models obtained
from the replicas designed by using the set of available
components.

Table 4 summarizes the RDEVS models designed for
each architectural component included in the CCA met-
amodel. By using the translation proposed in the table,
the simulation models designed with RDEVS formalism
provides a generic structure in terms of the architecture
without consider the events flow as part of the defined
behavior. Therefore, the routing information can be modi-
fied without need to adapt the behavior of the essential
models that represents the architectural components.

4.3 CCA simulation scenario as a combination
of DEVS and RDEVS models

A simulation scenario was defined to provide a solution
for the quality estimation based on the CCA simulation
model. Such scenario is depicted in Fig. 4. As figure shows,
the simulation model to be evaluated is called CCA Archi-
tecture. Such model is obtained by automatically translat-
ing the CCA software architecture (that is designed using
the CCA metamodel) to the equivalent simulation model
defined as a RDEVS network model. However, given that
the routing problem is attached only to the software
architecture model, the experimental frame was designed

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z

using DEVS formalism [10]. Both models are coupled in
terms of three types of events: request, out-of-use and
component-state.

The request event is used to test the CCA Architecture
employing different types of user request. When this type
of event is taken as input event in the CCA Architecture, the
evaluation process is performed over such request. After
finishing its processing, the request event is sent as output
event of the CCA Architecture. This output event includes
all the measures obtained during the processing. If the
state of architectural components changes during the

processing, the CCA Architecture sent a component-state
event to notify this situation to the experimental frame.

In this context, the experimental frame was defined as a
DEVS coupled model composed by three internal models:
request generator, out-of-use generator and MRM (metrics
measurement model). The request generator was defined as
a DEVS coupled model that produces the user requests to
be processed in the architecture. Five types of simulation
models were defined in order to get distinct behaviors.
Most user behaviors can be studied from the continuous
perspective (as workloads). Then, the simulation models
proposed in [61] combines continuous and discrete mod-
els with aims to describe common workloads performed
by CCA users. These models were included in the M&S
framework as available request generator models to be
used in simulation scenarios.

The out-of-use generator and MRM were designed as
DEVS atomic models. The out-of-use generator produces
an out-of-use event that ends the simulation execution.
This event is produced when the remaining time is zero.
When the CCA Architecture receives an out-of-use event, it
stops the processing and leaves the simulation models in
inactive state. This mechanism ensures that the metrics
measurement process is executed only when simulation
models are active.

Table 4 RDEVS models that represent each type of element required for the CCA simulation

CCA software architecture RDEVS model that represents it

Element Type Subtype

Architectural component Application Domain-specific An essential model built using the sequence of states
defined from the functional components included in the
component

Load balancer An essential model specifically defined to exhibit the load
balancer behavior

Message queue An essential model specifically defined to exhibit the mes-
sage queue behavior

Management Elastic load balancer An essential model defined specifically to represent the
behavior of each management component over an ideal
infrastructure

Elastic queue
Provider adapter
Configuration manager
Elastic manager

Functional Processing A state inside the essential model that represents the
domain-specific component where the functional compo-
nent is used as part of the defined sequence. Each compo-
nent maintains its functional definition in order to provide
a specific functionality

Batch processing
User interface
Data access
Data abstractor
Idempotent processor

Replica Architectural component A routing model composed by the essential model defined
for the architectural component detailed in the replica
along with its routing information

Software architecture – A network model composed by a set of architectural replicas
defined as routing models

Fig. 4 Simulation scenario used in the framework

Vol.:(0123456789)

SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z Research Article

Finally, the MRM model is used to calculate the set of
metrics presented in Table 2. The events flow proposed
between the CCA Architecture and experimental frame
allows measuring direct metrics (Table 5). These metrics
are grouped to get the final quality evaluation. Such qual-
ity evaluation is centered in the original quality properties
modeled in the quality ontology [39]. Given that the MRM
model uses a specific set of events to estimate multiple
quality metrics; the M&S framework provides a solution
that allows evaluating several quality properties using the
software product architecture. The measures obtained
during the simulation are stored in a CSV file to provide
an analyzable output.

5 Case study: building the simulation model
for two CCA software architectures

Most web applications use N-tier architecture style to
arrange its components. In this context, two-tier and
three-tier distributions are commonly used in CCA soft-
ware architectures. Both distributions were studied using
the M&S framework to ensure the accuracy of the simula-
tion models.

A two-tier cloud application implements the CCA sepa-
rating the data tier from the presentation and business
logic tier. Meanwhile, a three-tier cloud application needs to
be able to scale presentation, business logic, and data han-
dling independently (because the requirements of these
functions regarding the necessary number of application

component instances to handle workload differ greatly).
Figure 5 shows both distributions using the patterns pro-
posed by Fehling et al. [33].

Even when both architectures use the same com-
ponents, the communication paths that describe the
expected execution must know the number of replicas
available for the processing. In the two-tier cloud appli-
cation (Fig. 5a) an elastic load balancer determines the
number of required instances of application components
and provisions and decommissions them as needed (to
ensure an appropriate number of instances for the num-
ber of user accesses). These application components
handle accesses by users, workload processing, and data
access in a holistic fashion. Instead, in the three-tier cloud
application (Fig. 5b) the elastic load balancer provisions
or decommissions presentation application components
using the number of requests sent to the presentation
tier. After handling the request and validating the nec-
essary user inputs the presentation component sends
the request to the message queue for the business logic
tier. When one of the business logic components is idle,
it consumes the message from the queue and processes
the message. After processing the message, it sends the
data to be stored to the message queue for the data tier.

Then, the simulation models that denote both CCA
software architectures need to represent multiple
instances of some components in order to direct the
events flow. However, the architectural components
scale without modifying the architecture design. So, the
simulation models should be tested with several num-
bers of replicas to study their performance in multiple
simulation scenarios.

In order to evaluate the CCA software architectures,
both structures were modeled with the M&S framework.
Figures 6 and 7 shows the architectural models designed
using the plugin described in Sect. 4.1. If the architecture
is built from scratch, the modeling plugin can be used
also as software support tool for the design task. Given
that both CCA architectures are conceived as predefined
patterns, the modeling was performed only to obtain the
component structures required for building the simula-
tion models.

After defining the architectures, the M&S framework is
able to apply automatically the set of translation rules to
get the equivalent RDEVS network model for each CCA
architectural design. Table 6 resumes the number of RDEVS
models obtained in each case by applying a defined num-
ber of replicas for application components.

As table shows, building the simulation models apply-
ing an automatic translation reduces the number of tasks
assigned to the software architect. If the task of building
the simulation models manually had assigned to the soft-
ware architect, the time spend in the design phase will

Table 5 Direct metrics obtained by the framework during the simu-
lation

a A wrong solution is given when some architectural component
exhibits the processing with faults state
b The CCA is inactive when all replicas of an architectural compo-
nent exhibit the fault state
c A fault is a temporal issue that can be solved. A failure is a fault
that cannot be solved and, therefore, the component needs to be
replaced by a new replica
d Replicas created to solve a fault

Variable Description Unit

ET User request processing time Time
TSIT Total time to solve a user request Time
TR Number of requests solved Requests
IR Number of requests with incorrect

response or solutiona
Requests

FT Inactive timeb Time
TT Operative time Time
FNF Number of faults that are not failuresc Faults
TF Number of faults Faults
RF Number of failures solvedd Failures

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z

increase. By using the framework, the architect only needs
to configure some parameters and the simulation models
are automatically created from the architectural design
according to the number of replicas desired for each appli-
cation component to be scale out.

Then, the framework builds the simulation models
using the translation rules designed for the architectural
components involved in the architecture design. Such
translation leads to simulation models that ensure the
accuracy of the RDEVS formalism. Moreover, the transla-
tion process is hidden to architects in order to maintain
independence between modeling and simulation tasks.
This independence provides an appropriate separation
of skills required for CCA software architects. That is, the
software architects only need to develop the architecture
using the available components without worry about
how such design will be mapped to the RDEVS simulation
model. Therefore, this abstraction allows both architects
and developers to use the M&S framework without any
knowledge of discrete event simulation.

The RDEVS network models obtained from the transla-
tion process executed from the architecture design were
used in several simulation scenarios to evaluate their per-
formance. Multiple simulations were carried out with aim

to validate the accuracy of the simulation models devel-
oped for representing the CCA architectures. Thus, the
behavior of the proposed simulation models is related to
the benefits of the architectural design patterns used as
basis while building the architecture.

In this context, the main characteristics derived from
a greater number of tiers used as part of an architectural
design include: (1) the possibility of replicating and scal-
ing independently each of the defined application com-
ponents; and (2) the impact of the faults and failures over
the replicas scaled out at application level.

In a two-tier architecture, the only way to process
a request is using an instance of the application com-
ponent (in Fig. 5a such component is depicted by the
presentation and business logic tier). Once the available
resources are full (therefore, they cannot allocate new
replicas), new requests cannot be processed until some
component is released from its assigned task. On the
other hand, the three-tier architecture (Fig. 5b) can scale
out each tier as independently. Such distribution allows
release application components while different func-
tions are executed.

Furthermore, in the two-tier architecture each replica
built for an application component has the responsibility

Fig. 5 CCA software archi-
tectures commonly used in
N-tier distribution modeled by
Fehling et al. [33]

Vol.:(0123456789)

SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z Research Article

of executing all the functions included in its behavior.
The presence of some fault or failure during its execution
leads to an application error that must be solved because
it interferes with a high-level component. However, given
that in the three-tier architecture the functions are broken

down (giving a set of application components that exe-
cute a restricted set of functionalities), the presence of
some fault or failure does not necessarily entail an error
at application level.

Fig. 6 Screenshot of the two-tier architecture modeled with the framework

Fig. 7 Screenshot of the three-tier architecture modeled with the framework

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z

In order to exploit both scenarios, several simulations
were executed using different availability for the maxi-
mum number of replicas to be allocated. Four scenarios
were carried out with numberOfReplicas = 5, numberOf-
Replicas = 10, numberOfReplicas = 20 and numberOfRepli-
cas = 50. In all scenarios executed, the request-generator
model was configured with the same type of user behavior
in order to allow results comparison.

First, the number of requests attended by the CCA was
studied. Figure 8 presents the number of user requests
processed inside the CCA during the simulation. As can

be seen, in the case of Fig. 8a there is a steep slope that
disappears as the number of replicas available increases
(Fig. 8b–d). This can be due to two reasons: (1) lack of
application components availability; or (2) failure states
in undefined application components. In the first case,
incoming requests are discarded as a consequence of the
lack of replicas that must process their content in order to
get a user response. These requests remain in the simula-
tion model, making the slope of the curve grow (Fig. 8a).
Another possibility is that some application component
goes into a failure state. Therefore, the requests assigned
to such component are discarded (because the compo-
nent is not able to process them). Then, these requests are
lost within the application, making the slope of the curve
grow (Fig. 8a). By analyzing the metric Tf (total number of
failures) in different executions with the same configura-
tion it is observed that the existence of this slope is not
only derived from the presence/absence of failure states.
Even, the slope is present in the absence of faults. Further-
more, as it is illustrated in Figs. 8b–d, if the number of rep-
licas is increased the slope disappears and the number of
requests in the application is limited.

A similar behavior is observed for the three-tier archi-
tecture (Fig. 9). However, the slope in Fig. 9a is smaller than
the one presented in Fig. 8a. The number of requests that

Table 6 Number of simulation models created automatically by the
M&S framework with aims to represent two and three tiers archi-
tectures

a Number of RDEVS models required to build a single network
model composed by N instances (replicas) of the application com-
ponents

Model Number of RDEVS modelsa

Essential
models

Routing models Net-
work
models

Two-tiers application 3 2 + N 1
Three-tiers application 7 6 + 3N 1

Fig. 8 Requests being process by the two-tiers architecture. a numberOfReplicas = 5, b numberOfReplicas = 10, c numberOfReplicas = 20, d
numberOfReplicas = 50

Vol.:(0123456789)

SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z Research Article

are discarded in the three-tier architecture is smaller than
in the two-tier architecture. Hence, the performance of the
three-tier architecture is better than the architecture of
two-tiers.

Figure 10 shows the average number of requests
answered TR (total number of requests) in the cases ana-
lyzed over an increasing number of available replicas. As
can be seen, when the number of replicas increases from
5 to 10, there is a significant difference in the value of TR

for the two-tier architecture. This is because some of the
discarded requests in a configuration with numberOfRep-
licas = 5 are processed correctly in a configuration with
numberOfReplicas = 10.

In the case of five available replicas it is evident that
the model of the three-tier architecture has a better
performance for the general processing of the requests
(Fig. 10). This is consistent with the analysis performed in
terms of the requests processed/discarded in both design

Fig. 9 Requests being process by the three-tiers architecture. a numberOfReplicas = 5, b numberOfReplicas = 10, c numberOfReplicas = 20, d
numberOfReplicas = 50

Fig. 10 Comparison between the average requests solved by both
CCA architectures

Fig. 11 Comparison between the average requests solved by both
CCA architectures in a new configuration of the request-generator
model

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z

structures. However, in cases of 10, 20 and 50 replicas the
value of TR is similar in both architectures. In order to verify
that this similarity is due to the fact that the configura-
tion of the models does not allow a greater scalability of
the requests, alternative scenarios were executed modi-
fying the behavior used in the request-generator model.
Figure 11 presents the same analysis using a new config-
uration in the request-generator model. As figure shows,
the two-tier architecture model presents significant dif-
ferences with respect to the three-tier model when there
are 5 and 10 replicas of the application components.
In cases of 20 and 50 replicas, the number of instances
implemented seems to be enough to process all the
requests. Then, the difference between the TR values is
not visualized.

Then, the analysis performed in order to study the
behavior of both architectures from the number of replicas
required for application components is reliable in com-
parison with the expected behavior of the design patterns
they represent.

In order to test the handling of failure states, sev-
eral simulations were also performed. The simulations
were executed with different values of the failureProb-
ability parameter related to functional components
included in the architecture (failureProbability = 0.5 and

failureProbability = 1). In all cases, the number of available
replicas remained fixed in numberOfReplicas = 25.

As an example, Figs. 12 and 13 show the results
obtained for the SR (service robustness) metric in four exe-
cutions using failureProbability = 0.5. The SR metric refers
to the relationship between the total operation time and
available time of the CCA service. When all the replicas of
the same application component go into failure state, the
system is not available and, therefore, it will not be able
to process new requests (SR = 0). Then, a value near to 1
indicates that it is highly probable that, at a given time, the
system is in service. As can be seen, the three-tier architec-
ture maintains a high SR level (SR = 1) for a period of time
greater than the one exhibit in the two-tier architecture.
Making the same comparison with failureProbability = 1,
the three-tier architecture presents better performance
than the two-tier model. Such behavior is due to the sepa-
ration of the responsibilities in the three-tier pattern that
provides a smaller impact of failure states at functional
component over the CCA. In the case of two tiers, a failure
in any of the functional components involved in the design
of an application component will result in the failure of
the all application. However, in the three-tier architecture
the independence among application components pro-
vide also independence among functional components.
Then, failure states at functional component level will only

Fig. 12 SR in the two-tier architecture with failureProbability = 0.5

Vol.:(0123456789)

SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z Research Article

impact on the application component related to it (not to
all the application as in the two-tier model).

Moreover, it is observed that when increasing the
probability of failure, the number of processed requests
is reduced in both cases (Fig. 14). Then, when the model is
in failure state the system solves a lower number of user
requests. Again, the designed simulation models have
reflected a behavior consistent with what is expected in
the design patterns they represent.

6 Conclusions and future research

In this paper we present a modeling and simulation frame-
work that provides an evaluation model for quality estima-
tion in early stages of development for cloud computing
applications. By using the software architecture as sketch,
the framework provides an engineering solution that helps
to study the performance of cloud application designs by
measuring a defined set of quality properties. As software
architectures are defined from architectural patterns,
architectural components included in the framework were
obtained from the study of real architectural patterns.
The translation between architectural components and
simulation models is performed as a hidden process that
maps predefined simulation models to the architectural
structure outlined by the design. Further, the same design
can be tested using different number of instances of the
application components (defined as component replicas)
to study their deployment over the resources.

The framework can be used as support tool in software
engineering processes to improve the quality of the final
cloud application using an early estimation across the
development. One of the main advantages of the frame-
work is the possibility to study the performance of sev-
eral designs without implementation effort. The software

Fig. 13 SR in the three-tier architecture with failureProbability = 0.5

Fig. 14 Average requests processed with failure states

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z

architect can experiment with the CCA design to improve
its final proposal with aims to fulfil the quality expecta-
tions. Moreover, the framework can also be used to study
how architectural changes can improve the performance
of already existing architectures. On the other hand, the
limitations are related to the predefined set of architec-
tural components. Even when new components could
be added to the metamodel, such addition will always
require a new mapping with a new simulation model.
Also, although the framework is limited to a defined set of
quality measures, since the CCA Architecture model is built
considering all possible states of architectural components
and the events flow is managed by the simulation formal-
ism, new quality properties can be added. Such addi-
tion will probably involve changes over the MRM model
included in the experimental frame in order to calculate
new metrics.

The authors are currently using the framework to evalu-
ate a variety of cloud applications in order to obtain new
quality properties to be included as part of the framework.
Thereby, the addition of new metrics combining new sim-
ulation models with the existent ones is a current research.
Thus, given that the simulation performed by the frame-
work is only attached to software components, the addi-
tion of infrastructure resources is another research area to
be exploited as future work. Actually, authors are study-
ing the possibility of linking the modeling and simulation
framework as a software level description of infrastructure
models developed using CloudSim [26].

Funding This work was supported by the Universidad Tecnológica
Nacional [Grant Numbers EIUTIFE0003803TC, SIUTIFE0005273TC];
and the National Scientific and Technical Research Coun-
cil - Argentina [Grant Numbers PIP 112‐20170101131CO; PUE
22920160100132CO].

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding au-
thor states that there is no conflict of interest.

References

 1. Mell P, Grance T (2011) The NIST definition of cloud computing
 2. Hu F, Qiu M, Li J, Grant T, Taylor D, McCaleb S, Hamner R (2011) A

review on cloud computing: design challenges in architecture
and security. J Comput Inf Technol 19(1):25–55

 3. Bera S, Misra S, Rodrigues JJ (2014) Cloud computing applica-
tions for smart grid: a survey. IEEE Trans Parallel Distrib Syst
26(5):1477–1494

 4. Bouchenak S (2010) Automated control for SLA-aware elastic
clouds. In: Proceedings of the fifth international workshop on

feedback control implementation and design in computing sys-
tems and networks (pp 27–28). ACM

 5. Offutt J (2002) Quality attributes of web software applications.
IEEE Softw 19(2):25–32

 6. Breu R, Kuntzmann-Combelles A, Felderer M (2014) New per-
spectives on software quality. IEEE Softw 31(1):32–38

 7. Institute of Electrical Electronic Engineering (2011) ISO/IEC
25010: systems and software engineering—systems and soft-
ware quality requirements and evaluation (SQuaRE)—system
and software quality models

 8. Lee JY, Lee JW, Kim SD (2009) A quality model for evaluating
software-as-a-service in cloud computing. In 7º ACIS interna-
tional conference on software engineering research, manage-
ment and applications (pp 261–266). IEEE

 9. Roy J, Suryn W, Eftekhar SM, Terfas H (2018) Towards a quality
evaluation framework for cloud-based applications. SQM XXVI
111

 10. Zeigler BP, Muzy A, Kofman E (2018) Theory of modeling and
simulation: discrete event & iterative system computational
foundations. Academic Press, London

 11. Blas MJ, Gonnet S, Leone H (2017) Routing structure over
discrete event system specification: a DEVS adaptation to
develop smart routing in simulation models. In: 2017 Winter
simulation conference (WSC) (pp 774–785). IEEE

 12. Samoladas I, Gousios G, Spinellis D, Stamelos I (2008) The
SQO-OSS quality model: measurement based open source
software evaluation. In: IFIP international conference on open
source systems (pp 237–248). Springer, Boston, MA

 13. Deissenboeck F, Juergens E, Lochmann K, Wagner S (2009)
Software quality models: purposes, usage scenarios and
requirements. In: 2009 ICSE workshop on software quality
(pp 9–14). IEEE

 14. Jagli D, Purohit S, Chandra NS (2017) SaaS CloudQual: a qual-
ity model for evaluating software as a service on the cloud
computing environment. In: Innovations in computer science
and engineering (pp 73–80). Springer, Singapore

 15. Bardsiri AK, Hashemi SM (2014) Qos metrics for cloud comput-
ing services evaluation. Int J Intell Syst Appl 6(12):27

 16. Olsina L, Rossi G (2002) Measuring Web application quality
with WebQEM. IEEE Multimedia 9(4):20–29

 17. Lew P, Olsina L, Zhang L (2010) Quality, quality in use, actual
usability and user experience as key drivers for web applica-
tion evaluation. In: International conference on web engineer-
ing (pp 218–232). Springer, Berlin, Heidelberg

 18. Morasca S, Lavazza L (2019) Comparing the effectiveness of
using design and code measures in software faultiness esti-
mation. In: Proceedings of the evaluation and assessment on
software engineering (pp 112–121). ACM

 19. Abdelmaboud A, Jawawi DN, Ghani I, Elsafi A, Kitchenham B
(2015) Quality of service approaches in cloud computing: a
systematic mapping study. J Syst Softw 101(1):159–179

 20. Wnukiewicz KK (2006) The role of quality requirements in soft-
ware architecture design. Master Thesis, Blekinge Institute of
Technology, Sweden

 21. Bass L, Clements P, Kazman R (2012) Software architecture in
practice. Addison-Wesley Professional, Boston

 22. Dobrica L, Niemela E (2002) A survey on software architecture
analysis methods. IEEE Trans Softw Eng 28(7):638–653

 23. Clements P, Bass L, Kazman R, Abowd G (1995) Predicting soft-
ware quality by architecture-level evaluation. In: Proceedings
of the fifth international conference on software quality (vol
5, pp 485–497)

 24. Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid
computing 360-degree compared. In: 2008 Grid computing
environments workshop (pp 1–10). IEEE

Vol.:(0123456789)

SN Applied Sciences (2020) 2:374 | https://doi.org/10.1007/s42452-020-2171-z Research Article

 25. Ardagna D, Casale G, Ciavotta M, Pérez JF, Wang W (2014)
Quality-of-service in cloud computing: modeling techniques
and their applications. J Internet Serv Appl 5(1):11

 26. Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R
(2011) CloudSim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource
provisioning algorithms. Softw Pract Exp 41(1):23–50

 27. Wang S, Liu Z, Sun Q, Zou H, Yang F (2014) Towards an accurate
evaluation of quality of cloud service in service-oriented cloud
computing. J Intell Manuf 25(2):283–291

 28. Garg SK, Versteeg S, Buyya R (2013) A framework for rank-
ing of cloud computing services. Future Gener Comput Syst
29(4):1012–1023

 29. Chung L, Do Prado Leite JCS (2009) On non-functional require-
ments in software engineering. In: Conceptual modeling:
foundations and applications (pp 363–379). Springer, Berlin,
Heidelberg

 30. Khan AN, Kiah MM, Khan SU, Madani SA (2013) Towards secure
mobile cloud computing: a survey. Future Gener Comput Syst
29(5):1278–1299

 31. Rimal BP, Choi E, Lumb I (2009) A taxonomy and survey of cloud
computing systems. In: 2009 Fifth international joint conference
on INC, IMS and IDC (pp 44–51). IEEE

 32. Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-
the-art and research challenges. J Internet Serv Appl 1(1):7–18

 33. Fehling C, Leymann F, Retter R, Schupeck W, Arbitter P (2014)
Cloud computing patterns: fundamentals to design, build, and
manage cloud applications. Springer, Heidelberg

 34. Cysneiros LM, Do Prado Leite JCS, Neto JDMS (2001) A frame-
work for integrating non-functional requirements into concep-
tual models. Requir Eng 6(2):97–115

 35. Chung L, Nixon BA, Yu E, Mylopoulos J (2012) Non-functional
requirements in software engineering, vol 5. Springer, New York

 36. Firesmith D (2003) Using quality models to engineer quality
requirements. J Object Technol 2(5):67–75

 37. Mairiza D, Zowghi D, Nurmuliani N (2010) An investigation into
the notion of non-functional requirements. In: Proceedings of
the 2010 ACM symposium on applied computing (pp 311–317).
ACM

 38. Gross D, Yu E (2001) From non-functional requirements to
design through patterns. Requir Eng 6(1):18–36

 39. Blas MJ, Gonnet S, Leone H (2017) An ontology to document a
quality scheme specification of a software product. Expert Syst
34(5):e12213

 40. Gao J, Pattabhiraman P, Bai X, Tsai WT (2011) SaaS performance
and scalability evaluation in clouds. In: Proceedings of 2011 IEEE
6th international symposium on service oriented system (SOSE)
(pp 61–71). IEEE

 41. Khan IA, Singh R (2012) Quality assurance and integration test-
ing aspects in web based applications. Int J Comput Sci Eng
Appl 2(3):109

 42. Wen PX, Dong L (2013) Quality model for evaluating SaaS ser-
vice. In: 2013 Fourth international conference on emerging
intelligent data and web technologies (pp 83–87). IEEE

 43. Zhao B, Zhu Y (2014) Formalizing and validating the web qual-
ity model for web source quality evaluation. Expert Syst Appl
41(7):3306–3312

 44. Institute of Electrical Electronic Engineering (2001) ISO/IEC
9126-1: software engineering—product quality—part 1: qual-
ity model

 45. Sommerville I (2011) Software engineering, 9th edn. Addison-
Wesley, Boston

 46. Kruchten P (2004) An ontology of architectural design decisions
in software intensive systems. In: 2nd Groningen workshop on
software variability (pp 54–61)

 47. Tyree J, Akerman A (2005) Architecture decisions: demystifying
architecture. IEEE Softw 22(2):19–27

 48. De Boer RC, Lago P, Telea A, Van Vliet H (2009) Ontology-driven
visualization of architectural design decisions. In: 2009 Joint
working IEEE/IFIP conference on software architecture & Euro-
pean conference on software architecture (pp 51–60). IEEE

 49. Jansen A, Bosch J (2005) Software architecture as a set of archi-
tectural design decisions. In: 5th working IEEE/IFIP conference
on software architecture (pp 109–120). IEEE

 50. Kruchten P, Capilla R, Dueñas JC (2009) The decision view’s role
in software architecture practice. IEEE Softw 26(2):36–42

 51. Ameller D, Franch X (2010) How do software architects consider
non-functional requirements: a survey. In: International working
conference on requirements engineering: foundation for soft-
ware quality (pp 276–277). Springer, Berlin, Heidelberg

 52. Harrison N, Avgeriou P (2007) Pattern-driven architectural parti-
tioning: balancing functional and non-functional requirements.
In: 2007 Second international conference on digital telecom-
munications (pp 21–21). IEEE

 53. Myllymäki T, Koskimies K, Mikkonen T (2002) Structuring prod-
uct-lines: a layered architectural style. In: International confer-
ence on object-oriented information systems (pp 482–487).
Springer, Berlin, Heidelberg

 54. Pahl C, Giesecke S, Hasselbring W (2009) Ontology-based model-
ling of architectural styles. Inf Softw Technol 51(12):1739–1749

 55. Steinberg D, Budinsky F, Merks E, Paternostro M (2008) EMF:
eclipse modeling framework. Pearson Education, Upper Sad-
dle River

 56. Gronback RC (2009) Eclipse modeling project: a domain-specific
language (DSL) toolkit. Pearson Education, Boston

 57. Arizona Center for Integrative Modeling and Simulation (2004)
http://www.acims .arizo na.edu/

 58. Sarjoughian HS, Singh R (2004) Building simulation modeling
environments using systems theory and software architecture
principles. In: Proceedings of the advanced simulation technol-
ogy conference (pp 99–104)

 59. Zeigler BP, Sarjoughian HS (2003) Introduction to DEVS mod-
eling and simulation with java: developing component-based
simulation models. Arizona State University, Tucson

 60. Blas MJ, Gonnet SM, Leone HP, Zeigler BP (2018) A conceptual
framework to classify the extensions of DEVS formalism as vari-
ants and subclasses. In: Proceedings of the 2018 winter simula-
tion conference (pp 560–571). IEEE Press

 61. Blas M, Gonnet S, Leone H (2017) Modeling user temporal
behaviors using hybrid simulation models. IEEE Latin America
Trans 15(2):341–348

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://www.acims.arizona.edu/

	Modeling and simulation framework for quality estimation of web applications through architecture evaluation
	Abstract
	1 Introduction
	2 Quality evaluation in cloud computing
	3 Cloud computing applications (CCA)
	3.1 Quality properties
	3.2 Software architecture: design and patterns

	4 The simulation framework for cca architectures
	4.1 Software modeling tool for designing CCA architectures
	4.2 RDEVS as modeling and simulation formalism for CCA software architecture
	4.2.1 Getting RDEVS models from the CCA software architecture

	4.3 CCA simulation scenario as a combination of DEVS and RDEVS models

	5 Case study: building the simulation model for two CCA software architectures
	6 Conclusions and future research
	References

