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Abstract

A complete mathematical model for electromigration in paper-based analytical devices is
derived, based on differential equations describing the motion of fluids by pressure sources and
EOF, the transport of charged chemical species and the electric potential distribution. The
porous medium created by the cellulose fibers is considered like a network of tortuous cap-
illaries and represented by macroscopic parameters following an effective medium approach.
The equations are obtained starting from their open-channel counterparts, applying scaling
laws and, where necessary, including additional terms. With this approach, effective param-
eters are derived, describing diffusion, mobility and conductivity for porous media. While
the foundations of these phenomena can be found in previous reports, here, all the contribu-
tions are analyzed systematically and provided in a comprehensive way. Moreover, a novel
electrophoretically driven dispersive transport mechanism in porous materials is proposed.
Results of the numerical implementation of the mathematical model are compared with ex-
perimental data, showing good agreement and supporting the validity of the proposed model.
Finally, the model succeeds in simulating a challenging case of free-flow electrophoresis in
paper, involving capillary flow and electrophoretic transport developed in a 2D geometry.
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1 Introduction
Electrophoresis on paper substrates was first studied 70 years ago, where the most outstanding
works where those from Tiselius on serum protein separation [1, 2]. Electrophoresis then evolved
using more uniform media, like gel [3, 4] and open (i.e. non-porous) channels, like glass and
fused-sillica capillaries [5, 6]. More recently, the technique was integrated to microfluidic devices
made out of glass, silicon, or polymers [7, 8]. The evolution of the open-channel electrophoresis
was followed by proper mathematical descriptions of the involved phenomena, required for deep
understanding of the methods, for prediction of the outcome of experiments, and for rational
design of novel electrophoretic devices [9]. One-dimensional CZE, ITP and IEF problems where
successfully modeled using non-linear partial differential equations (PDE) describing the charge
and mass conservation principles [10]. By using this approach, several software tools have been
developed to simulate specific 1D problems [11, 12, 13]. Improvements to these models were
reported in the past decade, appealing to more complex formulations for particular physicochemical
conditions [14], and electrically-driven flows [15]. Furthermore, particular applications like IEF in
nano-channels [16], 2D IEF [17, 18], free-flow IEF (FFIEF) [19], and even FFIEF combined with
CZE in a 2D lab-on-a-chip device [20] were successfully modeled with computational tools based
on the finite element (FEM) or finite volume (FVM) methods. Also, a commercial FEM tool was
recently reported to successfully replicate 1D benchmark problems, with the potential to solve 2D
and 3D arbitrary cases [21]. Recently, a comprehensive model was reported, dealing simultaneously
with the fluid flow (including EOF), transport, charge conservation, pH and effective mobility
problems, in arbitraty 3D geometries [22].

In the last 5 years, electrophoresis on paper substrates regained relevance [23, 24] due to the
boom of microfluidic paper based analytical devices (μPADs). μPADs arose as a promising option
for rapid, inexpensive, and on-site assays, for environmental monitoring, food safety, and for vet-
erinary and human health [25]. Regarding the last application, μPADs are expected to truly reach
the end-user or low trained personnel at sensitive areas like point-of-care, low-resource-settings and
remote populations [26]. Thus, paper zone electrophoresis (ZE) has been demonstrated [27, 28]
and ZE μPADs have been used for amino-acid [29] and protein separation [30]. Also, ITP on
μPADs has been assessed [31, 32] and devices for immunoglobulin [33], nucleotide strands [34, 35]
and bacteria detection [36] have been reported.

However, only a few analytical descriptions of electrophoretic μPADs have been reported, lim-
ited to one-dimensional channels and the transport of a single chemical species [32, 34] or the
binding of an ITP-focused analyte to the reaction zone [33]. Other works provided more complete
descriptions, for 2D and 3D geometries including the mechanical dispersion produced by the in-
tricate network of cellulose fibers [37, 38], the reaction kinetics, and the velocity field due to the
capillary action [39]. Other authors derived methodological descriptions for fluid flow [40, 41] or
transport of chemical species [42] in generic porous materials.

Nevertheless, none of the named reports deals simultaneously with all the relevant phenomena
involved in the electromigration of chemical substances in paper substrates, namely: the fluid
dynamics including the EOF, the transport of all the chemical species, the acid-base equilibrium,
and the electric field distribution in the porous matrix formed by the cellulose fibers. Even more,
none of the reports, to the best of our knowledge, includes a transport mechanism to account
for the solute dispersion produced by the action of electric fields. Analogously to the fluid flow
dispersion [37], the ions forming a plug are expected to be exposed to different velocities, either
longitudinally or transversely, due to the cellulose fiber network, causing an electrophoretically-
driven mechanical solute dispersion (EDMSD). The dispersion produced by EOF has been studied
in a previous work [43], but this effect is due to the advective mass transport, and in principle
differs from the effect of electrophoretic transport of charged species. Such kind of dispersion, can
be observed in experimental works already published [28, 31], and it has even been exploited to
improve mixing [44], although theoretical explanations remain to be provided. Therefore, more
exhaustive modelling is needed to develop a deeper understanding on μPAD electrophoresis to
better design complex configurations such as paper-based free-flow electrophoresis (FFE), FFIEF,
and combinations of the different electrophoretic modes, in 2D and 3D formats [45, 46].

In this work, a comprehensive 3D model is presented including PDEs for all the relevant phe-
nomena involved in the transport of chemical species, subject to an electric field in a paper sub-
strate. First, proper scaling laws are introduced to account for the modifications produced in the
open-channel equations by the porous media. Then, proper PDEs are derived for hydrodynamic
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flow, transport of chemical species and charge conservation. While the foundations for these PDEs
can be found in different works, here, the entire set of PDEs is derived methodologically and each
PDE is presented accounting for all the phenomena involved. A special case is the EDMSD term,
which is introduced here for the first time, to the best of our knowledge. In order to validate
the proposed model, we performed numerical simulations of experiments reported in the litera-
ture [28, 31]. Finally, the model was used to simulate a challenging case: FFE on Whatman filter
paper for the separation of amino acids.

2 Theory

2.1 Mathematical model
The proposed mathematical model was developed under the following set of hypothesis: i) The
porous matrix is in principle modelled as a bundle of tortuous capillaries with variable cross
sectional area. ii) The geometrical shape of the substrate is constant along the experiments, then,
deformation, or swelling effects are not taken into account. iii) Evaporation is not accounted for.
This is reasonable for laminated paper substrates, controlled environments and/or short-duration
experiments. iv) All the systems and processes are supposed to be isothermal. v) Retention effects
such as adsortion, electrostatic wall forces or hydrophobic/hydrophilic interaction, are neglected
for the transport of molecules.

2.1.1 Effective medium approach and scaling laws

The differential model presented here, is based on a effective medium approach, in which the
different physicochemical magnitudes are computed in an intermediate scale, larger that the pores,
but smaller than the modeled domain, such that the porous matrix of the paper can be treated
as a continuum. Further analysis of this approach can be found elsewhere [39]. In what follows
we outline the scaling laws needed to properly define the physical magnitudes in terms of the
macroscopic parameters of the porous medium. Volume scalars in a non-porous material (such as
concentrations) can be related to their porous counterpart trough the porosity φ = Vvoid/Vtotal,
where Vvoid is the void volume within the substrate whose nominal volume is Vtotal. If a is a volume
scalar, then its effective value ap in the porous medium is:

ap = aφ (1)

where the p subscript denotes paper. The porous medium can be considered as a group of tortuous
hollow capillaries embedded in a solid matrix, approximately aligned to the flow direction. Then,
the porosity can be rewritten as φ = NAplp/AL, where A and L are the cross-sectional area and
length of the matrix, Ap and lp are the average cross-sectional area and length of the pores and N is
the number of capillaries. Defining the average tortuosity τ = lp/L and noting that NAp = Avoid,
then Avoid/A = φ/τ . This ratio is used to scale flux related quantities. For example, mass
conservation requires uA = upAvoid, where u is the average flow velocity and up is the average flow
velocity at the pore level [40]. Then,

up = u
A

Avoid
= u

τ

φ
(2)

Finally, the winding nature of the pores has to be taken into account in the calculation of
spatial derivatives because the real distance between electric potential Φ and pressure p sources
and sinks is,

xp = τx (3)

in which x is a coordinate in the scale of the porous medium and xp the corresponding coordinate
inside the pores [40].
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2.1.2 Generalized Navier-Stokes equation for porous media

The velocity field in porous media can be described with a modified version of the Navier-Stokes
equations [47] corrected to describe the average flow through the porous medium by applying the
scaling laws 2 and 3. Also, two terms need to be included, accounting for the drag produced by the
solid portion of the porous channel, and the electric force over the electrolyte solution, respectively.
These modifications yield [40],

τ

φ

∂u

∂t
+
τ

φ
u · ∇

(
u

φ

)
=

µ

ρτ
∇2

(
u

φ

)
− 1

ρτ
∇p− ρe

ρτ
∇Φ +

µ

ρ

u

K

∇ · u = 0

(4)

where µ is the fluid viscosity, ρ is the fluid density, ρe is the charge density of the electrolyte
solution and K is the Darcy’s permeability of the medium. The third term on the right–hand–side
corresponds to the EOF associated to an externally applied electric field −∇Φ. The last term on
the right–hand–side accounts for the viscous effect produced by the cellulose fibers, which is known
as the Forchheimer force, and on a more general form can be written as F = µu/ρK+Fεu|u|/

√
K

where Fε is the friction factor. Usually the non–linear contribution can be neglected for the
velocities found in microfluidic devices [40]. Also, the left-hand side of eq. 4 can be neglected in
stationary problems with low Reynold numbers (usually the case in μPADs) [40], and the Laplacian
viscous term can be neglected when compared to F. Then, eqs. 4 simplifies to,

1

τ
∇p+

ρe
τ
∇Φ =

µ

K
u

∇ · u = 0
(5)

which can be interpreted as a modified Darcy’s law that includes electroosmotically-driven flows in
porous media. The pressure driven term represents any pressure source, such as capillarity or an
external pump. In any case, the proper pressure value (like the Laplace pressure for capillarity [39])
has to be fixed as a boundary condition.

In equations 4 and 5, ρe has two contributions: the bulk ion concentration density ρbe and the
ion concentration density associated to the electrical-double-layer developed around the surface
of the cellulose fibers ρpe. The first contribution vanishes because the bulk fluid is assumed to be
electro-neutral, i.e. ρbe = F

∑
zjcj = 0, where F is the Faraday’s constant and zj and cj are the

charge number and concentration of the j-th species respectively [48]. The second contribution is
regarded as the (pore cross-sectional area) averaged charge distribution that produces an effective
electrically-driven fluid flow [40]. A model for such charge density is,

ρpe =
φεζ

τK
(6)

where ζ is the wall (in our case the cellulose fiber) electrokinetic potential, and ε is the electrical
permittivity of the fluid [40]. Regarding the ζ-potential, a ζ(pH) model can be used, as suggested in
reference [41]. It is worth noting that in one-dimensional flows, only for the cases of uniform ζ and
−∇Φ, the EOF velocity can be described by using the Helmoholtz-Smoluchowski’s equation [22]
modified for porous media, uEOF = φεζ∆Φ/τ2µl. This equation can be obtained assuming a pure
elecroosmotically-driven flow in eq. 5 (i.e. ∇p = 0) and replacing ρpe value by eq. 6.

In particular, in the experimental cases studied in this work, pH conditions were constant in
time and uniform in space, thus we have not considered pH-induced variations of the EOF.

2.1.3 Generalized transport equation for porous media

The transport of a diluted chemical species j through a non-porous channel is described by the
mass conservation equation ∂cj/∂t = −∇ ·

(
ufc

j −Dj
0∇cj

)
+ rj where cj is the concentration

of the species and rj is its production rate. Two transport mechanisms are present: i) diffusion,
being Dj

0 the diffusion coefficient and ii) advection, being uf the fluid velocity [48]. To adapt this
equation to porous media, equations 1, 2 and 3 are used for volume scalars (c and r), velocities,
and spatial derivatives, respectively, yielding,
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∂(cjφ)

∂t
= −∇ ·

(
ufc

j − Dj
0

τ2
∇
(
cjφ
))

+ rjφ

A similar equation was obtained in [42]. The expressionDj
0/τ

2 can be considered like an effective
diffusivity Dj

p of the porous medium. Regarding the advective term, no correction coefficient
applies, because the divergence of the mass flux ufc

j is increased by the factor τ/φ, while decreased
by the the winding nature of the path by 1/τ and by the reduced effective concentration by φ.

However, other transport mechanisms are present in the studied problem. The pore network
introduces an alternating variation of fluid velocity, in both magnitude and direction, producing
additional solute dispersion. This effect can be represented by a transport mechanism called
mechanical dispersion, producing a mass flux proportional to a dispersivity coefficient sf and to
the average velocity in the porous medium [37].

In an open-channel, under the action of an electric field −∇Φ, the charged species j is expected
to migrate with a velocity ue = −Ωj∇Φ, where Ωj is the electrophoretic mobility of such species [48]
for the given conditions of pH and ionic strength [22]. Thus, the distance traveled by a charged
molecule is d = Ωjt(Φin −Φout)/l where t is time, Φin and Φout are the electric potentials applied
at the inlet and outlet respectively, and l is the distance between the electrodes [2]. In porous
media, ue has to be corrected taking into consideration that both d and l are affected by scaling
law 3, yielding ue = −Ωj∇Φ/τ2. Then, the effective mobility in porous media is Ωjp = Ωj/τ2, as
proven by [2]. It is worth noting that, even though ue is a velocity, the scaling law given by eq. 2
does not apply, since it is valid for fluid velocities and ue is the velocity of a charged molecule.
This result for Ωjp can also be obtained replacing Dj with Dj

p in the Nernst-Einstein equation
Ωj = Dj(F/RT ) [48], where R is the gas constant and T is the temperature.

With this additions, the generalized transport equation for porous media can be written as,

d(cjφ)

dt
= −∇ ·

((
uf
φ

+
Ωj

τ2
∇Φ

)
(cjφ)−

(
Dj

0

τ2
+ sf |

uf
φ
|+ se|

Ωj

τ2
∇Φ|

)
∇
(
cjφ
))

+ rjφ (7)

where se is the dispersivity of the media due to EDMSD, i.e. se|ue| accounts for the dispersion
produced in the concentration field of a charged species, when an electric field is applied. As a first
approximation, sc and se are expected to take similar values. In equation 7, it should be noted
that sf |uf | was corrected by τ/φ and 1/τ , in analogy to the convective term. Also, uf , which
already accounts for EOF, can be obtained with equation 4, or 5, while Φ can be obtained with
the equation presented next. Also, H+ concentration field (or pH) and Ωj(pH), can be calculated
as in reference [22].

It is important to note that chromatographic effects can play a relevant role in paper sub-
strates [49]. The presented formulation does not include chromatographic effects, which are to be
considered in future implementations of the model. In particular, all the experimental cases con-
sidered in the manuscript involve small inorganic molecules as chemical species (both for analytes
and buffer constituents). Such small inorganic ions interact with walls in a way that any reten-
tion effect can be neglected due to its low relative magnitude compared with the other considered
transport phenomena.

2.1.4 Generalized charge conservation equation for porous media

The electric potential in the bulk fluid of open-channels is calculated through the Gauss’ Law
∇2ψ = −ρe/ε [48]. This total electric potential ψ has two main contributions: i) a ζ potential
due to the electric double layer near the walls, which usually decays within around 10 nm and ii)
a Φ potential due to an external source. Ideally, ∇ζ � ∇Φ and also ζ ⊥ Φ, since the former is
perpendicular and the last is tangent to the channel walls, thus both contributions can be treated
separately [20]. Because of the length scales involved, solving ∇2ζ = −ρe/ε would require a large
computational cost, hence it is preferable to deal directly with its effect, the EOF, in the momentum
equation [22].

The external contribution Φ can be obtained from the steady-state conservation of charge
∇ · i = 0, where i is the electrical current density with three contributions of charge flux in open-
channels: i) the ohmic current density −σ∇Φ, being σ the conductivity of the electrolyte solution,
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ii) a diffusive contribution −F
∑N
j=1 zjD

j
0∇cj and iii) an advective contribution ρeuf , which can

be neglected since electroneutrality is assumed in the bulk of the fluid [22, 48].
In the case of porous media, a similar approach can be followed. The two contributions to ψ

are also ζ (relevant within 10 nm near the cellulose fibers), and Φ valid in the bulk of the pores.
Also, the relations ∇ζ � ∇Φ and ζ ⊥ Φ hold, thus they can be treated separately. The EOF
was analyzed in section 2.1.2, while Φ can be calculated from a generalized charge conservation
equation for porous media. To obtain such equation, not only the dispersive contribution has to
be fixed as in Eq. 7, but also a proper ohmic contribution needs to be derived. The conductivity
can be corrected starting from the open-channel conductivity σ = F

∑N
j=1 z

2
jΩjcj [48], recalling

the effective mobility Ωj/τ2 and concentration cjφ, yielding,

σp = F

N∑
j=1

z2j
Ωj

τ2
cjφ =

φ

τ2
σ (8)

Again, the conductivity in the averaged porous media can be thought as an effective conduc-
tivity σp which relates to the open-channel conductivity by σφ/τ2. An alternative way to obtain
this result is presented in the supplementary information. Several reports relating σ and σp have
been published [50, 51, 52, 53, 54], most of them based on the Archie’s Law, which states that
σp/σ = φm [50], where m is obtained empirically and usually 1.3 < m < 2.2 [51]. These works
cover wide porosity ranges [51, 52], and model effects like pore saturation [54] and the existence
of bottle necks [52], adding complexities that do not apply for saturated mediums with high φ
and moderate τ like paper. These reports do not include τ explicitly, with the exception of [51]
which arrives to an expression where σp/σ ∝ φ/τ2. Also, σp can be modified to account for the
intrinsic ohmic conductivity of the wet (with pure solvent) cellulose fibers, σ0. With this addition,
σp = σ0 + σφ/τ2, as revised in [54]. However, in many applications σ � σ0 and thus σ0 can be
neglected. Finally, the charge conservation equation corrected for paper-like porous media is,

∇ ·

− φ

τ2
σ∇Φ− F

N∑
j=1

zj

(
Dj

0

τ2
+ sf |

uf
φ
|+ se|

Ωj

τ2
∇Φ|

)
∇(Cjφ)

 = 0 (9)

where the correction of the divergence operator and −∇Φ are already included in the effective
coefficients.

3 Materials and methods

3.1 Numerical resolution of the model
Solving the mathematical problem consists in finding the unknowns uf , p, cj and Φ, contained in
equations 4, 7 and 9. This system of coupled equations was solved iteratively using the electro-
MicroTransport [22] toolbox for OpenFOAM R©[55], an open-source tool based on the finite volume
method. The hardware employed was a desktop computer with a single quad–core Intel i7 7700
3.6 GHz processor and 16 GB DDR3–2400 memory. The problems were solved in parallel using 4
calculation threads.

4 Results and discussion

4.1 Validation case 1: ZE-μPAD
The numerical model was validated against experimental data found in the literature. The first
selected problem is a zone electrophoresis separation reported in [28]. In this example, a 500 µM
sodium sample is placed in a 60 mm long, 1 mm width Whatman #1 channel. The injection chan-
nel and detector positions are 13 mm and 50 mm, respectively. The original device is sketched in
Fig. 1A. BGE is composed of 20 mM MES and 20 mM Histidine (pH = 6.1). Figs. 1B-D present
the electropherogram obtained when a 2.5 kV electric potential is applied across the channel.
This problem was solved numerically by using the parameters detailed in the supplementary in-
formation. A 60 mm one-dimmensional channel was meshed with 12000 cells, and a 1 mm width

7



Figure 1: A) Sketch of the electrophoretic device chosen as validation case 1. Modified from [28]
and reprinted with with permission from The Royal Society of Chemistry. B) Comparison of the
experimental electropherogram obtained with capacitive electrodes (dashed line) and the model
electropherogram obtained starting from the sample concentration (solid lines). The best match
corresponds to the black-solid line, obtained with τ=2.9, ζ=−15 µV and se =50 µm. The gray-solid
line is obtained with se = 0. C) Parametric sensitivity analysis (PSA) on ζ using the maximum
and minimum values reported [56]. D) PSA on τ , using the average value τAV and τAV ±SD given
in the supplementary information. Here, sodium peaks were scaled in magnitude to fit the sensor
gain.

sample plug was placed in the injection position. The simulation was run until t =200 s giving
the results shown in Figs. 1B-D. In these figures, the amplitude of the numerical and experimen-
tal results are inversely proportional to the electrical impedance or, equivalently, proportional to
the analyte concentration [57]. When the correct set of parameters is used (τ=2.9, ζ=−15 mV,
se =50 µm), it can be seen how the peak positions coincide almost exactly (error lower than 2%)
while the peak widths (characterized as the full width at half maximum or FWHM) also show a
low error (lower than 5%). Figure. 1B also shows the effect of neglecting the EDMSD, producing
a narrower peak, with an error higher than 60%. PSA on ζ (Fig.1C) and τ (Fig.1D) were also
performed, using the extreme values reported for such parameters: −5 mV> ζ >−20 mV [56] and
1.5 < τ < 3.5 (refer to supplementary material). The PSA on both parameters exhibit great devia-
tions from the experimental peak position, with considerable errors, such as 12% for ζ and 74% for
τ , when the extreme values of in variation ranges are used. The large peak shift produced by the
variation of τ can be explained by considering that electrophoretic and electroosmotic mobilities
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Figure 2: Comparison of experimental [31] and model results for validation case 2. A) Position of
the ITP plug over time (Adapted with permission from [31]. Copyright (2014) American Chemical
Society). The best model prediction is indicated with cross markers. PSA on ζ is indicated with
dashed lines, respectively. PSA on τ was performed but is not indicated since all the curves overlap.
B) Normalized experimental Alexa-Fluor intensity profile and concentration profiles predicted by
the mathematical model. PSA on ζ and se are marked with gray lines.

are both affected by 1/τ2.

4.2 Validation case 2: ITP-μPAD
In the system selected as the second validation case, ITP is performed in a 3.5 mm width and 40 mm
long nitrocellulose channel [31]. The leading electrolyte (LE) is composed of 40 mM Hydrochloric
acid with 80 mM Tris (pH=8.1), and the trailing electrolyte (TE) is composed of 10 mM HEPES
with 20 mM Tris (pH=8.2). The analyte used is 50 nM Alexa-Fluor 488. A 3 % PVP concentration
is added to the LE composition for EOF reduction. The sample injection position is approximately
x =3 mm. When t =0 s, a 500 µA current is applied obtaining the curves shown in Fig. 2A, for
sample plug position versus time, and Fig. 2B, for plug intensity profile (obtained using fluorescence
microscopy) versus channel position.

Solutions to the mathematical model for this problem were obtained numerically by meshing
the 40 mm one-dimmensional channel with 4000 cells. At each boundary of the channel the concen-
trations of TE and LE were imposed, to the reservoirs concentration respectively. The simulation
was run until t =150 s yielding the results given in Fig. 2. The experimental position along time
is overlapped with the model predictions in Fig. 2A, with a small error (lower than 4%) when
ζ =−5 mV and se =30 µm. The rest of the used parameters is listed in the supplementary infor-
mation. In Fig. 2B the Alexa-Fluor numerical concentration profile correlates accurately with the
experimental intensity profile at t =65 s, with an error lower than 10% in the FWHM. Figure 2
also shows a PSA on τ , ζ and se. In the first case, the position of the plug remains unchanged for
variations between 1.5 and 3.5. Again, electrophoretic and electroosmotic mobilities are reduced by
the same amount (1/τ2), but the electric field is increased by τ2/φ, as can be deduced from eq. 9,
after neglecting the dispersive terms and recalling that current is fixed. The net result is that the
effect of τ is cancelled when a constant current is used. On the other hand, ζ-variations only affect
EOF, changing the plug position up to ∼ 15%. The experimental curve lays between total EOF
suppression (ζ=0 V) and EOF for the maximum reported ζ (−20 mV) [56]. Thus, PVP signifi-
cantly reduces EOF, although it does not achieve total suppression. Finally, neglecting EDMSD,
gives a an error in the peak width less than 60%.
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4.3 Application case: FFE-μPAD
In FFE, the analytes to be separated are injected continuously into a liquid carrier and an electric
field is applied perpendicular to the flow direction. In the separation chamber, analyte molecules are
deviated from the flow streamlines in the direction of the vector composition of hydrodynamic and
electrophoretic velocities. Thus, the mobilities of the different analyte molecules, produce different
deflection angles and reach different zones within the outlet of the separation chamber. Inspired
by a previous work [18], a paper-based FFE device for amino acid separation (see Fig. 3A) was
numerically prototyped, to demonstrate the full potential of the model for dealing simultaneously
with different effects. In this device, capillary action produces an horizontal flow, from the inlet to
the two outlets connected to a capillary pump (i.e. an absorbent pad). Also, an electric potential
applied across the electrodes produces an electromigrative velocity. After device operation, the
separated amino acids can be claimed directly by cutting-out the outlet strips.

It is important to describe here relevant facts about the design and optimization process of
the device. As already mentioned, this FFE separation is based on a previous work on modelling
and simulation electromigrative phenomena in open-channel microfluidic chips [18]. By using
the presented numerical tool, several attempts were performed trying to reproduce the analytical
performance of such device. The first obstacle were the original dimensions (3× 1mm2) and fluid
velocity which could not be reproduced in a μPAD due to the extreme mixing produced by solute
dispersion. This effect generated almost uniform analyte concentrations inside the chamber. In
order to deal with this problem, larger dimensions were proposed as a possible solution [58]. After
this modification, applying Φ at the inlets and outlets of the device (as in the original open-channel
device) was no longer suitable for proper separation, since the electric field in the chamber was
highly nonuniform. Therefore, the electrodes were placed along the chamber lateral sides, immersed
in a high conductivity buffer, as proposed in reference [59]. Gathering these concepts, a different
device was obtained in terms of dimensions and operative conditions, but capable of performing the
same FFE separation than the open-channel counterpart. More details about this design process
can be found in the supplementary information.

For the final device design, the operation of the FFE-μPAD was simulated by using 90000
250 µm square cells and the parameters listed in the supplementary information. The electric field
lines and flow streamlines obtained are depicted in Fig. 3B for a 600 V drop across the electrodes.
At the pH of the BGE (6.25), negatively charged aspartic acid from the sample migrates towards
the anode and is collected in the upper outlet, while positively charged lysine migrates towards the
cathode and is collected in the lower outlet. This is shown in Fig. 3C for different times. Fig. 3D
compares simulations undertaken with EDMSD, without EDMSD, and without both dispersion
mechanisms. In Fig. 3D, the dispersion associated to both sf and se (lower panel) in the order of
millimeters, can be clearly noted. It is clear that the EDMSD makes the major contribution to
transverse dispersion and thus, it should not be neglected when modelling.

5 Summary and conclusions
A complete numerical model for the electromigration in μPADs was derived, which is based on
equations that describe the motion of fluids by capillary action and EOF (eq. 4), the transport of
charged chemical species (eq. 7), and the electric potential distribution (eq. 9). The porous medium
was considered like a network of tortuous capillaries and represented by macroscopic parameters
following an effective medium approach. Equations 4 (or 5), 7 and 9 form a system of equations to
solve four unknowns (uf , p, cj , Φ), provided that all the parameters describing the porous medium
(φ, τ , K, ζ, sf , se), the solvent fluid (µ, ρ, ε) and the transported species j (Ωj , Dj

0, z
j) are given.

The three equations were obtained starting from their open-channel counterparts. Proper scaling
laws for linear displacements (eq. 3), cross sectional area (eq. 2) and volume quantities (eq. 1) were
obtained to adapt bulk fluid transport equations to properly represent transport phenomena in
the porous matrix. Although eq. 4 was obtained from literature and most of the terms in eqs. 7
and 9 could be found spread in previous reports, the contribution of this work is the derivation of
all these phenomena in a comprehensive form.

Moreover, EDMSD was proposed as a novel transport mechanism. In the validation case 1, not
only EDMSD was required to explain the solute dispersion obtained experimentally, but also the
required value for se was in the order of the tenth of microns, the same already obtained for the
mechanical dispersion [37, 45]. This proves that the assumption se ≈ sf made in section 2.1.3 was
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Figure 3: A) Schematic representation of the paper-based FFE device operation (out of scale).
The area within the dashed rectangle, is the simulation domain. B) Streamlines of the hydrody-
namic flow produced (horizontal) and electric field lines (vertical). The color scale represents Φ
along the streamlines. C) Time progress of the analyte concentration fields within the separation
chamber. D) Concentration profiles of lysine when: (top) only Brownian diffusion is considered,
(middle) mechanical dispersion is also computed and, (bottom) Brownian, mechanical dispersion
and EDMSD are accounted for.

reasonable. The same conclusions can be obtained from validation case 2. Even more, very similar
errors in the FWHM were obtained in both validation cases, when se = 0 was used.

Regarding ζ and τ , it can be noted that the scarce available data for those parameters shows
great scatter. Perhaps, the low repeatability associated to μPADs is in part due to that scatter.

The PSA on ζ showed considerable variation when the parameter takes its extreme values, in
both validation cases. The PSA on τ showed a serious variation on the peak position, when the
extreme values were considered in the validation case 1 (section 4.1). However, the same τ -variation
in the validation case 2 (section 4.2) produced no effects in the ITP-plug position. It occurs that
both electrophoretic and electroosmotic velocities are independent of τ when a constant electric
current density is used. This knowledge can be used for reducing the low μPAD repeatably due to
τ -value scatter.

An FFE μPAD was successfully designed using solely the mathematical model and its numer-
ical implementation. The device was optimized and a proper set of physicochemical parameters
was found for device operation, reaching a similar analytical performance than its open-channel
counterpart, but taking advantage of all the benefits of μPADs. Although FFE was performed on
paper substrates 70 years ago, with the aid of the numerical tool we found an operative design
comparatively (and significantly) smaller and simpler than those reported previously [58, 59].

The presented model successfully replicated both validation cases when the correct set of pa-
rameters was used. However, such set is a priori unknown and nominal values (refer to table S1 in
the supplementary information) present great scatter. Thus, predictions made using the average
values should only be taken as a guide, to provide a first approximation on the device perfor-
mance. The model can be used to assess the robustness of μPADs, by testing their performance
under the complete range of parameter values. Future research should focus on characterizing the
most commonly used paper types (such as Whatman #1 or nitrocellulose membranes) in order to
create reliable μPADs with the aid of the presented model. Another relevant topic to explore, is
to include new terms in eq. 7 to account for chromatographic effects due to adsortion, hydropho-
bic/hydrophilic interactions, electrostatics, among others.
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