

Blockchain platform for executing Collaborative Business Processes

with Hyperledger Fabric

Lucas Pairetti1, Tomás D’Anunzzio1, Mercedes Canavesio1, Pablo Villarreal1
1CIDISI - Universidad Tecnológica Nacional Facultad Regional Santa Fe, Santa Fe, Argentina

{lpairettirebotta, tdannunzio, mcanavesio, pvillarreal}@frsf.utn.edu.ar

Resumen

Blockchain and Distributed Ledger Technologies have

been identified as a tool to build and increase trust in

collaborative business processes as well as to provide

integrity, security, and transparency to data. Permissioned

or private blockchains are more suitable for collaborative

processes since the focus is on an efficient exchange of

data and transaction execution. In this work, we propose a

permissioned blockchain platform for the implementation

and execution of collaborative processes, which is based

on HyperLedger Fabric (HF). Smart contracts are defined

and implemented on the blockchain platform for

performing the validation of the messages sent by the

organizations as part of the choreography of interactions

agreed on collaborative processes. The proposed platform

enhances data privacy by using channels for the

processes, and the proposed approach for smart contracts

allows a blockchain completely decentralized for

managing process instances of collaborative processes.

Introduction

Organizations are focusing on establishing cross-

organizational collaborative networks with the purpose of

improving their performance and competitiveness. The

behavior of a cross-organizational collaboration is agreed

on the collaborative business processes that define the

global view of the interactions among organizations to

achieve common business goals [17],[19]. The

digitalization (implementation and execution) of

collaborative processes requires appropriate Information

Technology to fulfill the following requirements:

• Autonomy: Organizations behave as autonomous

entities, hiding their internal decisions, activities, and

processes.

• Decentralized management: Collaborative processes

are jointly managed by the organizations.

• Peer-to-Peer interactions: Organizations interact in a

direct way without the mediation of a third party.

• Privacy: Organizations reveal only the information

that is shared in the interactions, and this public

information is expected to be accessible only to the

interested parties of the network.

• Trust: The participants of collaborative networks are

known. Integrity, security, and transparency of the

shared data are important to achieve an appropriate

trust level among the organizations.

• Execution of agreed interactions: the business logic

defined in the business solutions must be fulfilled by

the implementation of the technological solution.

There are several technologies such as web services

[12], software agents [16], and cloud-based microservices

[4, 5] that were proposed to build platforms for

implementing and executing collaborative processes.

However, although most of the above requirements could

be fulfilled by these platforms, the aspects of privacy and

trust are not completely covered in these approaches.

Blockchain and Distributed Ledger Technologies have

been identified as a tool to build and increase trust in

collaborative business processes [15, 9], as well as to

provide integrity, security, and transparency to data that is

shared [15, 20]. A blockchain allows for capturing the

history and current state of collaborative business

processes, by recording in each block the transitions of the

transactions executed between the parties. This distributed

registry is immutable and invulnerable, thus guaranteeing

confidence that the stored information has not been

deliberately or accidentally altered [6, 22]. Information

about the state of the instances of each process can be

shared and updated locally on each node [18]. The

existence of an immutable public ledger enforces a

commonly agreed-upon single source of truth [2, 18].

Some proposals have been proposed that aim to

implement collaborative processes using blockchain

technology [18] [7] [13]. However, these proposals make

use of public or non-permissioned blockchain platforms

that are oriented to the exchange of cryptocurrencies (such

as Ethereum) in an open network in which the participants

do not know each other. In these platforms, the consensus

mechanism that is used (such as the Proof of Work

protocol) requires large computational resources to mine

and validate new blocks. Because collaborative networks

are closed in the sense that imply integration and

collaboration among a set of known parties, the focus is

not on the mining of complex transactions. Instead, the

focus is on an efficient exchange of data and transaction

execution. Hence, permissioned or private blockchains are

more suitable for collaborative processes.

In this work, we propose a permissioned blockchain

platform for the implementation and execution of

collaborative processes. Smart contracts are defined and

implemented on the blockchain platform for performing

the validation of the messages sent by the organizations as

part of the interactions allowed in collaborative processes.

The proposed blockchain platform is built on HyperLedger

Fabric (HF) [10], which is a platform and a framework for

building permissioned blockchains. Section 2 presents a

background on blockchain technology and HyperLedger

Fabric (HF). Section 3 describes the proposed blockchain

platform along with its architecture and smart contract

approach for executing collaborative processes. Section 4

presents a case study about the implementation of a

collaborative process with the proposed platform. Section

5 discusses related works. Section 6 presents conclusions

and future works.

Background

Blockchain

A blockchain is a type of distributed ledger technology

(DLT) where all transactions are digitized and

decentralized. It is a database that records all transactions

or events that are executed and shared among network

participants [11]. Blockchains allow untrusting members

to interact verifiably in a peer-to-peer network without the

need for a trusted authority. All transactions are visible to

all nodes on the network. Anyone can verify the data and

trace the history through a computer on the network to

ensure the reliability of the information. This is possible

because blocks are added in chronological order and

contain a cryptographic hash of the previous block. Thus,

the data recorded in the blockchain cannot be manipulated,

altered, hidden, or falsified. Any record that is added to the

blockchain cannot be deleted and all previous transactions

become immutable [11]. Any blockchain user can easily

trace any previous transaction by accessing any node in

the distributed network, as each of the transactions is

validated and recorded with a timestamp.

A blockchain may be private or public [21]. Private (or

permissioned) blockchains are made up of registered and

known participants and only they can come forward to

verify and validate transactions. On the network, the

transaction processing rate is very high with very few

authorized participants. Therefore, less time is required to

achieve network consensus and more transactions can be

processed in a second. Private blockchains have very

strong data privacy, where any changes can be made

simply when all nodes agree that data can be changed by

consensus.

Public (or non-permissioned) blockchains have a more

limited transaction processing rate. Consensus

mechanisms like Bitcoin's Proof of Work (PoW) on public

blockchains require the entire network to reach consensus

on the status of transactions. Public blockchains are based

on an append-only data process that leads to immutable

data storage. To ensure the integrity of the blockchain, all

blocks are linked to the genesis block. Everyone in the

network is incentivized to act according to the contract to

achieve the best results for the network. Every single

transaction on a public blockchain is open for the public to

verify. Public blockchains require large-scale operation

costs and the transaction times are high.

Hyperledger Fabric

Hyperledger Fabric (HF) is a Hyperledger project of

blockchain frameworks and tools established under the

sponsorship of the Linux Foundation in early 2016 [1].

Hyperledger Fabric is a modular (permissioned, private)

blockchain platform [10]. This platform has been

considered one of the most mature blockchain platforms to

date and was the first platform that allows running smart

contracts in several general-purpose programming

languages (e.g., Node.js, Java, and Go) [1]. The specific

feature of Hyperledger Fabric different from other

platforms is the order execution-validation architecture

The transaction flow in Hyperledger Fabric consists of

three phases: transaction execution, ordering, and

validation. Unlike public blockchains, all nodes in

Hyperledger Fabric have an identity, which can be

classified into the following three functions [10]:

• Customer functions: submit a transaction proposal and

submit the transaction to place the order;

• Peer roles: execute a transaction proposal, validate the

transaction, and maintain blockchains;

• Orderer functions (order service nodes): collect

customer transactions and determine the general order

of all transactions.

In addition to the above nodes, the following design

components are also included in Hyperledger Fabric [10].

The Membership Service Provider (MSP) manages user

identities and controls access to the blockchain network.

MSP uses a certificate authority (CA) to validate and

authenticate users.

A smart contract, also called chaincode, defines the life

cycle of an asset that is maintained in the world state. The

chaincode contains methods to make a change to the asset

and to query the current state of the asset. It is a software

component used in Hyperledger Fabric that packages one

or more smart contracts for installation on a particular

channel. When installing a chaincode, an endorse policy

must be defined that decides which peers (organizations)

have the right to support a transaction in the smart contract

for it to be considered valid and committed in the ledger.

A transaction is an action requested by a client

application to be executed to change an asset that is in the

current state. A transaction can read or write the current

world state and must be validated according to the endorse

policy defined in the chaincode.

A ledger is a non-changeable journal of all transactions

that occur in a channel. By querying the ledger, an

authorized client can view the chain of transactions from

the beginning of an asset to the current state of the asset.

World status is the current state of each asset in the

ledger. By querying the world state, a client can acquire

the current state of an asset.

Different channels can be created in Hyperledger

Fabric, which provides a separate communication layer for

a subset of participants to maintain communication and

data privacy [10].

Blockchain Platform for Collaborative

Business Processes

The proposed blockchain platform for implementing

and executing business processes is based on a

permissioned blockchain. It makes use of smart contracts

to validate the transactions that are triggered by

applications for the sending of messages from one

organization to another, as part of the interaction flow or

choreography defined in the collaborative processes. The

distributed ledger storages the messages exchanged by the

organizations. A message contains the public or shared

information that a sender (the organization that triggers the

transaction) sent to a recipient (the organization that

expects to receive a message). Smart contracts validate

that the order of the messages is respected as it was

defined in the choreographic logic of the collaborative

processes.

Architecture of the Blockchain platform for

collaborative processes

The architecture of the proposed platform is defined

based on the elements provided by HyperLedger Fabric

(HF) framework. A collaborative network is configured in

the platform as a permissioned blockchain in which nodes

represent organizations. Figure 1 shows a general schema

of the configuration of a collaborative network.

Nodes are classified based on their tasks. Peer nodes

are responsible for validating the transactions that are

triggered by the applications. Ordered nodes are

responsible for the ordering of the transactions. The

distributed ledger is accessible to all organizations.

Organizations are represented mainly by a peer node.

Optionally, an organization can also have an ordering

node. So more than one ordering node can be defined on

the network. Another alternative is to have only one

independent ordering node for the network. This last

alternative is the most used configuration.

Figure 1. Generic Architecture of the Blockchain platform

for collaborative processes

In addition, organizations interact with the blockchain

through their own applications. Two types of applications

must be provided by each organization. A sender

application for triggering the transactions, i.e. the sending

of the messages that will be recorded on the distributed

ledger. A recipient application for querying the ledger to

extract the messages for which the organization is the

recipient, with the purpose of processing the messages

internally and continuing with the next transaction if

required.

The execution of a collaborative process with their

interactions (i.e. the message-ordered exchange between

the parties) in the proposed platform is carried out as

follows. A message to be sent by an organization is

generated by its sender application which triggers a

transaction. The transaction contains the message

information to be stored in the distributed ledger: the

sender, the recipient, the message type, and the business

document (the information that is shared in the process).

The transaction is validated through smart contracts that

are deployed in peer nodes. Smart contracts validate if the

message of the transaction is a valid message in terms of

the expected ordering of the interactions defined in the

logic of the collaborative process. Once the transaction is

validated and the message is stored in the ledger, the peer

nodes of the organizations are informed about the update

of the ledger. Thus, the organization that is the recipient of

the message queries the ledger to extract the message and

its content with the purpose of processing it and executing

its internal activity. Also, each organization can query the

ledger to know if it is responsible for generating the next

transaction to send the following message of the process.

Thus, through the transactions it is registered on the ledger

the message exchange of the collaborative processes,

which guarantees the correct execution of the business

logic agreed by the organizations.

In this platform, we propose the use of channels for

executing the transactions related to collaborative

processes. A channel is defined by each collaborative

process to be executed. Because each channel contains a

distributed ledger, it means that all the execution instances

(cases) of a collaborative process are managed through the

same channel, and the data is stored in the ledger that is

specific to that process. Thus, instances of the different

processes are managed independently, and data privacy is

achieved at the level of the processes. Organizations that

are involved in a process cannot access to data of other

processes in which they are not involved.

Design and development of smart contracts for

collaborative processes

For the execution of collaborative processes, a smart

contract is required for each collaborative process. The

smart contract should implement the validation logic that

makes it possible to determine if a message delivery, based

on a transaction triggered by an application belonging to

one of the organizations that make up the network in the

blockchain, is correct. This implies verifying that the

format, content, and order of the message are correct with

respect to what is defined by the organizations in a

collaborative process model.

With HyperLedger Fabric, smart contracts are defined

in chaincodes (packages of code) that are associated with a

channel. So chaincodes contain the implementation of the

business logic to be fulfilled about the choreography of

interactions agreed on in the collaborative process. Thus,

chaincodes execute verification logic that ensures the

integrity and validity of the message ordering before the

messages are stored in the ledger.

In HyperLedger Fabric, chaincodes can be developed

in several languages such as Javascript, Java, Go, etc,

through the use of specific libraries (such as

“org.example.ledgerapi.State”, “org.hyperledger

.fabric.contract” for Java). Using these libraries, the data

of a smart contract such as the name, the version, a

description, and other data are defined.

The following code describes parts of a Java chaincode

for a collaborative process, which specifies the

information fields about the contract.

@Contract(
 name = "basic",
 info = @Info(
 title = "Order Management",
 description = "The logic of the collaborative
process ‘Order Management’",
 version = "0.0.1-SNAPSHOT",
 license = @License(

name = "Apache 2.0 License",
url="http://www.apache.org/licenses/LICENSE2.0.html")
, contact = @Contact(

email = "info@collaborativenetwork.com",
name = "Collaborative Network",
url = "https://collaborativenetwork.com")))

 ………....

 ………....

Then, the logic of the contract is defined in a class that

implements the ContractInterface interface, for instance:

public class OrderManagementContract implements
ContractService {

……
}

In this class are implemented the methods to execute and

validate the transactions that are triggered by the

organizations on the corresponding channels. The methods

are specific to each collaborative process and they check

the conditions that should fulfill a transaction to be valid.

These methods are annotated with @Transaction. In the

proposed platform, to validate the transaction that implies

the sending of message, the contract requires

implementing a sendMessage method as follows:

public Message sendMessage(Context ctx, String
processId, String sender, String recipient, SpeechAct
messageType, BusinessDocumentSchema document) { {

……

/*** It specifies the creation of a message for a
process instance, i.e. the interaction
information that then will be stored in the
ledger ***/

Message processMessage = new ProcessMessage
(processId, sender, recipient, messageType,
document);

/*** Here it should be included the logic that
validates the message and the fulfillment of the
business logic of the collaborative process ***/

/*** In case the business logic is not fulfilled,
here should include the logic to manage
exceptions and send alert messages to reject the
transactions, by using the exception managers
provided by the Hyperledger API ***/

/*** If the message validation is ok, the message
is serialized in JSON format ***/
String message= genson.serialize(processMessage);

/*** Then, the message is saved along with the
new state on the ledger ***/

stub.putStringState(processId, messageJson);

return processMessage;

}

Deployment of smart contracts for implementing

collaborative processes

To validate transactions in the blockchain for a

particular collaborative process, organizations must install

a chaincode (smart contract) in their Peer nodes that are

attached to the channel that is associated with that

collaborative process. In HF, a chaincode is implemented

in a channel using a process called Fabric chaincode

lifecycle whereby multiple organizations are allowed to

agree on how a chaincode will be operated before it is

used to accept transactions. Once the package code of the

chaincode is developed, the implementation procedure of

the chaincode is as follows. First, the organizations should

mailto:a.transfer@example.com
https://collaborativeordermanagement.hyperledger.example.com/

install the chaincode package in their Peer node. Then, the

chaincode is settled to the corresponding channel.

Validation process of a transaction and the update

of the ledger

The transaction workflow, i.e. the procedure of

receiving a transaction triggered by the sender application

of one of the organizations participating in the network

until the update of the ledger with the output of the

transaction consists mainly of three stages: execution,

ordering, and validation.

1. Execution

The sender application of an organization, that wants to

send a message, initiates a request to evaluate a transaction

proposal for the sendMessage transaction type. The peer

node of the organization executes the transaction by

invoking the sendMessage method of the smart contract,

with the input parameters provided by the client

application. This transaction is run without any effect on

the ledger. The peer then returns its transaction result to

the sender application. Also, the transaction proposal is

forwarded to the required endorsing peers which also

execute the transaction and return their results to the initial

peer. If most of these nodes accept it, they return the

transaction signed and encrypted. The responses are

collected, and if they collectively satisfy the endorsement

policies, it forwards the transaction to the ordering service

(running on the orderer nodes).

We defined that all the peer nodes of the channel are

endorsing peers of the transactions, which implies that all

the peers will execute the transactions to check the order

of the message. Also, the format and content of the

message are also checked. The output of the transaction is

the serialized message that will be stored in the ledger.

2. Ordering

The ordering service receives transactions containing

signed and endorsed proposal responses from one or more

applications (because several transactions corresponding

to different process instances can occur concurrently), and

orders and packages the transactions into blocks. These are

the blocks (which are also ordered) consisting of endorsed

and ordered transactions that make up a ledger. The blocks

are then saved to the orderer’s ledger and prepared to be

distributed to all peers on the channel.

3. Validation and commitment

The third phase of the transaction workflow is the

distribution of the ordered transactions from orderer to

peer nodes. This implies that when a new block is

generated by the ordering service, all the peers connected

to the channel receive a copy of the new block. Each peer

processes the block independently but in the same way as

every other peer on the channel. This ensures consistency

on the ledger. Upon receipt of a block, a peer processes

each transaction in the sequence specified in the block. For

each transaction, the peer verifies that the transaction has

been endorsed by the required organizations according to

the endorsement policies for the chaincode that generated

the transaction. In this platform, the endorsement policy

used for the chaincode is that all organizations (peers)

must endorse the transaction, so all the parties know and

validate what is registered as an interaction of the

collaborative process. After a peer has successfully

validated each individual transaction, it updates the ledger.

Thus, after all peers execute it, the local ledgers will have

the same result of blocks and world state.

Finally, when a block is committed to a peer’s ledger,

that peer generates an event. Block events include the full

block content. Chaincode events that the chaincode

execution has produced can also be published at this time.

The recipient applications of the peers are registered for

notification of these event types. The event notification

concludes the third and final phase of the transaction

workflow.

These events are processed by the recipient

applications of the peers. Each peer evaluates if the block

added to the ledger contains messages in which the peer is

the recipient. If that occurs, the recipient application can

invoke an internal application of the organization

associated with the peer for processing the content of the

message. As a result, the organization can determine if it is

required to send a message as part of the logic of the

process. If needed, the organization will have to trigger

another transaction and a new transaction workflow will

be executed for the next message of the process.

Case Study

In this section, we illustrate the functionality of the

proposed blockchain platform with a case study from the

supply chain management domain. The Collaborative

Order Forecast collaborative process is implemented.

Figure 2 shows the conceptual model of this process that

was defined as an interaction protocol with the UP-

ColBPIP language [17]. The goal of this process is for

participants to agree on a short/medium-term order

forecast. The process begins with the retailer who sends a

request for an order forecast to the manufacturer. The

OrderForecastRequest business document contains the

information about the requested order forecast, such as the

time-horizon, the products, and so on. The manufacturer

processes the request, evaluates it, and responds with one

of the two alternatives: (1) sends an agree response with

the “agree” message containing the

OrderForecastRequestResponse business document, or (2)

sends a reject response with the “refuse” message

containing the OrderForecastRequestResponde business

document. In this last case, the process ends.

If the manufacturer agrees on generating and order

forecast based on the request, then the retailer must send

independently (in a parallel way) two messages. One is the

“inform” message that conveys the POSForecast business

document, which contains the sale forecasts of all its

points of sale. The other one is the “inform” message that

conveys the PlannedEvents business document, which

contains the promotions and sales strategies.

With the received information, the manufacturer

generates internally an order forecast (OrderForecast

business document) that then is sent with an “inform”

message to the retailer. Finally, the process ends.

Figure 2. Collaborative Order Forecast process model

Definition of the blockchain network with

Hyperledger Fabric

The configured blockchain network is defined by the

following components:

• A peer node for the retailer organization and another

one for the manufacturer

• An orderer node that is independent of the

organizations is configured for the network.

• A channel with the name of the collaborative process

is defined and both peer nodes are associated with it.

Thus, the ledger of the channel stores just information

about execution instances of this process. The

communication of the organizations (peer nodes) is

managed through the execution of transactions on this

channel.

• A chaincode was developed for this process and it was

deployed and linked to both peer nodes. The

chaincode contains the transaction methods for each

of the messages defined in the collaborative process

model. The methods validate that the transaction (the

message to be sent, i.e. the message to be stored in the

ledger) is valid based on the status of the blocks in the

ledger.

• Each organization has two applications for managing

this process, the sender and the recipient applications.

The Sender application is used to trigger transaction

proposals that correspond to the transactions that

represent the sending of messages by a peer. The

receiver application listens for update events on the

ledger, and contains the logic to process the messages

that are extracted from the ledger, i.e. for the

messages in which the organization is the recipient.

Figure 3. Configured blockchain network of the

Collaborative Order Forecast process

Definition of smart contracts and chaincodes

For both organizations can make transactions on the

channel of the process and store the messages on the

ledger, smart contracts must be developed to define how

these transactions will be. The smart contracts contain the

rules that govern the control flow of the interactions (the

message exchange) among the organizations.

In Hyperledger Fabric it is often to use the terms smart

contract and chaincode interchangeably, however, they are

different. A smart contract defines the transaction logic

that controls the lifecycle of an object contained in the

world state. A chaincode contains a package of smart

contracts which is then deployed to a blockchain network.

Thus, smart contracts contain the logic that governs the

transactions, whereas chaincode governs how smart

contracts are packaged for deployment.

For the channel defined on the network, we deployed a

chaincode that contains the CollaborariveOrderForecast

smart contract we developed for the transactions of the

collaborative process. Figure 4 shows part of the Java code

of it. This smart contract contains the methods that

implement the transactions that can occur in the

blockchain. The implementation of each method contains

the logic that checks that a transaction is valid in terms of

the message ordering to be fulfilled for the process. Thus,

for each of the messages defined in the collaborative

process, a transaction method was implemented.

Figure 4. Smart contract implementation for the

Collaborative Order Forecast process

Every smart contract has an endorsement policy

associated with it. This endorsement policy identifies

which peers must approve transactions generated by the

smart contract before those transactions can be identified

as valid. For the chaincode we deployed in the channel, an

endorsement policy was defined that specifies both peers

of the channel must approve all the transactions.

Figure 5 shows the logic for the method that

implements the transaction for sending the “agree”

message of the process. First, the message entity to be

saved on the ledger is generated. Then the last message

that was registered in the ledger for the process instance of

interest is fetched. The function

getLastMessageFromLedger contains the logic that

consults the blocks and the world state of the ledger to

obtain the last registered message of the process instance.

Then, the conditions of the “agree” message are checked.

In this case, the conditions for a valid transaction are the

following: the previous message must correspond to the

“request” message, the type of the document must be

OrderForecastRequest, the sender must fulfill the role of

Retailer, and the recipient must fulfill the role of

Manufacturer. Finally, the message is converted to JSON

format and put into the ledger.

Figure 5. Implementation of the transaction

method for the “agree” message

The rest of the methods of this smart contract have the

same structure in their logic. The conditions in terms of

the message ordering that were defined in the different

transaction methods are:

• A “request” message can be sent if there is not a

previous message for the process instance.

• “agree” and “refuse” messages only can be sent if

the last message is the “request” message.

• POSForecast and PlannedEvent “inform”

messages can be sent only if the last message is

the “agree” message.

• OrderForecast “inform” can be sent only if

POSForecast and PlannedEvents were sent before.

• For all the methods: only one occurrence of the

message for the process instance can be present on

the ledger.

Execution and Ledger status

As an example of the execution of an instance of the

process, Figure 6 shows the status of the ledger after the

end of the execution of this instance. Five transactions

were executed, and they were put into two blocks (1 and

2). The world state shows the last three executed

transactions. The key identifies the process instance and

the message of that process instance. The string of the key

has this format: process ID + “.” + message type + “.” +

document abbreviation. For the executed instance, its

process ID is “PI1”.

Figure 6. Ledger status after the execution of the

process instance PI1

We can also see that the blockchain contains three

blocks. Block 0 is the genesis block, it does not contain

any transactions. Block 1 contains transactions T1 and T2.

T1 corresponds to the “request” message and T2

corresponds to the “agree” message. The rest of the

transactions in block 3 correspond to the transactions that

are in the world state. Thus, all the results of the

transactions in terms of the message sent from one

organization to the other are stored in the ledger.

Related Works

There are several works that were proposed to take

advantage of the blockchain features for collaborative

processes. However, the way that the blockchain is

implemented in these works is different from the approach

we propose in this paper.

Caterpillar [13] is an open source tool created for

collaborative business process management that runs on

the Ethereum blockchain. This architecture has an

execution layer within the chain intended to execute the

logic of the business process in the form of a set of smart

contracts. Smart contracts are generated by Caterpillar

from BPMN model inputs to handle the control-flow of

the process model. Other Smart contracts handle the

interaction with applications external to the blockchain

and validate the data entered. Smart contracts act as

mediators for forwarding a request and receiving the

corresponding response. All smart contracts are coded in

the Solidity language. The state of each instance of a

business process is maintained on the blockchain and the

routing of workflows is carried out through Smart

contracts generated by a BPMN to Solidity compiler.

Each smart contract encapsulates the workflow routing

logic of the business process model, specifically

containing variables to encode the state of the business

process instance and scripts to update this state each time a

task is completed, or an event occurs. The events

generated by the smart contracts are recorded in the

blockchain in a log of the platform, which is accessible

from outside the chain, notifying the external component

of the chain of an event that has occurred.

Because Caterpillar run on a non-permissioned

blockchain as Ethereum by using the PoW consensus

protocol, the cost to execute transactions is high in terms

of resources (for mining) and performance of the

transactions. Our approach is based on a permissioned

blockchain as Hyperledger Fabric, which allows to reduce

these implementation costs. In addition, we propose to

store in the blockchain only the messages issued between

the parties as the state of the execution of the

corresponding instance of the business process that is

executed, whose type, order, correct sender, and receiver

are controlled by the smart contracts. Thus, there is no

kind of centralized component to govern the global state of

the instances of the collaborative processes.

Lorikeet [3] is a tool that consists of a modeling user

interface, a BPMN translator, a log generator, and a

blockchain enabler. The BPMN translator converts the

BPMN model into a Solidity smart contract considering

record models, for execution on Ethereum. The ethtrigger

communicates with the Ethereum blockchain node and

handles smart contract deployment, execution, and

interaction.

In Lorikeet, it is possible to define an access control

policy that regulates registration operations. This means

the ability to restrict the invocation of actions and access

to assets. Additionally, it is possible for process instances

to manipulate log entries. However, this is a limitation of

Lorikeet regarding privacy. It is not possible to have

organizations or detailed confidentiality. It is possible to

define which function a business process step is supposed

to execute, but confidentiality cannot be guaranteed.

Lorikeet is a tool intended to translate business processes

into smart contracts on a public blockchain. This does not

focus on executing and/or monitoring collaborative

business processes.

CoBuP [14] is a multi-layer architecture proposed to

monitor the execution of collaborative business processes

using smart contracts. To improve flexibility in the logical

structure of smart contracts proposed by other authors, the

architecture considers three smart contracts that are

generated in the different layers internal to the blockchain.

In the first layer, they generate a generic smart contract,

Interpreter, which includes variables and functions to

encode the structure of any BPMN model. This smart

contract is generated only once and is responsible for

generating the ProcessInstance and ResourceInstance

smart contracts. The first statically encodes the data

structure of any business process model and includes the

BPMN model workflow. Each business process is

translated into a ProcessInstance smart contract in XML.

This contract has a list of elements that define the business

process (task, event, xor/or/and gateways, etc.), policy

associated with its execution, and the state of the element

(Create, Ready, etc.). A ProcessIntance contract contains

the address in the blockchain of the associated

ResourceInstance smart contract, where the participants in

the collaborative process are listed, and their role within it,

enabling the participant to execute elements of the process

defined in the ProcessInstance contract. Collaborative

business process participants agree to query the state of the

process defined in the ProcessInstance contract where the

state of each element is updated when a participant

executes a process element.

The CoBuP architecture has been tested on a public

Ethereum blockchain platform, where the smart contracts

were coded using Solidity. The authors maintain that it is

carried out on this platform to make the corresponding

efficiency comparisons, but that it could be implemented

in a permissioned network like Hyperledger Fabric.

However, no works were reported with Hyperledger

Fabric. CoBuP monitors the control flow that defines the

collaborative business process, while the blockchain

architecture proposed in this work carries out the

execution and control by recording the sequence of

messages between the parties in the blockchain. In

addition, a private blockchain platform based on HF is

defined, which guarantees greater reliability between

participants in the collaborative business process.

Conclusions and Future Work

In this work, we proposed a blockchain platform to

execute collaborative business processes. This platform

enables the fulfillment of the requirements for executing

collaborative processes: autonomy of the organizations,

decentralization, peer-to-peer interactions, privacy of the

shared and private information, trust, and execution of the

agreed interactions.

The platform is based on Hyperledger Fabric with the

purpose of providing a permissioned blockchain for

collaborative processes. The goal is to take advantage of

the trust and privacy mechanisms provided by blockchain

technology, without incurring low performance in the

transactions and high hardware resource costs to execute

transactions for the exchange of messages between the

organizations.

The use of channels for implementing collaborative

processes on the blockchain allows for improving the

privacy aspect of the data that organizations share. In this

platform, several processes can be implemented by

defining a channel for each of them. Thus, the

organizations through their peer nodes are associated just

with the channels (processes) in which they are involved,

and they can only see the data of these processes.

A key element in the proposed blockchain platform is

the use of smart contracts, which are deployed in

chaincodes, for executing the logic of the collaborative

processes. In this platform, the smart contracts have two

main responsibilities:

• Ensure the business rules and logic defined in

collaborative business processes are fulfilled and

respected, in terms of the message types and

message ordering.

• Generate the messages that are stored in the ledger

with the right structure and information. Each

smart contract implements the transaction methods

for executing the sending of the process’s

messages.

In addition, the applied endorsement policy for smart

contracts is that all the peers (organizations) must validate

and sign the transactions, with the aim of achieving a high

level of transparency and trust among the parties.

The proposed approach for smart contracts provides a

blockchain completely decentralized. There is no

communication with an external app or an internal

component of the blockchain that governs the instances of

the processes. All the organizations can query the status of

the process instances by querying the ledger, and the logic

of the message ordering is governed by the transactions (

implemented in the smart contract of the process) that are

signed and endorsed by the organizations.

Future work is about defining a method and a tool to

generate the configuration of the blockchain and the code

of the smart contracts from conceptual collaborative

process models, by applying model-driven development

principles and tools, as was implemented in previous

works [12][16] for platforms based on other technologies.

References

[1] Androulaki,E, Barger,A, Bortnikov,V, Cachin,C,

Christidis,A, De Caro,A, Enyeart,D, Ferris, C, Laventman,

G, Manevich, Y. (2018). Hyperledger Fabric: a distributed

operating system for permissioned blockchain. Proceedings

of the Thirteenth EuroSysConference ACM pp. 30.

[2] Astigarraga, T., Chen, X., Chen, Y., Gu, J., Hull, R., Jiao, L.,

Li, Y., and Novotny, P. Empowering Business-Level

Blockchain Users with a Rules Framework for Smart

Contracts. In Proc. of International Conference on Service

Oriented Computing (ICSOC). Springer, Cham, 2018, pp.

111–128.

[3] Binh Tran, A, Lu, Q, Weber,I. Lorikeet. A model-driven

engineering tool for blockchain-based business process

execution and asset management. Proceedings of the

Dissertation Award and Demostration Insustrial Track at

BPM, 2018.

[4] Cocconi, D., Roa, J., Villarreal, P. Collaborative Business

Process Management Through a Platform Based on Cloud

Computing”. CLEI Electronic Journal, 21,2, 2018

[5] Cocconi, D., Villarreal, P. Microservices-based Approach for

a Collaborative Business Process Management Cloud

Platform. XLVI Latin American Computing Conference

(CLEI), Loja, Ecuador, October 19-23 2020.

[6] Di Ciccio, C; Cecconi, A; Dumas, M; García-Bañuelos,

L;Lopez-Pintado, O; Lu,Q; Ponomarev,A; Trans,A; Weber,I

(2019)Blockchain Support for Collaborative Business

Processes, Informatik Spektrum Vol.42, pp182-190, 2019.

[7] García-Bañuelos, L., Ponomarev, A., Dumas, M. and Weber,

I. Optimized execution of business processes on blockchain.

Lecture Notes in Computer Science, Cham:Springer, vol.

10445, 2017.

[8] Henry, T., Laga, N, Hatin, J., Gaaloul, W., Boughzala, I..

Cross-collaboration processes based on blockchain and IoT:

a survey. HICSS 2021: 54th Hawaii International Conference

on System Sciences, Jan 2021, Maui, Hawaii, United States.

pp.4291-4300

[9] Hiroaki Nakamura, Kohtaroh Miyamoto, and Michiharu

Kudo. Interorganizational business processes managed by

blockchain. In International Conference on Web Information

Systems Engineering, pages 3{17. Springer, 2018.

[10] Hyperledger Fabric Documentation. https://hyperledger-

fabric.readthedocs.io/en/release-2.5/ Accessed date

11/9/2023

https://hyperledger-fabric.readthedocs.io/en/release-2.5/
https://hyperledger-fabric.readthedocs.io/en/release-2.5/

[11] Iansiti M, Lakhani KR (2017) The truth about blockchain.

Harvard Business Review 95, 1, pp.118–127

[12] Lazarte, I. M., Thom, L. H., Iochpe, C., Chiotti, O., &

Villarreal, P. D. “A distributed repository for managing

business process models in cross-organizational

collaborations”. Computers in Industry, 64, 1, 2013, pp.

252-267.

[13] Lopez-Pintado,O, Garcia-Bañuelos,L, Dumas,M, Weber,I,

Pnomarev,A. (2019). CARTERPILLAR: a business process

execution engine on the Ethereum blockchain. Software:

Practice and Experience,7,49, pp.1162-1193.

[14] Lounkil,F, Boukadi,K, Abed,M, Ghedira-Guega,C. (2021).

Decentralized collaborative business process execution

using blockchain. World Wide Web, 24, pp. 1645-1663.

[15] Mendling J, Weber I, van der Aalst WMP, vom Brocke J,

Cabanillas C, Daniel F, Debois S, Di Ciccio C, Dumas M,

Dustdar S, Gal A, Garc´ia-Bañuelos L, Governatori G, Hull

R, La Rosa M, Leopold H, Leymann F, Recker J, Reichert

M, Reijers HA, Rinderle-Ma S, Solti A, Rosemann M,

Schulte S, Singh MP, Slaats T, Staples M, Weber B,

Weidlich M, Weske M, Xu X, Zhu L (2018) Blockchains

for business process management – challenges and

opportunities. ACM Trans Manag Inf Syst 9(1):4:1–4:16.

[16] Tello-Leal, E., Chiotti, O., Villarreal, P.D.: Software agents

for management dynamic inter-organizational

collaborations. IEEE Latin America Transactions 12(2)

(2014) 330-341.

[17] Villarreal, P., Lazarte, I., Roa, J., Chiotti, O.: A Modeling

Approach for Collaborative Business Processes based on the

UP-ColBPIP Language. In: Rinderle-Ma, S., Sadiq, S., y

Leymann, F. (eds.) Business Process Management

Workshops. 318-329 Springer Berlin Heidelberg, Berlin,

Heidelberg (2010).

[18] Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev

A. and Mendling, J. Untrusted business process monitoring

and execution using blockchain. Lecture Notes in Computer

Science, Cham:Springer, vol. 9850, 2016.

[19] Weske, M.. Business process management: concepts,

languages, architectures (2nd. Edition). Springer Publishing

Company, 2012.

[20] Xian Rong Zheng & Yang Lu (2021) Blockchain technology

– recent research and future trend, Enterprise Information

Systems, DOI: 10.1080/17517575.2021.1939895.

[21] Yang,L, Wakefield,R, Lyu,S, Jayasuriya,S, Han,F, Yi,X,

Yang,X, Amarasinghe,G, Chen,S. Public and private

blockchain in construction business process and information

integration. Automation in Construction. 118,2

[22] Zheng,Z, Xie,S, Dai, H-N,Chen, X,Wang, H, (2018)

Blockchain challenges and opportunities: a survey

International Journal of Web and Grid Services, 14, 4,

pp.352-375,

