
Network Traffic Monitor for IDS in IoT

Diego Angelo Bolatti 1 [0000-0002-8275-4476], Carolina Todt1 [0000-0001-8429-6141],
Reinaldo Scappini1 [0000-0001-6854-4643] and Sergio Gramajo1 [0000-0001-5091-7931]

1 Center for Applied Research in Information and Communication Technologies at National
University of Technology (UTN), Resistencia Regional Faculty (UTN-FRRe).

French St. 414, Resistencia, Province of Chaco, Argentina.
{dbolatti, carolinatodt, rscappini,
sergiogramajo}@gfe.frre.utn.edu.ar

Abstract. As network services and IoT technologies rapidly evolve, in literature
there are many anomalies detection proposals based on datasets to deal with cy-
bersecurity threats. Most of this proposal uses structured data classification and
they can recognize with a certain degree of accuracy whether a type of traffic is
"anomalous" or not. Even what kind of anomaly it has. Nevertheless, previous
works do not clearly indicate the technical methodology to set up the data gath-
ered scenarios. As a main contribution, we are going to show a detailed deploy-
ment IoT traffic monitor ready for intelligent network traffic classification. Mon-
itoring and sniffers are an essential concept in network management as it helps
network operators to determine the network behavior and status of its compo-
nents. Anomaly detection also depends on monitoring for decision-making. Thus,
this paper will describe the creation of a portable network traffic monitor for IoT
using Docker container and bridge networking with SDN.

Keywords: Network Monitoring, IoT, IDS, SDN.

1 Introduction

Nowadays, as technology becomes more widely available, millions of users worldwide
have used some type of smart device. The number of smart homes in Europe and North
America has reached 102.6 million in 2020 and it will be 179 million in 2024 [1]. At
the same time more sophisticated IoT applications are deploying, and they use devices,
sensors, smart techniques to bring information or knowledge or, even, make decisions
[2, 3]. In a broad sense, this concept is Internet of Things (IoT) [4, 5] that was the result
of conventional network evolution connecting millions of devices with minimal human
intervention to later make any kind of decisions [6-8].

This has left the IoT vulnerable to various types of security threats just like other
technologies [9, 10]. In an effort to address these issues, different Intrusion Detection
Systems (IDS) techniques have been proposed. Currently anomaly-based network in-
trusion detection is an important field of research [11, 12].
In this way, Intrusion Detection Systems analyze network traffic to detect malicious
behavior. For its deployment it is necessary (i) Collect information; (ii) Analyze the

2

information; (iii) Identify threats or normal traffic through security events; and (iv) De-
tect and report threats [13]. The implementation described in this paper is focused only
on point (i).

Many times, free open-source network sniffers are used to capture network traffic
data and then, this data is labeled as a type of attack or normal traffic in an off-line way
with datasets. Different types of intelligent approaches have been used like Machine
Learning [14-16] and Deep Learning [17-22] in order to identify and classify threats.
However, there is a lack of information about how an efficient IoT-based datasets sce-
nario is obtained [23–29].

This work will not cover the complete development of an intelligent anomaly detec-
tion system for IoT, here we will show the theoretical fundaments and the basic ele-
ments to create a scenario to collect information from the IoT infrastructure, elaborated
as the first part of the research project called "Intelligent Anomaly Detection System
for IoT" [30] and part of the Technical Report "Proposal" presented at the International
Telecommunications Union [31].

The remainder of the paper is structured as follows: Network Traffic Monitor Archi-
tecture is introduced in Section 2. A detailed description of deployment proposed is
given in Section 3. Section 4 introduces the creation of an SDN Controller and traffic
gathering. The conclusions and future work are given in Section 5

2 Network Traffic Monitor Architecture

In principle, it is necessary to define the scope in which the proof of concept is created.
Fig 1 shows the proposed architecture in four layers: device layer with Software De-
fined Network (SND) switch [32] and gateway with Openflow monitor where our pro-
posal is deployment.
To design the monitoring system, we base our work on the following 3 concepts:

Namespace: a namespace in computer science is an abstract container or environ-
ment created to hold a logical grouping of unique identifiers or symbols (i.e. names).

Docker: is an open-source project that automates the deployment of applications
inside software containers, by providing an additional layer of abstraction and automa-
tion of operating-system-level virtualization on Linux [33]. Docker uses the resource
isolation features of the Linux kernel such as cgroups and kernel namespaces, and a
union-capable file system such as aufs and others to allow independent "containers" to
run within a single Linux instance, avoiding the overhead of starting and maintaining
virtual machines. The Linux kernel's support for namespaces mostly isolates an appli-
cation's view of the operating environment, including process trees, network, user IDs
and mounted file systems, while the kernel's cgroups provide resource limiting, includ-
ing the CPU, memory, block I/O and network. Since version 0.9, Docker includes the
libcontainer library as its own way to directly use virtualization facilities provided by
the Linux kernel, in addition to using abstracted virtualization interfaces via libvirt,
LXC (Linux Containers) and systemd-nspawn. Docker perfectly adjusts the needs of

3

our work, because it can be implemented in the same way, both in a testing and simu-
lation environment within a virtual machine, or in a production environment, on local
servers, cloud servers, etc.

Connectivity Network with Docker: when installing Docker on an operating sys-
tem, it creates a bridge to a network called docker0, and this network connects by de-
fault all containers, unless otherwise indicated. If a virtual machine with Docker is used,
it is necessary to configure the network understanding that it is necessary to work with
different levels of abstraction. In the case of containers (they have their own
namespace), it will be necessary to connect them to the virtual machine where they are
running, and this, in turn, to the host, to the Internet, and/or to other virtual machines if
they exist. Figure 2 shows in the shaded box, the concrete boundaries of the implemen-
tation of the access module to the proposed IoT architecture. It is then understood that
it is implemented in the operating system that supports the IoT Gateway and the traffic
switching and monitoring module.

Fig. 1. Architecture of the intelligent anomaly detection system for IoT.

The implementation of the switching and traffic monitoring module is described in
detail below, highlighting that the implementation makes no difference, whether it is
carried out in a virtual machine environment or in a production environment directly
on the host operating system (usually Linux). This is due to the characteristic of isola-
tion that namespaces have, which allows a great portability. Another issue in this design
is that the SDN controller and the Machine Learning module have absolute independ-
ence in terms of their physical location; it is enough to properly define the correspond-
ing communication channel. Basically, the scenario in which we worked to realize the

4

design and testing of the proposed architecture is a computer that we call a base ma-
chine, with an O.S. Ubuntu 20.04 and a virtualization system VirtualBox Version
6.1.10_Ubuntu r138449. In addition, we use a Virtual Machine (VM) named "iot" con-
figured with Ubuntu 20.04 OS.

Fig. 2. Diagram of the Monitoring system.

3 Deployment and Testing

To test the components of the traffic reception and monitoring system, the following
software is installed on the VM iot:

• Docker version 19.03.13, build 4484c46d9d.
• Open vSwitch version 2.13.0

With this software, you can use containers and manage traffic with an OpenFlow
switch (OpenvSwitch). The outline of the study scenario is shown in Figure 3 (a).

The components of the study topology comprise an SDN controller, an OpenFlow
switch that performs the functions of managing traffic, two hosts called Host1 and
Host2, which are intended for different connectivity tests, and a container called Mon-
itor, which includes the appropriate software to capture traffic. The base machine has a
physical Ethernet interface called enp0s2 and a network of the VirtualBox hypervisor,
vboxnet0 and vboxnet1 respectively (Figure 3. (b)).

5

Four networks are defined, three of which are managed by the VirtualBox hypervisor
and one by Docker. A bridge type network with enp0s3 interface linked to the enp0s2
interface of the base machine, this allows sending and receiving traffic to and from all
the VM devices. A connection to the vboxnet0 192.168.56.0/24 network with a host-
only interface (called enp0s8 on the VM). A vboxnet1 192.168.1.0/24 network connec-
tion with a host-only interface (called enp0s9 in the VM). Docker manages by default
a network that allows it to connect the containers by assigning ip addresses using dhcp
on the 172.17.0.0/24 network. Initially, we check the status of the interfaces in the VM
iot.

a. Test Scenario.

b. Initial configuration of VM iot.

Fig. 3. Deployment scenario.

Linux supports individual network namespaces, each host has a default netns, named
by default, and each host container is isolated into its netns that are identified by an
integer.

In the next subsections we will review in detail the important preliminary aspects
before creating the monitor.

3.1 Creating topology elements. OpenFlow Switch

The next step is to configure the ovs Linux switch by executing the following com-
mands:

sudo ovs-vsctl add-br s1
sudo ifconfig enp0s9 0
sudo ovs-vsctl add-port s1 enp0s9
sudo ifconfig s1 192.168.1.11/24

6

With these commands an OpenFlow switch called s1 was created. To which the in-
terface enp0s9 was added and s1 was configured with the ip 192.168.1.11/24.

3.2 Creating links between components

To make the corresponding connections between the different components of our sce-
nario we will make use of a feature provided by the Linux kernel called virtual Ethernet
link (veth), these virtual Ethernet devices can act as tunnels between network
namespaces, or they are used to create a bridge to a physical environment with a net-
work device present in another namespace, they can also be used as independent net-
work devices. Veth devices are always created in interconnected pairs, it is an analogy
to an ethernet cable with two ends. Packets transmitted on a device at one end of the
pair are immediately received at the device at the other end. When either device is in-
active, the link state of the peer is inactive. Three veth are added corresponding to
Host1, Host2, and Monitor respectively (see Fig. 4):

1. One end named par_s1h1 for the switch and one end named par_h1 for Host1.
2. One endpoint named par_s1h2 for the switch and one endpoint named par_h2 for

Host2.
3. An endpoint named par_s1M for the switch and an endpoint named par_M for the

Monitor.

Fig. 4. Ethernet links of the global space.

The endpoints of the corresponding virtual links created are incorporated into switch
s1 as ports and the interfaces are up (Figure 5 (a)).

a. Switch with ports added.

b. Command line container Cont1.

c. Docker ps command.

Fig. 5. Commands.

7

Next, we will create the other elements we need within the topology, using Docker.

Then, from the local Docker repository images in the VM, we start a container named
1.0 to monitor the traffic. To obtain the configuration of the monitor interfaces, run the
following command (Figure 5 (b)).

3.3 Connecting the monitor

We open another terminal in the VM and obtain the PID of the container, with the
inspect command of Docker, which returns low-level information of the Docker ob-
jects. In order to do this, the list of processes in Docker is queried with the docker ps
command (Figure 5 (c)).

Then docker inspect -f '{{.State.Pid}}' 14cb73456d20. returns as the result: 2051.
To move the par_M endpoint into the monitor namespace run:sudo ip link set par_M
netns 2051 . Then we execute the following command: sudo ln -s /proc/2051/ns/net
/var/run/netns/2051. Then directly from the VM terminal we can comfortably do ip
netns exec (namespace) (command to execute in the namespace). In our case: sudo ip
netns exec 2051 ip link list (Figure 6).

Fig. 6. Virtual link to the directory containing the namespace monitor.

We continue the scenario assembly by assigning in the monitor container the name

eth1 to the end par_M. Then we assign as interface name eth1 the par_M name on the
monitor as follows: sudo ip netns exec 2051 ip link set dev par_M name eth1, the
interface is activated: sudo ip netns exec 2051 ip link set eth1 up. In the monitor
namespace you can check the result of these last two actions as shown in Figure 7.

Fig. 7. Verifying network configuration in the monitor container.

In the monitor assign to eth1 an ip address of the network connected to the ovs switch

(which in our case is the vboxnet1 192.168.1.0/24 network): sudo ip netns exec 2051
ifconfig eth1 192.168.1.221/24 then verify again in the monitor (Figure 7).

8

Fig. 7. Assigning ip to the monitor interface.

As you can see the monitor now has an ethernet interface with the name eth1, the ip

192.168.1.221/24 and is connected to the switch port named par_s1M. At this point,
we have added an OpenFlow switch named s1 and a container named monitor into the
scenario and connected them together.

3.4 Creating Host 1 and Host 2

First we create the containers Host1 and Host2, based on the Linux Alpine image we
have available in the local repository with the ID:a24bb4013296: docker run -itd --
name=cont1 --net=none a24bb4013296.

3.5 Connecting Host 1 and Host 2

As can be seen in the figure 8, the containers were created and were running in the
background.

Fig. 8. Processes running in Docker.

At this point we can find out the respective namespaces (Figure 9).

Fig. 9. Docker inspect command.

As shown in figure 9, the Host1 namespace is 2371, and the Host2 namespace is

2420.
• To move the par_h1 endpoint into the Host1 namespace, you run: sudo ip link

set par_h1 netns 2371.
• To move the par_h2 endpoint into the Host2 namespace run: sudo ip link set

par_h1 netns 2420.

Next, virtual links are created to the /proc directory:
sudo ln -s /proc/2371/ns/net /var/run/netns/2371
sudo ln -s /proc/2420/ns/net /var/run/netns/2420

9

We proceed to verify that the endpoints are in the respective spaces (Figure 10).

Fig. 10. Verification of links on Host1 and Host2 netns.

As shown in the figure, par_h1 is in the Host1 space, and par_h2 in the Host2 space.

Then we proceed to give them name and interface (eth1) corresponding ip address and
raise them to be active and set the corresponding ip. The complete sequence is shown
in Figure 11.

Fig. 11. Host1 and Host2 Network Configuration.

4 Creating SDN Controller and Traffic Sniffer

Now it is time to add the SDN controller to the topology and connect it to the switch to
manage it, for this we have in the local docker repository an image with a version of
the onos SDN controller, with ID: c07e43df3bf2.

We execute the following command to run the SDN controller and access to its in-
terface: docker run -itd -p 6653:6653 -p 8181:8181 -p 8101:8101 -p 5005:5005 -p
830:830 --name=onos c07e43df3bf2.

Once logged in onos, two applications are added: Open Flow Provider Suite and
Reactive Forwarding. Once the controller is running, the switch is connected to it in
order to be able to install flow rules through it. Tell the switch s1 which version of
OpenFlow it is going to operate with: sudo ovs-vsctl set bridge s1 protocols=Open-
Flow13 and connect switch s1 to the controller using: sudo ovs-vsctl set-controller s1
tcp:192.168.56.11:6653.

Keep in mind that 192.168.56.0 is the vboxnet0 network and thanks to have config-
ured a bridge network in VirtualBox, we can have communication with all networks
that we have configured in the MV iot, thanks to this also works port forwarding docker
and we can use the browser of the base machine to access them. Once this point is
reached, you can operate the switch at low level via terminal with the commands pro-
vided by ovs-vsctl and ovs-ofctl.

Traffic Capture Function. OVS provides a way to duplicate network traffic from spe-
cific ports to a dedicated outgoing port. The duplication can be in one direction or both.
The following are the commands to create a port that shows traffic and connect it to the

10

monitor container for processing purposes. First, create the mirror port on the switch
(Figure 12).

Fig. 12. Inserting mirror port on the switch.

Next, we will get the uuids of the ports we are interested in for the switch configu-

ration by mirroring the desired traffic to the monitor port (Figure 13).

Fig. 13. Obtaining the uuid of the switch s1 ports.

With this information we can configure which are the ports whose inbound and/or

outbound traffic we want to show. To do this we execute the following command:
sudo ovs-vsctl set mirror espejo select_src_port=9fdd1399-2d78-455a-a50a-
bb61b3e994db,5b8ee856-1b28-4e4d-8dcf-122bcced7d6f select_dst_port=9fdd1399-
2d78-455a-a50a-bb61b3e994db,5b8ee856-1b28-4e4d-8dcf-122bcced7d6f

With the above command we inform the switch that we want all traffic exchange in
both directions from the ports that are connected to Host1 and Host2. We verify the
configuration as follows: sudo ovs-vsctl list mirror mirror.

Now all that remains is to inform which port will be the outgoing port for the dupli-
cated traffic using the command: ovs-vsctl -- --id=@(uuid corresponding to the output)
get port (uuid corresponding to the output) -- set mirror mirror output-port=@(uuid
corresponding to the output)
sudo ovs-vsctl -- --id=@b9e505e4-5694-4f0c-b4f7-39209a5122e1 get port b9e505e4-
5694-4f0c-b4f7-39209a5122e1 -- set mirror mirror output-port=@b9e505e4-5694-
4f0c-b4f7-39209a5122e1

There you can see the outgoing port for the duplicated traffic, which is the port that
corresponds to the connection with the monitor. Under these conditions, we can test
generating traffic between Host1 and Host2, and see if we can capture it in the monitor
container, for that we run in a terminal the command docker ps to identify the process
where the monitor is running and then with the command docker exec -it (process) sh,
returns us a terminal with command line inside the monitor container and once there
we configure a data capture with tcpdump (Figure 14).

Fig. 14. Configuration of traffic capture inside the monitor container.

11

As you can see, a capture of 100 frames was configured and saved in a file named
trafh1h2.pcap. We also do the same by opening a terminal on h1 and pinging h2 to
generate a sample traffic (Figure 15).

Fig. 15. Generating traffic from Host1 to Host2.

This generates continuous traffic between cont1 and cont2, and in the monitor con-

tainer a file is generated containing the capture of the traffic between cont1 and cont2,
reflected in the port of connection of the monitor to the OpenFlow switch as shown in
Figure 16.

Fig. 16. Capture file generated on the monitor.

Once the capture file is generated we copy it from the container to the MV iot with

the command: docker cp monitor:/trafh1h2.pcap. Then from the MV iot to the base
machine in the Documents folder to be able to analyze it with Wireshark with: scp
iot@192.168.56.11:/home/iot/trafh1h2.pcap Documents/ . And finally, we open the
file with the capture to examine it (Figure 17).

Fig. 17. Wireshark screen displaying the file with the data capture performed.

about:blank

12

As shown in the figure, we have the traffic of the selected ports, which was captured

by the monitor container. In the same way, we can proceed to select any interface and
type of traffic because the design is flexible to adapt to any scenario and has the ad-
vantage of being “portable”. The example traffic between two generic hosts was cho-
sen, to represent the input and output of backbone traffic, as it could perfectly be rep-
resenting the output of the IoT Gateway in its transit to the network backhaul. This
work describes all the low-level engineering to build the scenario, analyzing all the
functional components and connectivity.

5 Conclusions and future work

In this work, we show the design and implementation of an IoT network monitoring
system that provides network traffic data and statistics for the top layer of the IoT ar-
chitecture. The results of the experiment show the feasibility of the traffic monitoring
system and its application in the device layer of the IoT architecture. As a tutorial, it
has been shown step by step how to create an architecture for data capture with an IoT
platform based on traffic analyzers and SDN from a scenario divided into abstraction
layers. This work is the baseline for the collection of robust data that will later become
part of IDS and learning methods for network traffic classification.

It is essential to mention that this work deals with the study and implementation of
the capture module, from the lowest level acting directly on the linux kernel, it aims to
show in a didactic way, acquire the "know how" to understand higher level develop-
ments and with greater ease of implementation, offering a fully modular and scalable
solution with the possibility of using orchestration tools, such as Kubernetes, Ter-
raform, etc. We want to highlight the introductory nature of this document based on
this objective.

In accordance with the above, with a view to continuing this work, and with the aim
of improving the performance of the traffic monitor shown here, we will soon publish
the progress we made in the design of a monitoring module which a concept of "pro-
miscuous bridge", designed from a bridge and a Docker container that contains the cap-
ture software tcpdump with all the advantages of capturing in "raw" mode, capturing
all the packets of a given interface reflected in the bridge interface at which the monitor
is connected. By capturing all the traffic of the chosen interface, the bridge also allows
multiple tools to obtain the same data, which is very useful; if, for example, you want
to define traffic selection and filter functions, a fundamental requirement for the devel-
opment of an IDS. It should be noted that the use of Docker provides an isolated and
easily replicable environment that ensures portability and implementation of the moni-
tor wherever it is needed.

References

1. Berg Insight: IoT Business News, https://iotbusinessnews.com/2021/02/11/06951-the-num-
ber-of-smart-homes-in-europe-and-north-america-will-reach-179-million-in-2024/.

13

2. Zhang, J., Tao, D.: Empowering Things with Intelligence: A Survey of the Progress, Chal-
lenges, and Opportunities in Artificial Intelligence of Things. IEEE Internet Things J. 8,
7789–7817 (2021). https://doi.org/10.1109/JIOT.2020.3039359.

3. Barreto, L., Amaral, A., Pereira, T.: Industry 4.0 implications in logistics: an overview. Pro-
cedia Manuf. 13, 1245–1252 (2017). https://doi.org/10.1016/j.promfg.2017.09.045.

4. Ashton, K.: That “Internet of Things” Thing. 1.
5. Group, S.M.A., Engineering (NITIE), N.I. of I., Lake, V., Mumbai, Group, I.R.A., Engi-

neering (NITIE), N.I. of I., Lake, V., Mumbai, Group, I.T.A., Engineering (NITIE), N.I. of
I., Lake, V., Mumbai, India: Internet of Things (IoT): A Literature Review. J. Comput. Com-
mun. 03, 164 (2015). https://doi.org/10.4236/jcc.2015.35021.

6. Silva, B.N., Khan, M., Han, K.: Internet of Things: A Comprehensive Review of Enabling
Technologies, Architecture, and Challenges. IETE Tech. Rev. 35, 205–220 (2018).
https://doi.org/10.1080/02564602.2016.1276416.

7. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A vision, ar-
chitectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660
(2013). https://doi.org/10.1016/j.future.2013.01.010.

8. Louis, J., Dunston, P.S.: Integrating IoT into operational workflows for real-time and auto-
mated decision-making in repetitive construction operations. Autom. Constr. 94, 317–327
(2018). https://doi.org/10.1016/j.autcon.2018.07.005.

9. Al-Hadhrami, Y., Hussain, F.K.: Real time dataset generation framework for intrusion de-
tection systems in IoT. Future Gener. Comput. Syst. 108, 414–423 (2020).
https://doi.org/10.1016/j.future.2020.02.051.

10. Borgohain, T., Kumar, U., Sanyal, S.: Survey of Security and Privacy Issues of Internet of
Things. ArXiv150102211 Cs. (2015).

11. Ferrag, M.A., Maglaras, L., Moschoyiannis, S., Janicke, H.: Deep learning for cyber security
intrusion detection: Approaches, datasets, and comparative study. J. Inf. Secur. Appl. 50,
102419 (2020). https://doi.org/10.1016/j.jisa.2019.102419.

12. Eskandari, M., Janjua, Z.H., Vecchio, M., Antonelli, F.: Passban IDS: An Intelligent Anom-
aly-Based Intrusion Detection System for IoT Edge Devices. IEEE Internet Things J. 7,
6882–6897 (2020). https://doi.org/10.1109/JIOT.2020.2970501.

13. Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., Faruki, P.: Network Intrusion
Detection for IoT Security Based on Learning Techniques. IEEE Commun. Surv. Tutor. 21,
2671–2701 (2019). https://doi.org/10.1109/COMST.2019.2896380.

14. Özgür, A., Erdem, H.: A review of KDD99 dataset usage in intrusion detection and machine
learning between 2010 and 2015. PeerJ Inc. (2016). https://doi.org/10.7287/peerj.pre-
prints.1954v1.

15. Jan, S.U., Ahmed, S., Shakhov, V., Koo, I.: Toward a Lightweight Intrusion Detection Sys-
tem for the Internet of Things. IEEE Access. 7, 42450–42471 (2019).
https://doi.org/10.1109/ACCESS.2019.2907965.

16. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A Practical Guide to Support Vector Classification.
16.

17. Xu, C., Shen, J., Du, X., Zhang, F.: An Intrusion Detection System Using a Deep Neural
Network With Gated Recurrent Units. IEEE Access. 6, 48697–48707 (2018).
https://doi.org/10.1109/ACCESS.2018.2867564.

18. Yin, C., Zhu, Y., Fei, J., He, X.: A Deep Learning Approach for Intrusion Detection Using
Recurrent Neural Networks. IEEE Access. 5, 21954–21961 (2017).
https://doi.org/10.1109/ACCESS.2017.2762418.

19. Li, Z., Qin, Z., Huang, K., Yang, X., Ye, S.: Intrusion Detection Using Convolutional Neural
Networks for Representation Learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., and El-Alfy,

14

E.-S.M. (eds.) Neural Information Processing. pp. 858–866. Springer International Publish-
ing, Cham (2017). https://doi.org/10.1007/978-3-319-70139-4_87.

20. Vinayakumar, R., Soman, K.P., Poornachandran, P.: Applying convolutional neural network
for network intrusion detection. In: 2017 International Conference on Advances in Compu-
ting, Communications and Informatics (ICACCI). pp. 1222–1228 (2017).
https://doi.org/10.1109/ICACCI.2017.8126009.

21. Collective Anomaly Detection Based on Long Short-Term Memory Recurrent Neural Net-
works | SpringerLink, https://link.springer.com/chapter/10.1007/978-3-319-48057-
2_9?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot, last accessed
2022/03/15.

22. Roy, S.S., Mallik, A., Gulati, R., Obaidat, M.S., Krishna, P.V.: A Deep Learning Based
Artificial Neural Network Approach for Intrusion Detection. In: Giri, D., Mohapatra, R.N.,
Begehr, H., and Obaidat, M.S. (eds.) Mathematics and Computing. pp. 44–53. Springer,
Singapore (2017). https://doi.org/10.1007/978-981-10-4642-1_5.

23. Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the development of real-
istic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset.
Future Gener. Comput. Syst. 100, 779–796 (2019). https://doi.org/10.1016/j.fu-
ture.2019.05.041.

24. Ashraf, J., Keshk, M., Moustafa, N., Abdel-Basset, M., Khurshid, H., Bakhshi, A.D., Mo-
stafa, R.R.: IoTBoT-IDS: A novel statistical learning-enabled botnet detection framework
for protecting networks of smart cities. Sustain. Cities Soc. 72, 103041 (2021).
https://doi.org/10.1016/j.scs.2021.103041.

25. Alsaedi, A., Moustafa, N., Tari, Z., Mahmood, A., Anwar, A.: TON_IoT Telemetry Dataset:
A New Generation Dataset of IoT and IIoT for Data-Driven Intrusion Detection Systems.
IEEE Access. 8, 165130–165150 (2020). https://doi.org/10.1109/ACCESS.2020.3022862.

26. Moustafa, N., Ahmed, M., Ahmed, S.: Data Analytics-Enabled Intrusion Detection: Evalu-
ations of ToN_IoT Linux Datasets. In: 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom). pp. 727–735 (2020).
https://doi.org/10.1109/TrustCom50675.2020.00100.

27. Garcia, S., Parmisano, A., Erquiaga, M.J.: IoT-23: A labeled dataset with malicious and
benign IoT network traffic, https://zenodo.org/record/4743746, (2020).
https://doi.org/10.5281/zenodo.4743746.

28. Abdalgawad, N., Sajun, A., Kaddoura, Y., Zualkernan, I.A., Aloul, F.: Generative Deep
Learning to Detect Cyberattacks for the IoT-23 Dataset. IEEE Access. 10, 6430–6441
(2022). https://doi.org/10.1109/ACCESS.2021.3140015.

29. K., G., S.H., B.: Network traffic analysis through deep learning for detection of an army of
bots in health IoT network. Int. J. Pervasive Comput. Commun. ahead-of-print, (2022).
https://doi.org/10.1108/IJPCC-10-2021-0259.

30. Bolatti, D., Karanik, M., Todt, C., Scappini, R., Gramajo, S.: Intelligent Anomaly Detection
System for IoT. In: IX Jornadas de Cloud Computing, Big Data & Emerging Topics. pp. 47–
50. Universidad Nacional de La Plata, La Plata (2021).

31. Bolatti, D., Todt, C., Karanik, M., Scappini, R.: Proposed update of Technical Report ITU-
T YSTR-IADIoT, “Intelligent Anomaly Detection System for IoT,”
https://www.itu.int/md/T17-SG020RG.LATAM-C-0014/en, last accessed 2022/04/14.

32. Elsayed, M.S., Le-Khac, N.-A., Jurcut, A.D.: InSDN: A Novel SDN Intrusion Dataset. IEEE
Access. 8, 165263–165284 (2020). https://doi.org/10.1109/ACCESS.2020.3022633.

33. Docker Documentation, https://docs.docker.com/, last accessed 2022/04/14.

	1 Introduction
	2 Network Traffic Monitor Architecture
	3 Deployment and Testing
	3.1 Creating topology elements. OpenFlow Switch
	3.2 Creating links between components
	3.3 Connecting the monitor
	3.4 Creating Host 1 and Host 2
	3.5 Connecting Host 1 and Host 2

	4 Creating SDN Controller and Traffic Sniffer
	5 Conclusions and future work
	References

