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Differential equation for the flow rate of discharging silos based on energy balance

J. R. Darias1, Marcos A. Madrid2,3, Luis A. Pugnaloni4
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Since the early work of Hagen in 1852 and Beverloo et al. in 1961, the flow rate of granular material
discharging through a circular orifice from a silo has been described by means of dimensional analysis
and experimental fits, and explained through the “free fall arch” model. Here, in contrast with the
traditional approach, we derive a differential equation based on the energy balance of the system.
This equation is consistent with the well known Beverloo rule thanks to a compensation of energy
terms. Moreover, this new equation can be used to explore new conditions for silo discharges. In
particular, we show how the effect of friction on the flow rate can be predicted. The theory is
validated using discrete element method simulations.

PACS numbers: 45.70.-n, 45.70.Mg

I. INTRODUCTION

When a granular material (such as seeds) flow through
an orifice at the base of a silo, the resulting flow rate
presents peculiar features when compared with the bet-
ter known phenomenology of inviscid fluids. In particu-
lar, the flow rate of grains does not depend on the height
h of the material in the silo. This was early noted by
Hagen in 1852 [1] (for a translation of the German pub-
lication see Ref. [2]). Moreover, Hagen showed that the

mass flow rate Q scales as D
5/2
o , with Do the diameter of

the circular orifice. Compare this with D2
o, which is valid

for inviscid fluids. Hagen also provided the first heuris-
tic postulate to explain this 5/2 power which was later
termed the “free fall arch” model [3]. In brief, Hagen
postulated that grains move downwards in the silo at a
very low velocity until they arrive at a region (about one
orifice radius tall) close to the opening at which the local
density is low and grains perform a simple free fall. From
here, the typical vertical velocity v at which grains cross
the plane of the orifice can be estimated (vout =

√
gDo,

with g the acceleration of gravity) and the mas flow rate

calculated as Q = π(Do/2)
2ρovout = (π/4)ρo

√
gD

5/2
o ,

being ρo the local apparent density at the orifice. It is
customary to replace ρo by the density in the bulk of the
silo ρb. Therefore, the π/4 coefficient is replaced by a
constant C that is later fitted to the experimental data.
Hagen also noted that this expression does not agree en-
tirely well with the data. The solution to this was to
consider that the effective orifice is about one grain di-
ameter, d, smaller due to boundary effects which leads
to Q = Cρb

√
g(Do − d)5/2.

In 1961 Beverloo et al. carried out a series of exper-
iments and found a more suitable expression to fit the
mass flow rate [4]. This expression (see below) became

widely accepted, and is usually named as the Beverloo
rule. Beverloo et al. did not refer to Hagen’s work, but
found the 5/2 power based on dimensional analysis. Oth-
ers in the decade preceding Beverloo proposed expression
that were less successful. The improvement with respect
to Hagen was the introduction of an additional constant
k to the boundary effect correction. The Beverloo rule
states that the mass flow rate is

Q = Cρb
√
g(Do − k d)5/2, (1)

where k and C are two fitting dimensionless constants.
The fitted value for kexperim may vary between 1.4 and 3
depending on the shape and size dispersion of the grains.
However, Cexperim ≈ 0.58 with almost no influence of the
type of material the grains are made of [5]. The origin for
this “universal” value of C did not receive much attention
until recently [6].
The problem of discharge of grains through an ori-

fice has been revisited by a number of authors (see for
example [7–15] and references therein). The basic phe-
nomenology has been confirmed in all studies, i.e.: (i) the
flow rate does not depend on the column height, (ii) the

flow rate scales with D
5/2
o , (iii) the prefactor is C ≈ 0.58

for almost all materials. However, Rubio-Largo et al.
provided evidence that the concept of “free fall arch”
may not be a realistic picture of the internal dynamics in
the silo around the orifice [16].
This mechanical problem of discharge should be de-

scribed from first principles via energy balance as it is
done for a fluid (e.g., Bernoulli’s law). To our knowl-
edge, this has not been done successfully so far, despite
some attempts (see for example [17]). One possible rea-
son for this is that the rheological response of the grains
while flowing in a silo has received less attention, leaving
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FIG. 1. Sketch of the axial cross section of a cylindrical silo.

a gap in a basic component of the energy balance anal-
ysis: the dissipated power. In this direction, Staron et
al. [18] have proved that the flow in a discharging silo
can be described by introducing the µ(I)-rheology model
[19] into the Navier–Stokes equations. This is, in prac-
tice, the introduction of an effective dissipation term into
the equations. Recently, we have shown that, at a global
scale in the silo, the flow is consistent with the quasistatic
limit in the µ(I)-rheology [6]. In that work, we have pro-
vided an expression for the energy dissipated during the
discharge of a silo that will be revisited in what follows.
In this work, we derive a differential equation forQ as a

function of time during the discharge. This is achieved by
using the work–energy theorem for the system of interest,
which is defined as the set of grains that remain inside the
silo at any given time. To calculate the energy dissipation
we use a revised expression to the one presented in Ref.
[6]. The result is consistent with the Beverloo rule. We
provide a theoretical estimate for the value of C that is
remarkably close to the value obtained by experimental
fits. Moreover, the new equation predicts an increase
in the flow rate when the friction coefficient is reduced,
which is consistent with simulation results.

II. SYSTEM DEFINITIONS

We consider a cylindrical silo (see Fig. 1) of diameter
Ds (radius Rs = Ds/2 and cross section As = πR2

s ) with
a flat base. This base has an orifice of diameter Do in its
center (radius Ro = Do/2 and cross section Ao = πR2

o).
With the orifice covered, the silo is filled with an initial
mass Mini of a granular material that fills the silo up to a
certain height. We will consider that the bulk apparent
density of the material ρb is homogeneous throughout the
column as a first order approximation. The mass of each

grain is denoted by m.
When the orifice is opened, the discharge of grains

starts. During the discharge, the mass M(t) inside the
silo at time t can be written as

M(t) = ρbAsz(t) = 2ρbAszcm(t), (2)

where z(t) is the height of the column of grains, and
zcm(t) = z(t)/2 is the center of mass of the granular
column at time t. Therefore, the mass flow rate Q(t) is

Q(t) = −Ṁ(t) = 2ρbAsvcm(t), (3)

where vcm(t) = |żcm(t)| is the speed of the center of mass
of the granular column. Note that since M(t) decreases

with time during the discharge, Ṁ and żcm are negative.

III. SIMULATIONS

To validate our theoretical model we carried out a se-
ries of DEM simulations of spherical particles in a cylin-
drical silo as described in the previous section. We used
the LIGGGHTS [20] implementation with a particle–
particle Hertz interaction and Coulomb criterion using
a Young modulus Y = 70 MPa, Poison ratio ν = 0.25,
restitution coefficient e = 0.95 and friction coefficient
0.1 < µ < 1.0. The same interaction applies for the
particle–walls contacts. Details on the particle–particle
interactions are given in Appendix A. The particle di-
ameters are d = 1 mm and their material density is
ρ = 2500 kg/m3. The silo diameter is Ds = 30 mm (some
test have been run also with Ds = 24 mm). The orifice
diameter is varied in the range 6.0 mm ≤ Do ≤ 10.0 mm.
Particles are poured into the silo to fill a height z(t =
0) ≈ 10Ds (which implies up to 3 × 105 grains, depend-
ing on the silo diameter). The orifice is initially blocked
by a plug. We let the grains come to rest in the silo by
waiting until the kinetic energy per particle falls below
10−10 J. Then, we remove the plug and allow the mate-
rial to discharge through the orifice. Although particles
are monosized, we do not observe crystalline structures
in the simulations. The magnitude of the acceleration of
gravity is set to g = 9.81 m/s2 and the integration time
step is ∆t = 5× 10−6 s.

IV. WORK–ENERGY THEOREM AND
DISSIPATED POWER

We focus on the system composed of the grains inside
the silo at any given time. According to the work–energy
theorem, the change in kinetic energy K̇in of this system
of grains is

K̇in = Ẇg − Ẇout + Ẇel − Ẇd, (4)

where Ẇg is the power injected by the force of gravity

acting on the grains, Ẇout is the power loss due to the
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FIG. 2. Sketch of a simple plane shear cell. The top plate is
driven at constant velocity v.

grains that leave the silo through the orifice at a velocity
vout, Ẇel is the “elastic power”, i.e., the rate of change
of the elastic energy of the grain–grain contacts, and Ẇd

is the dissipated power due to the non-conservative in-
teractions (friction and inelastic collisions between the
grains and between the grains and the walls). Some of

the terms in Eq. (4) are in fact negligible (K̇in and Ẇel)

and some are easy to calculate from basic mechanics (Ẇg

and Ẇout). We discuss those contributions in Appendix
B. In the remaining of this subsection we focus on the
dissipated power Ẇd.
In a recent work [6], we have shown that the power

dissipated during a silo discharge can be calculated by
assuming that the flow is consistent with a quasistatic
shear flow in the framework of the µ(I)-rheology [19].

Here, we present an improved expression for Ẇd in which
we consider in more detail the local dissipation due to the
convergent flow region in the bottom part of the silo.
Let us first consider a simple plane shear configuration

(see Fig. 2). According to the µ(I)-rheology model [19],
the average tangential stress σxz required to keep the
top plate moving at constant velocity v can be written
as σxz = µ(I)σzz . Here, σzz is the confining stress and
µ(I) is an “effective friction coefficient” that accounts
for all the complex interactions in the granular sample
between the plates. The effective friction depends on the
inertial number I = vd

√
ρ/(L

√
σzz), with ρ the density

of the material the grains are made of [19]. The inertial
number suffices to characterize the flow as long as the
grains are stiff and L ≫ d.
The power Ẇd dissipated during the motion of the top

plate in Fig. 2 is simply given by Ẇd = σxzAv, where
A is the total area of the top plate. Hence, the dissi-
pated power can be written as Ẇd = µ(I)σzzAv. In
this expression, the effect of the properties of the granu-
lar material on the dissipation comes only through µ(I)
since σzz , A and v are control variables of the experi-
ment. Interestingly, it has been shown that µ(I) follows
a universal curve for all granular materials as long as the
particle–particle friction is high enough (roughly above
0.4) [19]. However, this curve depends on geometrical
factors like dimensionality [21]. In the quasistatic limit
(i.e., I ≪ 1, with I < 0.01 being a typical criterion used
for practical proposes), the value of µ(I = 0) becomes
unique to all granular materials for a given geometry if
the particle–particle friction is above 0.4. Therefore, the

dissipated power becomes independent from the details of
the particle–particle interactions in this limit (i.e., when
I → 0 and µ > 0.4).
We postulate that the flow inside a discharging silo

can be modeled in a similar way as in the simple plane
shear geometry. In the cylindrical silo geometry, up and
away from the converging flow observed at the bottom
of the silo, the confining pressure can be taken as the
mean radial pressure 〈σrr〉(t) (where the angular brack-
ets indicate an average over the height of the granular
column), the driving velocity as the velocity of the free
surface of the granular column v = 2vcm and the “plate
area” as the area of contact between the grains and the
silo lateral walls [A1(t) = πDs2zcm(t)]. Note that v is
only a velocity that is characteristic for the motion of
the system at the macroscopic scale (as the plate veloc-
ity in the plane shear experiment) and does not need to
be compared with the actual velocities of the grains nor
with the velocity gradients in the system.
Close to the bottom of the silo, over a height of about

Rs, the flow converges to the orifice and the relevant con-
fining pressure is no longer radial in this section of the
silo. We therefore use, as a proxy for the confining pres-
sure in this region, the vertical component σbott

zz (t) aver-
aged over the bottom part of the silo (from the base to a
height Rs). The lateral area of this region is A = πDsRs,
and we use also the characteristic velocity v = 2vcm.
However, there exist a small region of height ≈ Ro right
above the base that does not contribute to the dissipa-
tion of energy. This is due to the fact that grains close
to the solid base do not move significantly and then do
not dissipate energy. Of course, grains in the neighbor-
hood of the orifice do move at high velocities, but here
the packing fraction is so low that there are very few
particle–particle interactions to dissipate energy. There-
fore, for the converging flow zone we take the effective
lateral area as A2 = 2πRs(Rs −Do/2). Using these ap-
proximations we can write the dissipated power in the
entire granular column as

Ẇd(t) = µ(I)[〈σrr〉(t)A1(t) + ασbott
zz (t)A2]2vcm(t). (5)

The first term in Eq. (5) accounts for the dissipation
along the upper part of the silo, whereas the second term
accounts for the contribution of the converging flow. The
constant α in this second term is introduced as a correc-
tion factor since the active area, characteristic velocity
and confining pressure in the converging zone are only
estimates that should give the correct scaling on the var-
ious variables but not necessarily the correct numerical
value for the dissipation.
Using Eqs. (2) and (3), we can write Eq. (5) as

Ẇd(t) =− µ(I)2πRs

[

〈σrr〉(t)
M(t)

ρbAs

+ ασbott
zz (t)

(

Rs −
Do

2

)]

Ṁ(t)

ρbAs
. (6)
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V. A DIFFERENTIAL EQUATION FOR THE
MASS FLOW RATE

Collecting all terms for the energy balance from Ap-
pendix B and the previous section, i.e., plugging Eqs.
(B5), (B7), (B9), (B10) and (6) into Eq. (4), one can
obtain a differential equation for the mass flow rate
Q ≡ −Ṁ(t). As we mentioned in Appendix B, some of
these terms are in fact negligible. In particular, we take
K̇in = 0 and Ėel = 0. Finally, Eq. (4) can be written as

0 =− g

ρbAs
M(t)Ṁ(t) +

Ṁ3(t)

2ρ2oA
2
o

+ µ(I)2πRs (7)

×
[

〈σrr〉(t)
M(t)

ρbAs
+ ασbott

zz (t)

(

Rs −
Do

2

)]

Ṁ(t)

ρbAs
.

Solving for −Ṁ [22]

−Ṁ(t) =
π
√
2

4
ρo
√
gD2

o

{

M(t)

ρbAs
− µ(I)2πRs

gρbAs
(8)

×
[

〈σrr〉(t)
M(t)

ρbAs
+ ασbott

zz (t)(Rs −
Do

2
)

]}1/2

.

Equation (8) is a first order differential equation for
M(t) that can be closed with an initial condition such as
M(t = 0) = M0. To solve this equation it is necessary to
know 〈σrr〉(t), σbott

zz (t), µ(I) and α. In the next section
we revise the Walters model for the pressure in discharg-
ing silos to obtain analytical expressions for 〈σrr〉(t) and
σbott
zz (t) to close Eq. (8).
It is worth mentioning at this point that Eq. (7) re-

duces to the equation for an inviscid fluid if the last term
that accounts for the dissipated power is neglected. In
this case we obtain

−Ṁ2(t)

ρ2oA
2
o

= 2g
M(t)

ρbAs
,

vout =
√

2gz(t), (9)

where z(t) is the column height and vout = Ṁ(t)/(ρ2oA
2
o)

is the mean velocity of the outflowing material.

VI. PRESSURE IN A DISCHARGING SILO

A. Walters dynamic stresses

Walters [23] and Walker [24] have developed models for
the pressure during silo discharge following an approach
similar to Janssen’s. In order to close Eq. (8) we will use
these previous developments. The expression for σzz and
σrr at a given depth z′ (measured from the free surface
of the granular column) into the moving column is

σWalters
zz (z′) =

gρbDs

4B
[1− e−4Bz′/Ds ], (10)

σWalters
rr (z′) =

gρbDs

4 tanφ
[1− e−4Bz′/Ds ], (11)

where tanφ is the effective friction corresponding to the
wall yield locus [5], andB plays the role of the well-known
Janssen’s force redirection factor. For discharging (not
static) silos Walters obtains [23]

B =
tanφ cos2 δ

(1 + sin2 δ)− 2y sin δ
, (12)

y =
2

3c
[1− (1 − c)3/2],

c =
tan2 φ

tan2 δ
.

Here, φ is the effective friction angle for the wall yield
locus and δ is the effective friction angle for the internal
yield locus. As discussed by Nedderman (see section 3.7
in Ref. [5]), the wall yield locus φ should not be set
simply as atan(µwall). Instead, the Jenike’s rule should
be applied

tanφ =

{

µwall if sin δ ≥ µwall

sin δ if sin δ < µwall
. (13)

For the vertical pressure on the converging flow zone
we will use as an estimate

σbott
zz (z) = σWalters

zz (z′ = z) (14)

=
gρbDs

4B
[1− e−4Bz/Ds ],

being z the granular column height. Note that Wal-
ters defines z′ in the negative direction, therefore
σWalters
zz (z′ = z) is simply the vertical pressure on the

base of the silo.
Since in Eq. (8) we also require the average 〈σrr〉 over

the entire column of grains, we average Eq. (11) from
z′ = 0 to the total depth z′ = z of the column, which
yields

〈σrr〉(z) =
1

z

∫ z

0

σWalters
rr (z′)dz′

=
gρbDs

4 tanφ

[

1 +
e−4Bz/Ds − 1

4Bz/Ds

]

. (15)

In Fig. 3 we show σbott
zz and 〈σrr〉 obtained from DEM

simulations along with the theoretical predictions form
Eq. (14) and (15), respectively. The particle–wall fric-
tion was set µwall = 0.5, which is larger than the internal
friction of the material. The curves have been fitted set-
ting tan δ = 0.204 and tanφ = sin δ, following Eq. (13).
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FIG. 3. (a) 〈σrr〉 as a function of the total mass M in the silo.
(b) σbott

zz as a function of the total massM in the silo. Symbols
correspond to DEM simulations for different orifice diameters
Do and different silo diameters Ds. Unless otherwise stated
Ds = 30d. The particle–particle and particle–wall friction
coefficients were set to µ = 0.5. The solid lines correspond
to: (a) 〈σrr〉 according to Eq. (15) and (b) σbott

zz (z) given by
Eq. (14). We have set tan δ = 0.204 to fit simultaneously
both pressures. For tanφ we used tanφ = sin δ, following Eq.
(13).

There are two interesting features to emphasize in Fig.
3. Firstly, 〈σrr〉 saturates much more slowly than the
bottom pressure σbott

zz . Secondly, the prediction for 〈σrr〉
fails to some extent for low column heights. Although
this could be improved, we will show that these expres-
sion for the pressure are sufficient to obtain new valuable
insights into the silo discharge.

B. Asymptotic pressure

A first order approximation to the solution for Eq. (8)
can be obtained by replacing the asymptotic limit of Eqs.
(14) and (15) for high columns (z ≫ Ds). These asymp-
totic expressions are

σbott
zz (z) =

gρbDs

4B
[1 +O(z2)] (16)

〈σrr〉(z) =
gρbDs

4 tanφ

[

1− Ds

4Bz
+O(z2)

]
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FIG. 4. Dissipated power Ẇd (scaled by the mass flow rate
Q) as a function of the total mass M in the silo. Symbols
correspond to DEM simulations for different orifice diameters
Do and different silo diameters Ds. If not stated Ds = 30d.
The black solid line corresponds to the expression proposed
in Eq. (6). The blue dashed and orange dot-dashed lines
correspond, respectively, to the first and second term in Eq.
(6) using µ(I) = tanφ = sin δ = 0.2 and α = 2.5 as discussed
in the text.

VII. COMPARISON WITH THE BEVERLOO
RULE

A. The asymptotic equation and the 5/2 power law

Replacing Eq. (16) into Eq. (8), and using z =
M(t)/(ρbAs) (see Eq. (2)) we obtain

−Ṁ(t) =
π
√
2

4
ρo
√
gD2

o

[

M(t)

ρbAs

(

1− µ(I)

tanφ

)

(17)

+
µ(I)Rs

2B

(

1

tanφ
− 2α

)

+
αµ(I)

2B
Do

]1/2

Equation (17) becomes similar to the Hagen’s expres-
sion for the flow rate if we select µ(I) = tanφ = (2α)−1

and B = 1/4. Under these conditions

− Ṁ(t) =
π
√
2

4
ρo
√
gD2.5

o . (18)

As we showed in the previous section, the Walters ex-
pressions for the pressure fit the DEM data if tan δ =
0.204 and tanφ = sin δ = 0.20. For these values, Eq.
(12) yields B = 0.26 ≈ 1/4. Therefore, the well known
Hagen’s relation will hold if we simply set µ(I) = 0.20
and α = 2.5.
To validate the values of µ(I) and α required for Eq.

(17) to reduce to Eq. (18), we have calculated from our
DEM simulations the energy dissipated during discharge
(see Appendix A for details). In Fig. 4 we plot the
dissipated power along with the expression provided by
Eq. (6) using µ(I) = 0.20 and α = 2.5. As we can see,
the agreement is remarkable not only for high columns
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(where the asymptotic limit was used to predict µ(I) and
α) but also for low column heights. This indicates that
the two parameters introduced to model the dissipated
power in practice take values that lead to a flow rate
compatible with the Hagen’s equation. It is worth men-
tioning that the contribution due to the second term in
Eq. (5), which corresponds to the dissipation in the con-
verging zone of the flow, is small but not negligible (see
dot-dashed line in Fig. 4).

B. The bulk density and the prefactor C

As we mentioned in the introduction, Hagen’s predic-

tion for the flow rate is Q = −Ṁ = (π/4)ρo
√
gD

5/2
o .

Therefore, by measuring the packing fraction ρo at the
opening and ρb in the bulk of the silo one can provide an
estimate for the constant C since, according to Hagen’s
analysis, πρo/4 = Cρb. During discharge, ρo ≈ ρb/2
(see Appendix C for details), implying that C ≈ 0.39.
Surprisingly, this estimate is more than 30% below the
value obtained by fitting experiments by various author
(Cexperim ≈ 0.58) [5].

In Eq. (8) the non-dimensional prefactor (i.e., π
√
2/4)

differs from the Hagen’s prefactor. If we use ρo ≈ ρb/2
(see Appendix C) to replace the packing fraction at the
orifice by the bulk packing fraction in Eq. (8), the non-

dimensional prefactor becomes π
√
2

8 ≈ 0.56, which can
be compared with the constant C in the Beverloo rule.
This value deviates less than 4% from the known value
Cexperim ≈ 0.58. Hence our Eq. (8) seems to be much
more accurate in predicting the prefactor that the Hagen
equation.

It is important to note that the value of C is deter-
mined by the expression for the power lost through the
orifice [see Eq. (B9) and compare with Eqs. (7) and
(8)]. A key role is played by the area of the cross section
of the orifice Ao. For a non-circular cross section, the
factor C will take a different value. For example, for a
square orifice of side L (Ao = L2), the prefactor becomes

C =
√
2/2 (bear in mind that we take ρo ≈ ρb/2). This

is consistent with the experimental results from Ref. [25].

Based in the previous discussion, in the rest of the

paper we will set C = π
√
2

8 when we use the Beverloo
expression for a circular orifice.

C. The −kd boundary effect correction

When calculating our energy contributions in Ap-
pendix B, we assumed that the system can be considered
as a continuum while calculating Ẇout. We calculated
the mass flow rate as −Ṁ(t) = ρoAovout without consid-
ering that the orifice has a size only a few times the size
of one grain. This introduces boundary corrections that
we did not take into account.

 0

 0.005

 0.01

 0.015

 0.02

 0  50  100  150  200

m
as

s 
fl

ow
 r

at
e 

[k
g/

s]

(D/d-k)5/2

DEM
Beverloo

This work

FIG. 5. Mass flow rate as a function of (D/d − k)5/2. Sym-
bols correspond to the DEM data. The lines correspond to
both the Beverloo equation (yellow solid) and the asymptotic
expression (black dashed) for the present work (Eq. (18) plus

the boundary effect correction) setting C = π
√

2

8
and fitting

k = 1.72 ± 0.02. For these simulations Ds = 30d and µ = 0.5
for the particle–particle and the particle–wall interactions.

The simplistic correction, in the style of Beverloo,
done by replacing the orifice diameter Do by an effective
smaller diameter Do − kd has been questioned [11, 26].
However, this is a simple way to incorporate this effect
and we will use this in what follows. For spherical grains,
most authors conducting either experiments or simula-
tions in 3D indicate that k ≈ 1.4. However, such fitting
value corresponds to the parameter C fitted to 0.58. As
discussed in the previous section, we now have a theo-

retical basis for setting C = π
√
2

8 . If we do this and fit
the only remaining parameter k we find, for our DEM
data (see Fig. 5) that k = 1.72± 0.02. This is the value
we will use for the rest of the paper. Notice that with
C and k selected in this manner the Beverloo equation
and the asymptotic expression (18) for the current theory
coincide.

VIII. EVOLUTION OF THE FLOW RATE
DURING DISCHARGE

Equation (8) closed by Eqs. (14) and (15) do not need
to be solved numerically as a function of time since a
parametric plot of −Ṁ(t) as a function of M(t) can be
directly obtained. In Fig. 6(a) we plot the flow rate dur-
ing discharge. We also include M(t) without scaling in
Fig. 6(b) as a reference. As we can see, for most part of
the discharge, Eq. (8) predicts a constant flow rate, in
agreement with our DEM simulations and experimental
observations. However, the model predicts an early drop
in the flow rate well before this is observed in the simula-
tions. We believe this discrepancy is connected with the
poor prediction of the pressure contribution 〈σrr〉 for the
final stages of the discharge (see Fig. 3(a)). We expect
that new developments on the estimation for the internal
pressure in silos will lead to an immediate improvement
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FIG. 6. (a) Mass flow rate as a function of the total mass
M in the silo during the discharge. The flow rate is scaled
by the value from the Beverloo equation (i.e., the asymptotic
flow rate for a tall column). The solid line corresponds to
the prediction by Eq. (8) using µ(I) = 0.2 and α = 2.5.
Symbols correspond to DEM data for different Do and Ds.
Unless otherwise stated Ds = 30d. The friction coefficient is
set to µ = 0.5 for the particle–particle and the particle–wall
interactions. (b) Mass in the silo as a function of time for the
same simulations as in part (a). Note that for the narrow silo
we used a lower initial mass.

of the prediction of Eq. (8) for the evolution of the flow
rate.
Despite the shortenings of the prediction in the final

stages of the discharge, Eq. (8) provides, to our knowl-
edge, the first mean to calculate the evolution of the dis-
charge. This opens new possibilities to study problems
such as forced discharges that show an non-constant flow
rate [6].

IX. PREDICTIONS FOR LOW
PARTICLE–PARTICLE FRICTION

In the previous sections, we have observed an excellent
agreement between the Beverloo equation and our theory
by using µ(I) = 0.2. This is possible because µ(I) is not
very sensitive to the material properties of the grains if
µ > 0.4 for the particle–particle interaction [19]. This is
why the a wide range of materials can be fitted to the
Beverloo equation with a single value for the constant
C. However, if µ < 0.4 the effective friction µ(I) starts

to drop. Therefore, we must expect that the flow rate
will depend on the particle–particle friction if µ < 0.4.
Some authors have indeed reported that for low friction
the flow rate is higher [12]. This effect is not accounted
for in the Beverloo equation except for the fact that the
constant C can be fitted to a new value. However, Eq.
(8) can predict the effect of lowering µ without changing
neither the non-dimensional prefactor nor k (we recall
that k is introduced when correcting Do by Do − kd).
The correction is obtained by tunning µ(I), which has a
clear physical interpretation from the µ(I)-rheology.
In Fig. 7(a), we plot the mass flow rate during dis-

charge for different values of µ used in our DEM simu-
lations. We scaled the flow rate by the one predicted by
Beverloo in the previous sections, which holds valid for
large friction (µ > 0.5). The solid lines correspond to Eq.
(8), where we have used as a fitting parameter the value
of µ(I). For µ > 0.4 we use µ(I) = 0.2 as in the previous
sections. For µ < 0.4 we set µ(I) to lower values, while
we keep α−1 = tanφ and k = 1.72 as in the previous
section. The actual values of µ(I) used are shown in Fig.
7(b). For reference, we also include M(t) without scaling
in Fig. 7(c).
The values of µ(I) are difficult to predict. These de-

pend, for example, on the geometry. In the quasistatic
limit for plane shear, while µ(I) = 0.28 in 2D [19] it rises
to 0.36 in 3D [21]. It is difficult to provide an indepen-
dent estimate for µ(I) as a function of µ for the particular
case of a cylindrical silo. However, Eq. (8) provides with

the new insight that the mass flow rate scales as
√

µ(I).

X. CONCLUSIONS

We have used the work–energy theorem to derive an
expression for the mass flow rate of a discharging silo
as a function of the mass inside the silo [see Eq. (8)].
For wide silos and stiff grains, we have shown that the
changes in kinetic energy and elastic energy can be ne-
glected. We have used the concepts of the µ(I)-rheology
to calculate the power dissipated during discharge. The
asymptotic limit of Eq. (8) resembles the well known
Beverloo rule. Interestingly, the non-dimensional pref-
actor that we predict is within 4% of the experimental
fitted values. Besides, we have shown that Eq. (8) pro-
vides a mean to explain the higher flow rates observed in
low-friction materials.
It would be important to test the limitations of this ap-

proach when different conditions are used such as: two-
dimensional silos; silos, orifices and particles with differ-
ent shapes; hoppers; bumpy walls; use of an overweight;
use of soft and/or deformable grains; etc. In particular,
recent simulations with spherocylinders [27] have shown
that µ(I) depends on aspect ratio, which should have an
impact on the flow rate. It is also interesting the potential
application to suspensions and submerged grains passing
through constrictions since there are recent developments
that indicate that the µ(I)-rheology is suitable to de-
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FIG. 7. (a) Mass flow rate as a function of mass in the silo for
DEM simulations for different friction coefficients µ. We set
Do = 10d and Ds = 30d. The particle–particle and particle–
wall values of µ are made equal. The flow rate is scaled by
the Beverloo equation. The solid lines correspond to the pre-
diction of Eq. (8) where µ(I) is set to 0.2 if µ > 0.4 and to
lower values if µ < 0.4. (b) Values of µ(I) as a function of
µ used in part (a). The solid line in part (b) is only a guide
to the eye. (c) Mass in the silo as a function of time for the
same simulations as in part (a).

scribe the flow in these systems [28, 29]. Forced silo dis-
charges using overweights have shown non-constant flow
rates during discharge [6, 30]. An extension of Eq. (8)
to forced flows may be suitable to model the discharge
under such conditions.

Finally, we suggest a potential extension for this the-
ory. The µ(I)-rheology is a local approximation that does
not account for the effects of particle size. The use of non-
local approximations (see for example [31]) may help to

obtain a correction to account for the “empty annulus”
effect and so avoid the simplistic approximation intro-
duced to consider the boundary effects at the orifice.

Appendix A: Interactions for the DEM simulations

We used LIGGGHTS [20] to calculate the trajectories
of each particle by integrating the Newton-Euler equa-
tions [32]. The equations of motion for N grains are
solved via a velocity-Verlet algorithm by advancing in
small time intervals ∆t. We used the Hertz particle–
particle interaction model with Coulomb criterion [32].
In this model, the normal component of the contact force
between two grains i and j is defined as

Fn = knδ
3/2
n − γnδ

1/4
n δ̇n, (A1)

where

kn =

√
d

3

Y

(1− ν2)
(A2)

is the elastic constant for normal contacts and δn is the
overlap in the normal direction between particles i and
j. Y is the Young’s modulus, ν the Poisson ratio and d
the diameter of the particles. The damping constant for
normal contact is

γn =

√

5

6

ln(e)
√

ln2(e) + π2

√

Ym

1− ν2
4
√
d, (A3)

which results from the solution of the Herztian spring-
dashpot model [33]. Here, m is the grain mass and e
is de coefficient of restitution wich is independent of the
velocity [34]. δ̇n is the normal relative velocity of the
particles i and j.
The tangential component of the contact force between

particles i and j is

Ft = −sign(vt)min(|ktδtδ1/2n − γtδ̇tδ
1/4
n |, µFn), (A4)

being vt the tangential relative velocity of the spheres at
the point of contact which takes into accounts the relative
velocity of the centers of the spheres and their rotation.
The elastic constant for tangential contacts is

kt =
Y
√
d

(2− ν)(1 + ν)
. (A5)

The damping constant for tangential contact is

γt = −2

√

5

6

ln(e)
√

ln2(e) + π2

√

Y m

2(2− ν)(1 + ν)
4
√
d. (A6)

Ft is limited by Coulomb friction, being µ the friction co-
efficient [32]. In this model, the static and dynamic fric-
tion coefficients coincide. The tangential displacement δt,
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which depends on the history of the contact, is calculated
as

δt(t) =

∫ t

tc

vt(t
′)dt′, (A7)

where tc is the time at which the contact begins.
To calculate the dissipated power in DEM simulations

there exist two basic approaches as described below.
Approach 1. At each time step the work done by the

non-conservative terms in the contact forces is calculated
and this is saved in a cumulative variable. This is done
by taking the dot product between the displacement δr
of each contact and the non-conservative part of the con-
tact force in that time step [i.e., the force vector resulting
from combining the second term in Eq. (A1) and either,
the second term in the absolute value of Eq. (A4) or
µFn, whichever applies]. This approach has the advan-
tage that one can accumulate separately different con-
tributions such as the tangential contribution [frictional,
Eq. (A4)] and the normal contribution [inelastic colli-
sion, Eq. (A1)]. However, this is CPU demanding since
the operation has to be done at every time step of the
simulation.
Approach 2. At two different arbitrary times (which

may be separated by many time steps) one calculates the
potential energy of all conservatives forces and the total
kinetic energy (including rotations). The conservative
forces include gravity and the conservative terms of the
contact forces [i.e., the first term in Eq. (A1) and the
first term in the absolute value of Eq. (A4)]. These
potential energies can be calculated at any time since the
conservative forces depend only on the current positions
of the particles (not the actual trajectories nor velocities).
Therefore, one does not need to make this calculation at
every time step to track trajectories. The difference of
total energy (potential + kinetic) between the two times
under consideration corresponds to the energy dissipated
by the non-conservative terms in the contact interactions.
Unfortunately, this approach will not provide detailed
information on the contribution of each dissipation mode
(friction and normal collisions).
We have used Approach 2 to obtain the dissipated en-

ergy. This prevents us from having access to the detail
of how much energy is lost by friction and how much by
normal collisions. However, this is a very efficient method
and suffices for the purposes of the current study.

Appendix B: Contributions to the work–energy
theorem

In Fig. 8, we plot the different contributions to the
power injected or extracted from the silo obtained via
a DEM simulation of the silo discharge. We have run
simulations for various silos diameters, particle–particle
interaction parameters and orifice sizes. All cases studied
display the same trends as the ones shown in this sample
simulation.
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FIG. 8. Contributions to the work–energy balance during the
discharge of a silo as a function of time (DEM simulations).

Power injected by gravity Ẇg, dissipated power Ẇd, power
loss through the orifice Ẇout, elastic power Ẇel and rate of
change of the internal kinetic energy K̇in. Data corresponds to
a silo with Ds = 30d and Do = 6d while the particle–particle
and particle–wall friction coefficients are set to µ = 0.5.

1. Internal kinetic energy (K̇in)

As we can see in Fig. 8, the contribution of K̇in is one
order of magnitude smaller than Ẇout and three orders of
magnitude smaller than Ẇg. Therefore, we can neglect

K̇in. To provide a partial explanation for this observation
consider the kinetic energy of the grains inside the silo
[35]

Kin(t) =
1

2

∑

i=1

mv
2
i (t). (B1)

The sum runs over all particles inside the silo at time
t and vi(t) is the velocity of particle i. This can be ex-
pressed in terms of the center of mass velocity vcm and the
“granular temperature” as Kin(t) = Kcm

in (t) +Ktemp
in (t),

being

Kcm
in (t) =

1

2
M(t)v2cm(t), (B2)

and

Ktemp
in (t) =

1

2

N(t)
∑

i=1

mi[vi(t)− vcm(t)]
2. (B3)

We will disregard the “temperature” term and focus
on the center of mass. We assume here that the x and y
components of vcm are null and therefore |vcm| = vcm =
−żcm. Hence, the rate of change of the kinetic energy is

K̇in(t) ≈ K̇cm
in (t)

= M(t)vcm(t)v̇cm(t) +
1

2
v2cm(t)Ṁ(t), (B4)
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which can be written, using Eqs. (2) and (3), as

K̇in(t) ≈
1

4ρ2bA
2
s

[

M(t)Ṁ(t)M̈(t) +
1

2
Ṁ3(t)

]

. (B5)

As we can see, K̇in decays as A−2
s . Therefore, K̇in will

be small for wide silos. We will see below that other
terms in the energy balance decrease as A−1

s .

2. Gravitational energy (Ẇg)

The gravitational potential energy of the particles in-
side the silo is

Ug(t) = M(t)gzcm(t) =
gM2(t)

2ρbAs
. (B6)

Where we have used Eq. (2). Therefore, the power in-
jected by the action of gravity is

Ẇg(t) = −U̇g(t) = − g

ρbAs
M(t)Ṁ(t). (B7)

As we can see, Ẇg scales with A−1
s in contrast to the

faster decay displayed by K̇in. We recall here that Ṁ(t)

is negative; therefore Ẇg(t) is positive. It is worth men-

tioning that Ẇg is mostly dissipated and goes into Ẇd

(see Fig. 8). A very small portion of Ẇg goes into the

draining grains (Ẇout), as we discuss in the following
subsection.

3. Discharge energy loss (Ẇout)

While the system discharges, the particles that leave
the system take away some energy since their own kinetic
energy is no longer part of the internal energy of the silo.
If during a time interval dt at time t the system discharges
a mass dM = −Ṁ(t)dt at velocity vout, then the kinetic
energy removed per unit time is

K̇out(t) = −1

2
v2outṀ(t). (B8)

By definition, −Ṁ(t) = ρoAovout. Therefore,

Ẇout = K̇out(t) = −Ṁ3(t)

2ρ2oA
2
o

. (B9)

The power lost by discharge does not depend on the
silo cross section but on the orifice cross section Ao. Then
again, Ẇout is positive since Ṁ(t) is negative.

It is important to note that the definition −Ṁ(t) =
ρoAovout is not strictly correct since the velocity and the
density at the orifice are not homogeneous (see Appendix
C for details) [26].

4. Elastic energy (Ẇel)

If the grains are stiff, the variation in the elastic energy
at the contacts are expected to be small. Ẇel corresponds
to the rate of change of the conservative component of
the contact forces Ėel. In Fig. 8, we show the rate of
change in elastic energy during a silo discharge in a DEM
simulation. As we can see, this term is of the order of
the change in kinetic energy K̇in and can be neglected in
comparison with Ẇg and Ẇout. Of course, this may be
inadequate for very soft grains. For our purposes, we sim-
ply disregard this contribution in the analysis. However,
this can be eventually included by using the stress based
expression for the elastic energy density in the limit of
small deformations [36]

Eel = Aszcmσǫ, (B10)

being σ the stress tensor and ǫ the strain tensor.

Appendix C: Estimation of ρo

Since the packing fraction and the particle velocities
are not homogeneous across the orifice, the correct flow
rate has to be calculated as [26]

Q =

∫ Do/2

0

vo(r)ρo(r)2πrdr, (C1)

where vo(r), and ρo(r) are the vertical velocity and den-
sity profiles at the horizontal plane of the orifice as a
function of the distance r to the center of the orifice.
If the profiles where flat, one can write

Q = ρovoAo, (C2)

where Ao is the cross section of the orifice and ρo and vo
are the mean density and mean vertical velocity at the
orifice, i.e.,

ρo = A−1
o

∫ Do/2

0

ρo(r)2πrdr,

vo = A−1
o

∫ Do/2

0

vo(r)2πrdr. (C3)

This is in general invalid (for non-flat profiles) because
the integral of the product vo(r)ρo(r) is different from the
product of the integrals of vo(r) and ρo(r). It is worth
mentioning that if ρo(r) does not depend on r, then Eq.
(C2) is valid if vo is defined as in Eq. (C3). This is
why expression (C2) is valid for incompressible fluids.
However, for granular materials, the density across the
orifice is not constant and Eq. (C2) is actually a poor
approximation if ρo and vo are defined as in (C3).



11

Therefore, the definitions for vo and ρo in the simplified
Eq. (C2) need to be replaced by “effective values” rather
than “mean values”. As an example, we can set vo to
the mean value of vo(r) but then chose ρo to yield the
correct flow rate. We have done this for experiments and
simulations from the literature and found that setting vo
to the mean value of vo(r) leads to an effective value of
ρo ∼ ρb/2. The mean value for the packing fraction at
the orifice is in fact lower (about ρb/3). As an example,
in our simulations for Do = 6d, the mass flow rate is Q =
0.00312 kg/s. The corresponding vertical velocity at the
orifice (averaged over a cylindrical region that fits exactly
in the orifice and has a height of d) is vo = 0.1353 m/s.
Therefore, from Eq. (C2) above, we find that the effective

apparent density at the orifice is ρo = 815 kg/m3. Since
our bulk ρb = 1475 kg/m3, then ρo/ρb = 0.55.
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Weinhart, Phys. Rev. F 3, 074301 (2018).

[28] F. Boyer, E. Guazzelli and O. Pouliquen, Phys. Rev. Lett.
107, 188301 (2011).

[29] M. Houssais, C. P. Ortiz, D. Durian and J. Jerolmack,
Phys. Rev. E 94, 062609 (2016).

[30] M. A. Madrid and L. A. Pugnaloni, Granular Matt. 21,
76 (2019).

[31] K. Kamrin and G. Koval, Nonlocal constitutive relation
for steady granular flow, Phys. Rev. Lett. 108, 178301
(2012).
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