

Congreso Internacional de Diagnóstico y Mantenimiento en Transformadores

16 – 17 de noviembre, 2022 • Santiago de Chile, Chile congresodetransformadores.com

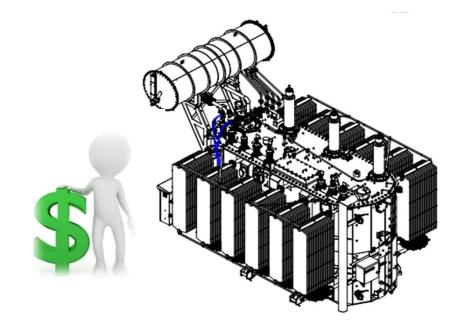
Indicador del estado para el sistema aislante para trasformadores de potencia utilizando lógica difusa

Autor - Yair F. Rochetta.

Estudiante Avanzado de Ingeniería en Electricidad Técnico en Empresa Provincial de la Energía

Co autores:

- Dr. Ing. Ariel S. Loyarte.
- Ing. Germán J. Elías.



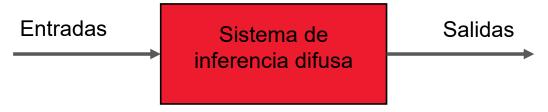
INTRODUCCIÓN

Una empresa distribuidora de energía tiene infinidad de transformadores que forman parte de sus activos.

Gestionar de forma eficiente el mantenimiento de estas máquinas es indispensable para asegurar su funcionamiento y la calidad del servicio brindado a los clientes.

Es por eso que es de vital importancia monitorear frecuentemente el estado de condición del aceite dieléctrico, para poder garantizar la confiabilidad y el buen funcionamiento del transformador.

El presente trabajo se basa en la aplicación de una herramienta de inteligencia artificial para obtener un indicador que englobe las variables más importantes del estado del aceite dieléctrico con el fin de obtener un índice de salud del transformador.

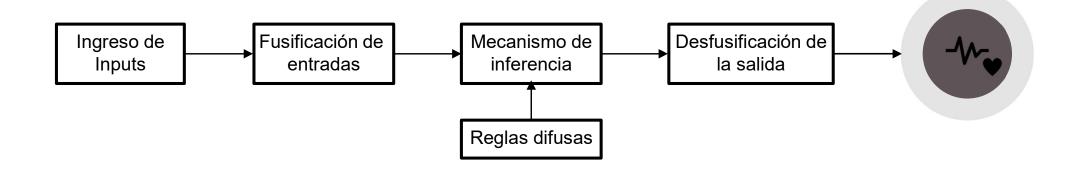


¿QUÉ ES LÓGICA DIFUSA (LD)?

Es aquella aplicada a conceptos que pueden tomar un valor cualquiera de veracidad dentro de un conjunto de valores que oscilan entre dos extremos, la verdad absoluta y la falsedad total.

Esquema de un sistema de inferencia difusa

De esta forma se maneja la incertidumbre mediante grados de certeza [valores entre 0 y 1] para responder a una cuestión lógica.

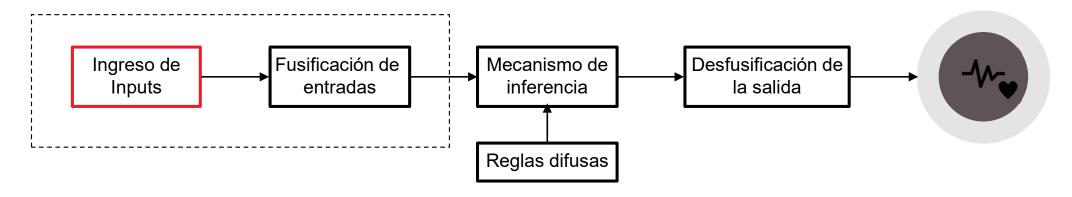

¿CÓMO SE APLICA LD EN NUESTRO PROBLEMA?

Parámetros obtenidos del aceite dieléctrico Funciones de pertenencia Reglas lógicas Funciones de pertenencia Reglas lógicas Indicador del estado general del sistema aislante líquido CAJA NEGRA

ESPACIO DE SALIDA

UTN # SANTA FE

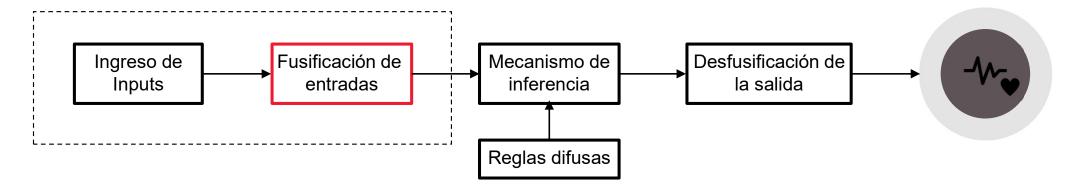
¿CÓMO SE APLICA LD EN NUESTRO PROBLEMA?

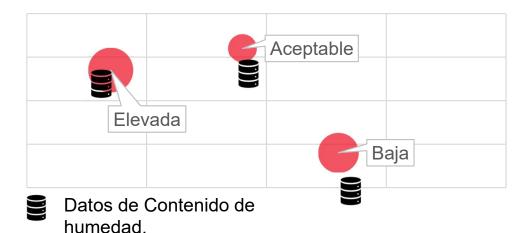


ESPACIO DE ENTRADA

PARÁMETROS DEL FLUIDO DIELÉCTRICO

Input	Limites de referencia	Normativa vigente
Rigidez Dieléctrica	> 36 [Kv]	ASTM D1816
Contenido de Humedad	< 10 [ppm]	ASTM 1533
Contenido del Inhibidor	Min 0.05 [mgKoH/g] Máx 0.4 [mgKoH/g]	ASTM D-974
TDCG	< 720 [ppm]	IEEE C57.104, 2008


Los datos necesarios mínimos para generar el indice de salud se consiguen a partir de tomar una muestra de aceite del transformador.

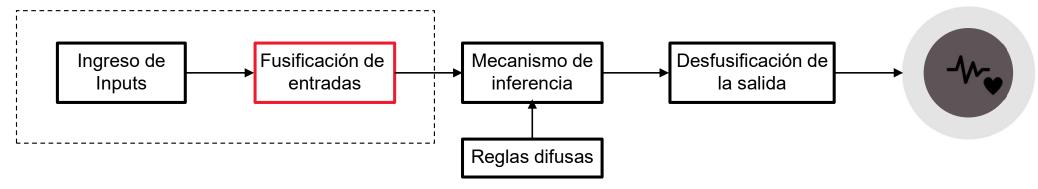


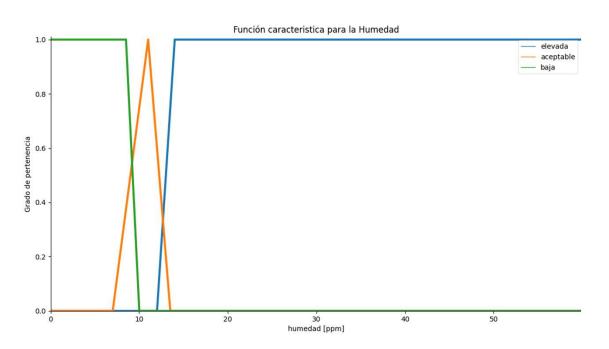
ESPACIO DE ENTRADA

Conjutos difusos para la variable HUMEDAD

CONJUNTOS DIFUSOS

Matemáticamente, un conjunto es una colección de objetos que verifican alguna propiedad, de forma que un objeto o bien pertenece al conjunto, o no pertenece


Un **conjunto difuso** permite a sus elementos tener un grado de pertenencia.



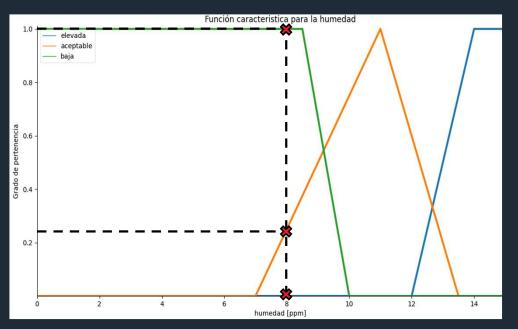
ESPACIO DE ENTRADA

FUNCIÓN DE PERTENENCIA

La función de pertenencia de un conjunto indica el grado en que cada elemento de un universo dado, pertenece a dicho conjunto

Si el conjunto es nítido, su función tomará o un 0 o un 1.

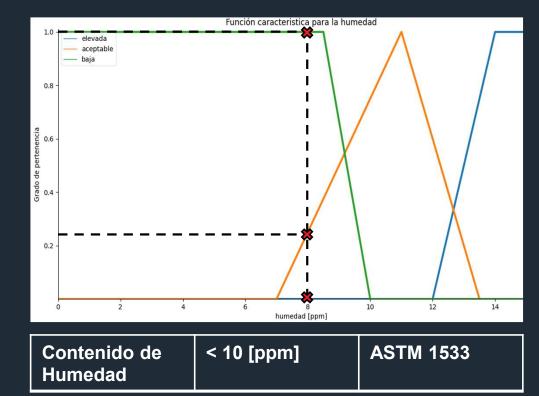
Si el conjunto es difuso, tomará valores entre 0 y 1.



EJEMPLO: Grado de pertenencia para una humedad de 8 [ppm]

```
\mu_{BAJA}(humedad) = 0 \mu_{BAJA}(humedad) = 1 0 \quad Si \; humedad \leq 7 \; [ppm] \frac{humedad - 7}{11 - 7} \quad Si \; 7 < humedad \leq 11 \; [ppm] \frac{13.5 - humedad}{13.5 - 11} \quad Si \; 11 < humedad < 13.5 \; [ppm] 0 \quad Si \; humedad \geq 13.5 \; [ppm]
```

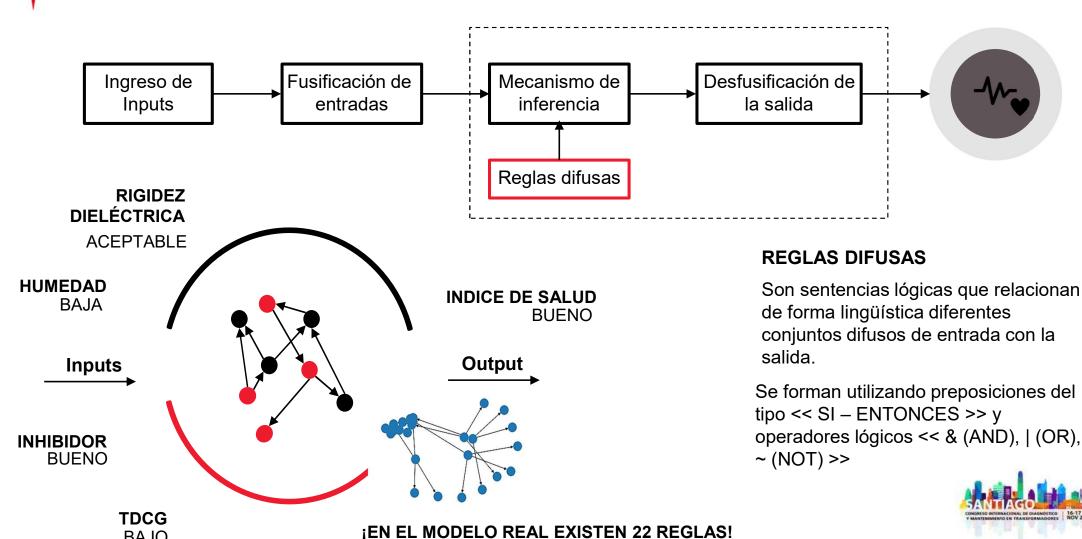
 $\mu_{ACEPTABLE}(humedad) = 0.25$

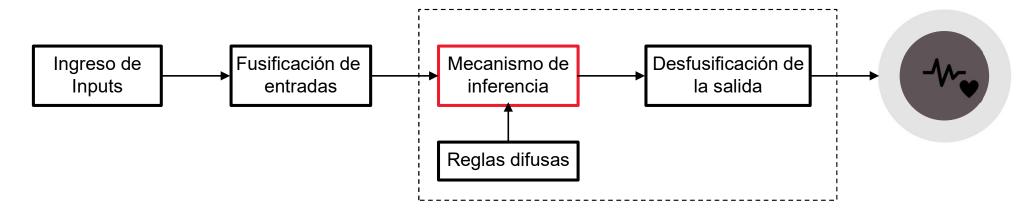


EJEMPLO: Grado de pertenencia para una humedad de 8 [ppm]

En conclusión...

Un contenido de humedad de 8 [ppm] tiene un grado de pertenencia de:

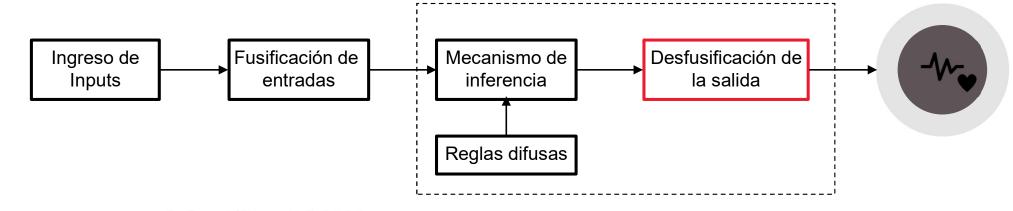

- 0 para el conjunto "humedad elevada"
- 1 para el conjunto "humedad baja"
- 0.25 para el conjunto "humedad aceptable"

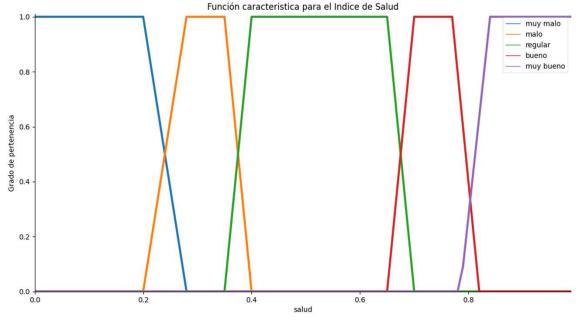


Entonces, ¿Es un contenido de humedad **aceptable o bajo**?

BAJO

MECANISMO DE INFERENCIA

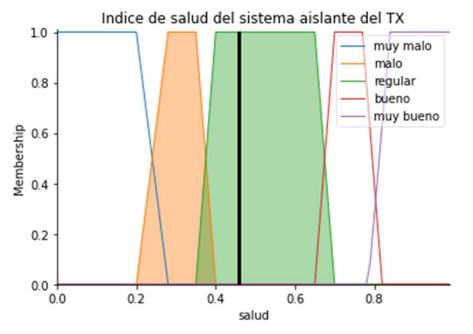

Relaciona conjuntos difusos de entrada con la salida difusa aplicando las reglas lógicas que definen al sistema.


Esta relación se logra utilizando solo las reglas lógicas "ACTIVADAS" y generando con ellas, superficies que limitan la superposición de conjuntos difusos que definen las funciones de pertenencia de las variables de entrada.

DESFUSIFICACIÓN DE LA SALIDA

Del resultado del bloque de inferencia se obtiene una función de pertenencia nueva como salida que es el **INDICE DE SALUD "DIFUSO".**

Esta función caracteriza al índice mediante 5 conjuntos.



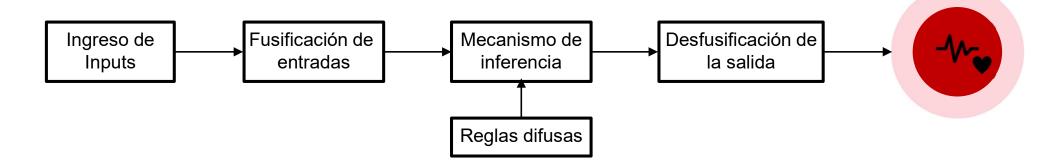
DESFUSIFICACIÓN DE LA SALIDA

La salida difusa muy posiblemente tenga distintos grados de pertenencia a cada conjunto difuso.

Por ello es que para obtener un valor numérico del índice se utiliza en este caso el "METODO DEL **CENTROIDE**"

Siendo:

y: el grado de pertenencia de la salida difusa


B: Cada conjunto difuso de la función característica de salida

$$Salud = \frac{\int y \mu_B(y) dy}{\int \mu_B(y) dy}$$

ESPACIO DE SALIDA

INDICE DE SALUD

Es un indicador global que toma valores comprendidos entre 0 y 1 para calificar el estado general del sistema aislante líquido del transformador.

Siendo 1 una condición excelente del aceite y 0 una condición muy mala, se entiende a todos los valores intermedios que caractericen estados malos, regulares y buenos.

ES ÚTIL PARA...

- Tomar decisiones en cuanto a la gestion del mantenimiento
- Llevar un registro historico de indices de salud y parametros que caracterizan el estado del aceite.
- · Generar una base de datos.
- Generar otros tipos de indicadores para el transformador u otro activo importante de la red eléctrica.

Rigidez	Indice de salud
Humedad	Operaciones de mantenimiento
Innividor	Ensayos realizados DATOS

	Indice de salud	Orden de prioridad
Transformador n°1	0.92	Ваја
Transformador n°2	0.8	Baja
	0.43	Alta
	0.71	Media
Transformador n° Xn	0.2	Alta

Evolución de parámetros

DESARROLLO DE LA APLICACIÓN

Python

- Lenguaje de alto nivel
- Bibliotecas extensas con módulos integrados
- Funcional
- Gratis y de código abierto
- Scripts web

```
D: > Users > Imag > Desktop > U.T.N > Proyecto Final > Lógica difusa > python > 🍨 sistema_de_inferencia.py > ધ Sistema_de_inferencia
                                  rules = ctrl.Rule(self.inhibidor['bajo'] & self.rigidez['aceptable'], self.salud['regular'])
rule6 = ctrl.Rule(self.rigidez['aceptable'] & self.humedad['baja'] & self.inhibidor['aceptable'] & self.TDCG['aceptable'], self.salud['i
                                  rule8 = ctrl.Rule(~ self.rigidez['excelente'] & self.humedad['elevada'], self.salud['regular'])
                                  rule9 = ctrl.Rule(self.rigidez['aceptable'], self.salud['regular'])
                                rulet2 - trl.Rule(self.rigidez['alta'] & - self.humedad['elevada'] & - self.inhibidor['bueno'] & - self.hUGG['elevada'], self.salud['bu
rulet3 - trl.Rule(self.rigidez['alta'] & - self.humedad['elevada'] & - self.inhibidor['bueno'] & - self.hUGG['elevada'], self.salud['bueno'])
rulet4 - trl.Rule(self.rigidez['aceptable'] & self.humedad['baja'] & self.inhibidor['bueno'] & self.hUGG['elevada'], self.salud['bueno'])
rulet5 - trl.Rule(self.rigidez['alta'] & self.humedad['baja'] & - self.inhibidor['bueno'] & - self.hUGG['elevado'], self.salud['bueno']]
                                  rule16 = ctrl.Rule(self.rigidez['excelente'] & self.humedad['baja'] & self.inhibidor['aceptable'] & ~ self.TDCG['elevado'], self.salud
                                 rule17 = ctrl.Rule(self.rigidez['excelente'] & self.humedad['baja'] & ~ self.inhibidor['bajo'] & self.TDCG['bajo'], self.salud['muy buerule18 = ctrl.Rule(self.rigidez['excelente'] & self.humedad['baja'] & ~ self.inhibidor['alto'] & self.TDCG['bajo'], self.salud['muy buerule18 = ctrl.Rule(self.rigidez['excelente'] & self.humedad['baja'] & ~ self.inhibidor['alto'] & self.TDCG['bajo'], self.salud['muy buerule18 = ctrl.Rule(self.rigidez['excelente'] & self.humedad['baja'] & ~ self.inhibidor['alto'] & self.TDCG['bajo'], self.salud['muy buerule18 = ctrl.Rule(self.rigidez['excelente'] & self.humedad['baja'] & ~ self.inhibidor['alto'] & self.TDCG['bajo'], self.salud['muy buerule18 = ctrl.Rule(self.rigidez['excelente'] & self.humedad['baja'] & ~ self.inhibidor['alto'] & self.TDCG['bajo'], self.salud['muy buerule18 = ctrl.Rule(self.rigidez['excelente'] & self.humedad['baja'] & ~ self.inhibidor['alto'] & self.TDCG['bajo'], self.salud['muy buerule18 = ctrl.Rule(self.rigidez['excelente'] & self.humedad['baja'] & ~ self.inhibidor['alto'] & self.tDCG['bajo'], self.salud['muy buerule18 = ctrl.Rule(self.rigidez['excelente'] & self.tDCG['bajo'] & ~ self.tDCG['bajo'], self.salud['muy buerule18 = ctrl.Rule(self.rigidez['excelente'] & self.tDCG['bajo'] & ~ self.tDCG['bajo'], self.salud['muy buerule18 = ctrl.Rule(self.rigidez['excelente'] & self.tDCG['bajo'] & ~ self.tDCG['bajo'], self.tDCG['bajo'], self.tDCG['bajo'], self.tDCG['bajo'] & ~ self.tDCG['bajo'] & ~ self.tDCG['bajo'] & ~ self.tDCG['bajo'], self.tDCG['bajo'] & ~ self.tDCG['ba
                                  rule19 = ctrl.Rule(self.rigidez['alta'] & self.humedad['baja'] & ~ self.inhibidor['bajo'] & self.TDCG['bajo'], self.salud['muy bueno'])
                                 rule20 = ctrl.Rule(self.rigidez['excelente'], self.salud['muy bueno'])
rule21 = ctrl.Rule(self.rigidez['excelente'] & self.humedad['baja'], self.salud['muy bueno'])
                                  rule22 = ctrl.Rule(self.rigidez['alta'] & self.humedad['baja'], self.salud['muy bueno'])
                                    self.salud_reglas = ctrl.ControlSystem([rule1, rule2, rule3, rule4, rule5, rule6, rule7, rule8, rule9, rule10,
                                                                                                                                           rule11, rule12, rule13, rule14, rule15, rule16, rule17, rule18, rule19,
                                                                                                                                            rule20, rule21, rule22])
                                   self.salud indice = ctrl.ControlSystemSimulation(self.salud reglas)
                           def calcular(self, rig, hum, inhi, tdcg):
                                  self.salud_indice.input['rigidez'] = rig
self.salud_indice.input['humedad'] = hum
                                   self.salud_indice.input['TDCG'] = tdcg
```


EJEMPLO DE APLICACIÓN DEL INDICE DE SALUD

- Muestra de 80 ensayos de aceites dieléctricos extraídos de transformadores de potencia
- Se calcula el Índice de Salud de las 80 muestras aplicando el algoritmo diseñado mediante Python.

	Rig. Diel. [kV]	Humedad [ppm]	Inhibidor	TDCG [ppm]	SALUD
Muestra					
1	79.2	3.80	0.200	547	0.858877
2	79.2	5.20	0.200	422	0.858877
3	70.8	6.80	0.210	64	0.865121
4	70.8	4.10	0.210	232	0.865121
5	70.8	2.70	0.210	310	0.865121

76	74.2	0.20	0.070	553	0.690430
77	70.0	0.20	0.001	666	0.643929
78	70.0	0.20	0.008	829	0.611666
79	70.0	0.27	0.005	1070	0.436361
80	80.1	0.30	0.018	1030	0.455741

RESULTADOS

ANÁLISIS ESTADISTICO

	Rig. Diel. [kV]	Humedad [ppm]	Inhibidor	TDCG [ppm]	SALUD
count	80.000000	80.000000	80.000000	80.000000	80.000000
mean	60.225000	5.484125	0.300325	991.687500	0.562556
std	14.821832	6.657603	0.205644	711.323238	0.230761
min	22.900000	0.020000	0.001000	64.000000	0.121111
25%	48.125000	0.200000	0.200000	521.750000	0.400393
50%	67.450000	1.400000	0.300000	843.500000	0.455057
75%	70.425000	12.000000	0.300000	1424.000000	0.835258
max	80.100000	24.700000	0.860000	3846.000000	0.900392

CORRELACIÓN DE VARIABLES

	Rig. Diel. [kV]	Humedad [ppm]	Inhibidor	TDCG [ppm]	SALUD
Rig. Diel. [kV]	1.000000	-0.643525	-0.019378	0.050191	0.415585
Humedad [ppm]	-0.643525	1.000000	-0.072536	-0.131490	-0.363443
Inhibidor	-0.019378	-0.072536	1.000000	0.487102	-0.241902
TDCG [ppm]	0.050191	-0.131490	0.487102	1.000000	-0.604719
SALUD	0.415585	-0.363443	-0.241902	-0.604719	1.000000

- De las 80 muestras se observa un Índice de salud medio de 0.56 (REGULAR)
- Hay varios transformadores con índices MALOS y algunos MUY MALOS por lo que es necesario tomar acciones correctivas ante esta situación.
- Para estas 80 muestras se ve que la variable que mayor peso tiene para definir el Índice de salud es "TDCG" ya que el promedio y el máximo valor que ha tomado esta variable es muy elevado.
- Si bien la RD en la mayoría de los casos es muy buena, la cantidad de gases disueltos ah ponderado a índices malos y regulares.
- Es necesario revisar qué tipo de fallas incipientes o activas están presentes en los transformadores de muestra.

CONCLUSIONES

- Implementar lógica difusa es conceptualmente fácil y tolerante a la imprecisión de datos.
- Facilita la interpretación para distintos usuarios ya que utiliza un lenguaje natural.
- ➤ Permite utilizar la experiencia de profesionales en el tema para inferir para la resolución de un problema NO lineal.
- Las reglas difusas y las funciones de pertenencias pueden ser modificadas para validar el modelo.
- Permite generar un ranking de transformadores sin perder de vista la urgencia en realizar los mantenimientos.
- Esta metodología es valida también para el desarrollo de otros tipos de indicadores del transformador teniendo en cuenta otras variables o parámetros medibles de la máquina.
- También podría implementarse para gestionar el mantenimiento de otros activos de la red.
- Con el avance de la tecnología y la incorporación de tele medición de parámetros puede pensarse en un índice de salud en tiempo real de cada máquina.
- La generación de una base de datos posibilita realizar algoritmos predictivos basados en inteligencia artificial lo que permitiría anticiparse en la gestión del mantenimiento.

UTN # SANTA FE

FINAL congresodetransformadores.com

