

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL HAEDO

FECHA: RES 11/08/2022

INFORME:

CANTIDAD HOJAS Texto: 60 Anexos = 19

ESPECIALIZACIÓN DISEÑO DE RECIPIENTES CONTENEDORES DE PRESIÓN

TITULO

VERIFICACION DE LA INTEGRIDAD ESTRUCTURAL DE LA UNION DEL CUERNO DE LA CUNA Y EL CUERPO CILINDRICO DE UN RECIPIENTE DE GAS LICUADO CODIGO ASME SECCION VIII DIVISION 1

AUTOR

MIGUELANGEL NARVAEZ DNI 95752658

INDICE

- 1.- Introducción
- 2.- Objetivos
- 3.- Datos generales usados en métodos de Zick, Ong y Elementos Finitos
 - 3.1 Nomenclatura Utilizada
 - 3.2 Datos Conocidos
 - 3.3 Estados de Carga
- 4.- Procedimiento de cálculo y resultados Método de Zick
 - 4.1 Premisas
 - 4.2 Cálculo de tensión circunferencial en cuerpo cilíndrico
- 5.- Procedimiento de cálculo y resultados Método de Ong
 - 5.1 Premisas
 - 5.2 Cuna Elástica
 - 5.3 Cuna Rígida
- 6.- Procedimiento de cálculo y resultados Método de Elementos Finitos
 - 6.1 Definición del Modelo y Tipo de Análisis
 - 6.2 Definición de Mallado
 - 6.3 Cargas Aplicadas
 - 6.4 Definición de Salida de Resultados
 - 6.5 Condiciones de Borde para Cuna Elástica
 - 6.6 Condiciones de Borde para Cuna Rígida
 - 6.7 Resultados para Cuna Elástica
 - 6.8 Resultados para Cuna Rígida
- 7.- Comparación de Resultados de los Tres Procedimientos
- 8.- Especificación de Procedimiento de Soldadura
- 9.- Evaluación de una Fisura
- 10.- Conclusiones
- 11.- Figuras y Tablas
- 12.- Anexos
- 13.- Referencias

Observaciones	Revisión	Fecha	Nota
Para aprobación	0	02/08/2022	
Para aprobación	1	11/08/2022	

1.	INT	RODUCCIÓN	3
2.	OBJ	IETIVOS	4
3.	DAT	TOS GENERALES USADOS EN MÉTODOS DE ZICK, ONG Y ELEMENTOS FINITOS	4
3	.1	Nomenclatura utilizada	4
3	.2	Datos conocidos	5
3	.3	Estados de carga	6
4.	PRC	DCEDIMIENTO DE CÁLCULO – MÉTODO DE ZICK	6
4	.1	Premisas	6
4	.2	Cálculo de tensión circunferencial en cuerpo cilíndrico (sobre placa de desgaste)	6
5.	PRC	DCEDIMIENTO DE CÁLCULO – MÉTODO DE ONG	8
5	.1	Premisas	8
5	.2	Cuna Elástica	8
5	.3	Cuna rígida	9
6.	PRC	OCEDIMIENTO DE CÁLCULO Y RESULTADOS – MÉTODO DE ELEMENTOS FINITOS	
6	.1	Definición de Modelo y Tipo de Análisis	10
6	.2	Definición de Mallado	11
6	.3	Cargas Aplicadas	14
6	.4	Definición de Salida de Resultados	16
6	.5	Condiciones de Borde para Cuna Elástica	
6	.6	Condiciones de Borde para Cuna Rígida	
6	.7	Resultados para Cuna Elástica	21
6	.8	Resultados para Cuna Rígida	
7.	CON	MPARACIÓN DE RESULTADOS DE LOS TRES PROCEDIMIENTOS	
8.	ESP	ECIFICACIÓN DE PROCEDIMIENTO DE SOLDADURA	
9.	EVA	ALUACIÓN DE UNA FISURA	
10.	С	ONCLUSIONES	60
11.	F	IGURAS Y TABLAS	61
1	1.1	Figuras Método de Ong	61
1	1.2	Figuras y Tablas extraídas de API 579	65
12.	A	NEXOS	72
A	nexo	A. Cálculo de carga en las cunas de apoyo	72
A	nexo	B. Plano del Equipo Estudiado	76
13.	R	EFERENCIAS	79

CONTENIDO

1. INTRODUCCIÓN

Los recipientes a presión cilíndricos normalmente están soportados horizontalmente por dos soportes o cunas. Por lo general, estas se sueldan a la periferia exterior del recipiente, generándose una discontinuidad estructural entre el recipiente y la cuna; y, en consecuencia, una zona de altos esfuerzos localizados.

A lo largo de los años, el diseño de recipientes cilíndricos con soportes horizontales se ha basado en el análisis de diseño propuesto por Zick [11], comúnmente conocido como análisis de Zick. El análisis se derivó sobre la base de la teoría de vigas.

Tooth, Duthie, White y Carmichael [10] realizaron una serie de experimentos que incluían una serie de diferentes configuraciones de soportes, algunos se consideraban rígidos y otros flexibles. Llegaron a la conclusión de que el análisis de Zick proporcionaría resultados aceptables para los esfuerzos desarrollados en la mayor parte del recipiente, excepto en la región de apoyo donde a veces se subestima el esfuerzo máximo. En particular, cuando se había utilizado un soporte rígido, el análisis de Zick subestimaría el valor máximo por un factor de dos o más.

Una cantidad considerable de esfuerzo de investigación se ha dirigido a proporcionar una solución más precisa al problema anterior. Aunque varios investigadores han verificado analíticamente que la fuerza cortante y el momento en el apoyo son considerablemente diferentes al análisis de Zick, este sigue siendo actualmente la herramienta de diseño recomendada. El hecho es que, aunque el método proporciona un esfuerzo máximo más bajo que el real, rara vez ha provocado una falla en el recipiente en la zona de unión con el soporte. Aparentemente, una carga de reacción estática en el soporte difícilmente provocaría una falla inmediata en el recipiente [9].

Ong [9] desarrolló una ecuación paramétrica que permite determinar el esfuerzo máxima en el borde (cuerno) del soporte o cuna. En su trabajo ejemplifica un caso con cuna rígida donde el método de Zick subestima el esfuerzo máximo (circunferencial) en un factor de 2,5 con respecto al valor obtenido con la ecuación paramétrica que el propone, siendo este último concordante con datos experimentales realizados por Tooth [10]. Ong concluye que el método de Zick no es apropiado en casos donde se requiere un análisis de fatiga, ya que no puede proporcionar un valor preciso de esfuerzo pico, en cuyo caso propone el empleo de la ecuación paramétrica desarrollada en su trabajo.

El método ampliamente utilizado en el diseño de soportes de recipientes horizontales contemplado en ASME BPVC Sección VIII Div 2 está basado en el método de Zick [3]. En este trabajo, se determinó el esfuerzo circunferencial en la vecindad de los cuernos de la cuna de un recipiente horizontal siguiendo la metodología de ASME VIII Div. 2 y Ong. Adicionalmente, se desarrolló un modelo computacional resuelto mediante elementos finitos para determinar los esfuerzos en las cercanías de la unión recipiente-cuna y se comparó con los resultados obtenidos con las 2 metodologías antes mencionadas. Complementariamente, se elaboró (a modo de ejemplo) una especificación de procedimiento de soldadura aplicable a este recipiente; y se realizó la evaluación de una fisura localizada en el cuerpo del recipiente siguiendo la metodología de API 579.

2. OBJETIVOS

El presente trabajo tiene los siguientes objetivos:

- Determinar los esfuerzos circunferenciales en un recipiente horizontales en la zona de unión cuerpo-cuna mediante los métodos de ASME VIII Div. 2 (basado en Zick), Ong y elementos finitos
- Elaborar un Procedimiento de Soldadura aplicable a la fabricación del recipiente estudiado
- Evaluar una fisura en el cuerpo del recipiente siguiendo la metodología de aptitud para el servicio de API 579

3. DATOS GENERALES USADOS EN MÉTODOS DE ZICK, ONG Y ELEMENTOS FINITOS

3.1 Nomenclatura utilizada

Nomenclatura general	
Longitud del cuerpo cilíndrico	L
Diámetro interno – cuerpo cilíndrico	D
Radio interno corroído – cuerpo cilíndrico	R
Radio externo – cuerpo cilíndrico	R _e
Radio medio corroído - cuerpo cilíndrico y cabezal	R_m
Espesor por corrosión	CA
Espesor nominal - cuerpo cilíndrico	t_n
Espesor corroído - cuerpo cilíndrico	t
Radio externo – cabezal	R _{eh}
Radio interno corroído – cabezal	R_h
Espesor nominal - cabezal	t_{nh}
Espesor corroído - cabezal	t_h
Distancia de la cuna a la tangente	а
Espacio entre soportes	С
Ancho de la cuna	В
Ancho de la placa de desgaste	b
Angulo de contacto de la cuna	θ
Angulo de contacto de la placa de desgaste	θ_r
Espesor de la placa de desgaste	t_r
Carga en la cuna obtenida analíticamente	Q_a
Carga en la cuna por peso propio del equipo (incluso cunas) y peso del producto extraída de modelo en Ansys	Q^*
Carga por efecto del peso propio de la cuna (se excluye peso del cuerpo y peso del producto) extraída de modelo en Ansys	Q**
Carga de la cuna por efecto de peso propio (solo cuerpo de presión) y peso de producto para modelo en Ansys (1/4 de equipo)	<i>Q</i> _{1/4}
Carga en una cuna (completa) obtenida a partir de $Q_{1/4}$, utilizado en los métodos de Zick y Ong	Q
Esfuerzo admisible – cuerpo cilíndrico	S
Esfuerzo admisible – placa de desgaste	S_r
Gravedad	g

Densidad del acero	ρ
Densidad relativa de producto	G
Densidad del agua de referencia	$ ho_A$
Nomenclatura exclusiva de método de Zick	
Ancho mínimo de la placa de desgaste	b_1
Angulo mínimo de contacto de la placa de desgaste	θ_1
Coeficiente de esfuerzo para recipiente horizontal sobre cuna	K_{7}, K_{6}
Factor de reducción de resistencia de placa de desgaste con respecto al cuerpo	η
cilíndrico	
Angulo en radianes involucrado en el cálculo de K_6 , K_7	β
Esfuerzo circunferencial compresivo membrana más flexión, reducido por la presencia	σ_7
de una placa de desgaste	
Nomenclatura exclusiva de método de Ong	
Coeficientes geométricos	$\alpha_{()}$
Factores geométricos de ecuación paramétrica	k ₍₎
Angulo de contacto de la cuna	2β ⁽¹⁾
Extensión angular de la placa de desgaste sobre el cuerno de la cuna	α
Esfuerzo circunferencial máximo en el cuerno de la cuna	σ_h
$^{(1)}$ Equivalente a $ heta$, según se ha indicado en nomenclatura general	

3.2 Datos conocidos

Dimensiones		
Longitud del cuerpo cilíndrico	L	23472 mm
Diámetro interno – cuerpo cilíndrico	D	3375 mm
Radio interno corroído – cuerpo cilíndrico	R	1688,77 mm
Radio externo – cuerpo cilíndrico	R_e	1712,90 mm
Radio medio corroído - cuerpo cilíndrico y cabezal	R_m	1700,835 mm
Espesor por corrosión	CA	1,27 mm
Espesor nominal - cuerpo cilíndrico	t_n	25,40 mm
Espesor corroído - cuerpo cilíndrico	t	24,13 mm
Radio externo – cabezal	R _{eh}	1708,10 mm
Radio interno corroído – cabezal	R_h	1693,57 mm
Espesor nominal - cabezal	t_{nh}	15,8 mm
Espesor corroído - cabezal	t_h	14,53 mm
Distancia de la cuna a la tangente	а	3300 mm
Espacio entre soportes	С	16860 mm
Ancho de la cuna	В	380 mm
Ancho de la placa de desgaste	b	700 mm
Angulo de contacto de la cuna	θ	145°
Angulo de contacto de la placa de desgaste	θ_r	151,62°
Espesor de la placa de desgaste	t_r	20 mm
Producto		
Densidad relativa de producto	ρ	0,56
Densidad del agua de referencia	D_A	1000 kg/m ³
Materiales y esfuerzos admisibles		

Esfuerzo admisible según ASME VIII Div. 1 – cuerpo cilíndrico (SA-516 Gr. 70)	S	138 MPa
Esfuerzo admisible según ASME VIII Div. 1 – placa de desgaste (SA-516 Gr. 70)	S_r	138 MPa
Densidad del acero	ρ	7850 kg/m ³
Otros		
Gravedad	g	9,8066 m/s ²
Tipo de cabezal	-	Semiesférico
Estándar de diseño y fabricación del equipo	-	ASME Sec. VIII
		Div. 1

3.3 Estados de carga

Los estados de carga a considerar serán:

- Peso propio del equipo (excepto cunas)
- Peso del fluido

4. PROCEDIMIENTO DE CÁLCULO – MÉTODO DE ZICK

4.1 Premisas

- a) La tensión admisible será la correspondiente a ASME VIII Div. 1.
- b) La carga en la cuna será equivalente al valor de carga extraído del modelo en Ansys (ver Anexo A).
- c) En el cálculo de esfuerzos en el cuerpo (sobre la placa de desgaste se utilizará la metodología indicada en ASME VIII Div. 2 basada en el método de Zick).
- d) El esfuerzo obtenido se considera como el correspondiente a una cuna elástica. Zick no aborda el caso de cuna rígida.
- 4.2 Cálculo de tensión circunferencial en cuerpo cilíndrico (sobre placa de desgaste)

Se determina el ancho mínimo de la placa de desgaste, *b*₁:

$$b_{1} = \min \left[(B + 1,56\sqrt{R_{m}t}), 2a \right]$$
(Ec. 4.1)
$$b_{1} = \min \left[\left(380 + 1,56\sqrt{(1700,835)(24,13)} \right); 2 \cdot 3300 \right]$$
$$b_{1} = \min [696,03; \ 6600]$$
$$b_{1} = 696,03mm$$

Por otro lado, se determina el mínimo ángulo de contacto de la placa de desgaste con el cuerpo cilíndrico, θ_1 :

$$\theta_1 = \theta + \frac{\theta}{12}$$
 (Ec. 4.2)
 $\theta_1 = 145 + \frac{145}{12} = 157^{\circ}$

De acuerdo con el procedimiento de ASME VIII Div. 2 se deben cumplir las siguientes condiciones para considerar el aporte en resistencia de la placa de desgaste dentro del diseño:

$$b > b_1$$
 (Ec. 4.3)

$$\theta_r > \theta_1$$
 (Ec. 4.4)

En el presente caso de estudio, se cumple (Ec. 4.3) dado que 700mm > 696,03mm, pero no se cumple (Ec. 4.4), puesto que $151,62^{\circ} < 157^{\circ}$. En consecuencia, no se debe considerar la placa de desgaste.

Se determina que:

$$8R_m = 8(1700,835) = 13607mm$$

Luego, se cumple que:

$$L > 8R_m \to 23460 \ mm > 13607 \ mm$$
 (Ec. 4.5)

Entonces, la tensión circunferencial en el cuerpo cilíndrico sobre la placa de desgaste, σ_7 , se determina a través de:

$$\sigma_7 = -\frac{Q}{4t(B+x_1+x_2)} - \frac{3K_7Q}{2t^2}$$
(Ec. 4.6)

donde

$$x_1 = x_2 = 0.78\sqrt{R_m t}$$
 (Ec. 4.7)

$$K_7 = K_6 = \frac{\frac{3\cos\beta}{4} \left(\frac{\sin\beta}{\beta}\right)^2 - \frac{5\sin\beta\cos\beta}{4\beta} + \frac{\cos\beta^3}{2} - \frac{\sin\beta}{4\beta} + \frac{\cos\beta}{4} - \beta\sin\beta \left[\left(\frac{\sin\beta}{\beta}\right)^2 - \frac{1}{2} - \frac{\sin2\beta}{4\beta}\right]}{2\pi \left[\left(\frac{\sin\beta}{\beta}\right)^2 - \frac{1}{2} - \frac{\sin2\beta}{4\beta}\right]}$$
(Ec. 4.8)

Siendo (Ec. 4.8) válida para $a/R_m \ge 1$, y a su vez:

$$\beta = \pi - \frac{\theta}{2} \tag{Ec. 4.9}$$

Evaluando (Ec. 4.9), se tiene:

$$\beta = \pi - \frac{145^{\circ} \left(\frac{\pi}{180^{\circ}}\right)}{2} = \frac{43}{72}\pi$$

Luego de (Ec. 4.8) se obtiene:

$$K_7 = 0,035$$

Evaluando (Ec. 4.7) se consigue:

$$x_1 = x_2 = 0.78\sqrt{(1700.835)(24.13)} = 158.02 mm$$

Entonces, al evaluar (Ec. 4.6) se obtiene:

$$\sigma_7 = -\frac{909691,4}{4(24,13)(380+158,02+158,02)} - \frac{3(0,035)(909691,4)}{2(24,13)^2}$$

$$\sigma_7 = -94,81 Mpa$$

5. PROCEDIMIENTO DE CÁLCULO – MÉTODO DE ONG

5.1 Premisas

- a) Se considerarán las premisas (a) y (b) indicadas en 4.1 para el método de Zick.
- b) Se desarrollará el método de L.S. Ong publicado en "Journal of Pressure Vessel Technology" con el título "Peak Stress and Fatigue Assessment at the Saddle Support of a Cylindrical Vessel" en el año 1995.
- c) Para el caso de cuna elástica se considerarán los espesores indicados en el plano mecánico.
- d) Para el caso de cuna rígida se considerará un espesor de placa de desgaste 10 veces más mayor al indicado en el plano mecánico.

5.2 Cuna Elástica

Primeramente, se determinan los siguientes parámetros geométricos:

$$\alpha_a = \frac{a}{R_m} \sqrt{\frac{t}{R_m}}$$
(Ec. 5.1.a)

$$\alpha_b = \frac{b}{R_m} \sqrt{\frac{t}{R_m}}$$
(Ec. 5.1.b)

$$\alpha_c = \frac{c}{R_m} \sqrt{\frac{t}{R_m}}$$
(Ec. 5.1.c)

$$\alpha_s = \alpha_b^{1/3} \left(\frac{t_r}{t}\right)$$
(Ec. 5.1.d)

Obteniéndose:

$$\alpha_a = \frac{3300}{1700,835} \sqrt{\frac{24,13}{1700,835}} = 0,231$$

$$\alpha_b = \frac{700}{1700,835} \sqrt{\frac{24,13}{1700,835}} = 0,049$$
$$\alpha_c = \frac{16860}{1700,835} \sqrt{\frac{24,13}{1700,835}} = 1,180$$
$$\alpha_s = (0,049)^{1/3} \left(\frac{20}{24,13}\right) = 0,303$$

Luego, se determinan los factores k_a , k_b , k_c para $2\beta = 145^{\circ}$ a partir de las figuras 11.1.1 hasta 11.1.4. Interpolando entre 120° y 150°, se obtiene:

	150°	145°	120°
<i>k</i> _a	0,64	0,625	0,55
k_b	1,20	1,293	1,757
k _c	1,087	1,095	1,134

Se determina la extensión angular de la placa de desgaste mediante:

$$\alpha = \frac{\theta_r - 2\beta}{2} = \frac{151,62^\circ - 145^\circ}{2} = 3,31^\circ$$
 (Ec. 5.2)

Entonces, se obtiene k_s para la extensión angular previamente calculada, mediante interpolación entre 3° y 4°, obteniéndose:

	3°	3,31°	4°
k_s	0,79	0,775	0,70

Finalmente, se obtiene el esfuerzo circunferencial máximo en el cuerpo cilíndrico (sobre la placa de desgaste) a partir de:

$$\sigma_h = k_a \cdot k_b \cdot k_c \cdot k_s \cdot \frac{Q}{t^2} \sqrt{\frac{t}{R_m}}$$
(Ec. 5.3)

$$\sigma_h = (0,625)(1,293)(1,095)(0,775) \cdot \frac{909691,4}{(24,13)^2} \sqrt{\frac{24,13}{1700,835}}$$

$$\sigma_h = 127,62 \, MPa$$

5.3 Cuna rígida

En el caso de cuna rígida se asume $k_s = 1$. Además, se heredan los valores k_a , k_b , y k_c obtenidos en 5.2.

Luego, se obtiene el esfuerzo circunferencial máximo en el cuerpo cilíndrico (sobre la placa de desgaste) a partir de (Ec. 5.3):

$$\sigma_h = (0,625)(1,293)(1,095)(1) \cdot \frac{909691,4}{(24,13)^2} \sqrt{\frac{24,13}{1700,835}}$$

$$\sigma_h = 164,67 MPa$$

6. PROCEDIMIENTO DE CÁLCULO Y RESULTADOS – MÉTODO DE ELEMENTOS FINITOS

6.1 Definición de Modelo y Tipo de Análisis

Dado que existen condiciones de simetría geométrica del equipo y de los estados de cargas considerados en este análisis, se procede a generar un modelo que consta de ¼ de equipo en ANSYS Workbench 2022, como se puede apreciar en la figura 6.1. En el modelo se pueden notar los planos de simetría YZ (a lo largo del eje longitudinal) y XY (en el medio del equipo).

Figura 6.1 Geometría de modelo de ¼ de equipo desarrollado en Ansys Workbench

El análisis propuesto es del tipo lineal elástico y será llevado a cabo mediante elementos finitos. El tipo de elemento usado será del tipo placa/cáscara. Se calcularán las tensiones circunferenciales en las superficies interior y exterior. El área del equipo que resulta de interés en este estudio corresponde a la zona del cuerpo cilíndrico sobre la placa desgaste. En la figura 6.2 se destacan los espesores utilizados en el modelo para cada componente. Nótese que el cuerpo cilíndrico y el cabezal se han modelado en condición de corroído, mientras que la placa de desgaste y la cuna (cartelas, alma y placa base) se modelan con los espesores nominales. Para modelar el aporte de rigidez de la placa desgaste, se ha incorporado el espesor de esta al espesor del cuerpo en la zona de unión de la cuna con el cuerpo cilíndrico. Por lo tanto, en la zona de la placa de desgaste las placas del modelo tienen un espesor de 44,13 mm (24,13 mm correspondientes al espesor corroído del cuerpo más 20 mm del espesor nominal de la placa de desgaste). Por otro lado, el espesor de la cartela central se ha disminuido a la mitad del espesor nominal, debido a que por la simetría planteada en el plano YZ también se ve afectada esta cartela.

Figura 6.2 Espesores de cada componente en el modelo desarrollado en Ansys Workbench

6.2 Definición de Mallado

Se propone un mallado global (grueso) en zonas del cuerpo cilíndrico, cabezal y cuna lejos del área de interés para este estudio, y un mallado local (fino) en la zona de unión de cuerpo con la cuna. La configuración global del mallado es la mostrada en la tabla 6.1.

Physics preference	Mechanical		
Element order	Quadratic		
Element size	65 mm		
Face meshing	Si		
	Method = quadrilaterals		

Tabla 6.1	Parámetros	globales	de malla	en modelo	de	Ansvs
	. Falametius	giobales	ue mana	en moueio	ue	miisys

Adicionalmente, para el mallado fino se ha insertado un refinamiento de 3 en el área de interés para este estudio.

Figura 6.3 Mallado generado en modelo (a) Mallado global (b) Mallado fino en zona de placa de desgaste y cartela exterior (c) Acercamiento en zona de mallado fino en cuerpo sobre la placa de desgaste

En la figura 6.3 se puede apreciar los dos tipos de mallado. Nótese que en general los elementos son del tipo cuadrilátero, sin embargo, el software ha incorporado además elementos de tipo triangular en las zonas de mallado fino alrededor de la unión de la placa de desgaste y el cuerpo en (c).

Figura 6.4 Zona de mallado fino con factor de refinamiento de 3. (a) Superficies del cuerpo cilíndrico con mallado fino vistas desde el interior del recipiente (b) Superficie de cartela exterior cercana a unión cuerpo-placa de desgaste (c) Acercamiento de superficies de cuerpo cilíndrico con mallado fino

En la figura 6.4 se aprecian las superficies donde se ha refinado el mallado mediante la aplicación de un factor de refinamiento de 3. En las figuras (a) y (c), vistas desde el interior del recipiente, se puede notar que las superficies corresponden con la zona reforzada por la placa de desgaste y, además, la zona del cuerpo cilíndrico sobre la placa de desgaste con una extensión angular de 7° (aproximadamente 210 mm de longitud arco medido sobre la pared exterior del recipiente). Asimismo, en la cartela exterior también se ha incorporado un mallado fino debido a que su extremo superior es cercano a la unión placa de desgaste-cuerpo cilíndrico, de acuerdo con lo mostrado en (b).

Adicionalmente, se ha incorporado un criterio de convergencia en una solución del modelo. Al generar el mallado (antes de iniciar la corrida), el modelo consta de 83327 nodos y 27944 elementos. Durante la corrida del modelo, el programa podrá añadir elementos adicionales en la zona de interés para atender el criterio de convergencia impuesto. Esto se verá con mayor detalle en las secciones 6.4, 6.5 y 6.6.

Es importante resaltar que los elementos usados son de orden cuadrático, por ende, cada cuadrilátero posee 8 nodos y cada elemento triangular cuentan con 6 nodos. Cada nodo posee teóricamente 5 grados de libertad: 3 desplazamientos y 2 giros.

6.3 Cargas Aplicadas

Las cargas aplicadas en ambos casos de estudio (cuna elástica y cuna rígida) son las indicadas en la figura 6.5 y tabla 6.2.

Figura 6.5 Cargas aplicadas en el modelo de Ansys

	Carga aplicada	Valores ingresados	Geometría de aplicación	
A	Carga gravitatoria	Coordinate System: Global ⁽¹⁾ Direction: -Y X Component: 0 Y Component: -9806,6 mm/s ² Z Component: 0	Todo el modelo	
В	Presión hidrostática	Coordinate system: Local ⁽²⁾ <u>Free Surface Location</u> X Coordinate: 0 Y Coordinate: 0 Z Coordinate: 0 Fluid Density: 5,6x10 ⁻⁷ kg/mm ³ <u>Hidrostatic Acceleration</u> X Component: 0 Y Component: -9806,6 mm/s ² Z Component: 0	Toda la superficie interior de cuerpo cilíndrico y cabezal. Distribución según figura 6.5	
Notas:				
	cartesianos según s	se indica en la figura 6.5.	i y direcciones de ejes	
	2) "Local" es un sistema de coordinadas local definido con el origen y direcciones de ejes			

Tabla 6.2 Descripción de las cargas aplicadas en el modelo de Ansys

cartesianos según se indica en la figura 6.5.

Figura 6.6 Distribución de carga hidrostática en el interior del recipiente

En la figura 6.6 se puede apreciar la distribución de la carga hidrostática de producto en el interior del recipiente. De acuerdo con lo esperado el valor máximo se encuentra en la parte más baja del interior del recipiente.

6.4 Definición de Salida de Resultados

La tabla 6.3 detalla la definición de tres salidas de resultados insertadas en el modelo de Ansys.

	Resultado	Definición	Observaciones
1	Esfuerzo circunferencial	Type: Normal Stress Coordinate System: Cilindrico ⁽¹⁾ Orientation: Y Axis Position: Top/Bottom	Proporcionará los valores de esfuerzo circunferencial en el cuerpo cilíndrico y cabezal en las superficies interior y exterior.
2	Esfuerzo circunferencial (con criterio convergencia)	<u>Convergence</u> Type: Maximum Allowable change: 5% (ver nota 2)	Proporcionará los valores de esfuerzo circunferencial en las superficies interior y exterior del cuerpo cilíndrico, pero solo en la geometría mostrada en figura 6.8.
3	Fuerza de reacción	Type: Force reaction Location Method: Boundary condition Boundary condition: Fixed Support Orientation: Global Result Selection: Y axis	Proporcionará los resultados de la fuerza de reacción en la condición de borde "G" definida en la placa base como se verá más adelante en secciones 6.5 y 6.6. Se filtra el resultado de la reacción en el eje "Y", descartándose las reacciones en las demás direcciones ya que no son de interés para este estudio. Nótese que la reacción estará dada de acuerdo con el sistema de coordenadas global.
Not	as: 1) "Cilíndrico" es un sistema de ejes según se muestra e	L de coordenadas local y de tipo cilíndr n la figura 6.7. La dirección "Y" coinci	rico con el origen y direcciones ide con la dirección
	circunferencial del recipien	te. Por lo tanto, el esfuerzo circunfer	encial estará basado en la

Tabla 6.3 Definición de la salida de resultados en modelo de Ansys

dirección "Y".2) Demás parámetros idénticos a los indicados en (1 – Esfuerzo circunferencial)

Figura 6.7 Definición de sistema de coordenadas cilíndrico

Como se aprecia en la tabla 6.3, se determinarán dos valores de esfuerzos circunferencial (1 y 2). El primero de carácter general (en toda la geometría del recipiente) y el segundo solo será determinado para la geometría seleccionada en la figura 6.8. En este segundo caso, se ha agregado un criterio de convergencia al esfuerzo circunferencial, mediante el cual se establece un cambio máximo permisible de 5% entre dos iteraciones sucesivas.

Figura 6.8 Superficies de aplicación de criterio de convergencia en el esfuerzo circunferencial

En la figura 6.8 se muestra la zona donde se determinarán los esfuerzos circunferenciales con criterio de convergencia. En general, corresponde a la misma zona donde se ha aplicado refinamiento de malla, exceptuando el área del cuerpo cilíndrico y placa de desgaste indicada en la figura por encontrarse más lejana de la zona interés de este estudio (cuerpo cilíndrico sobre la placa de desgaste) y bordes de la placa de desgaste donde ocurre el cambio de espesor con el cuerpo. También está exceptuada la cartela exterior de la cuna.

6.5 Condiciones de Borde para Cuna Elástica

Las condiciones de borde establecidas para el caso de cuna elástica se resumen la figura 6.9 y tabla 6.4.

Figura 6.9 Condiciones de borde en modelo de Ansys para caso de cuna elástica

	Condición de borde	Definición	Geometría de aplicación
		Desplazamiento X = Libre	
Α	Simetría XY - Desplazamiento	Desplazamiento Y = Libre	Arista de semicírculo de
		Desplazamiento Z = 0	formado al cortar
		Giro X = Fijo	transversalmente el cuerpo
В	Simetría XY - Giros	Giro Y = Fijo	cilíndrico en el plano XY
		Giro Z = Libre	
		Desplazamiento X = 0	
С	Simetría YZ - Desplazamiento	Desplazamiento Y = Libre	Aristas de cuerpo cilíndrico y
		Desplazamiento Z = Libre	cabezal formadas al cortar
		Giro X = Libre	longitudinalmente el equipo
D	Simetría YZ - Giros	Giro Y = Fijo	en el plano YZ
		Giro Z = Fijo	
		Desplazamiento X = 0	
Е	Simetría YZ – Desp – Cartela	Desplazamiento Y = Libre	
		Desplazamiento Z = Libre	Superficie de la cartela
		Giro X = Libre	central, lado eje -X.
F	Simetría YZ – Giros - Cartela	Giro Y = Fijo	
		Giro Z = Fijo	
		Desplazamiento X = 0	
		Desplazamiento Y = 0	Superficie inferior de placa
G	Fixed Support	Desplazamiento Z = 0	base de cuna (teóricamente
U		Giro X = 0	en contacto con el suelo)
		Giro Y = 0	
		Giro Z = 0	

Tabla 6.4 Definición de condiciones de borde en el modelo de Ansys para caso de cuna elástica

6.6 Condiciones de Borde para Cuna Rígida

Las condiciones de borde establecidas para el caso de cuna elástica se resumen la figura 6.10 y tabla 6.5.

Figura 6.10 Condiciones de borde en modelo de Ansys para caso de cuna rígida

	Condición de borde	Definición	Geometría de aplicación
А	Simetría XY - Desplazamiento	Desplazamiento X = Libre Desplazamiento Y = Libre Desplazamiento Z = 0	Arista de semicírculo de formado al cortar
в	Simetría XY - Giros	Giro X = Fijo Giro Y = Fijo Giro Z = Libre	transversalmente el cuerpo cilíndrico en el plano XY
с	Simetría YZ - Desplazamiento	Desplazamiento X = 0 Desplazamiento Y = Libre Desplazamiento Z = Libre	Aristas de cuerpo cilíndrico y cabezal formadas al cortar
D	Simetría YZ - Giros	Giro X = Libre Giro Y = Fijo Giro Z = Fijo	longitudinalmente el equipo en el plano YZ
E	Fixed Support	Desplazamiento X = 0 Desplazamiento Y = 0 Desplazamiento Z = 0 Giro X = 0 Giro Y = 0 Giro Z = 0	Superficies de placa base, alma y todas las cartelas.

Tabla 6.5 Definición de condiciones de borde en el modelo de Ansys para caso de cuna rígida

De la tabla 6.5, se puede notar que en el caso de cuna rígida se han restringido todos los grados de libertad de los nodos de las cartelas, alma y placa base.

6.7 Resultados para Cuna Elástica

Como primera aproximación se tienen las distribuciones de esfuerzos circunferenciales en todo el modelo que se muestran en las figuras 6.11 y 6.12. Estas distribuciones corresponden a la salida de resultado N° 1 mencionada en la tabla 6.3.

La figura 6.11 corresponde al **lado interno** de equipo. En (a) se aprecia una distribución general bastante uniforme, con excepción de una franja orientada en sentido longitudinal con esfuerzos (negativos) de compresión. En (b) se hace un acercamiento de la zona donde ocurre el cambio de espesor entre la placa de desgaste y el cuerpo cilíndrico. Nótese que esta zona presenta los mayores niveles de esfuerzos localizados, siendo mayores cuanto más próximo se esté del borde de la placa de desgaste. Además, se evidencia que los esfuerzos son positivos, indicativo de que la zona está sometida a tensión.

Figura 6.11 Distribución esfuerzo circunferencial con cuna elástica, lado interior del equipo (a) vista general (b) zona cambio de espesor placa de desgaste y cuerpo cilíndrico

Por otro lado, la figura 6.12 corresponde al **lado externo** del equipo. En (a) se aprecia una distribución general bastante uniforme en zonas del cuerpo cilíndrico y cabezal alejadas al área de la unión del equipo con la cuna. En las cercanías de dicha unión se distinguen algunas zonas con gradientes de esfuerzos. En (b) se hace un acercamiento de la zona del cuerpo cilíndrico sobre la placa de desgaste. Nótese que en esta zona predominan esfuerzos de compresión (con signo negativo). Los esfuerzos mínimos (o de compresión máximos) ocurren cerca de la unión del cuerpo con la placa de desgaste.

Figura 6.12 Distribución esfuerzo circunferencial con cuna elástica, lado exterior del equipo (a) vista general (b) zona cambio de espesor placa de desgaste y cuerpo cilíndrico

Para resultados más específicos y representativos del comportamiento de la zona de unión entre el cuerpo cilíndrico y la placa de desgaste se acude a la salida de resultados N° 2 indicada en la tabla 6.3, es decir, esfuerzos circunferenciales con criterio de convergencia. En la figura 6.13 se muestra el historial de convergencia. Básicamente, el programa genera elementos y nodos adicionales en la zona de interés hasta que la variación de los resultados obtenidos entre mallados sucesivos sea inferior el cambio permisible que se ha designado. En este caso, se ha establecido un cambio permisible de 5%. De la figura 6.13, se aprecia que con el mallado final este cambio es inferior al 0,08%; lo cual indica un buen nivel de convergencia en la solución.

Figura 6.13 Historial de convergencia de esfuerzo circunferencial (cuna elástica)

En las figuras 6.14 (a) y (b) se muestra la distribución de esfuerzos circunferenciales en el **lado interno** del equipo (sometido a **tensión**). Se distinguen dos zonas en el lado interno:

- La primera, indicada como E-TS, se ubica en el lado opuesto del cateto de soldadura de la unión placa de desgaste cuerpo cilíndrico. Dado que en el lado externo el cateto de soldadura es de 17 mm, se considerará que está zona tiene también una extensión, desde la línea donde ocurre el cambio de espesor, equivalente a 17 mm como se indica en la figura 6.14 (b). Si bien esta zona presenta los mayores valores de tensión circunferencial, se debe aclarar que en la simulación realizada no se está modelando la soldadura debido al tipo de elemento utilizado (cáscara). Por lo tanto, los valores arrojados en esta zona serán descartados en nuestro análisis ya que no considera el aporte de área resistente del cateto de soldadura en la unión de la placa de desgaste con el cuerpo cilíndrico.
- La segunda zona, indicada como **E-TC**, se ubica por encima de la primera como se muestra en la figura 6.14 (b), y corresponde a la zona donde físicamente no se espera tener aporte de rigidez

por efecto de la soldadura externa de unión placa de desgaste - cuerpo cilíndrico. La extensión de esta zona también se ha considerado de 17 mm.

(b)

Figura 6.14 Distribución de esfuerzo circunferencial con criterio de convergencia en zona de unión de cuerpo cilíndrico y placa de desgaste con cuna elástica, lado interno del equipo (a) vista general (b) acercamiento en zona cambio de espesor placa de desgaste y cuerpo cilíndrico

Por otro lado, en las figuras 6.15 (a) y (b) se muestra la distribución de esfuerzos circunferenciales en el *lado externo* del equipo (sometido a *compresión*). De manera análoga, al caso anterior se distingue dos zonas:

- La primera, indicada como E-CS, se ubica en la zona del cateto de soldadura de la unión placa de desgaste - cuerpo cilíndrico. Su extensión se ha considerado equivalente al tamaño del cateto de soldadura como se muestra en la figura 6.15 (b). Reiterando lo mencionado en el caso anterior, esta zona presenta los mayores valores de compresión circunferencial, pero será descartada de nuestro análisis ya que el modelo no considera el efecto del cateto de soldadura en la unión.
- La segunda zona, indicada como E-CC, se ubica por encima de la primera como se muestra en la figura 6.15 (b), y es la de mayor interés en este estudio ya que corresponde a la zona donde *físicamente* termina el cateto de soldadura y se inicia el cambio de espesor. La extensión de esta zona también se ha considerado de 17 mm.

Figura 6.15 Distribución de esfuerzo circunferencial con criterio de convergencia en zona de unión de cuerpo cilíndrico y placa de desgaste con cuna elástica, lado externo del equipo (a) vista general (b) acercamiento en zona de unión de cuerpo cilíndrico y placa de desgaste

Finalmente, en la tabla 6.6 se indican los resultados de esfuerzo circunferencial obtenidos con criterio de convergencia en cada zona de estudio. Los valores tabulados corresponden al esfuerzo promedio de los nodos de cada zona. Por lo tanto, en E-TC se obtuvo un esfuerzo promedio de 104,9 MPa, mientras que en E-CC fue de -148,03 MPa. Este último valor será comparado con los obtenidos mediante los demás métodos de cálculo abordados.

Tabla 6.6 Resultados de esfuerzo circunferencial con cuna elástica en cada zona de estudio, obtenido con criterio de convergencia

Zona	Ubicación	Esfuerzo circunferencial (MPa)
E-CC	Lado externo del equipo, sobre una extensión de 17 mm por encima de zona de soldadura de placa de desgaste con cuerpo cilíndrico, según figura 6.14 (b)	- 148, 03 ⁽¹⁾⁽²⁾
E-TC	Lado interno del equipo, sobre una extensión de 17 mm por encima de zona de soldadura de placa de desgaste con cuerpo cilíndrico	104,90 ⁽¹⁾

Nota:

- 1) Esfuerzo promedio de los nodos en la zona
- 2) Signo negativo indica compresión

6.8 Resultados para Cuna Rígida

Al igual que en el caso de cuna elástica, se tiene una primera aproximación de las distribuciones de esfuerzos circunferenciales en todo el modelo en las figuras 6.16 y 6.17. Estas distribuciones corresponden a la salida de resultado N° 1 mencionada en la tabla 6.3.

La figura 6.16 muestra la distribución de esfuerzos circunferenciales en el **lado interno** del equipo. En (a) se aprecia una distribución menos uniforme que la mostrada en el caso con cuna elástica, destacándose algunas zonas sometidas a tensión y otras a compresión. En (b) se hace un acercamiento de la zona donde ocurre el cambio de espesor entre la placa de desgaste y el cuerpo cilíndrico. Nótese que esta zona presenta los mayores niveles de esfuerzos localizados de tensión, incluso superiores a los obtenidos con la cuna elástica.

Por otro lado, en la figura 6.17 donde se muestra el **lado externo** del equipo, se aprecia en (a) una distribución de esfuerzos con signo opuesto al mostrado en el lado interno, es decir, las zonas que internamente están sometidas a compresión, desde el lado externo, presentan esfuerzos de tensión, y viceversa. En (b) se hace un acercamiento de la zona del cuerpo cilíndrico sobre la placa de desgaste, evidenciándose que, en general, los esfuerzos de compresión son mayores que los registrados con la cuna elástica.

Figura 6.16 Distribución esfuerzo circunferencial con cuna rígida, lado interior del equipo (a) vista general (b) zona cambio de espesor placa de desgaste y cuerpo cilíndrico

Figura 6.17 Distribución esfuerzo circunferencial con cuna rígida, lado exterior del equipo (a) vista general (b) zona cambio de espesor placa de desgaste y cuerpo cilíndrico

Para estudiar la zona de unión de la placa de desgaste con el cuerpo cilíndrico, se recurre a la salida de resultados N° 2 de la tabla 6.3. es decir, esfuerzos circunferenciales con criterio de convergencia. En la figura 6.18 se muestra el historial de convergencia y se evidencia que con el mallado final este es cambio es inferior al 1,5%; lo cual indica un buen nivel de convergencia en la solución.

Figura 6.18 Historial de convergencia de esfuerzo circunferencial (cuna rígida)

En las figuras 6.19 (a) y (b) se muestra la distribución de esfuerzos circunferenciales en el **lado interno** del equipo (sometido a *tensión*). En (b) se puede notar que los esfuerzos máximos tienden a mostrar una distribución relativamente homogénea en la parte izquierda, pero tienden incrementarse en la parte derecha. En este sentido, se distinguen tres zonas en el lado interno:

- La primera, indicada como R-TS, se ubica en la parte derecha de la distribución de esfuerzos máximos, sobre el lado directamente opuesto al cateto de soldadura de la unión placa de desgaste
 cuerpo cilíndrico. Su extensión es de 17 mm, igual que el tamaño del cateto de soldadura en el lado contrario. Por las razones expuestas en la sección anterior, cuando se abordo el caso de la zona E-TS, la zona R-TS no será estudiada.
- La segunda zona, indicada como R-TC, se ubica en la parte derecha de la unión por encima de la zona anterior como se muestra en la figura 6.19 (b), siendo similar a la zona E-TC abordada en la en el caso de cuna elástica. La extensión de esta zona también se ha considerado de 17 mm.
- La tercera zona corresponde a la parte izquierda de la distribución de esfuerzos máximos. Está compuesta principalmente por regiones que corresponderían al lado opuesto de la soldadura y los esfuerzos máximos están menos extendidos que en la parte derecha, por estas razones, esta zona no será analizada.

Figura 6.19 Distribución de esfuerzo circunferencial con criterio de convergencia en zona de unión de cuerpo cilíndrico y placa de desgaste con cuna rígida, lado interno del equipo (a) vista general (b) acercamiento en zona cambio de espesor placa de desgaste y cuerpo cilíndrico

La distribución de esfuerzos circunferenciales en el **lado externo** del equipo y alrededor de la unión de la placa de desgaste con el cuerpo cilíndrico se muestra en las figuras 6.20 (a) y (b). En (b) se aprecia una distribución de esfuerzos de compresión que tiende a extenderse más pronunciadamente en los extremos y menos en la zona central. En general, se destacan 5 zonas:

 Las zonas de soldadura R-CS1 y R-CS2, que se ubican en la zona del cateto de soldadura de la unión placa de desgaste - cuerpo cilíndrico. Como se ha explicado anteriormente, las zonas de soldaduras no serán analizadas.

- Las zonas R-CC1 y R-CC2, ubicadas por encima de las zonas de soldadura antes mencionadas como se muestra en la figura 6.20 (b). Son las dos zonas de interés en este estudio.
- Por último, se tiene la zona central que coincide con la zona de soldadura, por ende, no es de interés en este estudio.

Todas las zonas anteriormente descritas tienen una extensión de 17 mm.

(b)

Figura 6.20 Distribución de esfuerzo circunferencial con criterio de convergencia en zona de unión de cuerpo cilíndrico y placa de desgaste con cuna rígida, lado externo del equipo (a) vista general (b) acercamiento en zona de unión de cuerpo cilíndrico y placa de desgaste

Finalmente, en la tabla 6.7 se indican los resultados de esfuerzo circunferencial con cuna rígida en cada zona de estudio obtenidos con criterio de convergencia. Los valores tabulados corresponden al esfuerzo promedio de los nodos de cada zona. En el lado externo, el esfuerzo promedio de compresión registrado en R-CC1 es 159,85 MPa, siendo ligeramente superior al de la zona R-CC2. Este valor es un 8% superior al obtenido con cuna elástica (en zona E-CC). En el lado interno, el esfuerzo promedio de tensión es de 128,14 MPa, siendo un 22% superior al registrado con cuna elástica (zona E-TC).

Tabla 6.7 Resultados de esfuerzo circunferencial con cuna rígida en cada zona de estudio, obtenido con criterio de convergencia

Zona	Ubicación	Esfuerzo circunferencial (MPa)
R-CC1	Lado externo del equipo, sobre una extensión de 17 mm por encima	- 159,85 ⁽¹⁾⁽²⁾
R-CC2	de zona de soldadura de placa de desgaste con cuerpo cilíndrico, según figura 6.20 (b)	- 157,21 ⁽¹⁾⁽²⁾
R-TC	Lado interno del equipo, sobre una extensión de 17 mm por encima de zona de soldadura de placa de desgaste con cuerpo cilíndrico	128,14 ⁽¹⁾

Nota:

- 1) Esfuerzo promedio de los nodos en la zona
- 2) Signo negativo indica compresión

7. COMPARACIÓN DE RESULTADOS DE LOS TRES PROCEDIMIENTOS

En la Tabla 7.1 se resumen los esfuerzos circunferenciales de compresión con cuna elástica obtenidos por los 3 métodos estudiados. Es destacable que entre los métodos de elementos finitos (EF) y Ong hay un buen nivel de concordancia evidenciándose una relación EF/Ong de 1,16. Por otro lado, el esfuerzo obtenido con el método Zick es menor si compara con los métodos de Ong y EF, en este caso de estudio está subestimado entorno al 1,35 y 1,56 con respecto a los métodos de Ong y EF respectivamente.

	Esfuerzo		Relación		Esfuerzo	
Método	circunferencial Compresión (MPa)	Ong/Zick	EF/Ong	EF/Zick	admisible, 1,25S (MPa)	¿Aceptable?
Elementos Finitos (Zona E-CC)	148, 03	-	-	-	172,5	SI
Ong	127,62	-	1,16		172,5	SI
Zick	94,81	1,35	-	1,56	172,5	SI

Tabla 7.1 Comparación de esfuerzo circunferencial de compresión – Cuna Elástica

Los esfuerzos circunferenciales de compresión con cuna rígida obtenidos por los métodos de Ong y EF se resumen en la Tabla 7.2. En este caso, el resultado obtenido con el método de Ong es ligeramente superior al conseguido por elementos finitos, pero es de resaltar que el nivel de concordancia en los resultados de ambos métodos es incluso superior al evidenciado en el caso con cuna elástica. Finalmente, se puede indicar que el esfuerzo obtenido por el método de Ong con cuna rígida es 1,74 veces superior al obtenido con el método de Zick.

Método	Esfuerzo circunferencial Compresión (MPa)	Relación EF/Ong	Esfuerzo admisible (1,25S) (MPa)	¿Aceptable?
Elementos Finitos (Zona R-CC1)	159,85	-	172,5	SI
Ong	164,67	0,97	172,5	SI

Tabla 7.2 Comparación de esfuerzo circunferencial de compresión – Cuna Rígida

En ambos casos estudiados, los esfuerzos calculados por los 3 métodos son aceptables con respecto al criterio de aceptación de ASME VIII Div. 2, donde se establece un límite de 1,25S para el esfuerzo circunferencial estudiado. En nuestro caso, el esfuerzo admisible, *S*, ha sido tomado de ASME VIII Div. 1.

8. ESPECIFICACIÓN DE PROCEDIMIENTO DE SOLDADURA

A continuación, se presentan 4 ejemplos de Especificación de Procedimiento de Soldadura, que podrían ser empleados en la fabricación del recipiente objeto de estudio. En general, se aplicaría una especificación para cada uno de los siguientes componentes: envolvente, cabezal, conexiones y cunas. La figura 8.1 muestra un esquema donde se puede ver con detalle la aplicabilidad propuesta de cada procedimiento según el tipo de junta y localización de esta.

Se ha empleado el formato QW-482 sugerido por ASME Sección IX para la preparación de especificaciones de procedimientos de soldadura. Es de resaltar que toda especificación preparada debe ser calificada de acuerdo con los lineamientos de ASME Sección IX.

DATOS	DE SOLDADURA	r	MATERIAL BASE 1			MATERIAL BASE 2	!	ESPEC PROCEDIMIE	IFICACION DE NTO DE SOLDADURA
COSTURA Nº	TIPO DE JUNTA	DESCRIPCIÓN	ESPECIF.MATERIAL	ESPESOR (mm)	DESCRIPCIÓN	ESPECIF.MATERIA L	ESPESOR (mm)	N°	PROCESOS
C1	TOPE DOBLE"V"	ENVOLVENTE	SA 516 GR. 70	25,4	ENVOLVENTE	SA 516 GR. 70	25,4	WPS 001	SMAW+SAW
C2	TOPE DOBLE"V"	ENVOLVENTE	SA 516 GR. 70	25,4	ENVOLVENTE	SA 516 GR. 70	25,4	WPS 001	SMAW+SAW
C3	TOPE DOBLE"V"	ENVOLVENTE	SA 516 GR. 70	25,4	CABEZAL	SA 516 GR. 70	15,8	WPS 002	SMAW+FCAW
C4	TOPE "V"	CABEZAL	SA 516 GR. 70	15,8	CABEZAL	SA 516 GR. 70	15,8	WPS 002	SMAW+FCAW
C5	TOPE "V"	CABEZAL	SA 516 GR. 70	15,8	CABEZAL	SA 516 GR. 70	15,8	WPS 002	SMAW+FCAW
C6	TOPE 1/2 "V"	ENVOLVENTE	SA 516 GR. 70	25,4	CAÑO CONEXIONES (TODAS)	SA 106 Gr. B	5,54 (DN 2") 7,62 (DN 3") 8,56 (DN 4") 12,7 (DN 8") 15,80 (DN 20")	WPS 003	GTAW+FCAW
C7	TOPE 1/2 "V" + FILETE	CAÑO CONEXIONES (TODAS)	SA 106 Gr. B	5,54 (DN 2") 7,62 (DN 3") 8,56 (DN 4") 12,7 (DN 8") 15,80 (DN 20")	REFUERZO CONEXIONES	SA 516 GR. 70	≤25,4	WPS 003	GTAW+FCAW
C8	FILETE	ENVOLVENTE	SA 516 GR. 70	25,4	REFUERZO CONEXIONES	SA 516 GR. 70	≤25,4	WPS 004	FCAW
C9	TOPE "V"	CAÑO CONEXIONES (TODAS)	SA 106 Gr. B	5,54 (DN 2") 7,62 (DN 3") 8,56 (DN 4") 12,7 (DN 8") 15,80 (DN 20")	BRIDA WNRF	SA 105	IGUAL AL ESPESOR DE CAÑO	WPS 003	GTAW+FCAW
C10	FILETE	ENVOLVENTE	SA 516 GR. 70	25,4	REFUERZO CUNAS	SA 516 GR. 70	20	WPS 004	FCAW
C11	FILETE	REFUERZO CUNAS	SA 516 GR. 70	20	CARTELA- CUNAS	SA 36	20	WPS 004	FCAW
C12	FILETE	BASE CUNAS	SA 36	38	CARTELA	SA 36	20	WPS 004	FCAW
C13	FILETE	BASE CUNAS	SA 36	38	ALMA-CUNAS	SA 36	20	WPS 004	FCAW
C14	FILETE	REFUERZO CUNAS	SA 516 GR. 70	20	ALMA-CUNAS	SA 36	20	WPS 004	FCAW
C15	FILETE	ALMA-CUNAS	SA 36	20	CARTELA	SA 36	20	WPS 004	FCAW

FORM QW-482 SUGGESTED FORMAT FOR WELDING PROCEDURE SPECIFICATIONS (WPS) (See QW-200.1, Section IX, ASME Boiler and Pressure Vessel Code)

Organization Name UNIVERSIDAD TECH	IOLOGICA NACIONAL	Bv	MIGUELANGEL NARVAEZ
Welding Procedure Specification No.	001 Data	_ = = = = = = = = = = = = = = = = = = =	Supporting POB No.(s)
Pavisian No. 0 Data	09-08-2022		
SMA	W+SAW		
Welding Process(es)		_ Type(s)	(Automatic, Manual, Machine, or Semi-Automatic)
			Detaile
Joint Design TOPE			Details
Boot Spacing 2 mm			
Rocking: Yoo X No			
Backing, tes Not	E SOLDADURA		
(Refer to both b	acking and retainers)		
Metal Nonfusing Metal		SEGÚN	I PLANO DE FABRICACIÓN Y
Nonmetallic Other			
Skatabas Production Drawings Wold Symbo	le or Written Description	DE	TALLES DE SOLDADURAS
should show the general arrangement of the r	arts to be welded. Where		
applicable the details of weld groove may be	specified		
	specifica.		
Skatahaa may ba attachad ta illustrata igint dagi	an wold lavers and boad		
sequence (e.g. for notch toughness procedur	as for multiple process		
procedures etc.)]	es, for multiple process		
*BASE METALS (QW-403)			
P-No 1 Group No	1 y 2 to F	P-No	1 Group No1 y 2
OR			
Specification and type/grade or UNS Numbe	r	SA-36; SA-105; S	A-106-A/C; SA-516-55/70
to Specification and type/grade or UNS Num	ber	SA-36; SA-105;	SA-106-A/C; SA-516-55/70
OR			
Chem. Analysis and Mech. Prop			
to Chem. Analysis and Mech. Prop			
Thickness Range:	10 00		
Base Metal: Groove	10 mm - 38 mm	Fillet	ILIMITADO
Maximum Pass Thickness $\leq 1/2$ in. (13 mm)	(Yes)	(No)	—
Other			
			0.010/
*FILLER METALS (QW-404)	SMAW 5.1		SAW 5 17
Spec. No. (SFA)	5.1		5.17
AWS No. (Class)	E7018		EM12K
F-No	4		
A-No			(200_4 mm
Size of Filler Metals	0 3,2 - 4 mm		Ø 3,2 - 4 mm
Filler Metal Product Form			
Supplemental Filler Metal			NO
Weld Metal			
Deposited Thickness:	38 mm MAX	(38 mm MAX
Groove			
Fillet			
Electrode-Flux (Class)	N.A.		
Flux Type	N.A.		
Flux Trade Name	N.A.		N.A.
Consumable Insert	N.A.		N.A.
Other	N.A.		N.A.

*Each base metal-filler metal combination should be recorded individually.

FORM QW-482 (Back)

POSITIO	NS (QW-405))				POSTWELI	D HEAT TRE	ATMENT (Q	W-407)		
Positior	n(s) of Groov	/e	SMAW: F, H, V	, O SAW: F, H		Temperat	ure Range _		N. <i>F</i>	۹.	
Welding	Progressio	n: Up	X (SMAW)	Down		Time Ran	ge		N.A.		
Positior	n(s) of Fillet		SMAW: F, H, V,	0 SAW: F, H		Other					
Other _					<u> </u>	GAS (OW-	408)				
PRFHFAT	(OW-406)					GA0 (211 -	+00)	F	Percent Comp	oosition	
Preheat	Temperatur	e, Minimum		10° C			(Gas(es)	(Mixtur	e)	Flow Rate
Interpas	ss Temperatu	ure, Maximin	n	250° C							
Preheat	Maintenanc	e	Ν	10		Shielding		N.A	N.A		N.A
Other _						Shielding		N.A	N.A		N.A
(Continu	lous or spec	ial heating, w	vhere applica	ble, should b	e recorded)	Backing					
						Other					
ELECTRI	CAL CHARA	CTERISTICS	(QW-409)	1	1	1		1	1	1	
		Filler	⁻ Metal							(e a	Other Remarks Corr
				Current		Wire Feed	Energy or		Travel	me	nts, Hot Wire
Weld	Brassa	Classifi-	Diamatar	Type and	Amps (Renge)	Speed (Barray)	Power	Volts	Speed (Banga)	Addit	ion, Techniqu
Pass(es)	Process	Cation	Diameter	Polarity	(Range)	(Range)	(Range)	(Range)	(Range)	TOPO	in Angle, etc./
1 N	SMAW	F7018	3,2 mm	CC(+)	100-140		Max. 15,6	20-24			
1-IN			4,0 mm		130-180		kJ/cm	20-24			
4.1											
1-N	SV/V		 3.2 mm		450-550		Max. 20,8	27-31			
1-N	SAW	EM12K	 3,2 mm 4,0 mm	CC (+)	450-550 550-700		——— Max. 20,8 kJ/cm	 27-31 27-31			
1-N Amps Pulsing Tungste Mode o Other	SAW s and volts, c Current n Electrode f Metal Tran	EM12K or power or e Size and Typ sfer for GMA	3,2 mm 4,0 mm energy range be	, should be r	450-550 550-700 ecorded for e	each electrod Heat Input (n (Pure Tur (Spray Arc	Max. 20,8 kJ/cm le size, posit nax.) ngsten, 2% Thor c, Short Circuitin	27-31 27-31 ion, and thic iated, etc.)	ckness, etc.		
1-N Amps Pulsing Tungste Mode o Other	SAW s and volts, c Current n Electrode f Metal Tran	EM12K or power or e Size and Typ sfer for GMA	3,2 mm 4,0 mm energy range be	, should be r	450-550 550-700 ecorded for e	each electrod Heat Input (n (Pure Tur (Spray Arc	Max. 20,8 kJ/cm le size, posit nax.) igsten, 2% Thor c, Short Circuitir	27-31 27-31 ion, and thic iated, etc.)	ckness, etc.		
1-N Amps Pulsing Tungste Mode o Other TECHNIC String o	SAW Sand volts, c Current n Electrode f Metal Tran UE (QW-410 or Weave Bea	EM12K pr power or e Size and Typ sfer for GMA	3,2 mm 4,0 mm energy range	, should be r	450-550 550-700 ecorded for e	each electrod Heat Input (n (Pure Tur (Spray Arc	Max. 20,8 kJ/cm le size, posit nax.) rgsten, 2% Thor c, Short Circuitir	27-31 27-31 ion, and thic iated, etc.) ng Arc, etc.) EO	ckness, etc.		
1-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice,	SAW Sand volts, o Current on Electrode f Metal Tran UUE (QW-410 or Weave Bea Nozzle, or G	EM12K pr power or e Size and Typ sfer for GMA D) ad ad	3,2 mm 4,0 mm energy range be	, should be r	450-550 550-700 ecorded for e	each electrod Heat Input (n (Pure Tur (Spray Arc	Max. 20,8 kJ/cm e size, posit nax.) rgsten, 2% Thor c, Short Circuitir SAW: RECTILIN	27-31 27-31 ion, and thic iated, etc.) ng Arc, etc.) EO	ckness, etc.		
1-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial an	SAW Sand volts, of Current on Electrode f Metal Tran UUE (QW-410 or Weave Bea Nozzle, or G and Interpass	EM12K or power or e Size and Typ sfer for GMA	3,2 mm 4,0 mm energy range be AW (FCAW) rushing, Grin	, should be r	450-550 550-700 ecorded for e	each electrod Heat Input (n (Pure Tur (Spray Arc	Max. 20,8 kJ/cm e size, posit nax.) gsten, 2% Thor c, Short Circuitin SAW: RECTILIN AMOL	27-31 27-31 ion, and thic iated, etc.) ng Arc, etc.) EO	ckness, etc.		
1-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial au Method	SAW Sand volts, o and volts, o current an Electrode f Metal Tran UE (QW-410 or Weave Bea Nozzle, or G and Interpass of Back Gou	EM12K pr power or e Size and Typ sfer for GMA b) ad Cleaning (Bi uging	3,2 mm 4,0 mm energy range be AW (FCAW) rushing, Grin	, should be r	450-550 550-700 ecorded for e	each electrod Heat Input (n (Pure Tur (Spray Arc	Max. 20,8 kJ/cm e size, posit nax.) gsten, 2% Thor ;, Short Circuitir SAW: RECTILIN AMOL 0 / ARCO AIRE	27-31 27-31 ion, and thic iated, etc.) ig Arc, etc.) EO	Ckness, etc.		
1-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial au Method Oscillati	SAW SAW s and volts, o Current n Electrode f Metal Tran UUE (QW-410 or Weave Bea Nozzle, or G nd Interpass of Back Gou ion	EM12K pr power or e Size and Typ sfer for GMA b) ad Cleaning (Br uging	3,2 mm 4,0 mm energy range be W (FCAW) rushing, Grin	, should be r	450-550 550-700 ecorded for e	each electrod Heat Input (n (Pure Tur (Spray Arc MAW: AMBOS AMOLADO NO	Max. 20,8 kJ/cm e size, posit nax.) gsten, 2% Thor c, Short Circuitir SAW: RECTILIN AMOL	27-31 27-31 ion, and thic iated, etc.) ag Arc, etc.) EO	ckness, etc.		
1-N Amps Pulsing Tungste Mode o Other TECHNIC String c Orifice, Initial au Method Oscillati Contact	SAW Sand volts, of an Electrode f Metal Trans UUE (QW-410 or Weave Bea Nozzle, or G nd Interpass of Back Gou ion Tube to Wo	EM12K pr power or e Size and Typ sfer for GMA D) ad Cleaning (Bi uging rk Distance	3,2 mm 4,0 mm energy range be AW (FCAW) rushing, Grin	, should be r	450-550 550-700 ecorded for e	each electrod Heat Input (r (Pure Tur (Spray Arc MAW: AMBOS AMOLADO NO	Max. 20,8 kJ/cm le size, posit nax.) igsten, 2% Thor s, Short Circuitir SAW: RECTILIN AMOL 0 / ARCO AIRE 25-40	27-31 27-31 ion, and thic iated, etc.) ng Arc, etc.) EO ADO Y CEPILLA			
1-N Amps Pulsing Tungste Mode o Other TECHNIC String c Orifice, Initial au Method Oscillati Contact Multiple	SAW Sand volts, o Current on Electrode f Metal Tran UE (QW-410 or Weave Bea Nozzle, or G nd Interpass of Back Gou ion Tube to Wo e or Single P	EM12K pr power or e Size and Typ sfer for GMA b cleaning (Br uging rk Distance ass (Per Side	3,2 mm 4,0 mm energy range be AW (FCAW) rushing, Grin	ding, etc.)	450-550 550-700 ecorded for e	each electrod Heat Input (n (Pure Tur (Spray Arc MAW: AMBOS AMOLADO NO	Max. 20,8 kJ/cm le size, positi nax.) igsten, 2% Thor c, Short Circuitir SAW: RECTILIN AMOL 0/ ARCO AIRE 25-40 AMBOS	27-31 27-31 ion, and thic iated, etc.) ng Arc, etc.) EO ADO Y CEPILLA			
1-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial au Method Oscillati Contact Multiple	SAW SAW Sand volts, of an Electrode f Metal Tran UE (QW-410 or Weave Bea Nozzle, or G nd Interpass of Back Gou ion Tube to Wo e or Single P a or Single E	EM12K pr power or e Size and Typ sfer for GMA b cleaning (Br cleaning (Br uging rk Distance rass (Per Side lectrodes	3,2 mm 4,0 mm energy range be AW (FCAW) rushing, Grin	ding, etc.)	450-550 550-700 ecorded for e	each electrod Heat Input (n (Pure Tur (Spray Arc MAW: AMBOS AMOLADO NO	Max. 20,8 kJ/cm e size, posit nax.) gsten, 2% Thor c, Short Circuitir SAW: RECTILIN AMOL 0 / ARCO AIRE 25-40 AMBOS SIMPLE	27-31 27-31 ion, and thic iated, etc.) ng Arc, etc.) EO ADO Y CEPILLA			
1-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial au Method Oscillati Contact Multiple Electroo	SAW SAW s and volts, o Current n Electrode f Metal Tran UUE (QW-410 or Weave Bea Nozzle, or G nd Interpass of Back Gou ion Tube to Wo e or Single P or Single E de Spacing	EM12K pr power or e Size and Typ sfer for GMA sfer for GMA D) ad Cleaning (Bi Uging uging rk Distance lectrodes	3,2 mm 4,0 mm energy range be W (FCAW) rushing, Grin	ding, etc.)	450-550 550-700 ecorded for e	each electrod Heat Input (n (Pure Tur (Spray Arc MAW: AMBOS AMOLADO NO	Max. 20,8 kJ/cm e size, posit nax.) gsten, 2% Thor gsten, 2% Thor s, Short Circuitin SAW: RECTILIN AMOL D/ ARCO AIRE 25-40 AMBOS SIMPLE	27-31 27-31 ion, and thic iated, etc.) ag Arc, etc.) EO ADO Y CEPILLA			
1-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial au Method Oscillati Contact Multiple Electroo Peening	SAW Sand volts, of an Electrode f Metal Tran ULE (QW-410 or Weave Bea Nozzle, or G nd Interpass of Back Gou on Tube to Wo or Single P or Single E be Spacing	EM12K pr power or e Size and Typ sfer for GMA sfer for GMA D) ad Cleaning (Bi uging rk Distance - bass (Per Side lectrodes -	3,2 mm 4,0 mm energy range be AW (FCAW) rushing, Grin	ding, etc.)	450-550 550-700 ecorded for e	each electrod Heat Input (n (Pure Tur (Spray Arc MAW: AMBOS AMOLADO NO	Max. 20,8 kJ/cm e size, posit nax.) gsten, 2% Thor c, Short Circuitin SAW: RECTILIN AMOL D / ARCO AIRE 25-40 AMBOS SIMPLE	27-31 27-31 ion, and thic iated, etc.) ng Arc, etc.) EO ADO Y CEPILLA			
FORM QW-482 SUGGESTED FORMAT FOR WELDING PROCEDURE SPECIFICATIONS (WPS) (See QW-200.1, Section IX, ASME Boiler and Pressure Vessel Code)

Organization Name UNIVERSIDAD TECN	IOLOGICA NACIONAL	Bv	MIGUELANGEL NARVAEZ
Welding Procedure Specification No	002 Data	/	Supporting POB No (s)
Bovision No. 0 Date	09-08-2022		
Welding Process(es) SMAV	V+FCAW	_ Type(s)	MANUAL+SEMIATOMATICO
			(Automatic, Manual, Machine, or Semi-Automatic)
JOINTS (QW-402)			Details
Joint Design			
Root Spacing			
Backing: Yes <u>X (FCAW)</u> No .	X (SMAW)		60°+5°
Backing Material (Type)METAL D	E SOLDADURA		60 13
(Refer to both b	acking and retainers)		
Metal Nonfusing Metal			
Nonmetallic Other		<u>+</u>	$\overline{}$
Sketches Production Drawings Weld Symbo	ls or Written Description	8	2-N
should show the general arrangement of the n	arts to be welded. Where	шш 0/W)	
applicable, the details of weld groove may be	specified.	2 ⁻³	1 1,5±0,5 mm
Sketches may be attached to illustrate joint desig	n weld lavers and head		2,5±0,5 mm
sequence (e.g. for notch toughness procedur	n, welu layers, and beau		
procedures etc.)]	ss, for multiple process		
*BASE METALS (QW-403)			
P-No Group No	1 y 2 to	P-No	1 Group No. 1 y 2
OR			
Specification and type/grade or UNS Number	r	SA-36; SA-10	5; SA-106-A/C; SA-516-55/70
to Specification and type/grade or UNS Num	ber	SA-36; SA-1	05; SA-106-A/C; SA-516-55/70
OR			
Chem. Analysis and Mech. Prop			
to Chem. Analysis and Mech. Prop			
Thickness Range:			
Base Metal: Groove	5-30 mm	Fillet	N.A
Maximum Pass Thickness $\leq 1/2$ in. (13 mm)	(Yes) <u>X</u>	(No)	
Other			
*FILLER METALS (QW-404)	SMAW		FCAW
Spec. No. (SFA)	5.1		5.20
AWS No. (Class)	E7018-1		E71T1-C
F-No	4		6
A-No	1		1
Size of Filler Metals	Ø 2,4 mm		Ø 1,2 mm
Filler Metal Product Form			Tubular
Supplemental Filler Metal			NO
Weld Metal			
Deposited Thickness:			
Groove	5 mm MA	X.	25 mm MAX.
Fillet	N.A		N.A
Electrode-Elux (Class)	N.A.		N.A
Flux Type	N.A.		N.A.
Flux Trade Name	N.A.		N.A.
Consumable Insert	N.A.		N.A.
Other	N.A.		N.A.

*Each base metal-filler metal combination should be recorded individually.

FORM QW-482 (Back)

POSITIO	NS (QW-405)				POSTWELI	D HEAT TRE	ATMENT (Q	W-407)		
Positior	n(s) of Groov	/e	F, H,	, V, O		Temperat	ure Range _		N.A	Α.	
Welding	g Progressio	n: Up	Х	Down		Time Ran	ge		N.A.		
Positior	n(s) of Fillet		N.A	A		Other					
Other _						GAS (OW-	408)				
PREHEA	F (QW-406)					0,10 (211	100,	ł	Percent Comp	position	
Preheat	Temperatur	e, Minimum	10° C (t<	<25mm); 100°C (t	≥25 mm)		(Gas(es)	(Mixture	e)	Flow Rate
Interpa	ss Temperatu Maintenanc	ure, Maximin	n	250 °C		Shielding -F	-CAW	CO2	99,80%	%	14-22 l/min
Other	manntenand					Shielding		N.A	N.A		N.A
(Contin	uous or spec	ial heating, w	here applica	ble, should b	e recorded)	Backing					
	·					Other					
ELECTRI	CAL CHARA	CTERISTICS	(QW-409)								
		Filler	[.] Metal							(e.g.,	Other Remarks, Con
Weld Pass(es)	Process	Classifi- cation	Diameter	Current Type and Polarity	Amps (Range)	Wire Feed Speed (Range)	Energy or Power (Range)	Volts (Range)	Travel Speed (Range)	me Addit Torc	nts, Hot Wire ion, Technique h Angle, etc.)
									5 15 cm/min		
1	SMAW	E7018-1	2,4 mm	CC (+)	70-90			22-25			
	1			1							
2-N	FCAW	E71T1- C	1,2 mm	CC (+)	130-220		 	24-28	15-45 cm/min		
2-N	FCAW	E71T1- C	1,2 mm	, should be r	130-220 ecorded for e	ach electrod	le size, posit	24-28 ion, and thic	15-45 cm/min ckness, etc.		
2-N Amps Pulsing	FCAW	E71T1- C	1,2 mm	CC (+)	130-220 ecorded for e	ach electrod		24-28	15-45 cm/min ckness, etc.		
2-N Amps Pulsing Tungste	FCAW	E71T1- C or power or e Size and Typ	1,2 mm	, should be r	ecorded for e	ach electrod		24-28 ion, and thi	15-45 cm/min ckness, etc.		
2-N Amps Pulsing Tungste	FCAW	E71T1- C or power or e Size and Typ	1,2 mm	, should be r	ecorded for e	ach electrod Heat Input (n (Pure Tur	 le size, posit nax.)	24-28 ion, and thic	15-45 cm/min		
2-N Amp: Pulsing Tungste Mode o	FCAW s and volts, o Current en Electrode f Metal Tran	E71T1- C or power or e Size and Typ sfer for GMA	1,2 mm energy range be W (FCAW) _	, should be r	ecorded for e	ach electrod Heat Input (n (Pure Tur	le size, posit nax.) GLOBULAR	24-28 ion, and this iated, etc.) / SPRAY	15-45 cm/min ckness, etc.		
2-N Amps Pulsing Tungste Mode o Other	FCAW FCAW Current en Electrode f Metal Tran	E71T1- C Size and Typ Size for GMA	1,2 mm energy range be W (FCAW)	, should be r	ecorded for e	ach electrod Heat Input (n (Pure Tur (Spray Arc	le size, posit nax.) ngsten, 2% Thor GLOBULAR 2, Short Circuitir	24-28 ion, and this iated, etc.) / SPRAY ig Arc, etc.)	15-45 cm/min ckness, etc.		
2-N Amps Pulsing Tungste Mode o Other	FCAW FCAW s and volts, c Current en Electrode f Metal Tran DUE (QW-410	E71T1- C Size and Typ sfer for GMA	1,2 mm energy range be	, should be r	130-220 ecorded for e	ach electrod Heat Input (n (Pure Tur (Spray Arc	le size, posit nax.) gsten, 2% Thor GLOBULAR c, Short Circuitir	24-28 ion, and this iated, etc.) / SPRAY ig Arc, etc.)	15-45 cm/min ckness, etc.		
2-N Amps Pulsing Tungste Mode o Other TECHNIC String o	FCAW FCAW s and volts, c Current en Electrode f Metal Tran CUE (QW-410 or Weave Bea	E71T1- C Size and Typ sfer for GMA	1,2 mm energy range be	, should be r	130-220 ecorded for e	ach electrod Heat Input (n (Pure Tur (Spray Arc	le size, posit max.) gsten, 2% Thor GLOBULAR c, Short Circuitir SAW: RECTILIN	24-28 ion, and this iated, etc.) / SPRAY ig Arc, etc.) EO	ckness, etc.		
2-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial a	FCAW FCAW FCAW FCAW FCUrrent FCUrrent FCUrrent FCUTCO FCUT	E71T1- C Size and Typ sfer for GMA o) ad cleaning (Bi	1,2 mm energy range be W (FCAW) rushing, Grin	, should be r	130-220 ecorded for e	ach electrod Heat Input (n (Pure Tur (Spray Arc	le size, posit max.) gsten, 2% Thor GLOBULAR c, Short Circuitir SAW: RECTILIN 16 mm (FCAW) AMOL	24-28 ion, and this iated, etc.) / SPRAY ig Arc, etc.) EO ADO Y CEPILLA	DO		
2-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial a Methoo	FCAW FCAW s and volts, o Current en Electrode f Metal Tran QUE (QW-410 or Weave Bea Nozzle, or G nd Interpass l of Back Gou	E71T1- C Dr power or e Size and Typ sfer for GMA D) ad Cleaning (Br uging	1,2 mm energy range be W (FCAW) rushing, Grin	, should be r	130-220 ecorded for e	ach electrod Heat Input (n (Pure Tur (Spray Arc	le size, posit max.) ngsten, 2% Thor GLOBULAR c, Short Circuitir SAW: RECTILIN 16 mm (FCAW) AMOL N.A.	24-28 ion, and this iated, etc.) / SPRAY g Arc, etc.) EO ADO Y CEPILLA	DDO		
2-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial a Methoo Oscillat	FCAW FCAW s and volts, o Current en Electrode f Metal Tran DUE (QW-410 or Weave Bea Nozzle, or G nd Interpass l of Back Gou ion	E71T1- C Dr power or e Size and Typ sfer for GMA D) ad ias Cup Size c Cleaning (Bi uging	1,2 mm energy range be W (FCAW) _ rushing, Grin	ding, etc.)	130-220 ecorded for e	ach electrod Heat Input (n (Pure Tur (Spray Arc MAW: AMBOS	le size, posit nax.) gsten, 2% Thor GLOBULAR c, Short Circuitir SAW: RECTILIN 16 mm (FCAW) AMOL N.A.	24-28 ion, and this iated, etc.) / SPRAY ig Arc, etc.) EO	DO		
2-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial a Methoo Oscillat	FCAW FCAW s and volts, o Current en Electrode f Metal Tran DUE (QW-410 or Weave Bea Nozzle, or G nd Interpass l of Back Gou ion Tube to Wo	E71T1- C or power or e Size and Typ sfer for GMA o) ad cleaning (Br uging rk Distance	1,2 mm energy range be WW (FCAW) rushing, Grin	ding, etc.)	130-220 ecorded for e	ach electrod Heat Input (n (Pure Tur (Spray Arc MAW: AMBOS	le size, posit max.) ngsten, 2% Thor GLOBULAR c, Short Circuitir SAW: RECTILIN 16 mm (FCAW) AMOL N.A. 10-20 mm	24-28 ion, and this iated, etc.) / SPRAY ig Arc, etc.) EO ADO Y CEPILLA	DO		
2-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial a Methoo Oscillat Contact Multiple	FCAW FCAW FCAW FCAW FCAW FCAW FCAW FCAW	E71T1- C Dr power or e Size and Typ sfer for GMA d d Cleaning (Br uging rk Distance - cass (Per Side	1,2 mm energy range be ww (FCAW) rushing, Grin	ding, etc.)	130-220 ecorded for e	ach electrod Heat Input (n (Pure Tur (Spray Arc MAW: AMBOS	le size, posit max.) ngsten, 2% Thor GLOBULAR c, Short Circuitir SAW: RECTILIN 16 mm (FCAW) AMOL N.A. 10-20 mm AMBOS SIMPLE	24-28 ion, and this iated, etc.) / SPRAY ig Arc, etc.) EO ADO Y CEPILLA	DO		
2-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial a Methoc Oscillat Contact Multiple	FCAW FCAW FCAW FCAW FCAW FCAW FCAW FCAW	E71T1- C Dr power or e Size and Typ sfer for GMA size and Typ sfer for GMA D) ad cleaning (Bi uging rk Distance _ bass (Per Side clectrodes	1,2 mm energy range be ww (FCAW) rushing, Grin	ding, etc.)	130-220 ecorded for e	ach electrod Heat Input (n (Pure Tur (Spray Arc MAW: AMBOS 12 mm	le size, posit max.) ngsten, 2% Thor GLOBULAR c, Short Circuitir SAW: RECTILIN 16 mm (FCAW) AMOL N.A. 10-20 mm AMBOS SIMPLE	24-28 ion, and this iated, etc.) / SPRAY g Arc, etc.) EO ADO Y CEPILLA	DO		
2-N Amps Pulsing Tungste Mode o Other TECHNIC String o Orifice, Initial a Method Oscillat Contact Multiple Multiple Electror	FCAW FCAW FCAW s and volts, o Current en Electrode f Metal Tran DUE (QW-410 or Weave Bea Nozzle, or G nd Interpass I of Back Gou ion Tube to Wo e or Single P e or Single E de Spacing	E71T1- C Dr power or e Size and Typ sfer for GMA sfer for GMA D) ad Cleaning (Bi uging rk Distance _ Pass (Per Side clectrodes	1,2 mm energy range be W (FCAW) rushing, Grin	ding, etc.)	130-220 ecorded for e	Ach electrod Heat Input (rr (Pure Tur (Spray Arc MAW: AMBOS 12 mm	le size, posit nax.) ngsten, 2% Thor GLOBULAR c, Short Circuitir SAW: RECTILIN 16 mm (FCAW) AMOL N.A. 10-20 mm AMBOS SIMPLE	24-28 ion, and this iated, etc.) / SPRAY ig Arc, etc.) EO ADO Y CEPILLA	DO		

FORM QW-482 SUGGESTED FORMAT FOR WELDING PROCEDURE SPECIFICATIONS (WPS) (See QW-200.1, Section IX, ASME Boiler and Pressure Vessel Code)

Organization Name UNIVERSIDAD TECH	NOLOGICA NACIONAL	Bv	MIGUELANGEL NARVAEZ
Welding Procedure Specification No	003 Date		Supporting POB No (s)
Bovision No. 0 Data	22-05-2022		
Welding Process(es) GTA	N+FCAW	Type(s)	MANUAL + SEMIAUTOMATICO
			(Automatic, Manual, Machine, or Semi-Automatic)
JOINTS (QW-402)			Details
Joint Design			
Root Spacing 3,5 mm	1		
Backing: Yes <u>X (FCAW)</u> No	N (GTAW)		65°±5°
Backing Material (Type)	E SOLDADURA		× 7
(Refer to both h	backing and retainers)		
✓Metal			
		Î I	
Skatabaa Braduatian Drawinga Wold Symbo	la or Writton Description	u VAX)	2-N
should show the general arrangement of the	arts to be welded Where	31 m 31	
applicable, the details of weld groove may be	specified		1 1±0,5 mm
applicable, the details of weld groove may be	specified.		
			3,5±0,5 mm
Sketches may be attached to illustrate joint desi	gn, weld layers, and bead		
sequence (e.g., for notch toughness procedur	res, for multiple process		
procedures, etc.)]			
*BASE METALS (0)// 403)			
BNo 1 Crown No	1 y 2	D No	1 Crown No. 1 y 2
P-No Group No	it) F-INO	
		SA-36; SA-105	5; SA-106-A/C; SA-516-55/70
specification and type/grade or UNS Number	۲۶ ام م در	SA-36; SA-10	05; SA-106-A/C; SA-516-55/70
to Specification and type/grade or UNS Num	iber		
Chem. Analysis and Mech. Prop.			
to Chem. Analysis and Mech. Prop.			
Thickness Range:	5 mm - 31 mm		ILIMITADO
Base Metal: Groove	× × × ×	Fillet -	
Maximum Pass Thickness $\leq 1/2$ in. (13 mm) (Yes)	(No)	
Other			
	07414	,	FOAM
*FILLER METALS (QW-404)	GIAW 5 19	/	FCAW
Spec. No. (SFA)	0.10		5.20
AWS No. (Class)	ER70S-3	3	E71T1-C
F-No	6		6
A-No	1		1
Size of Filler Metals	Ø 2,4 mr	n	Ø 1,2 mm
Filler Metal Product Form	SÓLIDO)	TUBULAR
Supplemental Filler Metal	N.A.		
Weld Metal			
Deposited Thickness:			
Groove	5 mm M/	AX.	26 mm MAX.
Fillet	ILIMITAD	00	ILIMITADO
Electrode-Flux (Class)	N.A.		N.A.
Flux Type	N.A.		N.A.
Flux Trade Name	N.A.		N.A.
Consumable Insert	N.A.		N.A.
Other	N.A.		N.A.

*Each base metal-filler metal combination should be recorded individually.

FORM QW-482 (Back)

							v	/PS No		Rev	
POSITION	NS (QW-405)				POSTWEL	D HEAT T	REATMENT (C)W-407)		
Position	(s) of Groov	′ ′e	"F"; "H";	"V"; "O"		Temperat	ure Rang	e	N.A		
Welding	Progressio	n: Up	Х	Down		Time Ran	ge	-	N.A.		
Position	(s) of Fillet	-	"F"; "H"; "	V"; "O"		Other					
Other _											
						GAS (QW-4	408)				
PREHEAT	(QW-406)								Percent Comp	osition	
Preheat	Temperatur	e, Minimum		30° C				Gas(es)	(Mixture	e)	Flow Rate
Interpas	s Temperati	ure, Maximin	n	150° C		Objeteline o		ARCON	00.00%		10 15 l/min
Preheat	Maintenand	e				Shielding E			99,89%		15-20 l/min
Other _						Booking	CAW	N.A.	N.A.		
(Continu	ious or spec	ial heating, w	/here applicat	ble, should b	e recorded)	Othor		N.A	N.A		N.A
						Other					
ELECTRIC	CAL CHARA	CTERISTICS	(QW-409)								
		Filler	[.] Metal							(e.g., F	Other Remarks, Com-
		Ola a l'fi		Current		Wire Feed	Energy	or	Travel	mer	its, Hot Wire
Weld Pass(es)	Process	cation	Diameter	Type and Polarity	(Range)	Speed (Bange)	Power (Bange	r Volts	(Bange)	Additi	on, lechnique, h Angle, etc.)
				- Oldrity	(nange,	(nungo)	(nunge	,, (Hange,	(Indingio)		
1	GTAW	ER70S-3	2,4 mm	CC (-)	90-120	N.A.		- 10-13	4 - 8 cm/min		
2-N	FCAW	E71T1-C	1,2 mm	 CC (+)	190-220	N.A.		24-26	10 - 15 cm/min		
Amps	and volts, o	or power or e	energy range,	, should be r	ecorded for e	each electrod	e size, po	osition, and thi	ckness, etc.		
Pulsing	Current					Heat Input (n	nax.)				
т	. Els stus de	Circle and The				E	EWTh-2: Ø 2	.4 mm			
lungste	n Electrode	Size and Typ	oe			(Pure Tun	gsten, 2% T	horiated, etc.)			
Mode of	ode of Metal Transfer for GMAW (FCAW) CORTOCIRCUITO										
mode ei	(Spray Arc, Short Circuiting Arc, etc.)										
Other											
TECHNIO	UF (OW-41)))									
String o	r Weave Bea	ad				AMI	BOS				
Orifice, I	Nozzle, or G	or Gas Cup Size GTAW: 6-8 mm / FCAW: 16 mm									
Initial an	nd Interpass	Cleaning (Br	rushing, Grin	ding, etc.) _				AMOLADO			
Method	of Back Gou	uging					N.A.				
Oscillati	on				GTAW: 5n	nm MAX. / FCAW:	15 mm MAX				
Contact	Tube to Wo	rk Distance _					N.A.				
Multiple	or Single P	ass (Per Side	e)				MÚLTIPLE	ES			
Multiple	or Single E	lectrodes					N.A.				
Electrod	e Spacing										
Peening						NO					
Other _											
_											
_											

FORM QW-482 SUGGESTED FORMAT FOR WELDING PROCEDURE SPECIFICATIONS (WPS) (See QW-200.1, Section IX, ASME Boiler and Pressure Vessel Code)

Organization Name UNIVERSID/	AD TECNOLOGICA	NACIONAL	Bv	MIGUELANGEL NARVAEZ
Welding Procedure Specification No	004	Date		Supporting POR No (s)
Revision No 0	Date 0	9-08-2022		
Wolding Process(ps)	FCAW		Type(s)	MANUAL + AUTOMATICO
			iype(s/	(Automatic, Manual, Machine, or Semi-Automatic)
JOINTS (QW-402)				Details
Joint Design	FILETE			
Root Spacing	N.A.			
Backing: Yes <u>X</u>	No			
Backing Material (Type)	METAL BASE			
(Refer	to both backing and	retainers)		
Metal Nonfusing Metal			SEGÚ	JN PLANO DE FABRICACIÓN Y
Nonmetallic Other			C	DETALLES DE SOLDADURAS
Sketches, Production Drawings, Weld S	Symbols, or Wr	itten Description		
should show the general arrangement of	of the parts to b	e welded. Where		
applicable, the details of weld groove m	hay be specified			
Sketches may be attached to illustrate join	nt design, weld	ayers, and bead		
sequence (e.g., for notch toughness pr	ocedures, for r	nultiple process		
procedures, etc.)]				
ABASE METALS (UW-403)	- N-	1 v 2	DN	1 0 0 0 0 1 V 2
P-No Grou	p No	t	:0 P-No	Group No
	le construcción de la construcci			
specification and type/grade or UNS is	S Number			
OR	5 Number —			
Chem. Analysis and Mech. Prop				
to Chem. Analysis and Mech. Prop. —				
Thickness Range:				
Base Metal: Groove		N.A Y	Fillet -	ILIMITADO
Maximum Pass Thickness $\leq 1/2$ in. (7)	13 mm)	(Yes)	(No)	
Other				
		ECAV	N/	
*FILLER METALS (QVV-404)		5.20	v	
Spec. No. (SFA)		E71T1-	-C	
AVVS No. (Class)		6	-	
F-NO.		1		
A-NO.		Ø 1,2 m	nm	
Size of Filler Metals		TUBUL/	AR	
Supplemental Filler Metal				
Deposited Thickness				
Groove		N.A.		
Eillot		ILIMITA	DO	
Flitt		N.A.		
		N.A.		
Flux Type		N.A.		
Flux Trade Name		N.A.		
		N.A.		

*Each base metal-filler metal combination should be recorded individually.

FORM QW-482 (Back)

POSTICIONS (CW-405) Position(s) of Groove NA Position(s) of Groove NA Position(s) of Filet Composition Preheat Temperature Range NA Cother Cot	POSITIONS Position(s Welding F Position(s Other PREHEAT (f Preheat Te Interpass Preheat M Other (Continuon ELECTRICA	S (QW-405) s) of Groov Progressior s) of Fillet (QW-406) Temperature Temperature Alintenance ous or speci	e n: Up e, Minimum ure, Maximin e al heating, w	N. X F, H, V P. N where applical (QW-409)	A. Down /, O 30° C 100 °C 100 ble, should b		POSTWELI Temperat Time Ran Other — GAS (QW-4 Shielding Shielding Backing Other	D HEAT TRE ure Range _ ge 408) 	ATMENT (Q' F Gas(es) CO2 N.A	W-407) N.A 'ercent Comp (Mixture 99,8%	bosition e)	Flow Rate
Position(s) of Groove NA Tamperature Range NA Welding Progression: Up X Down Time Range NA Other Color GAS (OW-408) Percent Composition PREHEAT (OW-406) Preheat Tomperature, Maximum Sine ding Range NA Preheat Tomperature, Maximum Sine ding GAS (OW-408) Percent Composition Procession (Mixture) Flow R Other No Sine ding NA NA NA NA Other GAS (OW-408) Percent Composition Procession (Mixture) Flow R NA NA NA Other Continuous or special heating, where applicable, should be recorded Speed Energy or Voits Tavel (Ga_Remarks, ments, Hot Wire Feed Energy or Voits Tavel (Ga_Remarks, ments, Hot Wire Feed Speed Ringe) Tavel (Ga_Remarks, ments, Hot Wire Feed <	Position(s Welding F Position(s Other PREHEAT (i Preheat Te Interpass Other (Continuon ELECTRICA	s) of Groov Progression s) of Fillet (QW-406) Temperature Temperature Alintenance Dus or speci	e e, Minimum irre, Maximin e al heating, w	N. X F, H, V F, H, V N vhere applical (QW-409)	A. Down , o 30° C 100 °C 100 ble, should b	e recorded)	Temperat Time Ran Other GAS (QW-4 Shielding Shielding Backing Other	ure Range _ ge 408) 	P Gas(es) <u>CO2</u> N.A	N.A. Vercent Comp (Mixture 99,8%	bosition e)	Flow Rate
Welding Progression: Up x Down Time Range NA Position(s) of Fillet F.H.V.O Other Other Other PREHEAT (OW-406) Sine (Composition) Sine (Composition) Flow R Preheat Tomperature, Maximum sor C Shelding Coc 90.9% (20.0%) Preheat Maintenance NO Shelding Coc 90.9% (20.0%) Other Shelding NA NA NA NA (Continuous or special heating, where applicable, should be recorded) Backing NA NA NA Weld Process Filler Metal Current Amps Speed NA NA MA Weld Process Calastific Diameter Current Amps Travel (Rangel) Galdon, Techn Velid Filler Metal Current Amps Mare Rangen Yota State Speed Addition, Techn Process Calastific Diameter Current Amps Rangel Current Galdon, Techn Current Galdon, Techn Curcha Rangel Current <t< td=""><td>Welding F Position(s Other PREHEAT (f Preheat Te Interpass Other (Continuo) ELECTRICA</td><td>Progression s) of Fillet</td><td>n: Up e, Minimum ure, Maximin e al heating, w</td><td>X F, H, V n where applical (QW-409)</td><td>Down /, 0 30° C 100 °C to ble, should b</td><td>e recorded)</td><td>Time Ran Other — GAS (QW-4 Shielding Shielding Backing Other</td><td>ge 408) </td><td>F Gas(es) <u>CO2</u> N.A</td><td>V.A. Vercent Comp (Mixture 99,8%</td><td>oosition e)</td><td>Flow Rate</td></t<>	Welding F Position(s Other PREHEAT (f Preheat Te Interpass Other (Continuo) ELECTRICA	Progression s) of Fillet	n: Up e, Minimum ure, Maximin e al heating, w	X F, H, V n where applical (QW-409)	Down /, 0 30° C 100 °C to ble, should b	e recorded)	Time Ran Other — GAS (QW-4 Shielding Shielding Backing Other	ge 408) 	F Gas(es) <u>CO2</u> N.A	V.A. Vercent Comp (Mixture 99,8%	oosition e)	Flow Rate
Position(s) of Fillet F.H.V.O Other Other	Position(s Other PREHEAT (/ Preheat Te Interpass Preheat M Other (Continuo) ELECTRICA	s) of Fillet _ (QW-406) Temperature Temperature Alintenance ous or speci	e, Minimum ire, Maximin e al heating, w	F, H, V	/, O 30° C 100 °C iO ble, should b	e recorded)	Other GAS (QW-4 Shielding Shielding Backing Other	408)	P Gas(es) <u>CO2</u> N.A	ercent Comp (Mixture) 	position e)	Flow Rate
Other GAS (QW-408) PREHEAT (QW-406) Percent Composition Preheat Temperature, Minimum .00 °C Interpass Temperature, Miximim .00 °C Shielding Cox 98.8%, 19.20% Other .00 °C Shielding NA NA Continuous or special heating, where applicable, should be recorded) Backing	Other PREHEAT (Preheat Te Interpass T Preheat M Other (Continuor ELECTRICA	(QW-406) Temperature Jaintenanco ous or speci	e, Minimum Ire, Maximin e al heating, w	nN where applical (QW-409)	30° C 100 °C IO ble, should b	e recorded)	GAS (QW-4 Shielding Shielding Backing Other	408)	F Gas(es) <u>CO2</u> N.A	ercent Comp (Mixture) 99,8%	oosition e)	Flow Rate
GAS (QW-408) Percent Composition Prehet Temperture, Maximum 30° C Interpass Temperature, Maximum 100° C Preheat Maintenance 100° C Other 30° C Continuous or special heating, where applicable, should be recorded NA Backing NA Backing NA Other Current Classifi- Diameter Process Classifi- Cass (S) Filler Metal Classifi- Diameter Power Power Range) Voits Speed Range) Veid Classifi- Diameter Polarity Range) Voits Speed Range) Viris Speed Range) Voits Speed Range) Viris Speed Range) Voits Speed Range) Viris Range) Viris Range) Amps and voits, or power or energy range, should be recorded for each electrode size, position, and thickness, etc.<	PREHEAT (Preheat Te Interpass Preheat M Other (Continuor ELECTRICA	(QW-406) Temperature Jaintenance ous or speci	e, Minimum ire, Maximin e al heating, w	rhere applical (QW-409)	30° C 100 °C io ble, should b	e recorded)	GAS (QW-4 Shielding Shielding Backing Other	408) 	F Gas(es) <u>CO2</u> N.A	ercent Comp (Mixture) 	oosition e)	Flow Rate
Preheat Temperature, Maximim 30° C Gas(e) (Mixture) Flow R Interpass Temperature, Maximim NO Shielding NA NA NA Other NO Shielding NA NA NA NA Continuous or special heating, where applicable, should be recorded Shielding NA NA NA NA ELECTRICAL CHARACTERISTICS (QW-409) Filler Metal Current Amps Speed Forgery or Power Voits Speed	PREHEAT (Preheat Te Interpass Preheat M Other (Continuo) ELECTRICA	(UW-406) Temperature Temperature Alintenance Dus or speci	e, Minimum Ire, Maximin e al heating, w	vhere applical	30° C 100 °C IO ble, should b	e recorded)	Shielding Shielding Backing Other		Gas(es)	(Mixture	e)	Flow Rate
Preheat temperature, Maimum NO NO Stelding OC 98.8% 19-20.8 Preheat Maintenance NO Stelding OC 98.8% 19-20.8 Other Continuous or spacial heating, where applicable, should be recorded Stelding NA NA NA Continuous or spacial heating, where applicable, should be recorded Stelding Other NA NA NA ELECTRICAL CHARACTERISTICS (QW-409) Filler Metal Current Amps Speed Energy or Power Volts Travel (R_ange) Reg. Remarks, Mot Addition, Tachn Speed Renge) Renge) Travel (R_ange) Contertion (Range) Contertion (Range) Travel (R_ange) Travel (R_ange) Travel (R_ange) Renge) Travel (Range) Renge) Renge) Renge) Renge) Renge) Renge) Renge) Renge)	Preheat If Interpass Preheat W (Continuo ELECTRICA	emperature Temperatu Aaintenance ous or speci	e, Minimum ire, Maximin e fal heating, w	vhere applical	io ble, should b	e recorded)	Shielding Shielding Backing Other		CO2 N.A	99,8%		
Interpass formperature, Maximum	Weld	AL CHARAC	al heating, w	n	ble, should b	e recorded)	Shielding Shielding Backing Other		CO2 N.A	99,8%		10.00.11
International maintenance NA NA NA NA Continuous or special heating, where applicable, should be recorded) Backing NA NA NA Continuous or special heating, where applicable, should be recorded) Other Shedding NA NA NA ELECTRICAL CHARACTERISTICS (QW-409) Filler Metal Current Current Travel Speed Filler, Metal Current Filler, Metal Current Travel Speed Range) Volts Travel Speed Range) Range) Volts Travel Speed Range) Range) Conterstein Metal Modified Modified <td>Weld</td> <td>AL CHARAC</td> <td>e</td> <td>vhere applical (QW-409)</td> <td>ble, should b</td> <td>e recorded)</td> <td>Shielding Backing Other</td> <td></td> <td>N.A</td> <td></td> <td></td> <td>10-20 l/min</td>	Weld	AL CHARAC	e	vhere applical (QW-409)	ble, should b	e recorded)	Shielding Backing Other		N.A			10-20 l/min
Onther	Weld	ous or speci	al heating, w	vhere applical (QW-409)	ble, should b	e recorded)	Backing Other			N.A		N.A
Continuous of special neeting, where splitlating, should be recorded Deter	ELECTRICA	AL CHARAC		(QW-409)		e recorded/	Other					
Lectrical characteristics (QW-409) Weld Filler Metal Current Type and easies) Amps Polarity Wire Feed (Range) Energy or Power (Range) Volts (Range) Travel Speed (Range) Other (re.g., Remarks, memts, Hot W Addition, Techn Torch Angle, e 1-N FCAW E71T1-C 1,2 mm CC (+) 160-28 0 20-30 Amps and volts, or power or energy range, should be recorded for each electrode size, position, and thickness, etc. 20-30 Pulsing Current	Weld	AL CHARAC	CTERISTICS	(QW-409)								
Weld Filler Metal Current Amps Wire Feed (Range) Energy or Power Tavel Voits Travel Speed (Range) Travel (Range) Travel (Range) Travel (Range) Travel (Range) Other (Range) 1-N FCAW E71T1-C 1,2 mm CC (+) 160-28 0 20-30 Amps Amps and volts, or power or energy range, should be recorded for each electrode size, position, and thickness, etc. 20-30 Pulsing Current	Weld											
Weld Pass(es) Classifi- cation Current Diameter Current Polarity Amps (Range) Wire Feed (Range) Environ Travel (Range) Travel Addition, Techn Torch Angle, e 1-N FCAW E71T1-C 1,2 mm CC (+) 160-28 0 20-30 Addition, Techn Torch Angle, e Amps and volts, or power or energy range, should be recorded for each electrode size, position, and thickness, etc. 90-30 20-30 Pulsing Current	Weld		Filler	Metal							(e.g.,	Other Remarks, Cor
Process Cation Dranteel Polarity (hange)		Process	Classifi-	Diamatar	Current Type and	Amps	Wire Feed Speed	Energy or Power	Volts	Travel Speed	mer Additi	nts, Hot Wire
1-N FCAW E71T1-C 1,2 mm CC (+) 160-28 0 20-30 Amps and volts, or power or energy range, should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Heat Input (max.)	ass(es)	FIUCESS	cation	Diameter	Folanty	(nange)	(nalige)	(nange)	(hange)	(nalige)		II Aligle, etc./
Amps and volts, or power or energy range, should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Heat Input (max.) Tungsten Electrode Size and Type (Pure Tungsten, 2% Thoriated, etc.) Mode of Metal Transfer for GMAW (FCAW) GLOBULAR (Spray Arc, Short Circuiting Arc, etc.) Other	1-N	FCAW	E71T1-C	1,2 mm	CC (+)	160-28 0			20-30			
Amps and volts, or power or energy range, should be recorded for each electrode size, position, and thickness, etc. Pulsing Current Heat Input (max.) Tungsten Electrode Size and Type (Pure Tungsten, 2% Thoriated, etc.) Mode of Metal Transfer for GMAW (FCAW) GLOBULAR (Spray Arc, Short Circuiting Arc, etc.) Other TECHNIQUE (QW-410) AMBOS String or Weave Bead 20mm Initial and Interpass Cleaning (Brushing, Grinding, etc.) AMOLADO Y CEPILLADO Method of Back Gouging AMOLADO / ARCO AIRE Oscillation NO Multiple or Single Pass (Per Side) AMBOS Multiple or Single Electrodes SIMPLE Electrode Spacing NO Peening NO												
Other	Amps a Pulsing Cu Tungsten Mode of N	and volts, o current Electrode S Metal Trans	or power or e Size and Typ sfer for GMA	nergy range	, should be r	ecorded for e	each electrod Heat Input (n (Pure Tur (Spray Ard	e size, posit nax.) gsten, 2% Thor GLOBU	ion, and thic iated, etc.) JLAR ng Arc, etc.)	kness, etc.		
TECHNIQUE (QW-410) AMBOS String or Weave Bead 20mm Orifice, Nozzle, or Gas Cup Size 20mm Initial and Interpass Cleaning (Brushing, Grinding, etc.) AMOLADO Y CEPILLADO Method of Back Gouging AMOLADO / ARCO AIRE Oscillation NO Contact Tube to Work Distance 15 - 30 mm Multiple or Single Pass (Per Side) AMBOS Multiple or Single Electrodes SIMPLE Electrode Spacing NO Peening NO	Other											
Orifice, Nozzle, or Gas Cup Size 20mm Initial and Interpass Cleaning (Brushing, Grinding, etc.) AMOLADO Y CEPILLADO Method of Back Gouging AMOLADO / ARCO AIRE Oscillation NO Contact Tube to Work Distance 15 - 30 mm Multiple or Single Pass (Per Side) AMBOS Multiple or Single Electrodes SIMPLE Electrode Spacing NO Peening NO		JE (QW-410)) ad				AM	BOS				
Initial and Interpass Cleaning (Brushing, Grinding, etc.) AMOLADO Y CEPILLADO Method of Back Gouging AMOLADO / ARCO AIRE Oscillation NO Contact Tube to Work Distance 15 - 30 mm Multiple or Single Pass (Per Side) AMBOS Multiple or Single Electrodes SIMPLE Electrode Spacing NO Peening NO	Orifice. No	ozzle, or G	as Cup Size					20mm				
Method of Back Gouging AMOLADO / ARCO AIRE Oscillation NO Contact Tube to Work Distance 15 - 30 mm Multiple or Single Pass (Per Side) AMBOS Multiple or Single Electrodes SIMPLE Electrode Spacing NO Peening NO	Initial and	d Interpass	Cleaning (Br	ushing, Grin	ding, etc.)			AMOL	ADO Y CEPILLAI	00		
Oscillation NO Contact Tube to Work Distance 15 - 30 mm Multiple or Single Pass (Per Side) AMBOS Multiple or Single Electrodes SIMPLE Electrode Spacing NO Peening NO	Method o	of Back Gou	ıging				AMOLADO	/ ARCO AIRE				
Contact Tube to Work Distance 15 - 30 mm Multiple or Single Pass (Per Side) AMBOS Multiple or Single Electrodes SIMPLE Electrode Spacing NO Peening NO	Oscillation	n					NO	45.00				
Multiple or Single Pass (Per Side) AMBOS Multiple or Single Electrodes SIMPLE Electrode Spacing NO Peening NO	Contact Tu	ube to Wor	rk Distance _					15 - 30 mm				
Multiple or Single Electrodes SIMPLE Electrode Spacing NO Peening NO	Multiple o	or Single Pa	ass (Per Side					AMBOS				
Electrode Spacing NO Peening NO	Multiple o	or Single El	lectrodes					SIMPLE				
PeeningNU	Electrode	Spacing _					NO					
	Peening _						NO					
Other	Other											

9. EVALUACIÓN DE UNA FISURA

Se plantea una fisura circunferencial detectada por END, localizada en la superficie del metal de soldadura. Se propone hacer un análisis de aptitud para el servicio de acuerdo con la parte 9 de API 579.

Dimensiones de fisura		
Profundidad	a_m	5 mm
Largo	$2c_m$	30 mm
Datos de diseño		
Presión	Р	17,25 kg/cm ² (1,69 MPa)
Temperatura de diseño	-	65°C
Mínima Temperatura ambiental	-	-15°C (5°F)
PWHT	-	NO
Corrosión	-	
LOSS	-	0
FCA	-	0,06 mm
Procesos de soldadura	-	
GTAW (raíz) + FCAW (relleno),	-	
ver variables en sección 8 de este documento		
Material	-	
Limite elástico especificado en material cuerpo (SA 516-70)	σ_y	260 MPa
Resistencia a la tracción en material cuerpo (SA 516-70)	σ_t	485 MPa
Módulo de Young	E	1,98x10 ⁵ MPa
Coeficiente de Poisson	υ	0,3

Como datos complementarios para la evaluación se indican los siguientes:

La nomenclatura particular de esta sección esta detallada a lo largo de esta sección y es equivalente a la indicada en API 579.

Antes de iniciar la evaluación se requiere realizar algunas verificaciones previas en indicados en el anexo 9 de API 579, a fin de comprobar la aplicabilidad de los niveles 1 y 2 para evaluación de fisuras. Estas verificaciones se muestran a continuación:

Parágrafo	Enunciado	Cumplimiento
9.2.2.a	Criterio de diseño original según parte 2 parágrafo	OK. Según ASME BPVC Sección VIII Div.
	2.2.3	1
9.2.2.b	El componente no opera en el rango de Creep	OK. No opera en el rango de Creep.
		Temp. Diseño < 700°F
9.2.2.c	Efectos de cargas dinámicas no son significativos.	OK. Se asume
9.2.2.d	La grieta está sujeta a condiciones de carga y/o	OK. Se asume
	ambientales que no darán como resultado en un	
	crecimiento de la grieta.	

Verificaciones previas (Válidas para Nivel 1 y 2)

Verificaciones previas (Válidas solo para Nivel 1)

Parágrafo	Enunciado	Cumplimiento
9.2.2.e.1.i	El componente es un plano, cilíndrico o esférico.	OK. Es cilíndrico
9.2.2.e.1.ii	Si es cilíndrico o esférico se debe cumplir que $R/t \ge$	OK. Se cumple
	5	$(R/t = 1687, 5/25, 4 \approx 66 > 5)$
9.2.2.e.1.iii	El espesor del componente en el lugar de la grieta es menor o igual a 1,5 pulg	OK. Se cumple (t=25,4 mm <38,1 mm)
9.2.2.e.1.iv	La fisura puede ser superficial o pasante. La longitud máxima permitida de la fisura es de 200 mm (8 pulg).	OK . Se cumplen. Fisura superficial y longitud total 30 mm (1,18 pulg)
9.2.2.e.1.v	Para componentes cilíndricos y esféricos, la grieta está orientada en la dirección axial o circunferencial y está ubicada a una distancia mayor o igual a $1,8\sqrt{Dt}$ de cualquier discontinuidad estructural.	OK. Orientación circunferencial. Se asume cumplimiento de distancia mínima Dist. mín = $1.8\sqrt{\frac{3375}{25,4} \cdot \frac{25,4}{25,4}} = 20,75 pulg$
9.2.2.e.2.i	La carga en el componente proviene de la presión que produce solo un campo de tensión de membrana.	OK. Se cumple
9.2.2.e.2.ii	Las tensiones de membrana durante la operación están dentro de los límites de diseño del código de construcción original.	OK. Se cumple. σ_m y σ_L son inferiores a la tensión admisible S = 138MPa $\sigma_m = \frac{P}{E} \left(\frac{R}{t} + 0.6 \right) = \frac{1.69MPa}{1} \left(\frac{1687.5}{25.4} + 0.6 \right)$ $\sigma_m = 113.3 MPa$ $\sigma_L = \frac{P}{2E} \left(\frac{R}{t} - 0.4 \right) = \frac{1.69MPa}{2\cdot 1} \left(\frac{1687.5}{25.4} - 0.4 \right)$ $\sigma_L = 55.8 MPa$
9.2.2.e.2.iii	Si el componente debe someterse a una prueba de presión, la temperatura del metal del componente debe estar por encima de la MAT durante la prueba.	OK. Se asume
9.2.2.e.2.iv	La geometría de la unión soldada es una configuración de V simple o V doble; las tensiones residuales se basan en las soluciones proporcionadas en el anexo 9D.	OK. Se cumple
9.2.2.e.3.i	El material es acero al carbono (P1, Grupo 1 o 2) con una tensión permisible de acuerdo con el código de construcción original que no excede 172 MPa (25 ksi).	OK. Se cumple SA 516-70 es P1, tensión admisible es 138 MPa <172 MPa
9.2.2.e.3.ii	El límite elástico mínimo especificado para el material base es menor o igual a 276 MPa (40 ksi). La resistencia mínima a la tracción especificada para el material base es menor o igual a 485 MPa (70 ksi). Las soldaduras están hechas con un electrodo compatible con el material base.	OK. Se cumple (Sy= 260 MPa; St= 485 MPa). Hay compatibilidad de electrodos con metal base.
9.2.2.e.3.iii	La tenacidad a la fractura es mayor o igual al valor límite inferior de K_{IC} obtenido del Anexo 9F. Esto será cierto para los aceros al carbono donde la tenacidad no se ha degradado debido al daño ambiental (por ejemplo, daño por fuego, sobrecalentamiento, grafitización, etc.).	OK. Se asume

Las verificaciones previas indican que se cumplen las condiciones para la evaluación por los niveles 1 y 2 de la parte 9 de API 579.

Primeramente, se parte de una evaluación Nivel 1.

NOTA: Todas las figuras, tablas y ecuaciones están referenciadas con respecto a API 579.

Evaluación Nivel 1

Paso 1. Determinación de la temperatura de evaluación

La temperatura de la evaluación será la correspondiente a la mínima ambiental:

 $T = 5^{\circ}F$

Paso 2. Determinación de la longitud y profundidad de la fisura

Considerando que la fisura está en la dirección circunferencial y es perpendicular a la dirección longitudinal (plano principal de mínimo esfuerzo), no es necesario realizar proyección alguna sobre los planos principales, entonces la longitud de fisura (2c) es igual a la longitud de fisura medida (2c_m):

$$2c = 2c_m = 30 mm = 1,18 pulg$$

Por otro lado, atendiendo a la figura 9.1 de API 579-1 para una fisura superficial se define la profundidad medida, a_m, como la profundidad de la fisura idealizada, a, entonces:

$$a = a_m = 5 mm = 0,197 pulg$$

Paso 3. Determinación de la figura para la evaluación del defecto basado en la geometría del componente y orientación del defecto

Considerando que el componente es cilíndrico y la orientación de la fisura es paralela a la junta circunferencial se determina que corresponde la figura 9.15.

Paso 4. Determinación de la curva de revisión a partir del paso 3

Considerando que:

- La fisura se encuentra en el metal de soldadura
- La profundidad fue medida con buen nivel de precisión mediante UT
- 25 mm <t <38 mm
- a < t/4
- El metal de soldadura no fue sujeto a PWHT

Se determina que la figura a utilizar será la C (metal de soldadura sin PWHT, ¼ de t, línea solida)

Paso 5. Determinación de la temperatura de referencia

Con base en la especificación del material se entra en la tabla 3.2 y se determina la curva de temperatura de excepción de impacto. Para el SA-516-70 la curva correspondiente es la B. Además, sabiendo que la tensión de fluencia es 260 MPa (38 ksi), se entra en la Tabla 9.2 y se determina una temperatura de referencia, T_{ref} = 32°F.

Paso 6. Determinación de la longitud máxima permisible de la fisura

Se determina el valor de $(T - T_{ref} + 100)$, tomando *T* como la mínima temperatura exposición. Entonces:

$$T - T_{ref} + 100 = 5 - 32 + 100 = 73^{\circ}F$$

A partir del valor anterior se entra en la figura 9.15 y se determina el largo máximo de fisura permisible en la curva C (línea solida), obteniéndose un largo máximo total de **0,14 pulg**.

Note :

- 1. Definition of Screening Curve (solid line ¼-t flaw, da he line 1-t flaw):
 - A Allowa le flaw size in ba e metal.
 - B Allowa le flaw size in weld metal that ha been subje t to PWHT.
 - C Allowa le flaw size in weld metal that ha not been subje t to PWHT.
- 2. Cra k dimen ion fo a 1-t an 1/4-t flaw a e shown in Anne 9B Figure 9B.12 & 9B.16.
- 3. See pa agra h 9.2.2.1 fo re triction an limitation .
- 4. Guideline for a lishin the Reference Tempe ature T_{ref} , a e core e in para raph 9.4.2.2.e.
- 5. The ma imum pe mitte flaw len th from this curve is 2c = 8 in.

Figure 9.15 – Level 1 Assessment – Cylinder, Circumferential Joint, Crack-Like Flaw Parallel to the Joint

Paso 7. Evaluación de resultados

Teniendo en cuenta que el largo de la fisura actual total (1,18 pulg) es mayor que el largo de fisura máximo permisible, se concluye que el componente (cuerpo cilíndrico) **NO es apto para el servicio. Se indica realizar evaluación nivel 2.**

Evaluación Nivel 2

Paso 1. Evaluar las condiciones de operación y determinar la presión, temperatura y combinaciones de carga adicionales a ser evaluadas

El estado de carga a evaluar es presión interna. Se asumen las mismas condiciones de diseño del equipo (no se indican las condiciones de operación del equipo en el plano de fabricación).

Presión de operación, p = 1,69MPa

Temperatura de operación= 66°C

Paso 2. Determinar las distribuciones de esfuerzos en la ubicación de la fisura y categorizar los esfuerzos resultantes

Tensiones primarias

La tensión primaria en la zona de la fisura corresponde a la tensión longitudinal generada por presión interna. Teniendo en cuenta la geometría del componente, estado de carga y geometría de la fisura, se tiene que la solución de esfuerzos de referencia corresponde a 9C.5.13 (Cilindro, fisura superficial, dirección circunferencial, fisura semi - elíptica, presión interna y fuerza axial sobre sección neta – RCSCCE1)

Las componentes de tensiones primarias de membrana (P_m) y flexión (P_b) para el cálculo del esfuerzo de referencia se obtienen de ecuaciones 9C.79 y 9C.80:

$$P_m = \frac{pR_i^2}{R_0^2 - R_i^2} + \frac{F}{\pi (R_0^2 - R_i^2)}$$

Donde:

F es la fuerza axial aplicada sobre la sección neta

 R_i , R_o son los radios interno y externo respectivamente

En este caso, F = 0. Al sustituir valores se tiene:

$$P_m = \frac{pR_i^2}{R_0^2 - R_i^2} = \frac{1,69(1687,5)^2}{(1712,90)^2 - (1687,5)^2} = 55,71MPa$$

Además, la tensión primaria de flexión es:

$$P_b = 0$$

Tensiones secundarias

No se consideran en esta evaluación.

Tensiones residuales

La fisura se encuentra en la soldadura circunferencial no sometida a PWHT. De 9D.3.3 se obtiene la magnitud del límite elástico efectivo, σ_{ys}^r , que se utilizará para estimar el esfuerzo residual en la junta soldada.

$$\sigma_{ys}^r = \sigma_y + 69MPa = 260MPa + 69MPa = 329 MPa$$

La tensión residual se estima a partir de 9D.5.1. De la Especificación de Procedimiento de Soldadura se conocen los rangos de voltaje (V), intensidad (I) y velocidad de avance (u). Considerando que la fisura se encuentra en la superficie exterior, donde se soldó con FCAW, se determina el calor aportado mínimo (caso más conservativo) a partir de:

$$\dot{q} = \frac{IV}{u} = \frac{190A \cdot 24V}{15 \frac{cm}{min} \left(\frac{10 mm}{1 cm}\right) \left(\frac{1 min}{60 s}\right)} = 1824 J/mm$$

Luego, se obtiene:

$$\frac{\dot{q}}{t} = \frac{1824 J/mm}{25,4 mm} = 71,81 J/mm^2$$

Puesto que $120 J/mm^2 > \dot{q}/t > 50 J/mm^2$, de 9D.5.1.b.2 se obtiene la siguiente distribución de tensión residual a través del espesor $\sigma^r(x)$:

$$\sigma^{r}(x) = \sigma_{ys}^{r} \left[1,00 - 4,43 \left(\frac{x}{t}\right) + 13,53 \left(\frac{x}{t}\right)^{2} - 16,93 \left(\frac{x}{t}\right)^{3} + 7,03 \left(\frac{x}{t}\right)^{4} \right]$$

Donde:

x: coordenada local medida desde el lado opuesto a la cara más ancha de la unión soldada (superficie interior)

t: espesor nominal de pared del recipiente

Al sustituir el valor de σ_{ys}^r en la ecuación anterior se obtiene:

$$\sigma^{r}(x) = 329 - 1457,47\left(\frac{x}{t}\right) + 4451,37\left(\frac{x}{t}\right)^{2} - 5569,97\left(\frac{x}{t}\right)^{3} + 2312,87\left(\frac{x}{t}\right)^{4}$$

Donde $\sigma^r(x)$ se obtiene en MPa. Esta expresión representa la distribución del esfuerzo residual a través del espesor, y será utilizada en el **paso 9.**

Paso 3. Determinar la resistencia a la fluencia y a la tensión

De los datos sabemos las propiedades del material obtenidas a partir de ASME II, parte D:

Resistencia a la fluencia, $\sigma_{\gamma} = 260 MPa$

Resistencia a la tracción, $\sigma_t = 485 MPa$

Modulo de Young, $E = 1,98 \times 10^5 MPa$

Coeficiente de Poisson, v = 0.3

Paso 4. Determinar la tenacidad a la fractura K_{mat}

No se dispone de datos experimentales de tenacidad a la fractura para el material. En consecuencia, se procede a estimar la tenacidad a la fractura a partir del Anexo 9F de API 579. Se emplea el método de estimación límite inferior de acuerdo con 9F.4.2. Entonces:

$$K_{mat} = 36,5 + 3,084e^{0,036(T-T_{ref}+56)}$$
$$K_{mat} = 36,5 + 3,084e^{0,036(-15-0+56)} = 50 MPa\sqrt{m}$$

Paso 5. Determinar las dimensiones de la fisura a partir de los datos de inspección

De los END se tiene las siguientes dimensiones de la fisura:

$$2c = 2c_m = 30 mm = 1,18 pulg$$

 $a = a_m = 5 mm = 0,197 pulg$

Paso 6. Calcular las tensiones de referencia para las tensiones primarias σ_{ref}^{P}

El esfuerzo de referencia se obtiene, de 9C.5.13, mediante la siguiente expresión:

$$\sigma_{ref} = \frac{P_b + \left(P_b^2 + 9(Z \cdot P_m \cdot (1 - \alpha)^2)^2\right)^{0.5}}{3(1 - \alpha)^2}$$

Y a su vez,

$$Z = \left[\frac{2\psi}{\pi} - \frac{x\theta}{\pi} \left(\frac{2-2\tau+x\tau}{2-\tau}\right)\right]^{-1} \qquad \qquad \tau = \frac{t}{R_o}$$
$$\alpha = \frac{\frac{a}{t}}{1+\frac{t}{c}}$$
$$\psi = \arccos[A\sin(\theta)]$$
$$A = x \left[\frac{(1-\tau)(2-2\tau+x\tau)+(1-\tau+x\tau)^2}{2(1+(2-\tau)(1-\tau))}\right]$$

Donde:

 α , ψ, x , τ, Z , parámetros del esfuerzos de referencia

A: Area de la sección transversal de la fisura

 θ : medio ángulo de la grieta

Evaluando los distintos parámetros de la ecuación de σ_{ref} se obtiene:

$x = \frac{a}{t} = \frac{5}{25,34} = 0,1973$
$\theta = \frac{\pi c}{4R_o} = \frac{\pi (30/2)}{4(1712,9)} = 0,006877$
$\tau = \frac{t}{R_o} = \frac{25,34}{1712,9} = 0,014793$
$A = x \left[\frac{(1-\tau)(2-2\tau+x\tau)+(1-\tau+x\tau)^2}{2(1+(2-\tau)(1-\tau))} \right] = \frac{(1-\tau)(1-\tau)(1-\tau)}{(1-\tau)(1-\tau)(1-\tau)(1-\tau)} = \frac{(1-\tau)(1-\tau)(1-\tau)(1-\tau)(1-\tau)}{(1-\tau)(1-\tau)(1-\tau)(1-\tau)(1-\tau)(1-\tau)(1-\tau)(1-\tau)$
$A = 0,1968 \left[\frac{2}{2(1 + (2 - 0,014793)(1 - 0,014793))} \right]$ $A = 0,1973 \left[\frac{2,920530}{5,911675} \right] = 0,097479$
$\alpha = \frac{\frac{a}{t}}{1 + \frac{t}{c}} = \frac{\frac{5}{25,34}}{1 + \frac{25,34}{30/2}} = 0,073370$
$\psi = \arccos[A\sin(\theta)] = \arccos[(0,097479)\sin(0,006877)] = 1,570125$
$Z = \left[\frac{2\psi}{\pi} - \frac{x\theta}{\pi} \left(\frac{2 - 2\tau + x\tau}{2 - \tau}\right)\right]^{-1}$
$Z = \left[\frac{2(1,570125)}{\pi} - \frac{0,1973(0,006877)}{\pi} \left(\frac{2 - 2(0,014793) + 0,1973(0,014793)}{2 - 0,014793}\right)\right]^{-1} =$
Z = 1,000856

Finalmente, se obtiene el esfuerzo de referencia:

$$\sigma_{ref} = \frac{0 + (0 + 9(1,000856 \cdot 55,71 \cdot (1 - 0,07337)^2)^2)^{0,5}}{3(1 - 0,07337)^2}$$

$$\sigma_{ref} = 55,75MPa$$

Paso 7. Calcular la relación de carga

La relación de carga se obtiene de:

$$L_r^P = \frac{\sigma_{ref}}{\sigma_y} = \frac{55,75}{260} = 0,2144$$

Paso 8. Calcular la intensidad de esfuerzo atribuida a las cargas primarias, K_I^P

El factor de intensidad de esfuerzos se determina mediante 9B.5.13 con la siguiente expresión (para superficie exterior):

$$K_{I}^{P} = G_{0} \left(\frac{pR_{i}^{2}}{R_{0}^{2} - R_{i}^{2}} + \frac{F}{\pi (R_{0}^{2} - R_{i}^{2})} \right) \sqrt{\frac{\pi a}{Q}}$$

Donde:

 G_0 , Q son parámetros para la determinación de K_I^P .

Q se obtiene de 9B.14 y 9B.15:

$$Q = 1,0 + 1,464 \left(\frac{a}{c}\right)^{1,65}$$
 para $a/c \le 1,0$
$$Q = 1,0 + 1,464 \left(\frac{c}{a}\right)^{1,65}$$
 para $a/c > 1,0$

Sabemos que a/c = 5/15 = 0.33 < 1, entonces obtenemos Q de:

$$Q = 1,0 + 1,464 \left(\frac{a}{c}\right)^{1,65} = 1,0 + 1,464 \left(\frac{5}{15}\right)^{1,65} = 1,23894$$

De 9B.5.14.2.b se obtiene *G*₀:

$$G_0 = A_{0,0} + A_{1,0}\beta + A_{2,0}\beta^2 + A_{3,0}\beta^3 + A_{4,0}\beta^4 + A_{5,0}\beta^5 + A_{6,0}\beta^6$$

Donde, A_i son parametros que se obtienen de la Tabla 9B.15 y β es un parametro que se define en 9B.95:

$$\beta = \frac{2\varphi}{\pi}$$

Donde

 φ : angulo eliptico (para cilindros ver figura 9B.2)

En el fondo de la fisura:

$$\varphi = \pi/2 \to \beta = \frac{2}{\pi} \left(\frac{\pi}{2}\right) = 1$$

En el borde de la fisura:

$$\varphi = 0 \to \beta = \frac{2}{\pi}(0) = 0$$

De la tabla 9B.15:

	$A_0 = 0,71380993$
	$A_1 = -0,50064564$
$t/R_i = 25,34/1687,44 = 0,015$	$A_2 = 6,87744319$
a/c = 5/15 = 0,33	$A_3 = -18,53446369$
$a/t = 5/25,34 = 0,1973 \approx 0,20$	$A_4 = 25,45166060$
	$A_5 = -17,95938012$
	$A_6 = 5,07390863$

Entonces se obtiene G_0 :

En el fondo de la fisura: $G_0 = 1,12233289$
En el borde de la fisura: $G_0 = 0,71380993$

Finalmente, se obtiene K_I^P :

En el fondo de la fisura:

$$K_{I}^{P} = 1,12233289 \left(\frac{1,69(1687,44)^{2}}{1712,9^{2} - 1687,44^{2}}\right) \sqrt{\frac{\pi(5/1000)}{1,23894}} = 7,02 \ MPa\sqrt{m}$$
En el borde de la fisura:

$$K_{I}^{P} = 0,71380993 \left(\frac{1,69(1687,44)^{2}}{1712,9^{2} - 1687,44^{2}}\right) \sqrt{\frac{\pi(5/1000)}{1,23894}} = 4,47 \ MPa\sqrt{m}$$

Paso 9. Calcular la intensidad de esfuerzo atribuida a las cargas secundarias, K_I^{SR}

La intensidad de esfuerzo atribuida a cargas secundarias, K_I^{SR} , se obtendrá a partir de 9B.5.14 (distribución de esfuerzos polinomial de cuarto orden):

$$K_{I} = \left[G_{0}(\sigma_{o} + p_{c}) + G_{1}\sigma_{1}\left(\frac{a}{t}\right) + G_{2}\sigma_{2}\left(\frac{a}{t}\right)^{2} + G_{3}\sigma_{3}\left(\frac{a}{t}\right)^{3} + G_{4}\sigma_{4}\left(\frac{a}{t}\right)^{4} + G_{5}\sigma_{5} + G_{6}\sigma_{6}\right]\sqrt{\frac{\pi a}{Q}}\right]$$

Donde:

 G_0 y Q se calcularon en el paso 8.

*G*₁ se obtiene de 9B.5.14.2:

$$G_1 = A_{0,1} + A_{1,1}\beta + A_{2,1}\beta^2 + A_{3,1}\beta^3 + A_{4,1}\beta^4 + A_{5,1}\beta^5 + A_{6,1}\beta^6$$

De la tabla 9B.15:

$$\begin{array}{l} A_{0,1} = 0,10936550 \\ A_{1,1} = 0,16892962 \\ a/c = 5/15 = 0,33 \\ a/t = 5/25,34 = 0,1973 \approx 0,20 \\ \end{array} \\ \begin{array}{l} A_{0,1} = 0,10936550 \\ A_{1,1} = 0,16892962 \\ A_{2,1} = 2,41726949 \\ A_{3,1} = -4,80609257 \\ A_{4,1} = 5,96951904 \\ A_{5,1} = -4,62596469 \\ A_{6,1} = 1,45103157 \end{array}$$

Entonces se obtiene G_1 :

En el fondo de la fisura: $\varphi = \pi/2 \rightarrow \beta = \frac{2}{\pi} \left(\frac{\pi}{2}\right) = 1 \rightarrow G_1 = 0,68405796$ En el borde de la fisura: $\varphi = 0 \rightarrow \beta = \frac{2}{\pi} (0) = 0 \rightarrow G_1 = 0,1093655$

Por otro lado, G_2 , G_3 , G_4 se obtienen de 9B.14.3.

En el fondo de la fisura ($\varphi = \pi/2$)	
$G_2 = \frac{\sqrt{2Q}}{\pi} \left(\frac{16}{15} + \frac{1}{3}M_1 + \frac{16}{105}M_2 + \frac{1}{12}M_3 \right)$	$M_1 = \frac{2\pi}{\sqrt{2Q}} (3G_1 - G_0) - \frac{24}{5}$
$G_{3} = \frac{\sqrt{2Q}}{\pi} \left(\frac{32}{35} + \frac{1}{4}M_{1} + \frac{32}{315}M_{2} + \frac{1}{20}M_{3} \right)$ $G_{4} = \frac{\sqrt{2Q}}{\pi} \left(\frac{256}{215} + \frac{1}{5}M_{1} + \frac{256}{2465}M_{2} + \frac{1}{20}M_{3} \right)$	$M_2 = 3$ $M_3 = \frac{6\pi}{\sqrt{2Q}}(G_0 - 2G_1) + \frac{8}{5}$
En el borde de fisura ($\varphi = 0$)	
$G_2 = \frac{\sqrt{Q}}{\pi} \left(\frac{4}{5} + \frac{2}{3}N_1 + \frac{4}{7}N_2 + \frac{1}{2}N_3 \right)$	$N_1 = \frac{3\pi}{\sqrt{Q}} (2G_0 - 5G_1) - 8$
$G_3 = \frac{\sqrt{Q}}{\pi} \left(\frac{4}{7} + \frac{1}{2}N_1 + \frac{4}{9}N_2 + \frac{2}{5}N_3 \right)$	$N_2 = \frac{15\pi}{\sqrt{Q}} (3G_1 - G_0) + 15$
$G_4 = \frac{\sqrt{Q}}{\pi} \left(\frac{4}{9} + \frac{2}{5}N_1 + \frac{4}{11}N_2 + \frac{1}{3}N_3 \right)$	$N_3 = \frac{3\pi}{\sqrt{Q}}(3G_0 - 10G_1) - 8$

Evaluando, se obtiene:

En el fondo de fisura ($\varphi = \pi/2$)							
$M_1 = -1,088510719$	$G_2 = 0,525634526$						
$M_2 = 3$	$G_3 = 0,440814469$						
$M_3 = -1,343151818$	$G_4 = 0,386753618$						
En el borde de fisura (ϕ	p = 0)						
$N_1 = -0,542052616$	$G_2 = 0,040629069$						
$N_2 = -1,329787713$	$G_3 = 0,0205927$						
$N_3 = 0,871840329$	$G_4 = 0,012286422$						

Del paso 2 se tiene la distribución del esfuerzo residual a través del espesor:

$$\sigma^{r}(x) = 329 - 1457,47\left(\frac{x}{t}\right) + 4451,37\left(\frac{x}{t}\right)^{2} - 5569,97\left(\frac{x}{t}\right)^{3} + 2312,87\left(\frac{x}{t}\right)^{4}$$

Por definición, K_I, se obtiene para una distribución de esfuerzo polinomial como la siguiente:

$$\sigma(x) = \sigma_0 + \sigma_1\left(\frac{x}{t}\right) + \sigma_2\left(\frac{x}{t}\right)^2 + \sigma_3\left(\frac{x}{t}\right)^3 + \sigma_4\left(\frac{x}{t}\right)^4$$

Al comparar las dos ecuaciones anteriores se hace evidente que:

$$\sigma_0 = 329$$

 $\sigma_1 = -1457,47$
 $\sigma_2 = 4451,37$
 $\sigma_3 = -5569,97$
 $\sigma_4 = 2312,87$

De la ecuación de K_I , es importante mencionar que σ_5 y σ_6 corresponden a los esfuerzos de flexión en las direcciones "x" e "y" (ver 9B.5.14.2.g). En este caso los esfuerzos de flexión no se consideran, entonces $\sigma_5 = \sigma_6 = 0$. Además, debido a que la grieta está en la superficie exterior, la presión en la cara de la grieta es cero, $p_c = 0$. Con lo cual, la ecuación de K_I se reduce a:

$$K_{I} = \left[G_{0}(\sigma_{o}) + G_{1}\sigma_{1}\left(\frac{a}{t}\right) + G_{2}\sigma_{2}\left(\frac{a}{t}\right)^{2} + G_{3}\sigma_{3}\left(\frac{a}{t}\right)^{3} + G_{4}\sigma_{4}\left(\frac{a}{t}\right)^{4}\right] \sqrt{\frac{\pi a}{Q}}$$

Ensamblando la ecuación de K_I en el fondo de la fisura ($\varphi = \pi/2$), se tiene:

$$K_{I}^{SR} = \left[(1,12233289)(329) + (0,68405796)(-1457,47) \left(\frac{a}{t}\right) + (0,525634526)(4451,37) \left(\frac{a}{t}\right)^{2} + (0,440814469)(-5569,97) \left(\frac{a}{t}\right)^{3} + (0,386753618)(2312,87) \left(\frac{a}{t}\right)^{4} \right] \sqrt{\frac{\pi a}{1,238941181}} \right]$$

Al evaluar para a = 5mm y t = 25,34 mm, se obtiene K_I^{SR} en el fondo de la fisura:

$$K_I^{SR} = 27,71 MPa\sqrt{m}$$

Se repite lo anterior para el borde de la fisura ($\varphi = 0$), obteniéndose:

$$K_{I} = \left[(0,71380993)(329) + (0,1093655)(-1457,47) \left(\frac{a}{t}\right) + (0,040629069)(4451,37) \left(\frac{a}{t}\right)^{2} + (0,0205927)(-5569,97) \left(\frac{a}{t}\right)^{3} + (0,012286422)(2312,87) \left(\frac{a}{t}\right)^{4} \right] \sqrt{\frac{\pi a}{1,148642189}}$$

Al evaluar para a = 5mm y t = 25,34mm, se obtiene K_I^{SR} en el borde de la fisura:

$$K_I^{SR} = 23,60 MPa\sqrt{m}$$

Paso 10. Calcular el factor de interacción por plasticidad, Φ

Se determina el parámetro, Φ_0 :

$$\Phi_0 = \left(\frac{a_{eff}}{a}\right)^{0,5}$$

Donde:

 a_{eff} : es la longitud efectiva de la fisura y se obtiene de:

$$a_{eff} = a + \left(\frac{1}{2\pi}\right) \cdot \left(\frac{K_l^{SR}}{\sigma_{ys}}\right)^2$$
 (para estado plano de tensiones)

Se evalúa a_{eff} con el K_I^{SR} correspondiente al fondo de la fisura ($\varphi = \pi/2$)

$$a_{eff} = \frac{5}{1000}m + \left(\frac{1}{2\pi}\right) \cdot \left(\frac{27,71 MPa\sqrt{m}}{260 MPa}\right)^2 = 6,81 mm$$
$$\Phi_0 = \left(\frac{6,81}{5}\right)^{0,5} = 1,17$$

Luego, se determina el factor de intensidad de esfuerzos secundarios y residuales corregidos por efectos de plasticidad, K_j^{SR} , a partir de:

$$K_J^{SR} = \Phi_0 \cdot K_I^{SR}$$

Evaluando, se obtiene:

En el fondo de la fisura:
$K_J^{SR} = 1,17 \cdot 27,71 MPa\sqrt{m} = 32,42 MPa\sqrt{m}$
En el borde de la fisura:
$K_I^{SR} = 1,17 \cdot 23,60 MPa\sqrt{m} = 27,61 MPa\sqrt{m}$

Posteriormente, se determina el parámetro *X*:

$$X = K_J^{SR} \left(\frac{L_r^P}{K_I^P} \right)$$

Evaluando, se obtiene:

En el fondo de la fisura:

$$X = 32,42 MPa\sqrt{m} \left(\frac{0,2144}{7,02 MPa\sqrt{m}}\right) = 0,99$$
En el borde de la fisura:

$$X = 27,61 MPa\sqrt{m} \left(\frac{0,2144}{4,46 MPa\sqrt{m}}\right) = 1,324$$

Se entra en la Tabla 9.3 para determinar el parámetro ξ :

En el fondo de la fisura:							
$L_r^P = 0,2144$	$\xi = 1,067516$						
X = 0,99							
En el borde de	e la fisura:						
$L_r^P = 0,2144$	$\xi = 1,08662656$						
X = 1,324							

Finalmente, se obtiene el factor de interacción por plasticidad con:

$$\Phi = \xi \cdot \Phi_0$$

Evaluando:

En el fondo de la fisura:
$\Phi = 1,067516(1,17) = 1,25$
En el borde de la fisura:
$\Phi = 1,08662656(1,17) = 1,27$

Paso 11. Determinar la relación de tenacidad, K_r

Se obtiene la relación de tenacidad a partir de:

$$K_r = \frac{K_I^P + \Phi \cdot K_I^{SR}}{K_{mat}}$$

Evaluando:

En el fondo de la fisura:

$$K_r = \frac{7,02 + 1,25(27,71)}{50} = 0,83$$
En el borde de la fisura:

$$K_r = \frac{4,47 + 1,27(23,60)}{50} = 0,69$$

Paso 12. Evaluar los resultados

Se grafica la siguiente ecuación. En las abscisas se representan los valores de L_r^P y en las ordenadas los valores de K_r .

$$K_r = (1 - 0.14(L_r^P)^2) \left(0.3 + 0.7e^{-0.65(L_r^P)^6} \right)$$

Se grafica la línea de cut-off de L_r^P . Debido a que no se conocen las características de endurecimiento por deformación del material, se establece un valor máximo de $L_r^P = 1$

Se grafican los puntos:

Punto	L_r^P	K_r
Fondo fisura	0,2144	0,83
Borde fisura	0,2144	0,69

En la figura 9.1 se muestra el diagrama FAD del presente caso de estudio. Se evidencia que los puntos (L_r^P, K_r) correspondientes al fondo y borde de la fisura se encuentran debajo de la curva y a la izquierda de la línea de cut-off de L_r^P . En consecuencia, se considera que **el equipo esta apto para el servicio.**

Figura 9.1 Diagrama FAD del caso estudiado

10. CONCLUSIONES

- Mediante el método de elementos finitos se obtuvieron valores de esfuerzo de tracción en el interior del recipiente y de compresión en el exterior, siendo esto concordante con el comportamiento físico esperado.
- Con el método de elementos finitos, los mayores valores de esfuerzos se localizaron en la zona de unión del cuerpo con la placa de desgaste, lo cual concuerda con lo esperado en teoría debido a la discontinuidad estructural (cambio de espesor) presente en la zona.
- Con el método de elementos finitos, los esfuerzos en la zona de unión del cuerpo con la cuna fueron mayores en el modelo con cuna rígida, siendo esto concordante con lo esperado en teoría.
- Los valores de esfuerzos en la unión del cuerpo con la placa de desgaste obtenidos mediante los métodos de Ong y elementos finitos resultaron ser del mismo orden de magnitud.
- El esfuerzo obtenido con el método Zick fue menor que los obtenidos con Ong y elementos finitos, encontrándose por debajo de estos en un factor de 1,35 y 1,56 respectivamente, en el caso de cuna elástica; y en un factor de aproximadamente 1,74 en el caso de cuna rígida. Este hecho refuerza lo indicado por Ong en su trabajo.
- En casos donde se requiere una precisión importante con respecto a los valores pico de esfuerzo, como puede ser el caso de análisis de fatiga, el método de Ong podría ser más apropiado que el método de Zick, dada la cercanía de sus resultados con los obtenidos por métodos de elementos finitos.
- Se elaboraron 4 ejemplos de especificación de procedimiento de soldadura, sin embargo, se debe tener en cuenta que las especificaciones de procedimientos de soldadura deben ser calificadas mediante ensayos (mecánicos, no destructivos, y otros) de acuerdo con el código de aplicable (por ejemplo, ASME IX, u otro similar) para poder demostrar el correcto desempeño de las uniones soldadas generadas a partir de ellas.
- La disponibilidad de datos de fabricación del equipo es de importancia para la posterior evaluación de fisura en servicio. Como ejemplo de ello, es el caso del procedimiento de soldadura, a partir del cual se puede evaluar el calor aportado durante la soldadura de la unión y estimar la distribución de esfuerzo residual en dicha unión mediante el procedimiento de API 579.
- En la evaluación de fisura realizada con la parte 9 de API 579, el resultado paso de ser "No apto" con un nivel 1, que requiere un mínimo de información y esfuerzo ingenieril, a "apto" con nivel 2, que involucra un mayor nivel de análisis, tiempo e información disponible. Por lo tanto, los resultados obtenidos son altamente dependientes de la información disponible del equipo y de las horas de ingeniería que puedan dedicarse a la evaluación.

11.FIGURAS Y TABLAS

11.1 Figuras Método de Ong

Fig. 1 Support location factor

length (L) = 7320 mm, radius (r) = 455 mm, thickness (t) = 3.3 mm, distance from one end (a) = 1410 mm, saddle width (b) = 102 mm, spacing between supports (c) = L - 2a = 4500 mm

Figura 11.1.1 Factor de localización de soporte, ka

Fig. 2 Support width factor

Figura 11.1.2 Factor de ancho de soporte, k_b

Figura 11.1.3 Factor de espaciamiento de soporte, k_c

Fig. 4 Stress reduction factor at the wear plate Figura 11.1.4 Factor de reducción de esfuerzo en la placa de desgaste, k_s

11.2 Figuras y Tablas extraídas de API 579

Figure 9.1 – Nomenclature and Idealized Shapes of Crack-Like Flaws

Curve	Material, (1), (2), (6)
	All carbon and all low alloy steel plates, structural shapes and bars not listed in Curves B, C, and D below.
	SA-216 Grades WCB and WCC if normalized and tempered or water-quenched and tempered; SA -217 Grade WC6 if normalized and tempered or water-quenched and tempered.
Α	The following specifications for obsolete materials: A7, A10, A30, A70, A113, A149, A150 (3).
	The following specifications for obsolete materials from the 1934 edition of the ASME Code, Section VIII: S1, S2, S25, S26, and S27 (4).
	A201 and A212 unless it can be established that the steel was produced by a fine-grain practice (5).
	SA-216 Grades WCA if normalized and tempered or water-quenched and tempered.
	SA-216 Grades WCB and WCC for thicknesses not exceeding 2 inches if produced to a fine grain practice and water-quenched and tempered.
	SA -217 Grade WC9 if normalized and tempered.
	SA-285 Grades A and B
	SA-414 Grade A
	SA-442 Grade 55>1 in. if not to fine grain practice and normalized.
	SA-442 Grade 60 if not to fine grain practice and normalized.
	SA-515 Grades 60
D	SA-516 Grades 65 and 70 if not normalized.
	SA-612 if not normalized.
	SA-662 Grade B if not normalized.
	Except for cast steels, all materials of Curve A if produced to fine grain practice and normalized which are not listed for Curve C and D below.
	All pipe, fittings, forgings, and tubing not listed for Curves C and D below.
	Parts permitted from paragraph UG-11 of the ASME Code, Section VIII, Division 1, shall be included in Curve B even when fabricated from plate that otherwise would be assigned to a different curve.
	A201 and A212 if it can be established that the steel was produced by a fine-grain practice.
	SA-182 Grades 21 and 22 if normalized and tempered.
	SA-302 Grades C and D.
	SA-336 Grades F21 and F22 if normalized and tempered.
	SA-387 Grades 21 and 22 if normalized and tempered.
с	SA-442 Grades 55 < 1 in. if not to fine grain practice and normalized.
Ŭ	SA-516 Grades 55 and 60 if not normalized.
	SA-533 Grades B and C.
	SA-662 Grade A.
	All material of Curve B if produced to fine grain practice and normalized and not listed for Curve D below.

Table 3.2 – Assignment Of Materials To The Material Temperature Exemption Curves In Figure 3.4

		ASME Exen	nption Curve	
MYS	Α	В	C	D
(ksi)	(°F)	(°F)	(°F)	(°F)
30	88	50	12	-14
32	83	45	7	-19
34	78	40	2	-24
36	74	36	-2	-28
38	70	32	-6	-32
40	67	29	-9	-35
42	64	26	-12	-38
44	61	23	-15	-41
46	58	20	-18	-44
48	56	18	-20	-46
50	54	16	-22	-48
Low Alloy Steels – 27	/ Joule or 20 ft-lb Trai	nsition Temperatur ASME Exen	e for Each ASME Exe	mption Curve
MYS	Α	В	C C	D
(ksi)	(°F)	(°F)	(°F)	(°F)
30	109	71	33	7
32	103	65	27	1
34	97	59	21	-5
38	03	55	17	
30	80	50	12	-0
40	85	47	9	-17
42	81	43	5	-21
44	78	40	2	-24
48	75	37	-1	-27
48	73	35	-3	-29
50	70	32	-6	-32
52	68	30	-8	-34
54	66	28	-10	-36
56	64	26	-12	-38
58	62	24	-14	-40
60	60	22	-16	-42
62	59	21	-17	-43
64	57	19	-19	-45
66	56	18	-20	-46
68	54	16	-22	-48
70	53	15	-23	-49
72	51	13	-25	-51
74	50	12	-26	-52
76	49	11	-27	-53
78	48	10	-28	-54

Table 9.2 - Reference Temperature for Use in a Level 1 Assessment

L_r^p					_					х				-					
	0	0.02	0.04	0.06	0.08	0.1	0.2	0.3	0.4	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0.01	1	1.000	1.000	1.000	1.000	1.000	1.001	1.001	1.002	1.003	1.011	1.019	1.023	1.026	1.028	1.029	1.030	1.031	1.032
0.02	1	1.000	1.000	1.001	1.001	1.001	1.002	1.003	1.004	1.006	1.019	1.031	1.038	1.042	1.044	1.046	1.048	1.051	1.047
0.03	1	1.001	1.001	1.001	1.001	1.002	1.003	1.004	1.006	1.008	1.026	1.040	1.048	1.053	1.056	1.059	1.060	1.061	1.062
0.04	1	1.001	1.001	1.001	1.002	1.002	1.004	1.006	1.008	1.011	1.031	1.047	1.056	1.061	1.065	1.068	1.071	1.076	1.081
0.06	1	1.002	1.002	1.003	1.003	1.004	1.006	1.009	1.012	1.016	1.039	1.058	1.068	1.074	1.078	1.083	1.087	1.092	1.099
0.08	1	1.002	1.003	1.004	1.004	1.005	1.008	1.012	1.016	1.020	1.045	1.066	1.077	1.084	1.088	1.093	1.098	1.103	1.112
0.1	1	1.004	1.004	1.005	1.006	1.007	1.011	1.015	1.020	1.024	1.050	1.072	1.084	1.092	1.097	1.102	1.108	1.114	1.122
0.12	1	1.005	1.006	1.007	1.008	1.009	1.013	1.018	1.023	1.028	1.054	1.077	1.090	1.099	1.104	1.110	1.116	1.122	1.132
0.14	1	1.007	1.008	1.009	1.010	1.011	1.016	1.022	1.027	1.032	1.057	1.082	1.096	1.105	1.111	1.117	1.123	1.131	1.142
0.16	1	1.008	1.010	1.011	1.012	1.013	1.019	1.025	1.031	1.035	1.060	1.086	1.101	1.111	1.117	1.123	1.130	1.138	1.149
0.18	1	1.010	1.012	1.013	1.014	1.016	1.022	1.029	1.034	1.038	1.063	1.090	1.106	1.116	1.124	1.129	1.137	1.145	1.158
0.2	1	1.012	1.014	1.015	1.017	1.018	1.026	1.033	1.038	1.041	1.066	1.094	1.110	1.121	1.128	1.136	1.144	1.153	1.166
0.3	1	1.027	1.029	1.031	1.033	1.035	1.045	1.051	1.054	1.055	1.080	1.113	1.133	1.146	1.155	1.165	1.175	1.187	1.205
0.4	1	1.049	1.052	1.054	1.057	1.059	1.068	1.071	1.071	1.071	1.099	1.135	1.157	1.173	1.184	1.196	1.209	1.225	1.248
0.5	1	1.082	1.085	1.087	1.089	1.091	1.096	1.096	1.095	1.095	1.126	1.164	1.187	1.203	1.215	1.229	1.246	1.266	1.292
0.6	1	1.126	1.128	1.129	1.130	1.131	1.131	1.129	1.128	1.129	1.161	1.196	1.218	1.234	1.248	1.262	1.284	1.311	1.337
0.7	1	1.176	1.175	1.175	1.175	1.174	1.171	1.169	1.168	1.169	1.195	1.224	1.242	1.256	1.269	1.288	1.314	1.343	1.365
0.8	1	1.215	1.214	1.212	1.211	1.210	1.204	1.200	1.198	1.196	1.210	1.228	1.241	1.252	1.267	1.291	1.316	1.341	1.355
0.9	1	1.215	1.212	1.210	1.208	1.206	1.198	1.191	1.185	1.180	1.178	1.184	1.190	1.199	1.218	1.240	1.259	1.271	1.272
1	1	1.133	1.130	1.128	1.125	1.123	1.112	1.102	1.094	1.087	1.070	1.067	1.069	1.080	1.098	1.105	1.104	1.094	1.073
1.1	1	0.951	0.948	0.946	0.943	0.941	0.930	0.921	0.912	0.905	0.884	0.877	0.882	0.887	0.879	0.861	0.842	0.820	0.801
1.2	1	0.710	0.708	0.707	0.705	0.703	0.695	0.688	0.682	0.677	0.661	0.658	0.649	0.633	0.613	0.597	0.583	0.571	0.561
1.3	1	0.498	0.497	0.496	0.495	0.494	0.490	0.486	0.483	0.480	0.471	0.461	0.449	0.439	0.426	0.427	0.420	0.415	0.413
1.4	1	0.376	0.375	0.375	0.375	0.374	0.373	0.371	0.370	0.368	0.363	0.361	0.359	0.358	0.357	0.355	0.354	0.351	0.351
1.5	1	0.334	0.334	0.333	0.333	0.333	0.332	0.331	0.331	0.330	0.330	0.331	0.332	0.333	0.332	0.333	0.331	0.333	0.331
1.6	1	0.320	0.319	0.319	0.319	0.319	0.318	0.318	0.317	0.317	0.317	0.319	0.320	0.321	0.320	0.320	0.322	0.319	0.319
1.7	1	0.308	0.308	0.308	0.308	0.308	0.307	0.307	0.306	0.306	0.306	0.307	0.308	0.309	0.309	0.308	0.309	0.308	0.308
1.8	1	0.296	0.296	0.296	0.296	0.296	0.295	0.295	0.294	0.294	0.294	0.295	0.296	0.296	0.295	0.297	0.295	0.297	0.292
1.9	1	0.283	0.283	0.283	0.283	0.282	0.282	0.282	0.281	0.281	0.281	0.281	0.282	0.282	0.284	0.283	0.281	0.280	0.280
2	1	0.268	0.268	0.268	0.268	0.268	0.267	0.267	0.267	0.266	0.266	0.266	0.266	0.266	0.262	0.261	0.256	0.263	0.266

Table 9.3 – Plasticity Interaction Factor – Parameter ξ as a Function of L_r^p and X

t/R _i	a/c	a/t	G	A	A 1	A ₂	A ₃	A4	As	As	
			G	0.6152816	-0.3348694	6.2955620	-15.590618	19.299508	-12.488107	3.3010035	
			G ₁	0.0703566	0.2828152	1.4036169	-0.6511596	-1.2076596	1.0318656	-0.2423741	
		•	G_5	0.6152816	-0.3348694	6.2955620	-15.590618	19.299508	-12.488107	3.3010035	
		G ₆	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000		
			Go	0.6208898	-0.1664421	6.5968181	-18.807095	26.180692	-18.464818	5.1787192	
		0.2	G ₁	0.0903134	0.1796401	2.4581113	-4.8428461	5.9649997	-4.5970978	1.4302661	
		0.2	G_5	0.6256175	-0.2460646	7.1786495	-20.690522	29.252069	-20.921801	5.9439866	
			G ₆	-0.0529280	0.5817080	-2.0439050	2.4908050	-0.3061320	-1.2173360	0.5545260	
			Go	0.7329950	0.0996250	3.9573730	-7.2526600	4.9136700	-0.6649300	-0.4401500	
0.01	0.25	0.4	G ₁	0.1244530	0.2438230	1.9426520	-2.0609400	0.6954550	-0.3004200	0.1292100	
0.01	0.20	0.4	G ₅	0.7324580	-0.0790000	5.2132460	-11.267200	11.336950	-5.7116200	1.1111110	
			G_6	-0.0724760	0.7545830	-2.6909740	3.3377620	-0.4333620	-1.6647900	0.7776290	
			Go	0.9335850	-0.0671400	4.9859720	-8.0099800	3.1444570	2.1751370	-1.5670900	
		0.6	G ₁	0.1861600	0.1872070	2.3208790	-2.4591900	0.4288930	0.3550800	-0.1581000	
		0.0	G ₅	0.9308850	-0.2487900	6.4158440	-12.995000	11.662450	-4.8484800	0.6666670	
			G ₆	-0.0842130	0.8378360	-3.0789330	3.9428740	-0.4659710	-2.2536710	1.1097250	
			G_0	1.2407050	-0.9832700	11.036350	-24.419000	25.074820	-13.247100	3.0448500	
		0.8	0.0	G ₁	0.2685320	0.0687020	2.9242790	-3.1935800	-0.0724900	1.6614580	-0.7248500
			G ₅	1.2020050	-0.2413600	5.4364160	-5.7446000	-5.6959800	11.276780	-4.5000000	
			G ₆	-0.0450570	0.4286070	-2.4450330	5.2502870	-4.3532820	0.7113540	0.4546460	
		0	G_0	0.8776607	-0.6729719	3.7721411	-6.5209060	6.3377934	-3.7028038	0.9872447	
			G ₁	0.1277541	0.4368502	0.4904522	1.0427434	-2.9631236	2.0826525	-0.5184313	
		, s	G ₅	0.8776607	-0.6729719	3.7721411	-6.5209060	6.3377934	-3.7028038	0.9872447	
			G ₆	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
			G	0.9005246	-1.0307386	6.3564034	-14.662730	18.900958	-13.111605	3.7340887	
		0.2	G ₁	0.1490274	0.1602062	2.2439024	-4.4879387	5.6373631	-4.4442698	1.4267720	
			G ₅	0.9044688	-1.0934309	6.8237929	-16.242399	21.630155	-15.453183	4.5238507	
			G ₆	-0.0216090	0.2225620	-0.7436250	0.8569840	-0.1124830	-0.3230500	0.1247120	
			G	1.0063880	-0.7425700	3.1260260	-2.1867000	-3.0931200	5.1298930	-2.0520500	
0.01	0.5	0.4	G ₁	0.1789440	0.3206900	1.1011660	-0.2780300	-1.7360100	1.6648710	-0.5147200	
			G_5	0.9827660	-0.5544700	2.1195940	0.3228700	-6.2642600	7.0697670	-2.5000000	
			G ₆	-0.0330000	0.2558440	-1.2392500	2.7155410	-2.7845300	1.1748480	-0.0894600	
			G	1.1876880	-1.1514600	4.3134430	-3.6414000	-3.2248100	6.5781370	-2.7782500	
		0.6	G ₁	0.2348560	0.1694010	1.5310330	-0.9297400	-1.2048400	1.4747130	-0.5037800	
			G_5	1.1736920	-1.0985200	4.0914840	-3.4273500	-2.7996400	5.6581030	-2.3260900	
			G ₆	-0.0241400	0.1054660	-0.3692100	0.1480170	1.3452060	-2.2134300	1.0080860	
			G_0	1.3768550	-1.1807900	3.4327750	-1.9675000	-3.7422900	5.2586230	-1.8511600	
		0.8	G ₁	0.2827170	0.2258060	0.9136330	0.4871590	-2.5046300	1.9013960	-0.5002900	
		0.0	G_5	1.3852980	-1.4598800	4.8824450	-5.0567200	-0.7333900	3.9649120	-1.6666700	
			G ₆	-0.0069900	-0.1354100	0.5129600	-0.1715000	-1.4812600	2.0791380	-0.7969500	

Table 9B.15 – Influence Coefficients For A Circumferential Semi-Elliptical Surface Crack In A Cylinder – Outside Surface

t/R _i	a/c	a/t	G	A	A 1	A ₂	A ₃	A 4	As	As
<i>t/Ri</i> 0.01667			G	0.4065238	0.7772483	3.8861644	-12.573943	16.760207	-11.014593	2.8706957
		0	G ₁	0.0320270	0.1825342	2.2670449	-2.7076615	1.2088194	-0.3777430	0.0763155
			G ₅	0.4065238	0.7772483	3.8861644	-12.573943	16.760207	-11.014593	2.8706957
			G ₆	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
			G	0.4141030	1.1370353	1.7918721	-6.3657982	8.0276077	-5.1090766	1.3043557
		0.2	G ₁	0.0486343	0.0164272	3.9099112	-9.0029835	12.437460	-9.6860424	2.9828172
		0.2	G_5	0.4143081	1.1612439	1.6725006	-6.0389787	7.5553433	-4.7733918	1.2122682
			G ₆	-0.0257390	0.2239250	-1.0656070	1.3604470	0.3212500	-1.4129050	0.6046200
			G_0	0.4860310	1.6014030	0.4174570	-1.7801100	0.9884490	0.0450910	-0.2110000
0.01667	0 125	0.4	G ₁	0.0716230	0.3907820	1.7772010	-1.2379600	-0.5878700	0.4930510	-0.0604600
0.01007	0.120	0.4	Gs	0.4825390	1.5260960	1.0116470	-4.0246700	5.0139140	-3.3630800	0.8888890
			G_6	-0.0202900	-0.2224800	1.2564450	-4.3167000	7.7764130	-6.6030000	2.1296120
			G_0	0.6270060	1.9158750	0.3750140	0.7243790	-4.3115900	3.7865410	-1.0734300
		0.6	G ₁	0.1097630	0.4925440	1.7137970	-0.4041900	-1.8971000	1.1354540	-0.1307000
		0.0	Gs	0.6308030	1.6413760	2.5244720	-6.8239600	8.5609730	-6.7236500	2.2222220
			G	-0.0654530	0.4089380	-2.7275000	5.4276500	-3.4503160	-0.3170070	0.7307650
		0.8	G	0.8834920	1.5499750	5.9525350	-9.3777300	1.6582560	2.6247130	-0.7903400
			G ₁	0.1827450	0.4170240	3.0645390	-2.2689800	-1.8835600	2.2280410	-0.5460400
			Gs	0.8486090	2.5957920	-2.1629000	17.323570	-41.416700	36.306820	-11.000000
			G ₆	-0.0526800	0.0313980	-0.9515500	1.6109290	0.6934160	-2.4678000	1.1362870
		0	G_0	0.6152816	-0.3348694	6.2955620	-15.590618	19.299508	-12.488107	3.3010035
			G ₁	0.0703566	0.2828152	1.4036169	-0.6511596	-1.2076596	1.0318656	-0.2423741
			G ₅	0.6152816	-0.3348694	6.2955620	-15.590618	19.299508	-12.488107	3.3010035
			G ₆	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
			G	0.6268151	-0.2659538	7.2065345	-20.587488	28.869672	-20.486698	5.7761489
		0.2	G ₁	0.0907196	0.1725963	2.5006366	-4.9586990	6.1276304	-4.7110563	1.4617796
		0.2	Gs	0.6251326	-0.2394193	7.1122784	-20.448049	28.825683	-20.563129	5.8286449
			G	-0.0564090	0.5906920	-2.0901230	2.5558090	-0.2933150	-1.2772490	0.5764810
			G_0	0.7331060	0.0986810	3.9472550	-7.1889400	4.7837550	-0.5451500	-0.4819600
0.01667	0.25	0.4	G ₁	0.1237230	0.2464690	1.9255840	-2.0144800	0.6420620	-0.2712700	0.1223800
			G₅	0.7315800	-0.0604700	5.0518000	-10.721000	10.434690	-4.9906700	0.8888890
			G ₆	-0.0146100	-0.1583700	1.0586750	-3.4445700	5.7766210	-4.7213100	1.5035680
			G_0	0.9330720	-0.0910200	5.1514030	-8.5062000	3.9372450	1.5522690	-1.3786200
		0.6	G ₁	0.1835580	0.2173130	2.1201030	-1.8419100	-0.4959200	1.0292210	-0.3502900
			G ₅	0.9242220	-0.1379100	5.6239620	-10.482500	7.7246490	-1.8459600	-0.2222200
			G ₆	-0.0276100	-0.0847600	0.6326700	-2.4527000	4.7781310	-4.3193100	1.4735860
			G_0	1.2480880	-1.2667900	13.231880	-31.738500	37.283310	-23.122200	6.1251700
		0.8	G ₁	0.2617530	0.1907690	1.9836910	0.0718510	-5.5586600	6.0836580	-2.0974100
		0.0	G ₅	1.1785120	0.2633730	1.5798440	7.4390720	-27.718600	29.000000	-10.000000
			G	-0.0372000	0.0294390	-0.3454900	1.0579850	-1.3468700	0.8809930	-0.2388600

Table 9B.15 – Influence Coefficients For A Circumferential Semi-Elliptical Surface Crack In A Cylinder – Outside Surface

t/R ₁	a/c	a/t	Gi	A ₀	A ₁	A ₂	A ₃	A ₄	A 5	A ₆
			G_0	0.8776607	-0.6729719	3.7721411	-6.5209060	6.3377934	-3.7028038	0.9872447
0.04667		0	G ₁	0.1277541	0.4368502	0.4904522	1.0427434	-2.9631236	2.0826525	-0.5184313
			G_5	0.8776607	-0.6729719	3.7721411	-6.5209060	6.3377934	-3.7028038	0.9872447
			G_6	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
			G_0	0.9022613	-1.0595157	6.5513251	-15.271446	19.858891	-13.849252	3.9547586
		0.2	G ₁	0.1492632	0.1564498	2.2690315	-4.5619815	5.7476801	-4.5263194	1.4510330
		0.2	G_5	0.9029354	-1.0732156	6.6901441	-15.831657	20.969482	-14.922494	4.3567685
			G_6	-0.0240560	0.2342620	-0.7930600	0.9271080	-0.1130250	-0.3740260	0.1454300
			G_0	1.0074290	-0.7627700	3.2930000	-2.7766500	-2.0930300	4.3235700	-1.8034700
0.01667	0.5	0.4	G ₁	0.1810320	0.2833580	1.3218690	-0.8922400	-0.8601000	1.0459710	-0.3429800
0.01007	0.5	0.4	G_5	0.9858560	-0.6144600	2.5659140	-1.2397100	-3.5787400	4.8558140	-1.8000000
			G ₆	-0.0338400	0.2387950	-1.1681400	2.5946840	-2.7007500	1.1765800	-0.1073300
			G_0	1.1851510	-1.1065900	4.0604300	-2.9480500	-4.2109900	7.2804210	-2.9762600
		0.6	G_1	0.2335280	0.1829380	1.4758450	-0.8294800	-1.2826600	1.4906960	-0.4992200
		0.0	G_5	1.1724980	-1.0832900	4.0212020	-3.3213400	-2.8475900	5.6324110	-2.3043500
			G_6	-0.0275600	0.1023610	-0.3536000	0.1087530	1.4111820	-2.2584400	1.0173030
		0.8	G_0	1.3763340	-1.1705800	3.4426520	-2.1143000	-3.3895100	4.9216180	-1.7364000
			G ₁	0.2820140	0.2322400	0.9005230	0.4878420	-2.4663700	1.8500330	-0.4797300
			G_5	1.3815880	-1.3958500	4.5246880	-4.1377600	-1.9430100	4.7522810	-1.8666700
			G_6	-0.0123300	-0.1322000	0.4935200	-0.1065200	-1.5677300	2.1435930	-0.8183300
			G_0	1.1977992	-0.5244870	0.1498299	2.3284866	-5.1058499	4.3469049	-1.3487980
		0	G ₁	0.1870117	0.6987352	0.1316900	0.7269255	-2.5259384	2.1756251	-0.6540458
			G_5	1.1977992	-0.5244870	0.1498299	2.3284866	-5.1058499	4.3469049	-1.3487980
			G ₆	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
			G_0	1.2159041	-1.2019721	4.8943491	-13.164862	20.514432	-16.542122	5.3339888
		0.2	G ₁	0.2138478	0.2009657	3.1365782	-8.7806790	13.020781	-10.439196	3.3770529
		0.2	G_5	1.2336102	-1.5324242	7.1847065	-20.827179	33.758570	-27.923695	9.1765536
			G ₆	0.0004290	-0.0477510	0.2303150	-0.2454810	-0.4980090	1.1046740	-0.5435480
			G_0	1.3057270	-1.0008200	1.8572720	-0.6808000	-2.8231500	4.0709330	-1.6411400
0.01667	1	0.4	G ₁	0.2250957	0.1870147	3.1086959	-8.6990069	12.827333	-10.126798	3.2062338
0.01007	· ·	0.4	G_5	1.2693430	-0.6672200	0.1805440	3.0628380	-6.8370600	5.9627910	-1.9000000
			G_6	-0.0555600	0.6002060	-3.0806100	7.2729560	-8.4525400	4.5719390	-0.8563900
			G_0	1.4097520	-1.1958700	2.1136310	-1.1728300	-1.9231000	3.1722290	-1.2928000
		0.6	G ₁	0.2528090	0.4962060	0.8029830	-0.6609800	-1.0059000	1.4049960	-0.5248000
		0.0	G_5	1.3821790	-0.9982800	1.2826480	0.0761910	-2.2401100	2.3906980	-0.8000000
			G_6	-0.0539000	0.5709100	-2.9238200	6.9536840	-8.2458800	4.6543540	-0.9553500
			G_0	1.5261100	-1.3576900	1.9596150	-0.7444900	-1.8536800	2.4558510	-0.8665000
		0.0	G_1	0.2798340	0.4788400	0.6925290	-0.4412500	-0.9713700	1.1277000	-0.3828300
		0.0	G_5	1.4934890	-1.1805900	1.5372220	-1.0351600	0.5002050	-0.6976700	0.5000000
			G_6	-0.0364900	0.1772770	-0.4732300	0.4368740	0.1557290	-0.4866500	0.2265000

Table 9B.15 – Influence Coefficients For A Circumferential Semi-Elliptical Surface Crack In A Cylinder – Outside Surface

12.ANEXOS

Anexo A. Cálculo de carga en las cunas de apoyo

Calculo analítico de carga sobre cuna

En el cálculo analítico de la carga en la cuna se considerarán las siguientes premisas:

- a) Los cálculos de pesos del cuerpo cilíndrico, cabezal y placa de desgaste se realizarán en condición de corroído.
- b) El área y volumen de ambos cabezales (juntos) equivalen al de una esfera hueca.
- c) No se considera el peso de las cunas.
- d) Se desprecia el peso de las conexiones

Primero, se determina el volumen de metal del equipo a partir de lo siguiente:

Vol metal = Vol Cilindro Hueco + Vol Esfera Hueca + Volumen Placa Desgaste

$$Vol metal = 2\pi R_m Lt + \frac{4}{3}\pi \left(R_{eh}^2 - R_h^2\right) + \theta_r \frac{\pi}{180^\circ} \left(R_e + \frac{t_r}{2}\right) bt_r$$
(Ec. A.1)

$$Vol \ metal = \left[2\pi(1700,835)(23460)(24,13) + \frac{4}{3}\pi\left(1708,10^2 - 1693,57^2\right) + 151,62^{\circ}\frac{\pi}{180^{\circ}}\left(1712,9 + \frac{20}{2}\right)(700)(20)\right]\left(\frac{1}{10^{9}}\right)$$
$$Vol \ metal = 6,705 \ m^3$$

Luego, el peso del cuerpo se consigue con:

$$Peso\ cuerpo = Vol\ metal\ \times\ Densidad\ Acero\ \times\ g \tag{Ec. A.2}$$

Peso cuerpo = 6,705 m³ × 7850
$$\frac{kg}{m^3}$$
 × 9,8066 $\frac{m}{s^2}$
Peso metal = 516200 N

El volumen de producto se obtiene de:

Vol producto = Volumen Cilindro + Volumen Esfera

$$Vol \ producto = \ \pi R^2 L + \frac{4}{3} \pi R_c^3$$
(Ec. A.3)
$$Vol \ producto = \left[\pi (1688,77)^2 (23460) + \frac{4}{3} \pi (1693,57)^3 \right] \left(\frac{1}{10^9} \right)$$
$$Vol \ producto = \ 230,54 \ m^3$$

Luego, el peso de producto se consigue con:

$$Peso \ producto = Vol \ producto \ \times G \times \rho_A \times g \tag{Ec. A.4}$$

72
Peso producto = 230,54
$$m^3 \times 0,56 \times 1000 \frac{kg}{m^3} \times 9,8066 \frac{m}{s^2}$$

 $Peso \ producto = 1266057 \ N$

El peso total se obtiene de:

 $Peso \ total = 1782257 \ N$

Teniendo en consideración que las cunas están ubicadas simétricamente en el equipo, la carga Q sobre cada cuna se obtiene de:

$$Q_a = \frac{Peso\ total}{2}$$
$$Q_a = 891129\ N$$

Carga sobre cuna extraída de modelo de Ansys Workbench

En la solución del modelo se incluye el cálculo de las reacciones entre la cuna y el suelo por efecto del peso propio del equipo y del producto almacenado. Para fines de este estudio es de interés el valor de la reacción en la dirección Y, según se muestra en la figura 12.1.

-	Definition							
	Туре	Force Reaction						
	Location Method	Boundary Condition						
	Boundary Condition	Fixed Support						
	Orientation	Global Coordinate System						
	Suppressed	No						
-	Options							
	Result Selection	Y Axis						
+	Display Time	End Time						
	Results							
-	Maximum Value Ove	r Time						
	Y Axis	4,6132e+005 N						
-	Minimum Value Over Time							
	Y Axis	4,6132e+005 N						
Ŧ	Information							

Figura 12.1 Resultados fuerza de reacción total

Entonces se obtiene:

$$Q^* = 461320 N$$

Sin embargo, el valor anterior también incluye el peso de las cunas, el cual no es de interés para nuestro análisis. En este sentido, se procedió a suprimir del modelo toda la geometría

correspondiente al cuerpo cilíndrico y el cabezal, además, de las condiciones de borde asociadas a estos componentes y la carga hidrostática de producto. De lo anterior, se obtiene el modelo de cuna mostrado en la figura 12.2.

Figura 12.2 Modelo de cuna en Ansys

De este modo, se logra obtener la reacción en la cuna por efecto de su propio peso según se indica en figura 12.3.

D	etails of "Force React	ion" 👻 🕂 🗖 🗙					
Ξ	Definition						
	Туре	Force Reaction					
	Location Method	Boundary Condition					
	Boundary Condition	Fixed Support					
	Orientation	Global Coordinate System					
	Suppressed	No					
Ξ	Options						
	Result Selection	Y Axis					
	Display Time	End Time					
+	Results						
Ξ	Maximum Value Over Time						
	Y Axis	6474,3 N					
Ξ	Minimum Value Over Time						
	Y Axis	6474,3 N					
Ŧ	Information						

Figura 12.3 Resultados de reacción por efecto del peso de la cuna

Entonces se obtiene:

$$Q^{**} = 6474,30 N$$

Finalmente, la carga de la cuna por efecto de peso propio del equipo y del producto se obtiene de:

$$Q_{1/4} = Q^* - Q^{**} = 461320 - 6474,30 = 454845,7 N$$

Considerando que se ha modelado ¼ de equipo, la carga sobre la cuna será 2 veces el valor anterior:

$$Q = 909691, 4 N$$

Si se compara el valor anterior con respecto al valor determinado analíticamente se tiene:

$$Error = \frac{909691,4 - 891129}{891129} \times 100 = 2,08\%$$

Se evidencia un error cercano al 2%. El valor de carga extraído del modelo en Ansys será usado en la aplicación de los métodos de Zick y Ong.

Anexo B. Plano del Equipo Estudiado

5 6 3 8 30 0 -28 -127 . 394.5 394.5 33 20 20 20 20 50 3345 3445

DETALLE DE CUNA

DETALLE CUNA FIJA

DETALLE CUNA MOVIL

74			CONEXIONES			63.						
POS	CANT	P	SCH		TIPD	SERIE	PRUY	1	BSERV			
NI	1	×	80	ENTRADA	DE LPG		WNRF	150#	1913	C/1	REFUERZ	
NE	1	8'	80	SALIDA	DE LPG		WNRF	150#	1913	C/1	REFUERZ	
NG	1	4"	80	RETURNE	WNRF	150#	1913	C/1	REFUERZ			
N4	1	3'	80	VALV. I	E SEGURI	WNRF	150#	1913	C/I	REFUERZ		
NS A-J	2	3"	80	BRIDLE		WNRF	150#	1913	C/1	REFUERZ		
N6	1	2'	80	CONEX. I	PLACA RU	WNRF	150#	1913	СЛ	REFUERZ		
N7	1	2'	80	VENTED		WNRF	150#	1913	C/1	REFUERZ		
NB	1	2'	80	DRENAJE	700	WNRF	150#	1913	C/	ET UERZ		
N7	1	21	80	MANTIMET	RD	WNRF	150#	1913	C/F	EFUERZ		
MI	1	20'	ESP.	ENTRADA	DE HOME	RE	WNRF	150#	1963	C/B	RIBA CIE	
	A BY STREETING DE CERDRE									1		
								L		L		
					MATER	RIAL	ES					
ENVU	ELTA			A-516	GR. 70	ACCES	RICIS		A-	234	WP3	
CABE	ZALES	5		A-516	GR. 70 JUNTAS			KLING			RIT	
CUNA	S			A-36	6 CUPLAS			A-10			D7	
BRIDA	S			A-105	ESPARR./TUERCAS				A=133 BA			
NIPLE	2			A-105	GR, B							
REFU	RZOS	CON	EX.	A-516	GR. 70	L			1			
-	-			DATI	JS DE	DI	SEÑ					
CUDIO	iii de	DIS	EÑO					ASME	VIII- N 1995		¹ 98	
SERV	ICIO				2		TANQ	E ALM	ACEN	MIE	NTO LP	
CAPA	CIDAL)						6	27 M	3		
PRES		E DI	SEÑO				-	17	.25 KG	J/Ch	(²	
TEMP	ERATI	JRA I	E DI	SEÑO					66 *	C		
ESPE	SOR F	PORC	ORRO	SION					1.27	m m,		
PESO	VAC	10					62 TN.					
PESO	LLEN	DE DE	AGU	A			289 TN.					
ESPE	SOR E	NVU	ELTA					ł	25.4 M	m		
ESPE	SOR (ABEZ	ALES	SEMIES	FERICO				15.8 m	m. (~	
RADI	IGRAF	IADO					SHEDDER FULL					
VIEN	то					CIRSOC 102						
SISM	1				CIRSUC 103							
NIEVI					SUBRECARGA 75 KG/M2							
TERM	NACI	IN E	UR		SUPERFICIES ARENADAS							
PINTL	RAE	XTER	UR				APL	CARBOL	INE	HN 1 158/	890	
				and the second second								
DETAL PLACA LAS PAR 2_LAS DE 3_EFE	DE D	AS SE DENT: AS SE DNES ECCIL DE BI AGU	CANTE FICAC RAN S A HO INES RIDA JEROS	PLANDS LATERA SIDN RCAJADA INDICADA: A E, DEL PARA V	COMPLE L SI B 16.5 S DE LOS S EN LA 1 EQUIPO ENTED 6	Y SE S EJES P ISTA DI 6 mm. El	RILIS	S/PL. S/PL. AN CON ALES IXIONES	N° 118 N° 119 LDS I ESTA REFUE	AGU. N TI	ERUS Imadas S	
LM 1	HOJA										2	
_		1								T		
										1		
	3/10/4	EMT	TIM				C	ROMERO	-	ZI	H SANZI	
EV	ECHA	T		DESC	RIPCION		D	BUJD	REVIS		APROBO	
ABRICA						ŝ				1		
USERA		Γ_{I}		TH	CSA	IN(706) -	EN	IER	2IA 59-35	17		
CLIE	ITE	Ţ					1	IBRA	RE	FERE	NCIA	
THE LA	00	FECH	14	FIRMA	DENEMINA	CION DEL	PLAN	0			1	
EVIS	DO	13/10/	98	L SANZI	TANQL	JE AL	MAC	ENAM	1IEN	10	LPG	
SCAL	1 000	13/10/	98 1	. SANZI	CAP.	227	М.°					
		1:40)		CONJUN	Y DTV	DET	ALLE	S			
TODA	S LAS	MEDI	DAS E	N mm	PRODUCTO	CODIGO	NI	IMERCI	TAM	AND	MODIF.	
	AR NE	DIDAS	EN E	L PLAND	03	CM	1 1	17	A	1	0	

13.REFERENCIAS

[1] ASME. (2019). Boiler and Pressure Vessel Code. Section II. Part D, Properties (Metric). American Society of Mechanical Engineers.

[2] ASME. (2019). Boiler and Pressure Vessel Code. Section VIII. Div. 1. American Society of Mechanical Engineers.

[3] ASME. (2019). Boiler and Pressure Vessel Code. Section VIII. Div. 2, Alternative Rules. American Society of Mechanical Engineers.

[4] ASME. (2019). Boiler and Pressure Vessel Code. Section IX. Qualification Standard for Welding, Brazing, and Fusing Procedures; Welders; Brazers; and Welding, Brazing, and Fusing Operators. American Society of Mechanical Engineers.

[5] API 579-1/ASME FFS-1. (2016). Fitness For Service. American Petroleum Institute and American Society of Mechanical Engineers.

[6] El-Abbasi N., Meguid S.A. y Czekanski A. (2001). Three-dimensional Finite Element Analysis of Saddle Supported Pressure Vessels. International Journal of Mechanical Sciences. Volumen 43. Elsevier.

[7] Kumar V., Kumar N., Angra S. y Sharma P. (2014). Design of Saddle Support for Horizontal Pressure Vessel. International Journal of Mechanical and Mechatronics Engineering. World Academy of Science, Engineering and Technology.

[8] Motashar F., Tooth A. (1992). The Support of Cylindrical Vessels on Rigid and Flexible Saddles – An Improved Analysis. En V. Křupka y M. Drdácký (Eds.), Contact Loading and Local Effects in Thin-walled Plated and Shell Structures (pp. 62-69). Springer-Verlag Berlin Heidelberg.

[9] Ong L.S. (1995). Peak Stress and Fatigue Assessment at the Saddle Support of a Cylindrical Vessel. Journal of Pressure Vessel Technology. Volumen 117 (pp. 305-311). ASME.

[10] Tooth, A. S., Duthie, G. C., White, G. C, and Carmichael, J. (1982). Stresses in Horizontal Storage Vessels - A Comparison of Theory and Experiment. Journal of Strain Analysis. Vol. 17 (pp. 169-176).

[11] Zick L.P. (1951). Stresses in Large Horizontal Cylindrical Pressure Vessel on Two Saddle Supports. Welding Journal Research Supplement (pp.556-566).