Universidad Tecnológica Nacional

Proyecto Final

"Propuesta de readecuación de la Intersección de las Rutas Nacionales 12 y 127"

<u>Autores:</u>

- Gabrielli Lencina, Hugo Leonel
- Londero, Manuel

Director:

• Mg. Ing. Sato, Rodolfo

Codirector:

• Ing. Caminos Primo, Sebastián

Proyecto final presentado para cumplimentar los requisitos académicos para acceder al título de Ingeniero Civil

en la

Facultad Regional Paraná

Mayo de 2023

Declaración de autoría

Nosotros declaramos que el Proyecto Final "Propuesta de readecuación de la Intersección de las Rutas Nacionales 12 y 127" es propio. Declaramos:

- Este trabajo fue realizado en su totalidad, o principalmente, para acceder al título de grado de Ingeniero Civil, en la Universidad Tecnológica Nacional, Regional Paraná.
- Se establece claramente que el desarrollo realizado y el informe que lo acompaña no han sido previamente utilizados para acceder a otro título de grado o pre-grado.
- Siempre que se ha utilizado trabajo de otros autores, el mismo ha sido correctamente citado. El resto del trabajo es de autoría propia.
- Se ha indicado y agradecido correctamente a todos aquellos que han colaborado con el presente trabajo.
- Cuando el trabajo forma parte de un trabajo de mayores dimensiones donde han participado otras personas, se ha indicado claramente el alcance del trabajo realizado.

Firmas:

Gabrielli Lencina, Hugo Leonel

Legajo Nº 15.356

Londero, Manuel

Legajo N° 15.352

Fecha: mayo de 2023

Agradecimientos

El presente Proyecto Final representa la culminación de un proceso de formación académica y profesional que llevó largas horas de trabajo, en el cual han participado directa e indirectamente muchas personas e instituciones aportando conocimientos y experiencias. Es por esto por lo que queremos expresar nuestro profundo agradecimiento.

Al Mg. Ing. Sato Rodolfo y el Ing. Caminos Primo Sebastián, ya que este proyecto fue realizado bajo su supervisión. Queremos agradecerles por su tiempo, paciencia y disposición para resolver dudas y poder llevar a cabo este proyecto.

A la Universidad Tecnológica Paraná – Facultad Regional Paraná, y todo el personal que engloba la misma por facilitarnos la educación necesaria para formarnos como profesionales de la Ingeniería Civil y hacernos sentir bienvenidos desde el primer día en lo que se volvió nuestra "segunda casa" durante los últimos años.

A la Dirección Nacional de Vialidad – Distrito Entre Ríos, quienes nos brindaron información que fue fundamental para poder llevar a cabo este proyecto.

Por último, queremos agradecer a nuestras familias y amigos por el apoyo incondicional que nos dieron a lo largo de estos años, ayudándonos siempre desde su lugar en todo lo necesario y alentándonos seguir siempre adelante.

Universidad Tecnológica Nacional

Abstract

Facultad Regional Paraná Civil Engineering

Proposal for restructuring of the Intersection of National Highways 12 and 127

Gabrielli Lencina, Hugo Leonel Londero, Manuel

Abstract:

The following research work consists of the analysis of two proposed alternatives to replace the current intersection between National Highways 12 and 127, located in proximity to the town of El Pingo, in the province of Entre Rios. This intersection is of the channelized type. The analyzed alternatives include a same-level roundabout and a trumpet interchange.

For this research, history information was collected, a traffic study based on history data from National Road Management was conducted, and the geometric designs for both alternatives were sketched. Subsequently, a budget analysis was carried out in order to choose the most viable alternative. After this, the size of the structural package for the selected alternative was determined and the terrain was analyzed to determine its quality to be used as subgrade. In addition, a hydraulic and hydrological analysis was carried out to determine the size of the piping that will be required to drain the water gathering in the intersection.

The project also includes complementary work like street lighting, and vertical and horizontal signs.

To conclude, environmental impact report was created in order to determine if this project is viable from an environmental point of view.

Keywords: Intersection – National Highways – Analysis of alternatives - Roundabout

Resumen:

El presente trabajo consiste en el análisis de dos propuestas de alternativas para reemplazar la intersección actual entre las rutas nacionales 12 y 127, ubicada en las cercanías de la localidad de El Pingo, en la provincia de Entre Ríos, la cual es una intersección de tipo canalizada. Las alternativas analizadas corresponden a una rotonda a nivel y una intersección a distinto nivel de tipo trompeta.

Para la confección del mismo se recolectó información de antecedentes, se realizó un estudio de tránsito a partir de los datos históricos de la Dirección Nacional de Vialidad y se realizaron los diseños geométricos de ambas alternativas. A esto, se le añadió un análisis económico para poder elegir la alternativa más viable. Luego, de la alternativa seleccionada se dimensionó el paquete estructural, por lo que se debió analizar el suelo de la zona del proyecto para determinar la calidad de este para ser usado como subrasante. Además, se realizó un estudio hidrológico e hidráulico para poder dimensionar la alcantarilla necesaria para evacuar el agua que se acumule en la intersección.

En el trabajo también se incluyen obras complementarias como el alumbrado público y la señalización horizontal y vertical.

Para finalizar, se elaboró un informe de impacto ambiental que permitió determinar si el proyecto es viable ambientalmente o no.

Palabras claves: Intersección – Rutas Nacionales – Análisis de alternativas – Rotonda

Índice

1. Intro	ducción	16
1.1 De	scripción general del proyecto	16
1.2 De	scripción de la intersección actual y zona del proyecto	16
2. Objet	ivos	19
2.1 Ob	jetivos generales	19
2.2 Ob	jetivos particulares	19
3. Recop	pilación de antecedentes	20
3.1 Do	cumentación provista por la DNV	20
3.1.1	Datos de tránsito	20
3.1.2	Paquetes estructurales	21
3.2 Da	tos del IGN	22
4. Estud	io de tránsito	25
4.1 An	álisis de incremento de tránsito y tránsito futuro	26
4.2 Ca	tegoría de camino	30
4.3 Ce	nso de giros	30
5. Antep	proyecto de alternativas	32
5.1 Ge	neralidades	32
5.1.1	Diseño geométrico de las alternativas	32
5.1.2	Paquete estructural adoptado para el análisis	32
5.1.3	Elaboración de cómputos y presupuestos	33
5.2 Int	ersección a nivel de tipo rotonda	35
5.2.1	Diseño geométrico	35
5.2.2	Cómputo y presupuesto	39
5.3 Int	ersección a distinto nivel de tipo trompeta	40
5.3.1	Diseño	40
5.3.2	Cómputo y presupuesto	43
5.4 An	álisis técnico-económico	43
5.4.1	Tránsito	44
5.4.2	Factores económicos	44

7. Diseño de paquete estructural...... 58

Sistema de la American Association of State Highway and Transportation Officials

Pagina 8

8.2.1

8.2.2

6.3.1

6.3.2

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

7.3.6

MUII	"Propuesta de readecuación de la intersecc	ion de las RN 12 y 127"
8.2.3	Cálculo de caudales (Q)	79
8.3 Dis	eño de alcantarilla y sumideros	80
8.4 Ver	rificaciones con HY-8	80
8.4.1	Verificación de alcantarilla en Isleta 1	81
8.4.2	Verificación de alcantarilla en Isleta 3	83
9. Señali	ización e iluminación	86
9.1 Señ	ialamiento horizontal	86
9.2 Señ	ialamiento vertical	88
9.3 Ilur	minación	92
10. Evalu	uación de impacto ambiental	93
10.1Áre	ea de influencia	93
10.2Des	scripción del medio receptor	93
10.3Est	udio de impacto ambiental	94
10.4Des	scripción de los impactos identificados	98
10.5Me	didas de mitigación	98
Bibliogra	afía	100
Anexos		101

Lista de Figuras

Figura 1.1 – Imagen satelital de la intersección	17
Figura 1.2 – Ubicación de la zona de proyecto en Entre Ríos	17
Figura 1.3 – Estación de servicio y comedores ubicados en la zona de proyecto	18
Figura 3.1 – Paquete estructural RN 12 Norte	22
Figura 3.2 – Paquete estructural RN Oeste	22
Figura 3.3 – Paquete estructural RN 127	22
Figura 3.4 – MDE de 5,00 [m] del IGN	23
Figura 3.5 – Curvas de nivel	23
Figura 3.6 – Cuencas generales y cursos	24
Figura 4.1 - Recta de regresión de tránsito - RN 12 Oeste	26
Figura 4.2 – Evolución del tránsito futuro – RN 12 Oeste	28
Figura 4.3 – Giros relevados en media hora	30
Figura 5.1 – Paquete estructural adoptado	33
Figura 5.2 – Emplazamiento de rotonda sobre intersección actual	36
Figura 5.3 – Velocidades de diseño - Rotonda	37
Figura 5.4 – Radios y anchos de carriles – Rotonda	39
Figura 5.5 – Propuesta de intersección a desnivel tipo trompeta	41
Figura 5.6 – Velocidades de diseño – Trompeta	41
Figura 5.7 – Radios y anchos de carriles – Trompeta	42
Figura 5.8 – Esquema de puente	42
Figura 6.1 – Ubicación de calicatas	46
Figura 6.2 – Calicata C1	47
Figura 6.3 – Calicata C2	47
Figura 6.4 – Calicata C3	47
Figura 6.5 – Muestras para ensayo de granulometría por tamizado	48
Figura 6.6 – Muestra de suelo molida y pasada por tamiz N°40 para límites de Atterberg	49
Figura 6.7 – Muestras de suelo saturadas	50
Figura 6.8 – Lavado de muestra en tamiz IRAM N°200	50
Figura 6.9 – Muestra antes de ensayar	51
Figura 6.10 – Muestra después de ensayar	51
Figura 6.11 – Cilindros de suelo para ensayo de límite plástico	52

"Propuesta	de r	eadecua	ción a	de l	a	intersecc	ión	de	las	RN	12 v	127
I I U D u C S i u C	$u \cup I$	cuuccuu	$\omega \omega m$	nc i	u		wii	u	uus	TIT	14 y	14/

Tropuesia de reducedación de la intersección de las Kiv 12	2 y 127
Figura 6.12 – Carta de plasticidad del sistema SUCS	54
Figura 6.13 – Diagrama de flujo del sistema SUCS	55
Figura 7.1 – Ábaco de diseño AASHTO para pavimentos flexibles	69
Figura 7.2 – Ecuación AASHTO 1993 resuelta mediante software	69
Figura 7.3 – Ábaco para coeficiente estructural de capas asfálticas (AASHTO 93)	70
Figura 7.4 – Ábaco para coeficiente estructural de base tratada con cemento (AASI	
Figura 7.5 – Ábaco para coeficiente estructural de subbase granular (AASHTO 93)	71
Figura 8.1 – Cuencas de la provincia de Entre Ríos	74
Figura 8.2 – Ubicación de la intersección con las cuencas delimitadas	74
Figura 8.3 – Croquis de dinámica hídrica de la rotonda	75
Figura 8.4 – Curva IDF de Paraná, Entre Ríos	77
Figura 8.5 – Superficies y clasificación de las isletas	79
Figura 8.6 – Alcantarilla en Isleta 1	82
Figura 8.7 – Datos de entrada en HY-8	82
Figura 8.8 – Gráfico de salida HY-8 para Alcantarilla de 0,75x1,20 (Tr=50)	83
Figura 8.9 – Sumidero en isleta 3	85
Figura 8.10 - Gráfico de salida HY-8 para sumidero de 0,80 [m] (Tr=50)	85
Figura 9.1 – Patrones básicos de señalamiento horizontal	86
Figura 9.2 – Esquema de doble línea amarilla	87
Figura 9.3 – Esquema de marca de isleta	87
Figura 9.4 – Esquema de línea divisoria de carril	87
Figura 9.5 - Ángulo de colocación de señales verticales	88
Figura 9.6 – Ubicación de señales verticales	89
Figura 9.7 – Lámpara de iluminación LED	92
Figura 10.1 – Área de influencia	93

Gabrielli - Londero Página 11

Lista de Tablas

Tabla 3.1 – Datos de TMDA de la intersección	. 20
Tabla 3.2 – Composición de tránsito 2021 – RN 12 Oeste	. 21
Tabla 3.3 – Distribución horaria de RN 12 – Día viernes – Mes 3 – Año 2021	. 21
Tabla 4.1 – TMDA y tasa de crecimiento anual (2006-2022) – RN 12 Oeste	. 27
Tabla 4.2 – Tránsito futuro e incremento de tránsito (2022-2044) – RN 12 Oeste	. 27
Tabla 4.3 – Composición del tránsito en el año 2044 – RN 12 Oeste	. 29
Tabla 4.4 – Composición del tránsito en el año 2044 – RN 12 Norte	. 29
Tabla 4.5 – Composición del tránsito en el año 2044 – RN 127	. 29
Tabla 4.6 – Distribución porcentual de giros	. 31
Tabla 5.1 – Variación porcentual del dólar	. 33
Tabla 5.2 – Variación porcentual del gasoil	
Tabla 5.3 – Índices de actualización de precios	. 34
Tabla 5.4 – Radios y longitudes mínimas de curvas	. 37
Tabla 5.5 – Ancho de pavimento de ramas y/o caminos de enlace (OB2)	. 38
Tabla 5.6 – Resumen de presupuesto de rotonda (enero 2023)	. 39
Tabla 5.7 – Resumen de presupuesto de trompeta (enero 2023)	. 43
Tabla 5.8 – Tabla comparativa de presupuestos	. 44
Tabla 6.1 – Tamizado por vía húmeda (C1)	. 50
Tabla 6.2 – Tamizado por vía húmeda (C2)	. 50
Tabla 6.3 – Tamizado por vía húmeda (C3)	. 51
Tabla 6.4 – Límite líquido de muestras	. 52
Tabla 6.5 – Límite plástico de muestras	
Tabla 6.6 – Índice de plasticidad de muestras	. 53
Tabla 6.7 – Nomenclatura de sistema SUCS	. 54
Tabla 6.8 – Clasificación de muestras de suelo (SUCS)	. 55
Tabla 6.9 – Clasificación de suelos AASHTO	. 56
Tabla 6.10 – Clasificación de muestras de suelo (AASHTO)	. 57
Tabla 6.11 – Valores orientativos de VSR de la DNV	. 57
Tabla 7.1 – Pesos de vehículos cargados	. 58
Tabla 7.2 – Pesos de vehículos descargados	. 59
Tabla 7.3 – LEFs para pavimentos flexibles de $p_t = 2,50$ – ejes simples	. 60

2. optiosis no roundous un intersection no un sus 22. 7	- ,:
Tabla 7.4 - LEFs para pavimentos flexibles de $p_t = 2,50$ – ejes tándem	60
Tabla 7.5 – LEFs para vehículos livianos	62
Tabla 7.6 – LEFs para colectivos	62
Tabla 7.7 – LEFs para camiones sin acoplado	62
Tabla 7.8 – LEFs para camiones con acoplado o articulados	63
Tabla 7.9 – Niveles de confiabilidad	64
Tabla 7.10 – Valores para la desviación estándar	64
Tabla 7.11 – Calidades de drenaje según la AASHTO	66
Tabla 7.12- Coeficientes de drenaje recomendados por la AASHTO para pavimentos	
Tabla 7.13 – Número de vehículos que se espera circulen por la intersección (2024 –	
Tabla 7.14 – Número de ejes por categoría (2024-2044)	67
Tabla 7.15 – Numero de ejes equivalentes (W ₁₈)	68
Tabla 7.16 – Espesores de capas del paquete estructural	72
Tabla 8.1 – Determinación de intensidad de las tormentas	77
Tabla 8.2 - Coeficientes de escorrentía para ser usados en el método racional	78
Tabla 8.3 – Resumen de áreas y coeficientes de escorrentía	79
Tabla 8.4 – Caudales para 25 años de recurrencia	80
Tabla 8.5 – Caudales para 50 años de recurrencia	
Tabla 8.6 – Tabla resumen de datos de entrada en HY-8 para alcantarilla	81
Tabla 8.7 – Tabla resumen de datos de entrada en HY-8 para sumidero	83
Tabla 9.1 - Esquema y dimensiones de señalización vertical	90
Tabla 10.1 - Criticidad de impacto ambiental	96
Tabla 10.2 – Matriz de impacto ambiental – Etapa constructiva	97
Tabla 10.3 – Matriz de impacto ambiental – Etapa operativa	97

Lista de Símbolos y Abreviaciones

ΔH: Diferencia de nivel del cauce ΔPSI: Pérdida de serviciabilidad

A: Área de la cuenca

AASHTO: American Association of State Highway and Transportation Officials

AI: Área de influencia

ai: Coeficiente de aporte estructural

C: Coeficiente de escorrentía

CBR: Californian Bearing Ratio

C_c: Coeficiente de curvatura

Cu: Coeficiente de uniformidad

d: Duración de la tormenta

D_i: Espesor de las capas del paquete estructural

DN: Diámetro nominal

DNV: Dirección Nacional de Vialidad

Du: Duración

ESAL: Carga simple equivalente por eje

Ex: Extensión

F: Porcentaje pasante por tamiz N°200 H: Contenido de humedad porcentual

I: Intensidad

IDF: Intensidad-Duración-Frecuencia

IG: Índice de grupo

IGN: Instituto Geográfico Nacional

In: Intensidad

INPRES: Instituto Nacional de Prevención Sísmica INTA: Instituto Nacional de Tecnología Agropecuaria

IP: Índice de plasticidad

IRAM: Instituto Argentino de Racionalización de Materiales

LEF: Factor equivalente de carga

LF: Longitud del cauce

LL: Límite líquido

LP: Límite plástico

MDE: Modelo digital de elevación

Mg: Magnitud

m_i: Coeficiente de drenaje

M_R: Módulo resiliente de la subrasante

N: Número de golpes de ensayo de límite líquido

Oc: Probabilidad de ocurrencia

p₀: Serviciabilidad inicial

PETG: Pliego de especificaciones técnicas generales

pt: Serviciabilidad final

Q: Caudal

qi: Tasa de flujo

R%: Confiabilidad

Re: Reversibilidad

RN: Ruta nacional

S₀: Desviación estándar de las variables

SN: Número estructural

SN_{nec}: Número estructural necesario de proyecto

SUCS: Sistema Unificado de Clasificación de Suelos

TA: Tránsito anual

T_C: Tiempo de concentración

TD: Tránsito diario

TH: Tránsito horario

T_i: Tasa de crecimiento anual porcentual

TM: Tránsito mensual

TMD: Tránsito medio diario

TMDA: Tránsito medio diario anual

TMDM: Tránsito medio diario mensual

TMDS: Tránsito medio diario semanal

TP: Tasa de crecimiento de proyecto

Tr: Periodo de retorno

TS: Tránsito semanal

VIA: Valor de Impacto Ambiental

VSR: Valor Soporte Relativo

W_{SH}: Peso de suelo húmedo

Wss: Peso de suelo seco

Gabrielli - Londero Página 15

1. Introducción

El presente trabajo denominado "Propuesta de readecuación de la Intersección de las Rutas Nacionales (RN) 12 y 127" se realizó con el objetivo de diseñar una nueva intersección que permita mejorar, en términos de seguridad y confort, la circulación en la intersección de ambas rutas nacionales, que tenga mayor capacidad y que solucione los puntos de conflicto existentes, llevando a cabo los estudios previos necesarios para lograr un proyecto de calidad.

1.1 Descripción general del proyecto

El proyecto desarrollado consiste en el análisis de dos diseños nuevos para la intersección de las rutas nacionales 12 y 127, ubicada en el departamento Paraná, provincia de Entre Ríos. La alternativa seleccionada se justifica de manera técnica y económica.

El mismo incluyó el diseño geométrico de una intersección a nivel de tipo rotonda y una intersección a distinto nivel de tipo trompeta, a partir de los cuales se realizó un presupuesto estimativo para comparar el costo de ambas. Esto sumado a un análisis técnico permitió determinar la alternativa más viable para la nueva intersección.

De la alternativa seleccionada se realizó el diseño del paquete estructural, para lo cual se realizó un estudio de tránsito para poder determinar el tránsito futuro, y un estudio geotécnico del suelo de la zona del proyecto para poder determinar así la calidad del suelo para ser usado como subrasante. El proyecto también incluye el dimensionado de la alcantarilla para evacuar el agua que se acumula en la nueva intersección, la cual se encuentra a una cota mayor que los terrenos aledaños. Finalmente, también se realizó el proyecto de obras complementarias como iluminación y señalización horizontal y vertical y, un estudio de impacto ambiental.

Cabe destacar que el trabajo se desarrolla hasta una etapa de anteproyecto avanzada, por lo que no se realizaron las especificaciones técnicas del proyecto, ni el cómputo y presupuesto final de la alternativa seleccionada. El proyecto se rige por el "Pliego de Especificaciones Técnicas Generales" (PETG) edición 1998 de la Dirección Nacional de Vialidad (DNV).

1.2 Descripción de la intersección actual y zona del proyecto

Actualmente, el lugar a intervenir consiste en una intersección canalizada sin banquinas, sin carriles auxiliares para giros, escasa señalización tanto vertical como horizontal, y también escasa iluminación.

La intersección actual cuenta con separación parcial de movimientos de giros, como los giros hacia la derecha y giro hacia la izquierda desde RN 12 norte hacia la RN 12 oeste y la RN 127, pero sin separación del giro a la izquierda desde la RN 12 desde el oeste hacia el norte, como se muestra en la *Figura 1.1*.

Página 16 Introducción Gabrielli - Londero

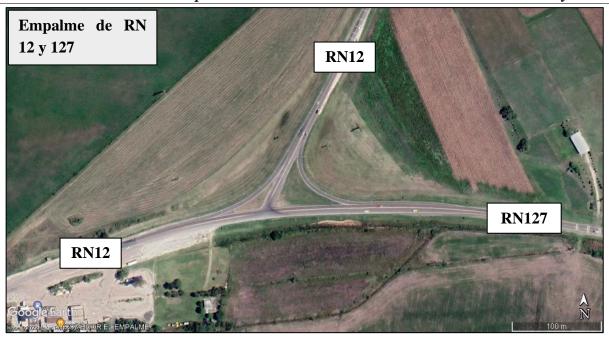


Figura 1.1 – Imagen satelital de la intersección

Las rutas que convergen en la intersección vinculan Paraná con La Paz y Paraná con Federal y Paso de los Libres, de donde proviene un gran volumen de tránsito pesado con cargas internacionales originarias de Brasil que se dirigen a los puertos del centro de Chile.

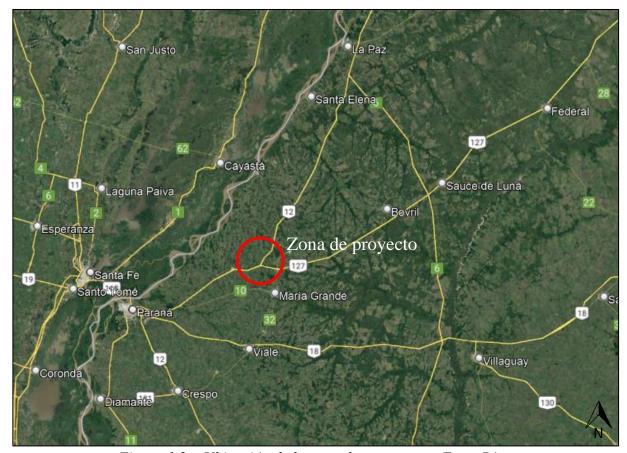


Figura 1.2 – Ubicación de la zona de proyecto en Entre Ríos

El terreno aledaño a la misma se encuentra mayoritariamente desocupado, excepto en la zona de la RN 12 del lado derecho en dirección de Paraná hacia la intersección, donde se encuentran una estación de servicio y locales comerciales, lugar donde principalmente los camioneros hacen paradas técnicas.

Figura 1.3 – Estación de servicio y comedores ubicados en la zona de proyecto

En el Anexo VII se puede ver la planimetría de la intersección actual detallada.

Página 18 Introducción Gabrielli - Londero

2. Objetivos

2.1 Objetivos generales

El objetivo del presente proyecto es presentar una propuesta para readecuar la intersección mencionada mejorando la circulación y controlando los accesos parcialmente, justificando la alternativa desarrollada mediante un análisis técnico-económico. Esta modificación permitirá controlar los puntos de conflicto existentes en dicha intersección y además aumentar la capacidad de esta, obteniendo mejores condiciones de seguridad y confort para el usuario.

2.2 Objetivos particulares

Dentro de los objetivos particulares de este proyecto se encuentran:

- Proyectar la intersección de forma tal que mejore tanto la capacidad como el nivel de servicio de esta, mediante una alternativa técnica y económicamente viable.
- Dimensionar un paquete estructural de pavimento flexible, con una proyección de vida útil de 20 años teniendo como base los paquetes estructurales existentes.
- Diseñar las obras complementarias de señalización horizontal, vertical e iluminación que garanticen el correcto funcionamiento de la intersección.
- Garantizar que el funcionamiento tanto de los comercios, como de la estación de servicio y parada de autobuses del lugar, no se vea afectado por el proyecto.
- Proyectar un sistema de drenaje pluvial que evite problemas de anegamiento en la calzada.
- Diseñar la geometría de la intersección de forma que se reduzca al mínimo las posibilidades de que ocurra un siniestro vial.

3. Recopilación de antecedentes

Antes de comenzar con las tareas de campo se procedió con la recolección de antecedentes para conocer más sobre la zona y el tipo de intersecciones que se plantearon. A este efecto, se analizaron proyectos similares, cartas topográficas y modelos de elevación del Instituto Geográfico Nacional (IGN), así como datos publicados por la DNV. Además, con el fin de obtener documentación útil para el proyecto, se consultó al Distrito Entre Ríos de la DNV y entes privados proveedores de distintos servicios que puedan estar presentes en la zona.

Por último, a partir de diferentes artículos periodísticos se relevaron siniestros viales que hayan ocurrido en la intersección estudiada.

A continuación, se detalla por puntos la información recopilada en esta etapa.

3.1 Documentación provista por la DNV

Con el objetivo de tener documentación técnica y estadística fehaciente respecto a la intersección, se consultó tanto en el Distrito Entre Ríos, como en los sitios web oficiales de la DNV. Entre la información brindada se encuentra:

3.1.1 Datos de tránsito

Estos se encuentran publicados en el sitio web de la DNV. Entre estos están los valores de tránsito medio diario anual (TMDA) de los tramos de ruta que convergen a la intersección, relevados en los últimos 16 años, ya sean por censos de cobertura o censos de estación permanente, los cuales se pueden ver resumidos en la *Tabla 3.1*.

. ~	TMDA [veh]					
Año	RN 12 a Cerrito	RN 12 a Hernandarias	RN 127 a Hasenkamp			
2006	3000	1250	2080			
2007	3200	1300	2250			
2008	3350	1400	2260			
2009	3400	1480	2250			
2010	3650	1600	2350			
2011	3800	1880	2400			
2012	3750	1980	2400			
2013	3850	2000	2150			
2014	3800	1900	2360			
2015	4150	1920	2450			
2016	4000	1940	2500			
2017	4150	1920	2700			
2018	3650	1780	2540			
2019	3550	1730	2300			
2020	2450	1200	1640			
2021	3350	1700	2250			

Tabla 3.1 – Datos de TMDA de la intersección

De este sitio web también se obtuvo la composición del tránsito en el año 2021. En la *Tabla 3.2* se muestran dichos valores para la RN 12 Oeste.

Tabla 3.2 – Composición de tránsito 2021 – RN 12 Oeste

Mes	Livianos	Colectivos	Camiones sin acoplado	Camiones con acoplado y articulados	Sumatoria
2	75,60%	1,30%	8,70%	14,40%	100,00%
4	68,60%	1,40%	8,60%	21,40%	100,00%
7	70,00%	1,70%	9,30%	19,00%	100,00%
8	72,30%	1,90%	8,60%	17,20%	100,00%
Media	71,63%	1,57%	8,80%	18,00%	100,00%

Por último, de este sitio también se obtuvo la distribución horaria del tránsito en la RN 12, la cual se muestra en la *Tabla 3.3*.

Tabla 3.3 – Distribución horaria de RN 12 – Día viernes – Mes 3 – Año 2021

Hora	Factor horario diario	Peso [%]	Hora	Factor horario diario	Peso [%]
1	103,20	0,969	13	17,40	5,738
2	142,70	0,701	14	17,20	5,812
3	177,30	0,564	15	15,20	6,587
4	177,30	0,564	16	16,00	6,234
5	121,00	0,826	17	15,20	6,593
6	66,20	1,510	18	14,70	6,815
7	28,30	3,539	19	17,30	5,784
8	17,80	5,613	20	15,40	6,490
9	16,90	5,926	21	19,20	5,203
10	17,70	5,636	22	26,30	3,806
11	18,00	5,544	23	42,10	2,376
12	18,40	5,425	24	57,30	1,744

3.1.2 Paquetes estructurales

El Distrito de Entre Ríos de la DNV nos brindó los esquemas de los paquetes estructurales existentes de los tramos de ruta que comprenden la intersección. Como se puede ver en la *Figura 3.1, Figura 3.2* y *Figura 3.3*, los paquetes son diferentes entre sí. Estos esquemas fueron muy importantes ya que, a la hora de realizar una intervención en algún camino, la DNV exige que el paquete nuevo a construir tenga las mismas características que el existente o mejores.

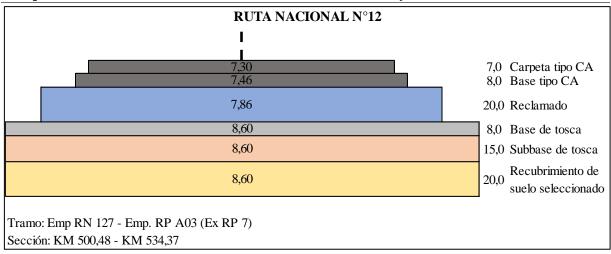


Figura 3.1 – Paquete estructural RN 12 Norte

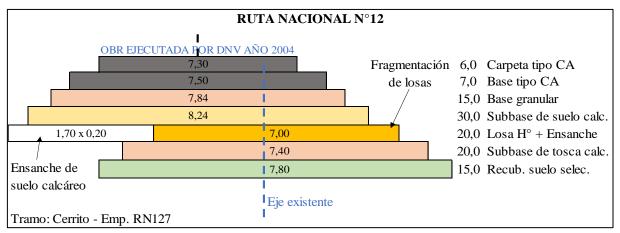


Figura 3.2 – Paquete estructural RN Oeste

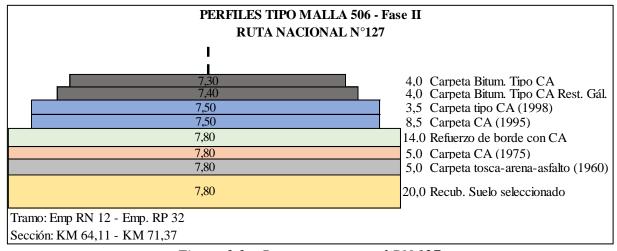


Figura 3.3 – Paquete estructural RN 127

3.2 Datos del IGN

A partir de los modelos digitales de elevaciones que se encuentran en el sitio web del IGN, se obtuvieron las curvas de nivel de la zona estudiada, a partir de las cuales se creó una superficie en el software Civil 3D. En este caso, se utilizó el modelo digital de elevación (MDE) con una resolución espacial de 5 m, el cual se muestra en la *Figura 3.4*.

Este modelo se procesó mediante el software Global Mapper 18, y se obtuvieron curvas de nivel georreferenciadas con una equidistancia de 2,00 [m] las principales y 0,50 [m] las secundarias. En la *Figura 3.5* se pueden apreciar en azul las curvas de nivel principales y en cian las secundarias, sobre una imagen satelital de la zona estudiada.



Figura 3.4 – MDE de 5,00 [m] del IGN

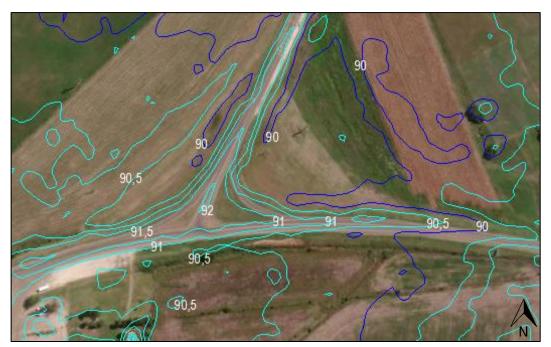


Figura 3.5 – Curvas de nivel

A partir de este modelo de elevación también se obtuvieron las cuencas de aporte en la zona estudiada, así como las líneas principales de escurrimiento. Esto se puede ver en la *Figura 3.6*, lo cual sirvió para estudiar el drenaje de la intersección diseñada.

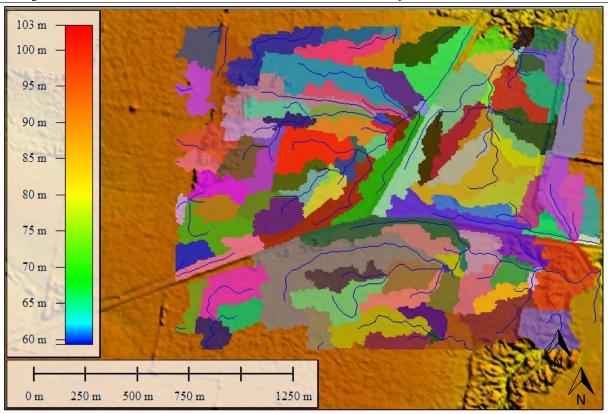


Figura 3.6 – Cuencas generales y cursos

4. Estudio de tránsito

Los estudios sobre volúmenes de tránsito se realizan con el fin de obtener información relacionada con el movimiento de vehículos y/o personas sobre puntos o secciones específicas dentro de un sistema vial. Estos datos son expresados con respecto al tiempo, y su conocimiento hace posible el desarrollo de estimaciones razonables de la calidad del servicio prestado a los usuarios.

El volumen de tránsito (Q) se define como el número de vehículos que pasan por un punto o sección transversal dados (N), de un carril o de una calzada, durante un periodo de tiempo determinado (T). Este se expresa como:

$$Q = \frac{N}{T}$$

Se pueden definir también volúmenes de tránsito absolutos o totales, los cuales representan el número total de vehículos que pasan durante un lapso de tiempo determinado. Dependiendo de la duración de este, se tienen los siguientes volúmenes de tránsito absolutos o totales:

- <u>Tránsito anual (TA)</u>: número total de vehículos que pasan durante un año.
- <u>Tránsito mensual (TM)</u>: número total de vehículos que pasan durante un mes.
- <u>Tránsito semanal (TS)</u>: número total de vehículos que pasan durante una semana.
- <u>Tránsito diario</u>: número total de vehículos que pasan durante un día.
- <u>Tránsito horario</u>: número total de vehículos que pasan durante una hora.
- Tasa de flujo: número total de vehículos que pasan durante un tiempo menor a una hora.

Además, se define el volumen de tránsito medio diario, como el número total de vehículos que pasan durante un período dado (en días completos) igual o menor a un año y mayor que un día, dividido por el número de días del período.

De acuerdo con el número de días del período, se presentan los siguientes volúmenes de tránsito medio diario, dados en vehículos por día.

- Tránsito medio diario anual: TMDA = TA/365
- <u>Tránsito medio diario mensual</u>: TMDM = TM/30
- <u>Tránsito medio diario semanal</u>: TMDS = TS/7

De estos términos, tiene mayor relevancia el TMDA, ya que es uno de los parámetros que se utiliza para dimensionar el paquete estructural de un camino, así como para evaluar la categoría del mismo.

4.1 Análisis de incremento de tránsito y tránsito futuro

En base al registro de TMDA que se muestran en la *Tabla 3.1* se realizó un gráfico de dispersión y se obtuvo la recta de regresión que mejor se ajusta a la nube de puntos, el cual se puede observar en la *Figura 4.1*.

Cabe mencionar que con el fin de obtener una mejor función de ajuste no se tuvo en cuenta el valor de TMDA de los años 2020 y 2021, ya que debido a la situación epidemiológica que se vivió durante ese año, los volúmenes de tránsito censados fueron menores de lo normal y, por ende, no representativos. En este informe, se muestra el procedimiento aplicado para el tramo de la RN 12 Oeste. En el *Anexo I* se muestran los resultados obtenidos para todos los tramos convergentes.

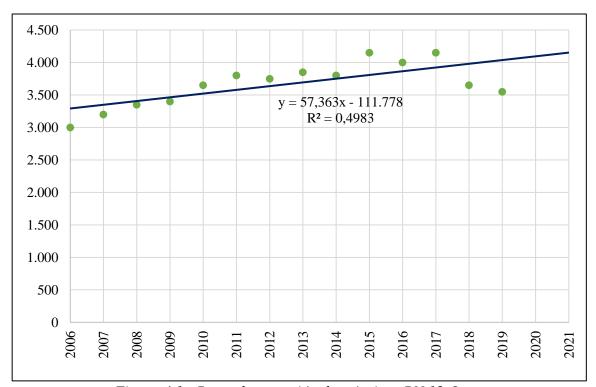


Figura 4.1 - Recta de regresión de tránsito - RN 12 Oeste

También se obtuvo la *Ecuación 4.1*, la cual es la función de ajuste que se utilizó para determinar el TMDA, siendo los años la variable independiente.

$$TMDA_i = 57,363 \cdot x - 111.778$$
 Ecuación 4.1

Mediante la *Ecuación 4.1* se obtuvieron los TMDA de los años registrados por la DNV y, a partir de esto, se determinó la tasa de crecimiento anual porcentual del tránsito (T_i), la cual se obtiene mediante la *Ecuación 4.2*. Los valores obtenidos se muestran en la *Tabla 4.1*.

$$T_i = \left(\frac{TMDA_i}{TMDA_{i-1}} - 1\right) \cdot 100$$
 Ecuación 4.2

Página 26 Estudio de tránsito Gabrielli - Londero

Tabla 4.1 – TMDA y tasa de crecimiento anual (2006-2022) – RN 12 Oeste
--

Año	TMDA	T_{i}
2006	3.292	
2007	3.350	1,74%
2008	3.407	1,71%
2009	3.464	1,68%
2010	3.522	1,66%
2011	3.579	1,63%
2012	3.636	1,60%
2013	3.694	1,58%
2014	3.751	1,55%
2015	3.808	1,53%
2016	3.866	1,51%
2017	3.923	1,48%
2018	3.981	1,46%
2019	4.038	1,44%
2020	4.095	1,42%
2021	4.153	1,40%
2022	4.210	1,38%

Con el fin de obtener una tasa de crecimiento anual de proyecto (TP) que sirva para determinar el tránsito en los años futuros, se tomó el promedio de las tasas de crecimiento anuales expresadas en la *Tabla 4.1*. Entonces:

$$TP = \frac{\sum_{1}^{n} T_i}{n} \rightarrow \text{TP}_{\text{RN12 Oeste}} = 1,55\%$$

Con el valor de la tasa de crecimiento anual de proyecto ya definido, se calculó el tránsito proyectado en los años futuros, así como los incrementos del tránsito (IT_i) mediante la *Ecuación* 7.2 y *Ecuación* 4.4, respectivamente. Los valores obtenidos se reflejan en la *Tabla* 4.2 hasta el año 2044, año que se considera como el fin de la vida útil del pavimento.

$$TF_i = TMDA_{2022} \cdot \left(1 + \frac{TP}{100}\right)^m$$
 Ecuación 4.3

$$IT_i = TF_i - TF_{2022} = TMDA_i - TMDA_{2022}$$
 Ecuación 4.4

Tabla 4.2 – Tránsito futuro e incremento de tránsito (2022-2044) – RN 12 Oeste

Año	m	Tf _i [veh]	IT [veh]	Etapa
2022	0	4.210	0	Proyecto
2023	1	4.275	65	Proyecto
2024	2	4.342	132	Ejecución de obra
2025	3	4.409	199	Progresión año 1

Gabrielli - Londero Estudio de tránsito Página 27

Año	m	Tf _i [veh]	IT [veh]	Etapa
2026	4	4.477	267	Progresión año 2
2027	5	4.547	337	Progresión año 3
2028	6	4.617	407	Progresión año 4
2029	7	4.689	479	Progresión año 5
2030	8	4.761	551	Progresión año 6
2031	9	4.835	625	Progresión año 7
2032	10	4.910	700	Progresión año 8
2033	11	4.986	776	Progresión año 9
2034	12	5.063	853	Progresión año 10
2035	13	5.142	932	Progresión año 11
2036	14	5.222	1.012	Progresión año 12
2037	15	5.302	1.093	Progresión año 13
2038	16	5.385	1.175	Progresión año 14
2039	17	5.468	1.258	Progresión año 15
2040	18	5.553	1.343	Progresión año 16
2041	19	5.639	1.429	Progresión año 17
2042	20	5.726	1.516	Progresión año 18
2043	21	5.815	1.605	Progresión año 19
2044	22	5.905	1.695	Progresión año 20

Por otro lado, en la *Figura 4.2* se muestra de manera gráfica la evolución de tránsito futuro proyectada, mostrándose también la recta de regresión junto con la ecuación que la define.

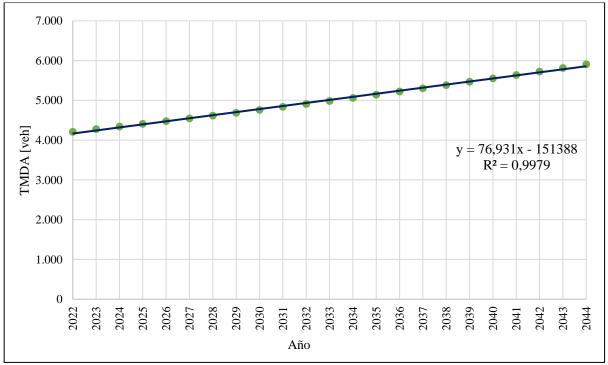


Figura 4.2 – Evolución del tránsito futuro – RN 12 Oeste

Página 28 Estudio de tránsito Gabrielli - Londero

De acuerdo con la composición de tránsito presentada en la *Tabla 3.2*, se muestra en la *Tabla 4.3* el número de vehículos de cada tipo que se proyecta que circulen por la RN 12 Oeste en el año 2044. Asimismo, en la *Tabla 4.4* y la *Tabla 4.5* se muestra la composición de tránsito y el TMDA obtenido para los dos tramos restantes.

Tabla 4.3 – Composición del tránsito en el año 2044 – RN 12 Oeste

Tipo de vehículo	Composición [%]	Volumen [veh]
Livianos	71,63%	4.230
Colectivos	1,57%	93
Camiones sin acoplado	8,80%	520
Camiones con acoplado y articulado	18,00%	1.063
Sumatoria	100,00%	5.905

Tabla 4.4 – Composición del tránsito en el año 2044 – RN 12 Norte

Tipo de vehículo	Composición [%]	Volumen [veh]
Livianos	68,18%	2.625
Colectivos	0,98%	38
Camiones sin acoplado	10,03%	386
Camiones con acoplado y articulado	20,83%	802
Sumatoria	100,00%	3.851

Tabla 4.5 – Composición del tránsito en el año 2044 – RN 127

Tipo de vehículo	Composición [%]	Volumen [veh]
Livianos	68,55%	2.272
Colectivos	1,35%	45
Camiones sin acoplado	8,55%	283
Camiones con acoplado y articulado	21,55%	714
Sumatoria	100,00%	3.314

4.2 Categoría de camino

La DNV categoriza los distintos caminos existentes en base al TMDA de cada uno. Los caminos se categorizan en orden descendente de volumen de tránsito Categoría Especial, I, II, III, IV o V. A cada una de estas de corresponden distintas normas que se deben respetar a la hora de diseñar un camino.

En base a los valores de TMDA obtenidos para el año 2044, el tramo analizado se encuentra en el límite entre las Categorías I y II, cuyo valor de TMDA es de 5.000 [veh/día]. Para este tipo de categoría se pueden utilizar intersecciones con control parcial de accesos, en las cuales hay entrecruzamientos entre vehículos de distintas direcciones, pero no son cruces directos como en la intersección actual.

4.3 Censo de giros

Con el fin de poder determinar cómo se distribuye el tránsito que de las distintas ramas que convergen en la intersección, se realizó un censo de giros durante 30 [min] el día viernes 24 de marzo. Este se realizó manualmente, anotando en una hoja los valores obtenidos. En este censo no se consideró la composición vehicular, sólo la cantidad de vehículos. En la figura *Figura 4.3* se ven los resultados obtenidos.

A partir de los resultados obtenidos, se puede ver que el mayor volumen de tránsito se da en dirección oeste-este, seguido por el tránsito en dirección este-oeste. En el caso de los giros hacia la izquierda, principal problema de la intersección actual se puede ver que el giro en dirección norte tiene una mayor influencia que el giro en dirección este.

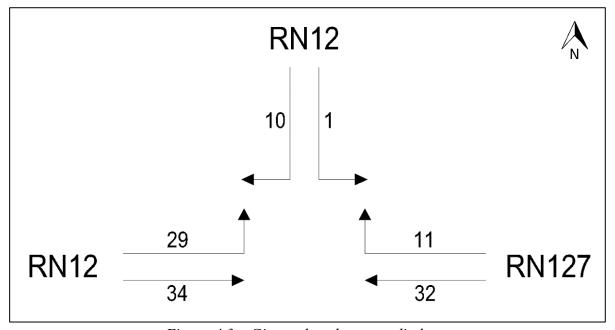


Figura 4.3 – Giros relevados en media hora

A partir de estos valores se obtuvo la proporción, en porcentaje, de vehículos que realizan giros a la izquierda o derecha en cada tramo. Esto se presenta en la *Tabla 4.6*.

Página 30 Estudio de tránsito Gabrielli - Londero

"Propuesta de readecuación de la intersección de las RN 12 y 127"

Tabla 4.6 – Distribución porcentual de giros

TRAMO	Giro De	Derecha Giro Izquiero		uierda
TRAWO	[veh/h]	%	[veh/h]	%
RN 12 Norte	10	91%	1	9%
RN 12 Oeste	34	54%	29	46%
RN 127	11	26%	32	74%

5. Anteproyecto de alternativas

5.1 Generalidades

En esta instancia se trabajó mayoritariamente a partir de la información recopilada en los antecedentes, es decir, no se generó nueva información técnica, como relevamientos o estudios de campo.

A los efectos de tener en cuenta las consideraciones de la DNV, ente encargado de construir, conservar, mantener, mejorar y ampliar la red troncal nacional de caminos, se consultó en las oficinas del Distrito Entre Ríos sobre los planes de intervenciones futuras en la intersección.

Debido a que la intersección actual es de tipo canalizada, se propuso readecuar la intersección actual, añadiendo un segundo carril exclusivo para giros y mejorando la señalización, sin embargo, la DNV descartó esta idea por motivos de seguridad, ya que en este tipo de intersecciones se producen cruces directos, lo cual aumenta la probabilidad y gravedad de accidentes de tránsito. En base a esto se planteó analizar dos alternativas diferentes para readecuar la intersección actual: una rotonda ovalada a nivel y una intersección a distinto nivel de tipo trompeta.

5.1.1 Diseño geométrico de las alternativas

De ambas alternativas, se elaboró un diseño geométrico en planta georreferenciado mediante Civil 3D. También se tuvieron en cuenta las curvas de nivel generadas con los modelos de elevación del IGN previamente obtenidos. De esta forma se pudieron generar los perfiles transversales de las alternativas con el software Civil 3D. En cuanto al diseño geométrico se utilizó el plano OB2 de la DNV (*Anexo IV*) para poder determinar las longitudes y radios mínimos reglamentarios de los carriles de aceleración y desaceleración, en conjunto con las "Normas de Diseño Geométrico de Carreteras" de la DNV, edición 1980 (*Anexo III*).

5.1.2 Paquete estructural adoptado para el análisis

A la hora de elegir el paquete estructural, se procuró seguir una de las principales pautas de diseño la DNV, que consiste en siempre dimensionar paquetes estructurales de igual o mejores características a los existentes. Dicho esto, se propone un paquete estructural para ambas alternativas el cual será verificado para las condiciones reales de tránsito más adelante en este proyecto y para la alternativa definitiva. En la *Figura 5.1* se puede apreciar el paquete adoptado con sus distintas capas y espesores.

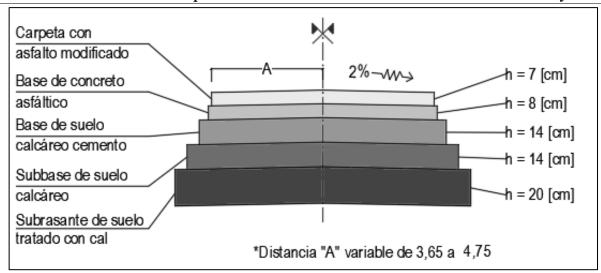


Figura 5.1 – Paquete estructural adoptado

5.1.3 Elaboración de cómputos y presupuestos

El cómputo y presupuesto para cada alternativa se realizó a partir de los diseños geométricos realizados para cada alternativa, con el propósito de realizar posteriormente el análisis técnico-económico que permitió elegir la alternativa más viable. Para el cómputo, se utilizó la documentación técnica mencionada anteriormente generada tanto en Civil 3D como en AutoCAD para poder obtener las cantidades en cada rubro, ítem y subítem. En cuanto a la lista de estos últimos mencionados, para ambas alternativas se elaboró una lista general de tareas a partir de cuatro presupuestos distintos de obras similares, los cuales pueden verse en el *Anexo II*. De aquí se extrajeron tanto para la rotonda como para el acceso a desnivel distintos ítems que conforman cada planilla de cómputo y presupuesto.

Debido al contexto inflacionario que el país ha transitado en este período de tiempo, entre 2019 y la actualidad, los precios debieron actualizarse a valores actuales definiendo como mes base enero de 2023. Para esto, se hizo una comparativa entre los precios actuales y de ese momento tanto del dólar como del combustible. En la *Tabla 5.1*, puede verse la comparativa del dólar en los períodos mencionados anteriormente, y la variación entre los mismos. Por otro lado, en la *Tabla 5.2* puede verse la misma comparativa, pero con los costos del litro de combustible.

Tabla 5.1 – Variación porcentual del dólar

FECHA	\$/DÓLAR	OBSERVACIONES
mar-19	\$ 43.50	Promedio dólar oficial y dólar paralelo
abr-19	\$ 45.50	Promedio dólar oficial y dólar paralelo
ene-23	\$ 181.59	Dólar oficial
ene-23	\$ 352.00	Dólar paralelo
ene-23	\$ 266.80	Promedio dólar oficial y dólar paralelo

Variación porcentual	613.32%	mar-19 a ene-23
Variación porcentual	586.36%	abr-19 a ene-23

Tabla 5.2 – Variación porcentual del gasoil

FECHA	\$/LITRO OBSERVACIONES		
mar-19	\$ 30,40	Gasoil común sin IVA	
abr-19	\$ 31,89	Gasoil común sin IVA	
ene-23	\$ 183,47	Gasoil común sin IVA	

Variación porcentual	603,42%	mar-19 a ene-23
Variación porcentual	575,32%	abr-19 a ene-23

A partir de las variaciones obtenidas, se realiza un promedio tanto para el período de marzo de 2019 como para abril de 2019 hasta enero de 2023. De esta forma, se obtiene un índice para cada planilla que pueden verse en la *Tabla 5.3*. Estos índices, multiplicados por los precios originales nos darán los precios actualizados. A partir de esto, se confecciono una lista total de las tareas. De esta lista mencionada, se obtuvieron los distintos ítems y subítems para cada alternativa según el tipo de intersección, algunos comunes entre ellos, y de esta forma se elaboró la planilla de cómputo y presupuesto de cada alternativa. En el *Anexo II* se puede observar la lista completa de ítems con precios actualizados a mes base enero 2023.

Tabla 5.3 – Índices de actualización de precios

Marzo de 2019 a enero de 2023		Abril de 2019 a enero de 2023	
Variación porcentual del dólar	613,32%	Variación porcentual del dólar	586,36%
Variación porcentual del gasoil	603,42%	Variación porcentual del gasoil	575,32%
Variación porcentual promedio	608,37%	Variación porcentual promedio	580,84%
INDICE DE ACTUALIZACIÓN	6,08	INDICE DE ACTUALIZACIÓN	5,81

5.2 Intersección a nivel de tipo rotonda

Este tipo de intersección, llamadas también glorietas o intersecciones giratorias, se caracterizan por la confluencia de los distintos ramales que convergen a la intersección en un anillo de circulación rotatoria en sentido antihorario alrededor de una isleta central, donde la prioridad la tienen aquellos vehículos que circulan por ella.

Dentro de las principales ventajas de este tipo de intersección podemos destacar su sencillez y uniformidad de funcionamiento, mayor capacidad, menor accidentalidad, menores costos de mantenimiento, mejor integración ambiental, mayor fluidez y seguridad de tránsito, además de que conecta vías de distinto régimen y categoría y sirve como elemento moderador de velocidad.

Por otro lado, las principales desventajas de este tipo de intersección que se pueden mencionar son la perdida de prioridad de todos los tramos que acceden a ella, que uniformiza criterios funcionales de las vías desvirtuando la jerarquía de cada una de ellas, además en caso de demoras, la misma es para todos los usuarios que transitan la intersección. También plantea problemas de desplazamiento a los peatones y un mal diseño o algún cambio en las condiciones de circulación puede desvirtuar todas las ventajas antes mencionadas.

5.2.1 Diseño geométrico

La rotonda planteada cuenta con ramas de entrada y salida de un solo carril, además de ramas de circulación internas de también un carril. Sin embargo, los tramos en los que se produce en el entrecruzamiento de los vehículos se plantearon dos carriles, de manera que los vehículos que realicen giros a la derecha no se crucen con aquellos que circulan por la rotonda, aumentando así el grado de seguridad y confort en los usuarios. En dichos tramos de entrecruzamiento se tuvo en cuenta la premisa de que su longitud sea de al menos 40,00 [m] de largo para que esta maniobra sea más segura.

Por otro lado, la implantación de la intersección en la zona de proyecto, se realizó a partir de las siguientes premisas de diseño:

- Garantizar la funcionalidad de la estación de servicio.
- Expropiar el menor terreno posible.
- Mantener la traza de las calzada actual en la mayor medida posible.
- Reducir al mínimo posible los movimientos de suelos.

En la Figura 5.2 se puede ver la figura de la rotonda por encima de la intersección actual.

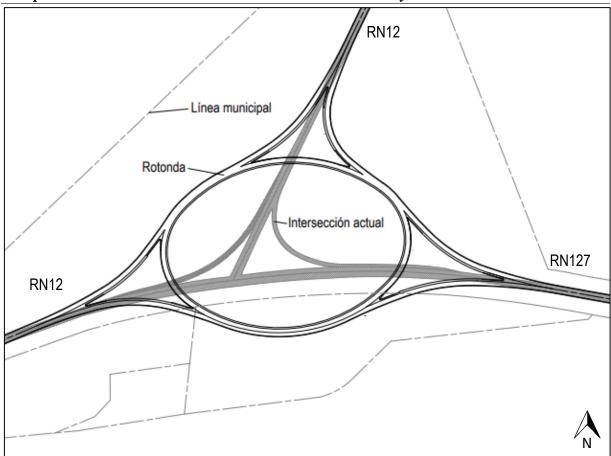


Figura 5.2 – Emplazamiento de rotonda sobre intersección actual

Para realizar el diseño de la rotonda se determinaron primero las velocidades de diseño para las distintas ramas de esta. Se adoptó una velocidad de 40 [km/h] para las ramas este y oeste del óvalo de la rotonda y para la rama de salida norte. Para las ramas restantes se adoptó una velocidad de 60 [km/h]. En la *Figura 5.3* se muestra un esquema de las velocidades de diseño adoptadas en cada tramo.

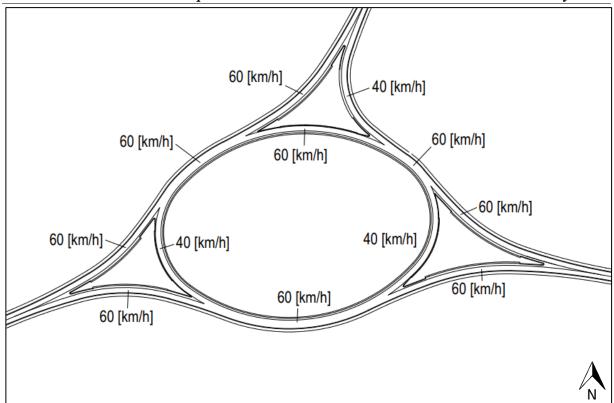


Figura 5.3 – Velocidades de diseño - Rotonda

Una vez determinadas las velocidades, mediante el manual "Normas de Diseño Geométrico de Carreteras" se pudieron determinar los radios y longitudes mínimas de las distintas ramas. De esta manera, en la *Tabla 5.4* se resumen los valores utilizados en el diseño. Cabe mencionar que también es necesario realizar curvas de transición para que el cambio de dirección sea más cómodo y seguro. Estas curvas se diseñaron con un radio interno de 500,00 [m].

Tabla 5.4 – Radios y longitudes mínimas de curvas

Velocidad de diseño [km/h]	Radio mínimo de curva [m]	Longitud mínima de curva [m]	
40	50	40	
60	140	50	

Finalmente, a partir de la *Tabla 5.5*, perteneciente al plano OB2 se determinaron los anchos de los carriles de las ramas de enlace. En el caso del proyecto, nos encontramos dentro del Caso I, condición B. Esta condición corresponde a cuando el número de camiones de dos ejes y ómnibus es suficiente como para gobernar el diseño (del 5 al 10% del tránsito total), pero también se tienen en cuenta algunos camiones con acoplado y semirremolques. De esta manera, en la *Figura 5.4* se muestran los anchos y los radios adoptados para las distintas ramas de la rotonda.

Tabla 5.5 – Ancho de pavimento de ramas y/o caminos de enlace (OB2)

Tabla 5.	Tabia 5.5 – Ancho de pavimenio de ramas y/o caminos de eniace (Ob2)								
	Caso I		Caso II		Caso II				
	1 carril		1 carril		2 carriles				
Radio del interno	1 sent	ido de m	narcha	1 sent	ido de m	narcha	1 o	1 o 2 sentidos de marcha	
del pavimento	Sin sobrepaso de vehículo detenido			sobrepas culo dete					
	A	В	С	A	В	С	A	В	С
15	5,50	5,50	7,00	7,00	7,50	8,75	9,50	10,50	12,75
20	4,75	5,25	5,75	6,20	7,00	8,25	8,75	10,00	11,25
30	4,50	4,75	5,50	6,00	6,75	7,50	8,50	9,50	10,50
45	4,25	4,75	5,25	5,75	6,25	7,25	8,25	9,00	10,00
60	4,00	4,75	4,75	5,75	6,25	7,00	8,25	8,75	9,50
90	4,00	4,50	4,75	5,50	6,00	6,75	8,00	8,50	9,00
120	4,00	4,50	4,75	5,50	6,00	6,75	8,00	8,50	9,00
150	3,65	4,50	4,50	5,50	6,00	6,75	8,00	8,50	8,75
Recta	3,65	4,50	0,50	5,25	5,75	6,25	7,50	8,25	8,20
Modificación del a	ncho seg	gún el tra	atamient	o lateral	usado				
Banquina no estabilizada		Ninguna	ļ	Ninguna		Ninguna			
Cordón montable		Ninguna	L	Ninguna		Ninguna			
Cordón no montable									
1 lado	Aumentar en 0,25		Ninguna		Aumentar en 0,25				
2 lados	Aumentar en 0,50		Aumentar en 0,25		Aun	nentar en	0,50		
Banquina estabilizada en uno o ambos lados	ilizada en o ambos Ninguna		banqui del pav	r el anch na estab imento i luto = C	ilizada nínimo				

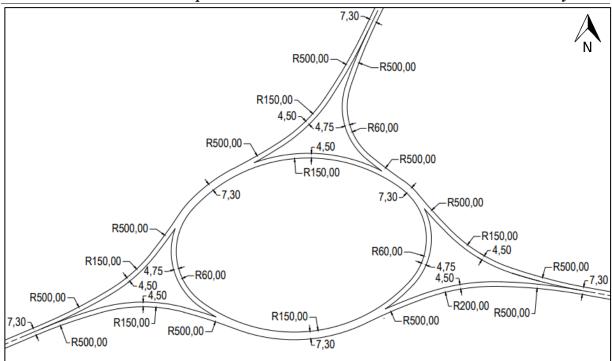


Figura 5.4 – Radios y anchos de carriles – Rotonda

En el *Anexo VII* se puede ver la planimetría completa en escala de la rotonda.

5.2.2 Cómputo y presupuesto

El cómputo y presupuesto se elaboró con la metodología explicada en el apartado 5.1.3. Las cantidades totales fueron obtenidas del archivo de AutoCAD, en donde se encontraba el diseño completo de la rotonda, así como también la intersección actual. En el *Anexo VII* se observan los perfiles transversales obtenidos de la rotonda para poder obtener los volúmenes de movimiento de suelos. En la *Tabla 5.6* se puede ver el presupuesto final resumido de esta alternativa.

Tabla 5.6 – Resumen de presupuesto de rotonda (enero 2023)

RUBRO DESCRIPCION		IMPORTE TOTAL
1	Terraplenes y movimientos de suelos	\$ 5.476.216,14
2	Pavimentos y banquinas	\$ 607.499.907,11
3	Obras de arte menores	\$ 10.254.712,48
4	Obras complementarias	\$ 141.450.575,62
5	Iluminación	\$ 105.860.515,14
6	Otros	\$ 50.071.199,44
	PRESUPUESTO TOTAL DE LA OBRA	\$ 920.613.125,93
	COSTOS DE EXPROPIACIÓN	\$ 814.903,76

En cuanto al terreno que debe expropiarse, se midió también en AutoCAD, a partir de los alambrados que demarcan el terreno privado y el sector aproximado en donde se emplazaría el proyecto. El valor aproximado en el mercado actual de una hectárea de campo en esa zona es 2.500 dólares.

5.3 Intersección a distinto nivel de tipo trompeta

La otra alternativa planteada a continuación es un enlace de tres ramales a distinto nivel de tipo trompeta. Este tipo de enlaces se presentan cuando una vía se incorpora a otra y tienen la ventaja de que resuelve los dos movimientos a la izquierda que generan punto de conflicto. Este tipo de intersecciones son recomendables en caso de existir un predominio de uno de los movimientos por sobre los demás. En el caso de la intersección estudiada, el censo de giros del apartado 4.3, describe como predomina el giro a la izquierda desde la RN 12 Oeste para continuar hacia la RN 12 Norte por sobre los demás giros. Por esto fue por lo que se propone esta alternativa, para luego ser comparada con la planteada en el apartado 5.2. La principal ventaja de este tipo de intersección es que planteada para dos carriles elimina todos los puntos de conflicto y presenta mayor fluidez de tránsito. Por otro lado, su principal desventaja es que su implantación implica costes por lo general más elevados.

5.3.1 Diseño

El diseño de la intersección se realizó siguiendo los parámetros establecidos en la Norma de Diseño Geométrico de Carreteras y en plano OB2 de la DNV, en los cuales se establecen radios, longitudes y anchos de carriles mínimos que las distintas ramas de la intersección deben cumplir en función de las velocidades de diseño.

En este caso, se adoptó una velocidad de 90 [km/h] para los tramos de principales de ruta. En el caso de las ramas se adoptó una velocidad de circulación de 60 [km/h] y de 40 [km/h] en el rulo. En la *Figura 5.5* se puede ver el diseño final de la intersección a partir de las consideraciones antes mencionadas.

La implantación de la intersección en el lugar, la cual puede verse en el *Anexo VII*, se realizó siguiendo las mismas premisas de diseño que la alternativa antes descrita.

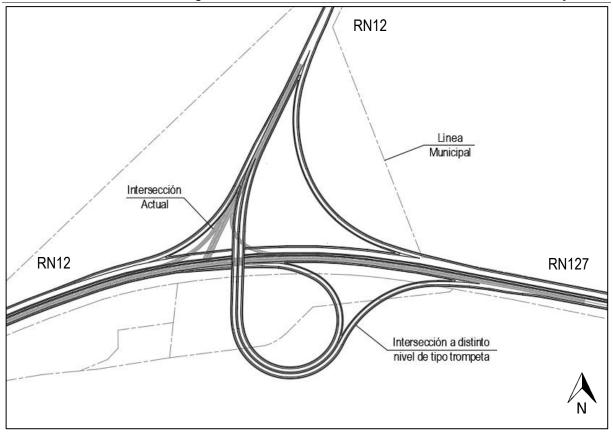


Figura 5.5 – Propuesta de intersección a desnivel tipo trompeta

Para realizar el diseño de la trompeta, se determinaron primero las velocidades de diseño para las distintas ramas de esta. Se adoptó una velocidad de 40 [km/h] para las que comprende el "rulo". Para las ramas restantes se adoptó una velocidad de 60 [km/h]. En la *Figura 5.6* se muestra un esquema de las velocidades de diseño adoptadas en cada tramo.

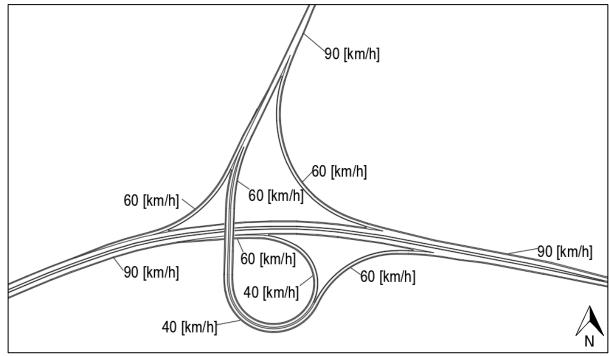


Figura 5.6 – Velocidades de diseño – Trompeta

Al igual que en el apartado anterior, una vez determinadas las velocidades, mediante el manual "Normas de Diseño Geométrico de Carreteras" se pudieron determinar los radios y longitudes mínimas de las distintas ramas. De esta manera, en la *Tabla 5.4* se resumen los valores utilizados en el diseño.

A partir de la *Tabla 5.5*, se determinaron los anchos de los carriles de las ramas de enlace, y de esta manera, en la *Figura 5.7* se muestran los anchos y los radios adoptados para las distintas ramas de la rotonda.

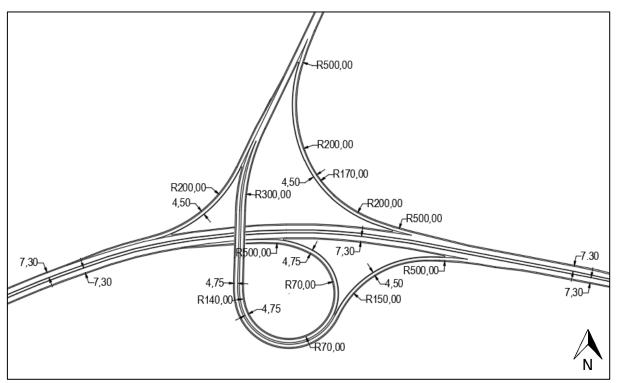


Figura 5.7 – Radios y anchos de carriles – Trompeta

En esta alternativa también se consideró la realización de un puente que permita el cruce de los vehículos que realicen el giro a la izquierda por encima de aquellos que no giran. El mismo se realizó en base al puente de una intersección similar y cuenta con dos luces de 20,00 [m] y un tablero de 18,50 [m] de ancho. Las dimensiones verticales se ven en la *Figura 5.8*.

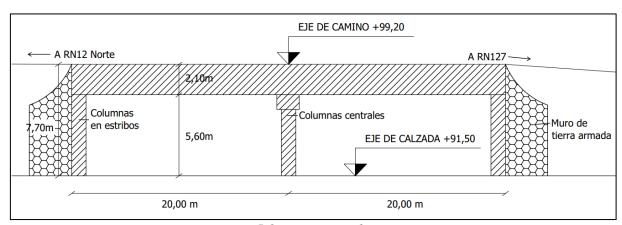


Figura 5.8 – Esquema de puente

Finalmente, en el *Anexo VII* se puede ver la planimetría completa a escala de la trompeta y el esquema del puente.

5.3.2 Cómputo y presupuesto

El cómputo y presupuesto se elaboró con la metodología explicada en el apartado 5.1.3. Las cantidades totales fueron obtenidas del archivo de AutoCAD, en donde se encontraba el diseño completo de la rotonda, así como también la intersección actual. En el *Anexo VII* se observan los perfiles transversales obtenidos de la trompeta planteada para poder obtener los volúmenes de movimiento de suelos. En la *Tabla 5.7* se puede ver el presupuesto final resumido de esta alternativa.

Tabla 5.7 – Resumen de presupuesto de trompeta (enero 2023)

Rubro	Descripción	Importe total
1	Terraplenes y movimientos de suelos	\$ 661.416.623,50
2	Pavimentos y banquinas	\$ 1.473.141.516,70
3	Obras de arte menores	\$ 20.509.424,96
4	Obras complementarias	\$ 288.418.313,33
5	Puentes	\$ 1.736.853.875,64
6	Iluminación	\$ 153.586.442,66
7	Otros	\$ 188.606.570,25
	Presupuesto total de la obra	\$ 4.522.532.767,03
	Costos de expropiación	\$ 5.563.396,96

5.4 Análisis técnico-económico

Por lo que se sabe, el planeamiento vial consta de varias etapas las cuales fueron tratadas a lo largo de este documento y son fundamentales para poder tomar una decisión justificada del proyecto que se plantea. Dentro de estas etapas podemos considerar:

- <u>Análisis de la vía actual</u>: en este caso se relevaron los hechos existentes actuales, tanto por reconocimiento en el lugar como por imágenes satelitales. Se obtuvo información proveniente de organismos oficiales con el objetivo de abarcar todos los campos posibles y así poder plantear las siguientes alternativas.
- <u>Análisis de la situación futura</u>: para este proyecto principalmente la situación futura principal es el tránsito, otro tema que pudo estudiarse debido a los datos oficiales recopilados en los antecedentes.
- <u>Análisis de las posibles opciones</u>: este punto abarcó desde el planteo de los anteproyectos de las distintas alternativas hasta el estudio de capacidad de cada uno para tener una estimación de su desempeño en un futuro.
- <u>Selección de la opción más conveniente</u>: este punto es el último y el que se busca desarrollar en este capítulo.

Dicho esto, los principales factores que podrían determinan el tipo y características de una intersección son el tránsito, factores económicos, el entorno físico y el factor humano.

5.4.1 Tránsito

Como se dijo anteriormente, según las Normas de Diseño de Carreteras de la DNV, una rotonda se justifica hasta un TMDA de aproximadamente 5.000 [veh/día], valor a partir del cual se puede considerar la intersección de Categoría I y se justificaría la realización de la intersección a distinto nivel de tipo trompeta. A partir de esto podemos decir que ambas alternativas permitirán un tránsito fluido para los valores de tránsito futuro proyectados.

5.4.2 Factores económicos

En cuanto a los factores económicos, se puede ver que la intersección a distinto nivel tiene un costo casi cinco veces mayor que el de la rotonda. A continuación, en la *Tabla 5.8* podemos ver una comparativa del costo de ambas alternativas con cada rubro analizado en los presupuestos, así como también de los importes totales.

Tabla 5.8 – Tabla comparativa de presupuestos

COMPARATIVA ECONÓMICA	Intersección a nivel de tipo rotonda	Intersección a desnivel de tipo trompeta	Variación
Terraplenes y movimientos de suelo	\$ 5.476.216,14	\$ 661.416.623,50	12.077,99%
Pavimentos y banquinas	\$ 607.499.907,11	\$ 1.473.141.516,70	242,49%
Obras de arte menores	\$ 10.254.712,48	\$ 20.509.424,96	200,00%
Obras complementarias	\$ 141.450.575,62	\$ 288.418.313,33	203,90%
Puentes	\$ 0,00	\$ 1.736.853.875,64	-
Iluminación	\$ 105.860.515,14	\$ 153.586.442,66	145,08%
Otros	\$ 50.071.199,44	\$ 188.606.570,25	376,68%
Costos de expropiación	\$ 814.903,76	\$ 5.563.396,96	682,71%
Importes totales	\$ 920.613.125,93	\$ 4.522.532.767,03	491,25%

Analizando la comparativa de costos se puede decir que los puntos de mayor incidencia en la variación de precios son el movimiento de suelos, debido a que para construir la intersección a distinto nivel es necesario realizar terraplenes para elevar las ramas de enlace, además de que ocupa mayor espacio de emplazamiento que la rotonda. A esto también se le añade el hecho de que para la intersección de distinto nivel se utilizan calzadas de doble carril y además es necesaria la realización de un puente, cosas que no se necesitan en la rotonda.

5.4.3 Entorno físico

La estación de servicio y los servicios que se ofrecen en el lugar, hacen que el mismo sea una excelente parada técnica para los camiones y otros viajantes. Aquí hay baños, vestuarios, comedor y hospedajes. Por lo que el funcionamiento de este lugar se ve mucho menos afectado por la rotonda, ya que la misma prácticamente no modificaría la entrada y salida a este lugar. como sí lo haría una intersección a distinto nivel de tipo trompeta. Además, como se dijo anteriormente, para realizar la rotonda es necesario expropiar una porción de tierra mucho menor y mover menos cantidad de suelo, por lo que el entorno se vería menos afectado por esta alternativa.

5.4.4 Factor humano

Ambas alternativas cuentan con un mayor grado de seguridad vial que la intersección existente. La intersección a desnivel de tipo trompeta resuelve todos los puntos de conflictos, lo que hace que las posibilidades de siniestros viales en la intersección sean prácticamente nulas. La rotonda por su parte sigue teniendo puntos de conflicto, en especial en lo que hace al entrecruzamiento de los carriles, pero se minimizan ampliamente los ángulos de colisión y las velocidades de circulación.

5.4.5 Elección de la propuesta

Finalmente, ya fueron analizados los distintos aspectos que hacen al planeamiento de la propuesta de readecuación de la intersección en cuestión y se pudo ver que ambas alternativas cumplen con el propósito de mejorar el nivel de seguridad y confort de los transeúntes durante toda su vida útil. Sin embargo, hay una gran diferencia en los costos de ambas, siendo una alternativa mucho más costosa que la otra, además de que dicha alternativa requiere un movimiento mayor de suelo y, por ende, mayor modificación del entorno de la zona de proyecto. Es por esto por lo que se considera como opción más viable a la intersección a nivel de tipo rotonda.

6. Estudio geotécnico

En el presente capítulo se describe el estudio de suelos llevado a cabo para poder identificar y caracterizar el suelo de la zona donde se proyecta la obra, lo cual es necesario para dimensionar el paquete estructural.

Para esto se concurrió al lugar para obtener muestras que luego se estudiaron en el laboratorio. Los resultados obtenidos se utilizaron luego para adoptar un valor soporte relativo adecuado para el tipo de suelo, y así caracterizar la subrasante.

6.1 Trabajo de campo

El trabajo de campo consistió en la ejecución de tres calicatas denominadas C1, C2 y C3, como se observa en la *Figura 6.1*, las cuales se excavaron de forma manual hasta una profundidad de 60,00 [cm]. Una vez retirado el suelo, se obtuvieron muestras en cantidad suficiente, de aproximadamente 3,00 [kg], para la realización de los ensayos de laboratorio.

Figura 6.1 – Ubicación de calicatas

En las calicatas efectuadas no se detectó el nivel de la napa freática ni tampoco suelo saturado. Además, se detectó un espesor mínimo de suelo vegetal de aproximadamente 0,10 [m], como se puede ver en la *Figura 6.2*, *Figura 6.3* y la *Figura 6.4*.

Página 46 Estudio geotécnico Gabrielli - Londero

Figura 6.2 – Calicata C1

Figura 6.3 – Calicata C2

Figura 6.4 – Calicata C3

6.2 Ensayos de laboratorio

Para realizar los ensayos se seleccionaron muestras representativas de cada calicata realizada en campo para ejecutar los siguientes ensayos:

• <u>Límites de Atterberg</u>: estos límites se basan en el concepto de que en un suelo de grano fino pueden existir sólo cuatro estados de consistencia según su humedad. Un suelo se encuentra en estado sólido cuando está seco. Al agregarle agua poco a poco pasa sucesivamente a los estados semisólido, plástico y líquido. Los contenidos de humedad en los puntos de transición de un estado a otro (límite de contracción, límite plástico y límite

líquido, respectivamente) son los denominados límites de Atterberg. Para clasificar un suelo basta con conocer el límite líquido (LL) y límite plástico (LP) y el índice de plasticidad (IP) que deriva de los anteriores. Estos límites se determinan con la fracción fina de suelo que pasa por el tamiz N°40 (0,425 [mm]) del Instituto Argentino de Racionalización de Materiales (IRAM). Para llevar a cabo la determinación de estas propiedades se tomaron como referencia las normas de ensayo VN-E2-65 "Límite líquido" y VN-E3-65 "Límite plástico – índice de plasticidad" de la DNV.

• <u>Granulometría por tamizado</u>: esta metodología se utiliza para obtener las fracciones correspondientes a los tamaños mayores del suelo; generalmente se llega así hasta el tamaño correspondiente al tamiz IRAM N°200 (0,074 [mm]). En este caso se realizó el ensayo de tamizado por vía húmeda mediante cribado manual a través de la serie de tamices IRAM. El ensayo se utiliza para determinar la distribución de las partículas de suelo fino o la fracción fina de un material granular. Para llevar a cabo el ensayo se tomó como referencia la norma de ensayo VN-E1-65 "Tamizado de suelos por vía húmeda" de la DNV.

Las muestras se campo se homogeneizaron y por cuarteo se separaron dos porciones, lo que se ve en la *Figura 6.5* y *Figura 6.6*. Una parte se utilizó para la realización del ensayo de tamizado por vía húmeda, y la otra se molió y utilizó para llevar a cabo los ensayos de límite líquido y límite de plasticidad.

Figura 6.5 – Muestras para ensayo de granulometría por tamizado

Página 48 Estudio geotécnico Gabrielli - Londero

Figura 6.6 – Muestra de suelo molida y pasada por tamiz N°40 para límites de Atterberg

En los apartados siguientes describen los ensayos realizados y se presentan los resultados obtenidos.

6.2.1 Tamizado por vía húmeda

Para realizar este ensayo primeramente se secaron en estufa las muestras. Seguidamente se pesaron y se colocaron en recipientes con agua durante 24 [h] para que estas se saturen, como se puede ver en la *Figura 6.7*. Luego del reposo se lavaron el material sobre el tamiz IRAM N°200 con un chorro de agua constante hasta que por debajo del tamiz escurra agua limpia, como se ve en la *Figura 6.8*. El material retenido en el tamiz se secó nuevamente en estufa y finalmente, se pasó el material seco por los tamices IRAM N°4, N°10, N°40 y N°200 y se pesó el material retenido en cada tamiz.

Figura 6.7 – Muestras de suelo saturadas

Figura 6.8 – Lavado de muestra en tamiz IRAM N°200

Los resultados obtenidos de este ensayo se muestran en la *Tabla 6.1*, *Tabla 6.2* y *Tabla 6.3*.

Tabla 6.1 – Tamizado por vía húmeda (C1)

Total of Temperator political (CT)					
Calicata	Peso inicial:	100 [g]			
Tamiz N°	Retenido		Pasante		
Taimz iv	[g]	%	[g]	%	
4	0,00	0,00%	100,00	100,0%	
10	0,05	0,05%	99,95	99,95%	
40	0,10	0,10%	99,85	99,85%	
200	0,20	0,20%	99,65	99,65%	

Tabla 6.2 – Tamizado por vía húmeda (C2)

Calicata (Peso inicial: 100 [g]			
Tomiz Nº	Retenido Pasante		ante	
Tamiz N°	[g]	%	[g]	%
4	0,20	0,20%	99,80	99,80%
10	0,50	0,50%	99,30	99,30%
40	0,20	0,20%	99,10	99,10%
200	0,10	0,10%	99,00	99,00%

Página 50 Estudio geotécnico Gabrielli - Londero

T 11 (2	Tr · 1	,	1 / 1	100	١
Tabla 6.3 -	- Lamizado	nor via	humeda	((3))
1 00000	1 0011000,00000	portici	i i i i i i i c ci ci i	$(\cup \cup)$,

Calicata (Peso inicial: 100 [g]			
Tomiz Nº	Retenido		Pasante	
Tamiz N°	[g]	%	[g]	%
4	1,00	1,00%	99,00	99,00%
10	1,40	1,40%	97,60	97,60%
40	0,90	0,90%	96,70	96,70%
200	0,40	0,40%	96,30	96,30%

6.2.2 Límite líquido

Como se mencionó antes, el límite líquido es el contenido de humedad entre los estados de consistencia plástica y líquida. Este se determinó mediante el ensayo de Casagrande, para lo cual se colocaron las muestras en la copa de Casagrande y se realizó una ranura en el centro de 2,00 [mm] de ancho en el fondo, 11,00 [mm] en la parte superior y 8,00 [mm] de altura, como se ve en la *Figura 6.9*. El límite líquido se alcanza cuando las dos secciones de la pasta se unen 12,70 [mm] al cabo de entre 25 golpes de caída de la copa contra su base desde una altura de 1,00 [cm], como se ve en la *Figura 6.10*. Se realizaron los ensayos dos veces a cada muestra.

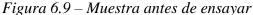


Figura 6.10 – Muestra después de ensayar

Para obtener el valor del límite líquido se utilizó el método de un solo punto. Para lo cual se determinó el contenido de humedad de las distintas muestras ensayadas y se aplicó luego la *Ecuación 6.1*, donde H es la humedad porcentual y N es el número de golpes necesarios.

$$LL = \frac{H}{1,419 - 0.3 \cdot \log N}$$
 Ecuación 6.1

Gabrielli - Londero Estudio geotécnico Página 51

La humedad porcentual se calculó con la expresión dada por la *Ecuación 6.2*, donde W_{SH} representa el peso del suelo húmedo y W_{SS} el peso del suelo seco.

$$H = \frac{W_{SH} - W_{SS}}{W_{SS}} \cdot 100\% \quad Ecuación 6.2$$

Los resultados obtenidos del ensayo se muestran en la Tabla 6.4.

Tabia 0.4 – Limite tiquiao ae muestras							
Calicata	Ensayo N°	N	Н	LL			
C1	1 25	100,00%	96,15%				
CI	2	27	91,30%	90,13%			
CO	1	25	98,10%	02.690/			
C2	2	24	89,66%	93,68%			
C2	1	24	90,60%	01.520/			
C3	2	22	94,39%	91,53%			

Tabla 6.4 – Límite líquido de muestras

6.2.3 Límite plástico

El límite plástico es el contenido de humedad, expresado en porcentaje, del suelo secado en el horno cuando este se haya en el límite de los estados plástico y el estado sólido. Este se define arbitrariamente como la humedad más baja con la cual pueden formarse con el suelo cilindros de 3,0 [mm] de diámetro, rodando dicho suelo entre los dedos de la mano y una superficie lisa, hasta que los cilindros presenten grietas, como se muestra en la *Figura 6.11*. Estos cilindros se pesan y se secan en horno para luego ser pesados nuevamente y poder determinar la humedad de la muestra mediante la *Ecuación 6.2*.

El ensayo se realizó dos veces por cada muestra. Los resultados obtenidos se muestran en la *Tabla 6.5*.

Figura 6.11 – Cilindros de suelo para ensayo de límite plástico

Página 52 Estudio geotécnico Gabrielli - Londero

	Tabla 6.5 – Límite plástico de muestras							
	Calicata	Ensayo N°	Н	LP				
	C1	1	29,00%	29.260/				
	C1	2	27,52%	28,26%				
	C2	1	31,50%	20.110/				
	C2	2	26,71%	29,11%				
	C3	1	27,20%	20.200/				
	C3	2	31,43%	29,30%				

6.2.4 Índice de plasticidad

Una vez obtenidos el límite plástico y el límite líquido se calcularon los índices de plasticidad de las muestras de suelo mediante la expresión dada por la *Ecuación 6.3*.

$$IP = LL - LP$$
 Ecuación 6.3

En la *Tabla 6.6* se muestran los resultados obtenidos para cada muestra.

Tabia 0.0 – Thaice de piasticidad de muestras						
Calicata	LL	LP	IP			
C1	96,15%	28,26%	67,89%			
C2	93,68%	29,11%	64,57%			
СЗ	91,53%	29,30%	62,23%			

Tabla 6.6 – Índice de plasticidad de muestras

6.3 Clasificación del suelo

La clasificación de suelos en grupos con comportamiento similar, en términos de índices simples, tiene como objetivo establecer un lenguaje común y relacionar propiedades con determinados grupos de suelos. A grandes rasgos, los suelos se agrupan en suelos finos (limos y arcillas) y suelos gruesos (arenas y gravas). Los principales sistemas de clasificación son:

6.3.1 Sistema Unificado de Clasificación de Suelos (SUCS)

Este sistema fue desarrollado en principio por el Profesor Arthur Casagrande (1948) con el propósito de la construcción de pistas de aviación durante la Segunda Guerra Mundial. Posteriormente fue modificado por el Profesor Casagrande, el U.S. Bureau of Reclamation, y el U.S. Army Corps of Engineers para permitir que el sistema sea apto para otras construcciones como presas o fundaciones. En este sistema de clasificación intervienen la granulometría y los límites de Atterberg.

El sistema divide los suelos en gruesos y finos, considerando el porcentaje pasante por el tamiz N°200. Si menos del 50% en peso pasa por dicho tamiz, entonces el suelo es grueso y se subclasifica en arena o grava por medio del tamiz N°4; caso contrario, el suelo es fino y se

subclasifica en limo o arcilla según los valores de límite líquido y límite plástico. En la *Tabla* 6.7 se presenta la nomenclatura utilizada en este sistema.

Tabla 6.7 – Nomenclatura de sistema SUCS

Símbolo	Denominación	Símbolo	Denominación
G	Grava	W	Bien graduado
S	Arena	P	Mal graduado
M	Limo	Н	Alta plasticidad
С	Arcilla	L	Baja plasticidad
О	Orgánico		

Para clasificar los suelos finos se utiliza la carta de plasticidad, la cual se muestra en la *Figura 6.12*. Para el caso de suelos gruesos se emplean dos coeficientes que miden la forma de la curva granulométrica y son el coeficiente de uniformidad (C_u) y el coeficiente de curvatura (C_c) y, si el contenido de finos es mayor al 12%, también se utiliza la carta de plasticidad. En la *Figura 6.13* se presenta un diagrama de flujo que resume el proceso de clasificación de suelos mediante este sistema.

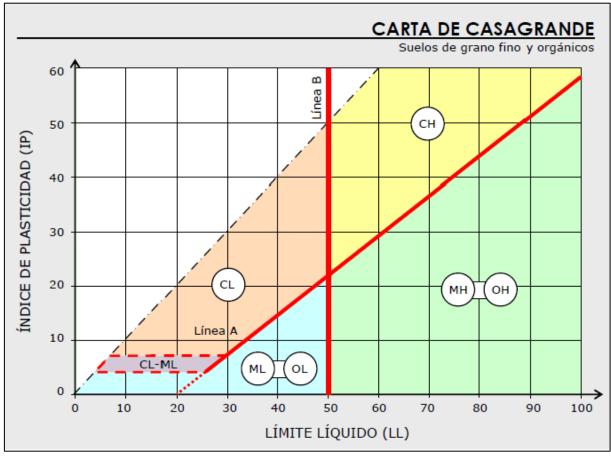


Figura 6.12 – Carta de plasticidad del sistema SUCS

Página 54 Estudio geotécnico Gabrielli - Londero

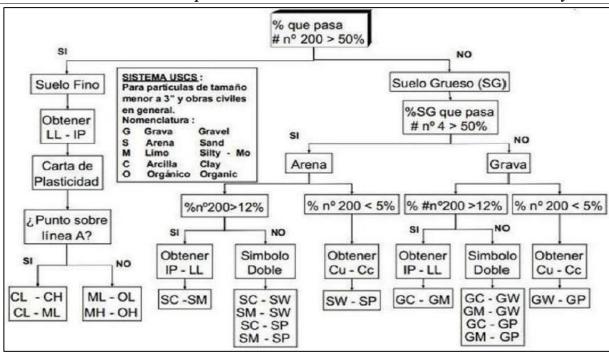


Figura 6.13 – Diagrama de flujo del sistema SUCS

A partir de los resultados de los ensayos obtenidos en el apartado 6.2 para las distintas muestras, y utilizando la carta de plasticidad de la *Figura 6.12* y el diagrama de flujo de la *Figura 6.13* se clasificó el suelo como se muestra en la *Tabla 6.8*.

Calicata	PT N°200	LL	IP	Clasificación
C1	99,65%	96,15%	67,89%	СН
C2	99,00%	93,68%	64,57%	СН
C3	96,30%	91,53%	62,23%	СН

Tabla 6.8 – Clasificación de muestras de suelo (SUCS)

6.3.2 Sistema de la American Association of State Highway and Transportation Officials (AASHTO)

Este sistema fue desarrollado originalmente en 1929 por Hogentogler y Terzaghi como Public Roads Classification System. Más adelante, tuvo varias revisiones hasta llegar a la versión presente (2004), la cual está basada en la versión de 1978, pero con la eliminación del valor tope de 20 para el índice de grupo (IG). El propósito original de este método de clasificación era calificar las características de la subrasante en construcciones viales.

Este sistema clasifica a los suelos, en base a los análisis granulométricos y límites de Atterberg, en ocho grupos principales que van de A1 hasta A-7 (con varios subgrupos), y A-8 que corresponde a suelos orgánicos. Si menos del 35% en peso pasa por el tamiz N°200, el suelo se considera grueso (grupos A-1~A-3), subdividiéndose a su vez grava o arena; de lo contrario el suelo es fino (grupos A-4~A-7) y se subclasifica en limos o arcillas. La calidad de los suelos para ser utilizados como subrasante va disminuyendo desde el A-1 al A-7, que es el más pobre.

Otro valor que influye en la clasificación de suelos por el método AASHTO es el índice de grupo, el cual se obtiene mediante la expresión dada por la *Ecuación 6.4*, y por la *Ecuación 7.2* Ecuación 7.2 para los grupos A-2-6 y A-2-7, en las cuales F es el porcentaje pasante por el tamiz N°200. Este valor se informa entre paréntesis después del símbolo del grupo en números enteros y si es negativo se hace igual a 0. En general, la calificación de la calidad para una subrasante de pavimento es inversamente proporcional al índice de grupo.

$$IG = (F - 35) \cdot [0.2 + 0.005 \cdot (LL - 40)] + 0.01 \cdot (F - 15) \cdot (IP - 10)$$
 Ecuación 6.4

$$IG = 0.01 \cdot (F - 15) \cdot (IP - 10)$$
 Ecuación 6.5

Para clasificar el suelo por este método se debe recorrer la *Tabla 6.9* de izquierda a derecha. El primer grupo que cumpla los requerimientos será la clasificación AASHTO correcta.

En la *Tabla 6.10* se presentan el índice de grupo y la correspondiente clasificación según el sistema AASHTO de las muestras de suelo ensayadas en el laboratorio.

Tabla 6.9 – Clasificación de suelos AASHTO

	1 abia 6.9 – Ciasificación de suelos AASH1 O												
DIVIS	SIÓN		I	Materia	iles Gra	anulare	s		Materiales Limo-arcillosos				
GENE		(pa	sa men	os del :	35% po #200)	or el tai	niz IR	AM	(más del 35% por el tamiz IRAM #200)				
GRU	JРО	A	-1			A	-2			A-5		A-7	
Subg	rupo	A-1- a	A-1- b	A-3	A-2-	A-2- 5	A-2-	A-2-	A-4		A-6	A-7-5	A-7-6
ANÁL	ISIS GI	RANU	LOME	TRICC	(% qu	e pasa	por cac	la tami	z)				
MM	#10	≤ 50											
Serie IRAM	#40	≤ 50	≤ 50	≥ 51									
Ser	#200	≤ 15	≤ 25	≤ 10	≤ 35	≤ 35	≤ 35	≤ 35	≥ 36	≥ 36	≥ 36	≥ 36	≥ 36
ESTAI	OO DE	CONS	ISTEN	CIA (d	le la fra	cción o	de suelo	que p	asa por	el tam	iz IR <i>A</i>	M #40)	
Lím Líqu				NP	≤ 40	≥ 41	≤ 40	≥ 41	≤ 40	≥ 41	≤ 40	> 41 IP <ll-30< td=""><td>> 41 IP>LL-30</td></ll-30<>	> 41 IP>LL-30
Índic plastic		<u> </u>	6	INF	≤ 10	≤ 10	≥ 11	≥ 11	≤ 10	≤ 10	≥ 11	≥ 11	≥ 11
Índic gru		()	0	()	<	4	≤ 8	≤ 12	≤ 20	≤	20
TIPOLOGÍA Fragmentos de piedra, grava y arena Grav		Gravas y arenas limosas o arcillosas		Suelos limosos		Su	Suelos arcillosos						
CALI	DAD	ЕХ	 KCELE	NTE A	BUEN	BUENA A			ACEPTABLE A MALA				

"Propuesta de readecuación de la intersección de las RN 12 y 127"

Tabla 6.10 – Clasificación de muestras de suelo (AASHTO)

Calicata	F	LL	IP	Clasificación							
C1	99,65%	96,15%	67,89%	A-7-6 (79)							
C2	99,00%	93,68%	64,57%	A-7-6 (75)							
C3	96,30%	91,53%	62,23%	A-7-6 (70)							

6.4 Valor soporte relativo

El ensayo de valor soporte relativo (VSR), o Californian Bearing Ratio (CBR), se usa para evaluar la capacidad portante de suelos compactados, como lo son las capas de un paquete estructural. Este consiste en compactar suelo en moldes normalizados, sumergirlos en agua y aplicar un punzonamiento sobre la superficie mediante un pistón también normalizado. De esta manera, el VSR de un suelo es la relación, en porcentaje, entre el esfuerzo necesario para penetrar el pistón a una velocidad prefijada hasta una profundidad determinada en la muestra de suelo analizada, y la presión correspondiente para la misma penetración de una muestra patrón con características ideales. En Argentina, este ensayo está regido por la norma de ensayo VN-E6-84 "Determinación de Valor Soporte e Hinchamiento de Suelos" de la DNV.

El VSR de la subrasante es un dato necesario para poder llevar a cabo la determinación de los espesores del paquete estructural mediante el método AASHTO 1993, como se explica más adelante. En la *Tabla 6.11* se presentan valores de VSR orientativos establecidos por la DNV según la función del material en el paquete estructural.

Tabla 6.11 – Valores orientativos de VSR de la DNV

Capa	Valor Soporte Relativo
Base	≥ 80%
Subbase	≥ 40%
Subrasante buena	≥ 8%
Subrasante regular a pobre	$1\% \ge VSR \ge 5\%$

A partir de los ensayos de suelo de la zona de proyecto se determinó que la calidad de este es mala para ser usado como subrasante. En base a esto y por recomendaciones de la DNV se adoptó un VSR = 3% para la subrasante para realizar el diseño del paquete estructural.

7. Diseño de paquete estructural

En el presente capítulo se desarrolla el diseño del paquete estructural del proyecto siguiendo los lineamientos del método AASHTO 1993 para pavimentos flexibles.

Los pavimentos flexibles se caracterizan por ser sistemas multicapa con las capas de mejor calidad cerca de la superficie donde las tensiones son mayores. La capa superior es de concreto asfáltico. Las capas inferiores se denominan, en orden descendente, base (grava bien graduada o materiales estabilizados con cemento o asfalto), subbase y subrasante. Este tipo de pavimentos funciona distribuyendo las cargas hasta llegar a un nivel aceptable de la subrasante.

Para el material de la subrasante se adoptó el obtenido en el estudio geotécnico. Para las demás capas del paquete se adoptaron valores y aportes estructurales a partir de la caracterización de materiales, como se describe más adelante.

En base a los resultados obtenidos en el estudio de tránsito, se determinaron las solicitaciones del tránsito, adoptando un periodo de diseño de 20 años.

7.1 Caracterización del tránsito

El tránsito se caracterizó en base a los pesos que se consideran para cada tipo de vehículo, según se encuentren cargados o descargados. Por otro lado, se deben determinar las cargas por eje de acuerdo con el peso total, según se trate de ejes simples o dobles (tándem), para lo cual deben tenerse en cuenta las reglamentaciones que estable la ley N° 24.449 en cuanto a cargas máximas por eje y configuraciones autorizadas para rutas nacionales. En la *Tabla 7.1* y la *Tabla 7.2* se muestran los pesos y cargas por eje que se consideran para vehículos cargados y descargados, respectivamente.

Tabla 7.1 – Pesos de vehículos cargados

TT: 1	m: 1 /	D.	Cargas por eje [Tn]					
Tipo de vehículo	Tipología de ejes	Peso [Tn]	Eje simple individual	Eje simple doble	Eje tándem individual	Eje tándem doble		
Livianos	1.1	2,00	1,00 (x2)	-	-	-		
Colectivos	1.1	9,50	3,25	6,25	-	-		
	1.2	24,00	6,00	1	-	18,00		
Camiones sin	1.1	16,50	6,00	10,50	-	-		
acoplado	1.2	24,00	6,00	-	-	18,00		
	1.1 - 1.1	37,50	6,00	10,50 (x3)	-	-		
Camiones	1.1 - 1.2	45,00	6,00	10,50 (x2)	-	18,00		
con acoplado o articulados	1.1 - 2	34,50	6,00	10,50	-	18,00		
	1.2 - 2	42,00	6,00	-	-	18,00 (x2)		

Tabla 7.2 – Pesos de vehículos descargados

m: 1	m: 1 /	ъ	Cargas por eje [Tn]						
Tipo de vehículo	Tipología de ejes	Peso [Tn]	Eje simple individual	Eje simple doble	Eje tándem individual	Eje tándem doble			
Livianos	1.1	1,60	0,80 (x2)	-	-	-			
Colectivos	1.1	5,00	1,75	3,25	-	-			
Colectivos	1.2	10,00	2,50	-	-	7,50			
Camiones sin	1.1	5,00	1,75	3,25	-	-			
acoplado	1.2	10,00	2,50	-	-	7,50			
	1.1 - 1.1	11,50	1,75	3,25 (x3)	-	-			
Camiones con acoplado	1.1 - 1.2	15,75	1,75	3,25 (x2)	-	7,50			
o articulados	1.1 - 2	12,50	1,75	3,25	-	7,50			
	1.2 - 2	16,75	1,75	-	-	7,50 (x2)			

7.2 Factores equivalentes de carga (LEFs)

Los resultados obtenidos por la AASHTO muestran que el daño que producen distintas configuraciones de ejes y cargas puede representarse por un número equivalente de pasadas de un eje simple patrón de rueda doble de 18,00 [kip] (80,00 [kN] u 8,20 [Tn]), que producirá un daño similar a toda la composición del tráfico. A esto se lo se denomina carga de eje equivalente simple (ESAL, siglas en inglés de "Equivalent Single Axis Load").

La conversión del tráfico a un número de ESALs se realiza utilizando factores equivalentes de carga (LEF, siglas en inglés de "Load Equivalent Factor"). Estos factores fueron determinados por la AASHTO sometiendo a pavimentos similares a distintas configuraciones de ejes y cargas, y analizando luego el daño producido y la relación existente entre estas configuraciones y cargas a través del daño que producen.

El LEF es un valor numérico que expresa la relación entre la pérdida de serviciabilidad ocasionada por una determinada carga de un tipo de eje y la producida por el eje patrón ESAL de 18,0 [kip], como se muestra en la *Ecuación 7.1*.

$$LEF = \frac{N^{\circ} \ de \ ESALs \ que \ producen \ una \ perdida \ de \ serviciabilidad \ \Delta PSI}{N^{\circ} \ de \ ejes \ de \ X \ kips \ que \ producen \ la \ misma \ \Delta PSI} \qquad Ecuación \ 7.1$$

Los factores LEF para cada tipo de vehículo en base a la carga por eje que transmiten al pavimento, se determinaron siguiendo la *Tabla 7.3* y la *Tabla 7.4* que muestran los valores de los factores LEF para pavimentos flexibles de serviciabilidad final de 2,50 y distintos números estructurales (SN) de la AASHTO.

Tabla 7.3 – LEFs para pavimentos flexibles de $p_t = 2,50$ – ejes simples

Carga por	ibia 7.5 – LEI	s para pavin		$\frac{cs}{N}$	o ejes simpi	CS
eje [kip]	1	2	3	4	5	6
2	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004
4	0,003	0,004	0,004	0,003	0,002	0,002
6	0,011	0,017	0,017	0,013	0,010	0,009
8	0,032	0,047	0,051	0,041	0,034	0,031
10	0,078	0,102	0,118	0,102	0,088	0,080
12	0,168	0,198	0,229	0,213	0,189	0,176
14	0,328	0,358	0,399	0,388	0,360	0,342
16	0,591	0,613	0,646	0,645	0,623	0,606
18	1,00	1,00	1,00	1,00	1,00	1,00
20	1,61	1,57	1,49	1,47	1,51	1,55
22	2,48	2,38	2,17	2,09	2,18	2,30
24	3,69	3,49	3,09	2,89	3,03	3,27
26	5,33	4,99	4,31	3,91	4,09	4,48
28	7,49	6,98	5,90	5,21	5,39	5,98
30	10,30	9,50	7,90	6,80	7,00	7,80
32	13,90	12,80	10,50	8,80	8,90	10,00
34	18,40	16,90	13,70	11,30	11,20	12,50
36	24,00	22,00	17,70	14,40	13,90	15,50
38	30,90	28,30	22,60	18,10	17,20	19,00
40	39,30	35,90	28,50	22,50	21,10	23,00
42	49,30	45,00	35,60	27,80	25,60	27,70
44	61,30	55,90	44,00	34,00	31,00	33,10
46	75,50	68,80	54,00	41,40	37,20	39,30
48	92,20	83,90	65,70	50,10	44,50	46,50
50	112,00	102,00	79,00	60,00	53,00	55,00

Tabla 7.4 - LEFs para pavimentos flexibles de $p_t = 2,50$ – ejes tándem

Carga por	SN								
eje [kip]	1	2	3	4	5	6			
2	0,0001	0,0001	0,0001	0,0000	0,0000	0,0000			
4	0,0005	0,0005	0,0004	0,0003	0,0003	0,0002			
6	0,002	0,002	0,002	0,001	0,001	0,001			
8	0,004	0,006	0,005	0,004	0,003	0,003			
10	0,008	0,013	0,011	0,009	0,007	0,006			
12	0,015	0,024	0,023	0,018	0,014	0,013			
14	0,026	0,041	0,042	0,033	0,027	0,024			
16	0,044	0,065	0,070	0,057	0,047	0,043			

"Propuesta de readecuación de la intersección de las RN 12 y 127"

Carga por	SN									
eje [kip]	1	2	3	4	5	6				
18	0,070	0,097	0,109	0,092	0,077	0,070				
20	0,107	0,141	0,162	0,141	0,121	0,110				
22	0,160	0,198	0,229	0,207	0,180	0,166				
24	0,231	0,273	0,315	0,292	0,260	0,242				
26	0,327	0,370	0,420	0,401	0,364	0,342				
28	0,451	0,493	0,548	0,534	0,495	0,470				
30	0,611	0,648	0,703	0,695	0,658	0,633				
32	0,813	0,843	0,889	0,887	0,857	0,834				
34	1,06	1,08	1,11	1,11	1,09	1,08				
36	1,38	1,38	1,38	1,38	1,38	1,38				
38	1,75	1,73	1,69	1,68	1,70	1,73				
40	2,21	2,16	2,06	2,03	2,08	2,14				
42	2,76	2,67	2,49	2,43	2,51	2,61				
44	3,41	3,27	2,99	2,88	3,00	3,16				
46	4,18	3,98	3,58	3,40	3,55	3,79				
48	5,08	4,80	4,25	3,98	4,17	4,49				
50	6,12	5,76	5,03	4,64	4,86	5,28				
52	7,33	6,87	5,93	5,38	5,63	6,17				
54	8,72	8,14	6,95	6,22	6,47	7,15				
56	10,30	9,60	8,10	7,20	7,40	8,20				
58	12,10	11,30	9,40	8,20	8,40	9,40				
60	14,20	13,10	10,90	9,40	9,60	10,70				
62	16,50	15,30	12,60	10,70	10,80	12,10				
64	19,10	17,60	14,50	12,20	12,20	13,70				
66	22,10	20,30	16,60	13,80	13,70	15,40				
68	25,30	23,30	18,90	15,60	15,40	17,20				
70	29,00	26,60	21,50	17,60	17,20	19,20				
72	33,00	30,30	24,40	19,80	19,20	21,30				
74	37,50	34,40	27,60	22,20	21,60	23,60				
76	42,50	38,90	31,10	24,80	23,70	26,10				
78	48,00	43,90	35,00	27,80	26,20	28,80				
80	54,00	49,40	39,20	30,90	29,00	31,70				
82	60,60	55,40	43,90	34,40	32,00	34,80				
84	67,80	61,90	49,00	38,20	35,30	38,10				
86	75,70	69,10	54,50	42,30	38,80	41,70				
88	84,30	76,90	60,60	46,80	42,60	45,60				
90	93,70	85,40	67,10	51,70	46,80	49,70				

De esta manera, en la *Tabla 7.5*, *Tabla 7.6*, *Tabla 7.7* y la *Tabla 7.8* se muestran los valores de LEF obtenidos para los distintos vehículos considerados para un valor de SN = 5,00. Cabe aclarar que si bien el LEF varía para cada tipo de pavimento, la diferencia no es grande, por lo que no se justifica realizar un cálculo iterativo en el cual en número estructural converge al valor utilizado para el cálculo de los ESALs. Es por esto que los LEFs presentados son los definitivos.

Tabla 7.5 – LEFs para vehículos livianos

Estado	Tipología de ejes	Eje	Carga [Tn]	Carga [kip]	LEF	LEF Total	Cantidad de ejes	LEF por eje
Cargado 1.1	1.1	Simple	1,00	2,20	0,0006	0,0011	2	0,0006
Cargado	1.1	Simple	1,00	2,20	0,0006	0,0011		
Descargado	1.1	Simple	0,80	1,76	0,0004	0,0008	2	0.0004
	1.1	Simple	0,80	1,76	0,0004	0,0008	2	0,0004

Tabla 7.6 – LEFs para colectivos

Estado	Tipología de ejes	Eje	Carga [Tn]	Carga [kip]	LEF	LEF Total	Cantidad de ejes	LEF por eje
	1.1	Simple	3,25	7,15	0,0238	0,3624	2	0,1812
C 1	1.1	Simple	6,25	13,75	0,3386	0,3024	2	
Cargado	1.2	Simple	6,00	13,20	0,2916	2,2956	3	0,7652
		Tándem	18,00	39,60	2,0040	2,2936		
	1 1	Simple	1,75	3,85	0,0019	0,0257	2	0,0128
Dagaaraada	1.1	Simple	3,25	7,15	0,0238	0,0237		
Descargado	1.2	Simple	2,50	5,50	0,0080	0,1300	3	0.0422
	1.2	Tándem	7,50	16,50	0,1220	0,1300	3	0,0433

Tabla 7.7 – LEFs para camiones sin acoplado

Estado	Tipología de ejes	Eje	Carga [Tn]	Carga [kip]	LEF	LEF Total	Cantidad de ejes	LEF por eje
Cargado	1.1	Simple	6,00	13,20	0,2916	2,9391	2	1,4696
		Simple	10,50	23,10	2,6475			
	1.2	Simple	6,00	13,20	0,2916	2,2956	3	0,7652
		Tándem	18,00	39,60	2,0040			
Descargado	1 1	Simple	1,75	3,85	0,0019	0,0257	2 0.01	0.0129
	1.1	Simple	3,25	7,15	0,0238	0,0237	2	0,0128
	l 1.2 ⊢	Simple	2,50	5,50	0,0080	0.1200	2	0.0422
		Tándem	7,50	16,50	0,1220	0,1300	3	0,0433

Tabla 7.8 – LEFs para camiones con acoplado o articulados

	Tipología	.8 – <i>LEF s</i>	Carga	Carga	<u>асоріаао</u>	LEF	Cantidad	LEF por
Estado	de ejes	Eje	[Tn]	[kip]	LEF	Total	de ejes	eje
	22 252	Simple	6,00	13,20	0,2916		4	2,0585
		Simple	10,50	23,10	2,6475			
	1.1 - 1.1	Simple	10,50	23,10	2,6475	8,2341		
		Simple	10,50	23,10	2,6475			
		Simple	6,00	13,20	0,2916			
		Simple	10,50	23,10	2,6475			
	1.1 - 1.2	Simple	10,50	23,10	2,6475	7,5906	5	1,5181
Cargado		Tándem	18,00	39,60	2,0040			
		Simple	6,00	13,20	0,2916			1,2358
	1.1 - 2	Simple	10,50	23,10	2,6475	4,9431	4	
		Tándem	18,00	39,60	2,0040			
	1.2 - 2	Simple	6,00	13,20	0,2916	4,2996	5	0,8599
		Tándem	18,00	39,60	2,0040			
		Tándem	18,00	39,60	2,0040			
	1.1 - 1.1	Simple	1,75	3,85	0,0019	0,0733	4	0,0183
		Simple	3,25	7,15	0,0238			
		Simple	3,25	7,15	0,0238			
		Simple	3,25	7,15	0,0238			
		Simple	1,75	3,85	0,0019			0,0343
	1.1 - 1.2	Simple	3,25	7,15	0,0238	0,1715	5	
Dagaamaada	1.1 - 1.2	Simple	3,25	7,15	0,0238	0,1/13	3	
Descargado		Tándem	7,50	16,50	0,1220			
		Simple	1,75	3,85	0,0019			0,0369
	1.1 - 2	Simple	3,25	7,15	0,0238	0,1477	4	
		Tándem	7,50	16,50	0,1220			
		Simple	1,75	3,85	0,0019	0,2459 5		0,0492
	1.2 - 2	Tándem	7,50	16,50	0,1220		5	
		Tándem	7,50	16,50	0,1220			

7.3 Variables de diseño

La "Guía AASHTO para el Diseño de Estructuras de Pavimento 1993" considera los siguientes criterios para poder diseñar el pavimento.

7.3.1 Confiabilidad (R%)

La confiabilidad es la probabilidad de que el pavimento se comporte satisfactoriamente durante su vida útil o periodo de diseño, resistiendo las condiciones de tráfico y medio ambiente dentro de dicho periodo. Cabe resaltar, que cuando se habla del comportamiento del pavimento se hace referencia a la capacidad estructural y funcional de este, es decir, a la capacidad de soportar las cargas impuestas por el tránsito, y asimismo de brindar seguridad y confort al usuario durante el periodo para el cual fue diseñado. Por lo tanto, la confiabilidad está asociada

a la aparición de fallas en el pavimento. En la *Tabla 7.9* se dan los niveles de confiabilidad aconsejadas por la AASHTO.

Tabla 7.9 – Niveles de confiabilidad

Tino do comino	Confiabilidad recomendada		
Tipo de camino	Zona urbana	Zona rural	
Rutas interestatales y autopistas	85% - 99,9%	80% - 99,9%	
Arterias principales	80% - 99%	75% - 99%	
Colectoras	80% - 95%	75% - 95%	
Locales	50% - 85%	50% - 80%	

Debido a que el proyecto se trata de una intersección entre rutas interestatales en zona rural, se adoptó un nivel de confiabilidad de R = 90%. Para este valor corresponde un valor de abscisa del área de confiabilidad en la curva de distribución normalizada de $Z_R = -1,282$.

7.3.2 Desviación estándar (S_0)

Este valor representa la desviación de la población de valores obtenidos por la AASHTO que involucra la variabilidad inherente a las propiedades de los materiales a lo largo del pavimento, la variación en la ubicación de los pasadores en las juntas, y la variación entre los datos de diseño de pavimento y los reales. En otras palabras, este valor acota la variabilidad de distintos factores dentro de unos límites permisibles, con el fin de asegurar que la estructura del pavimento se comporte adecuadamente durante su periodo de diseño. En la *Tabla 7.10* se muestran los valores para la desviación estándar recomendados por la AASHTO.

Tabla 7.10 – Valores para la desviación estándar

Tipo de camino	Desviación estándar	
Variación en la predicción del comportamiento	0,34 (pavimentos rígidos	
del pavimento sin errores en el tránsito	0,44 (pavimentos flexibles)	
Variación en la predicción del comportamiento	0,39 (pavimentos rígidos	
del pavimento con errores en el tránsito	0,49 (pavimentos flexibles)	

Debido a que la proyección de tránsito futuro se realizó con estimaciones lineales en base a los datos de la DNV, y la distribución del tránsito se adoptó en base a la distribución mostrada en la *Tabla 4.3*, se considera que el valor del tránsito futuro tiene errores, por lo que se adoptó una desviación estándar $S_0 = 0.49$.

7.3.3 Pérdida de serviciabilidad (ΔPSI)

La serviciabilidad se usa como una medida del comportamiento del pavimento, la misma que se relaciona con la seguridad y comodidad que puede brindar al usuario cuando este circula por la vialidad (comportamiento funcional). Esta también se relaciona con las características

físicas que puede presentar el pavimento como grietas, fallas y peladuras que podrían afectar la capacidad de soporte de la estructura (comportamiento estructural).

Cuando el conductor circula por primera vez o en repetidas ocasiones sobre una vialidad, experimenta la sensación de seguridad o inseguridad dependiendo de lo que ve y del grado de dificultad para controlar el vehículo. El principal factor asociado a la seguridad y comodidad del usuario es la calidad de rodamiento que depende de la regularidad o rugosidad superficial. del pavimento. La valoración de este parámetro define el concepto de Índice de Serviciabilidad Presente (PSI, por sus siglas en ingles). Este califica a la superficie del pavimento de acuerdo con una escala de valores de 0 (pésimas condiciones) a 5 (perfecta).

El índice de serviciabilidad inicial (p_0) se estable para la condición original del pavimento inmediatamente después de su construcción. AASHTO recomienda adoptar para pavimentos flexibles un índice de serviciabilidad inicial $p_0 = 4,20$.

El índice de serviciabilidad final (p_t) ocurre cuando la superficie del pavimento ya no cumple con las expectativas de comodidad y seguridad exigidas por el usuario y depende de la importancia del camino. En base a las recomendaciones de la AASHTO para vías principales, se adopta un índice de serviciabilidad final $p_t = 2,50$.

Finalmente, la pérdida de serviciabilidad se define como la diferencia entre el índice de serviciabilidad inicial y el final, como se muestra en la *Ecuación 7.2*, resultando un valor de $\Delta PSI = 1,70$.

$$\Delta PSI = p_0 - p_t$$
 Ecuación 7.2

7.3.4 Módulo resiliente de la subrasante (M_R)

El módulo resiliente es el parámetro utilizado con el fin de representar las propiedades de los suelos de la subrasante en el diseño de pavimentos flexibles. Este módulo es una medida de la propiedad elástica del suelo, tomando en cuenta ciertas características no lineales. Sin embargo, se reconoce que muchos laboratorios no cuentan con el equipamiento necesario para llevar a cabo ensayos para su determinación. Es por esto por lo que se han establecidos factores apropiados que pueden ser usados para estimarlo a partir de los ensayos de VSR.

Para suelos de graduación fina con VSR \leq 10% la AASHTO permite utilizar la *Ecuación* 7.3, la cual fue desarrollada por Heukelom y Klomp y ha sido utilizada por varias agencias de diseños e investigadores.

$$M_R[psi] = 1.500 \cdot VSR$$
 Ecuación 7.3

Aplicando esta ecuación se obtuvo un módulo resiliente de la subrasante de $M_R = 4500$ [psi].

7.3.5 Coeficiente de drenaje (m_i)

El coeficiente de drenaje es utilizado para considerar los efectos del drenaje sobre el comportamiento del pavimento. El drenaje es tratado considerando los efectos del agua sobre las propiedades de las capas del pavimento y sus consecuencias sobre la capacidad estructural de este. En la *Tabla 7.11* se dan las definiciones generales correspondientes a diferentes niveles

de drenaje de la estructura del pavimento. Para el proyecto se adoptó una calidad de drenaje regular, es decir, se considera que el agua libre se remueve de la base en una semana.

Tabla 7.11 – Calidades de drenaje según la AASHTO

Calidad de drenaje	Tiempo de remoción del agua	
Excelente	2 horas	
Bueno	1 día	
Regular	1 semana	
Pobre	1 mes	
Muy pobre	El agua no drena	

La Tabla~7.12 proporciona los valores recomendados por la AASHTO para el coeficiente de drenaje como una función de la calidad de drenaje y el porcentaje de tiempo en el año durante el cual la estructura está expuesta a niveles de humedad próximos a la saturación. Teniendo en cuenta el tipo de clima templado húmedo de la zona del proyecto, considerando conservadoramente un tiempo de permanencia de hasta el 25% en estado de saturación, se adopta un coeficiente de drenaje $m_i = 0.95$. Cabe aclarar que dicho valor se aplica sólo a capas de base y subbase no tratadas.

Tabla 7.12- Coeficientes de drenaje recomendados por la AASHTO para pavimentos flexibles

Calidad de	Porcentaje de tiempo en el que el pavimento está expuesto a niveles de humedad próximos a la saturación					
drenaje	Menos del 1%	1% - 5%	5% - 25%	Más del 25%		
Excelente	1,40- 1,35	1,35 - 1,30	1,30 - 1,20	1,20		
Bueno	1,35 - 1,25	1,25 - 1,15	1,15 - 1,00	1,00		
Regular	1,25 - 1,15	1,15 - 1,05	1,05 - 0,80	0,80		
Pobre	1,15 - 1,05	1,05 - 0,80	0,80 - 0,60	0,60		
Muy pobre	1,05 - 0,95	0,95 - 0,75	0,75 - 0,40	0,40		

7.3.6 Número de cargas de 18,00 [kip] equivalentes (W₁₈)

Primeramente, es necesario conocer la cantidad de vehículos que se espera que pasen por la intersección, para lo que se tomó como base el tramo RN 12 Oeste. A partir de la proyección del tránsito futuro mostrado en la *Tabla 4.2* y utilizando la *Ecuación 7.5* se determina que durante los 20 años de vida útil del pavimento cruzarán 37.420.256 vehículos por la intersección. A partir de la *Tabla 4.3* se determinan las cantidades de los diferentes tipos de vehículos, las cuales se muestran en la *Tabla 7.13*.

$$N^{\circ}$$
 de vehículos = $\sum_{i=1}^{n} TMDA_{i} \cdot 365,25$ Ecuación 7.4

Tabla 7.13 – Número de vehículos que se espera circulen por la intersección (2024 – 2044)

Tipo de vehículo	Composición [%]	Número de vehículos	
Livianos	71,63%	26.804.129	
Colectivos	1,57%	587.498	
Camiones sin acoplado	8,80%	3.292.983	
Camiones con acoplado y articulado	18,00%	6.735.646	
Total	100,00%	37.420.256	

A partir de esto, se procedió a calcular el número total de ejes por categoría durante la vida útil del pavimento, como se muestra en la *Tabla 7.14*, utilizando la *Ecuación 7.5*, donde el factor 0,50 tiene en cuenta la distribución direccional y la distribución de carriles.

$$\frac{N^{\circ} \ de \ ejes}{por \ categor\'{i}a} = 0,50 \cdot \frac{N^{\circ} \ de}{veh\'{i}culos} \cdot \frac{Cantidad}{de \ ejes} \cdot Composici\'{o}n \quad Ecuaci\'{o}n \ 7.5$$

Tabla 7.14 – Número de ejes por categoría (2024-2044)

Tipo de vehículo	Número de vehículos	Tipología de ejes	Composición	Cantidad de ejes	Número de ejes por categoría
Livianos	26.804.129	1.1	100%	2	26.804.129
Calactings	507 400	1.1	30%	2	176.249
Colectivos	587.498	1.2	70%	3	616.873
Camiones sin acoplado	3.292.983	1.1	35%	2	1.152.544
		1.2	65%	3	3.210.658
	oplado o 6.735.646	1.1 - 1.1	13%	4	1.751.268
Camiones con		1.1 - 1.2	31%	5	5.220.126
acoplado o articulados		1.1 - 2	21%	4	2.828.971
		1.2 - 2	35%	5	5.893.690

Finalmente, se determinó el número de ejes equivalentes de 18,00 [kip] (W₁₈) para la vida útil del pavimento, lo cual se muestra en la

Tabla 7.15, usando la *Ecuación* 7.6. Para esto, se consideró que el 65% de los vehículos que circularán por la intersección estarán cargados, mientras que el 35% restante circulará descargado.

$$W_{18} = \frac{N^{\circ} \text{ de ejes}}{por \text{ categor\'ia}} \cdot LEF \cdot (0,65 \circ 0,35)$$
 Ecuación 7.6

Tabla 7.15 – Numero de ejes equivalentes (W_{18})

Tipo de vehículo	Numero de	Li	EF	\mathbf{W}_{18}		
	ejes por categoría	Cargados (65%)	Descargados (35%)	Cargados (65%)	Descargados (35%)	
Livianos	26.804.129	0,0006	0,0004	9.757	3.753	
Calaatinaa	176.249	0,1812	0,0128	20.760	792	
Colectivos	616.873	0,7652	0,0433	306.820	9.356	
Camiones sin acoplado	1.152.544	1,4696	0,0128	1.100.919	5.180	
	3.210.658	0,7652	0,0433	1.596.917	48.695	
	1.751.268	2,0585	0,0183	2.343.269	11.229	
Camiones	5.220.126	1,5181	0,0343	5.151.105	62.660	
acoplado o articulados	2.828.971	1,2358	0,0369	2.272.382	36.556	
	5.893.690	0,8599	0,0492	3.294.266	101.440	
		16.37	5.855			

7.4 Determinación de Número Estructural (SN)

Una vez determinadas todas las variables de diseño que intervienen en el método, se aplica la fórmula de diseño del método AASHTO 93, mostrada en la *Ecuación 7.7*.

$$log(W_{18}) = Z_R \cdot S_0 + 9,36 \cdot log(SN+1) - 0,20 + \frac{log\left(\frac{\Delta PSI}{4,2-1,5}\right)}{0,40 + \frac{1.094}{(SN+1)^{5,19}}} + 2,32 \cdot log(M_R) - 8,07$$

Esta ecuación puede resolverse de manera manual o mediante el ábaco mostrado en la *Figura 7.1*, lo cual no es muy preciso debido al hecho de que las líneas se deben trazar manualmente.

Otra forma de resolverlo, como se realizó en este trabajo, es mediante programas de computación que, a partir de cargar las variables de diseño antes determinadas, permiten obtener de manera rápida y exacta el número estructural del pavimento. En la *Figura 7.2* se muestra el número estructural necesario (SN_{nec}) del proyecto, resuelto con software, el cual resulta $SN_{nec} = 6,34$.

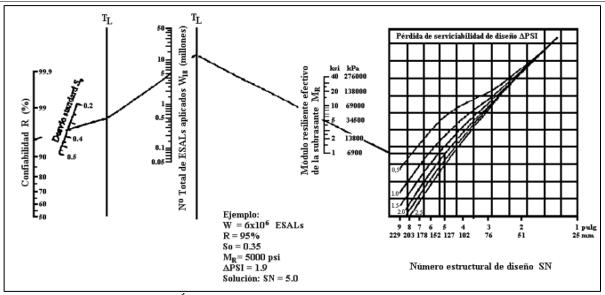


Figura 7.1 – Ábaco de diseño AASHTO para pavimentos flexibles

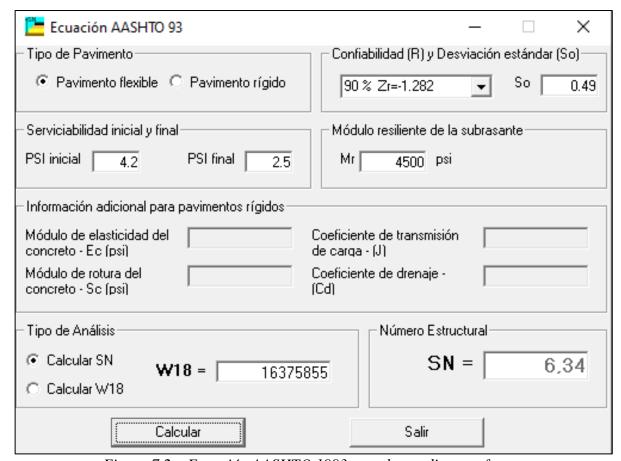


Figura 7.2 – Ecuación AASHTO 1993 resuelta mediante software

7.5 Determinación de los espesores de las capas

La estructura del pavimento flexible está formada por un sistema de varias capas, por lo cual se debe dimensionar cada una de ellas considerando sus características propias.

Una vez obtenido el número estructural necesario para el pavimento, se requiere determinar una sección multicapa que en conjunto provea una suficiente capacidad de soporte igual o

mayor al número estructural de diseño, es decir $SN \ge SN_{nec}$. Para este fin se utiliza la *Ecuación* 7.8 que permite obtener los espesores de las distintas capas, donde los coeficientes a_i son los coeficientes estructurales de estas, D_i los espesores y m_i los coeficientes de drenaje antes calculados.

$$SN = \sum_{i=1}^{n} a_i \cdot D_i \cdot m_i \quad Ecuación 7.8$$

Para el proyecto se utilizó un paquete estructural de igual composición que el mostrado en la *Figura 5.1*, verificando los espesores necesarios para poder soportar los esfuerzos a los que se verá sometido durante su vida útil. Para la capa de rodamiento se adoptó un concreto asfáltico con estabilidad Marshall de 800,00 [kg] (1763,70 [lb]), doble base de concreto asfáltico con estabilidad Marshall de 600,00 [kg] (1322,75 [lb]), luego una base calcárea estabilizada con cemento con una resistencia a la compresión a los 7 días de 20,00 [kg/cm²] (284,46 [psi]), y una subbase de suelo calcáreo con VSR $\geq 40\%$. Los coeficientes de las capas antes mencionadas se obtienen de los ábacos mostrados en la *Figura 7.3*, la *Figura 7.4* y la *Figura 7.5*, respectivamente.

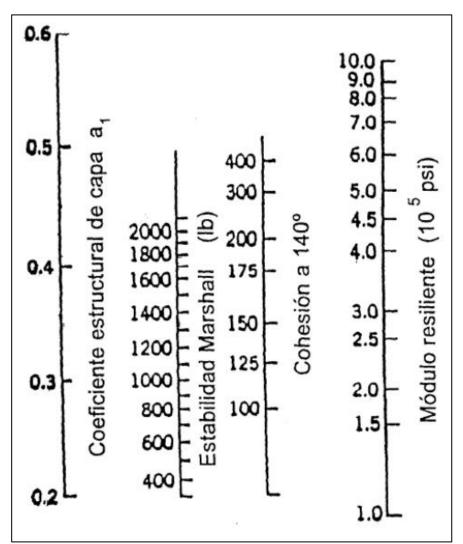


Figura 7.3 – Ábaco para coeficiente estructural de capas asfálticas (AASHTO 93)

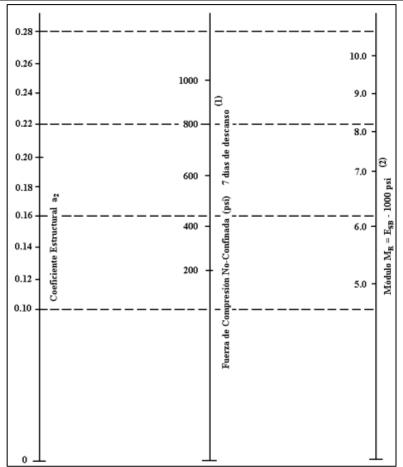


Figura 7.4 – Ábaco para coeficiente estructural de base tratada con cemento (AASHTO 93)

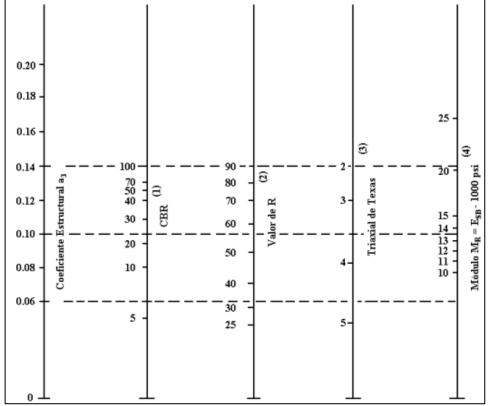


Figura 7.5 – Ábaco para coeficiente estructural de subbase granular (AASHTO 93)

De esta manera, en la *Tabla 7.16* se muestran los espesores adoptados para las distintas capas del paquete estructural.

Tabla 7.16 – Espesores de capas del paquete estructural

- *** * * * * * * * * * * * * * * * * *	r	Top one title	1111111 12111111		
Capa	$a_i [pulg^{-1}]$	a _i [cm ⁻¹]	D _i [cm]	$m_{\rm i}$	SN
Carpeta asfáltica	0,41	0,16	7,00	1	1,13
Base de concreto asfáltico 1	0,35	0,14	8,00	-	1,10
Base de concreto asfáltico 2	0,35	0,14	8,00	-	1,10
Base calcárea con cemento	0,14	0,06	22,00	-	1,21
Subbase calcárea	0,12	0,05	40,00	0,95	1,80
					6.39

8. Estudio hidrológico y diseño hidráulico

En este capítulo se presenta el estudio hidrológico y diseño hidráulico de la intersección para poder garantizar un correcto funcionamiento durante toda su vida útil, para proporcionar mayor durabilidad al paquete estructural, así como también otorgar las condiciones de seguridad necesarias en todo momento. Se sabe que los diseños hidráulicos de rotondas rurales en la provincia de Entre Ríos en condiciones generales consisten en la colocación de sumideros dentro de sus isletas de forma que desalojen el agua acumulada a los canales cercanos, y así reducir las probabilidades de inundación de la calzada durante precipitaciones de intensidades altas. Para que esto sea posible, los niveles de las isletas dentro de la rotonda deben estar por encima de los niveles de los cauces a donde se busca desalojar el agua.

En principio se estudiarán las dinámicas hídricas del lugar en cuestión en conjunto al entorno existente, para poder determinar donde es más conveniente que se coloquen los sumideros. Una vez que se tenga esto, en conjunto con los niveles del terreno que se determinaron es los capítulos anteriores, se procederá a estudiar los caudales de aporte, considerando las isletas que conforman la rotonda, como cuencas. Al tratarse de cuencas pequeñas en parte impermeables, para la estimación de los caudales se utilizará el método racional. En cuanto al diseño de las alcantarillas, en la isleta principal de la rotonda se adoptará una alcantarilla del Plano Tipo O-41211- I MODIF de la DNV, el cual se puede observar en el *Anexo IV*. Para las demás isletas más pequeñas, debido a su acotada área se adoptarán sumideros en solera de hormigón prefabricados y un cabezal en salida, de diámetro nominal mínimo de 800 [mm] debido a que el mantenimiento en estas alcantarillas es muy poco frecuente. Una vez que se tienen los datos del terreno, caudales y de las alcantarillas se creará un modelo con el software HY-8 el cual con todos estos parámetros mencionados hace las pertinentes verificaciones. En cuanto al dimensionado también estará basado en el plano Tipo de la DNV para alcantarillas.

8.1 Estudio del terreno existente y ubicación de alcantarillas

La provincia de Entre Ríos está dividida en diversas cuencas, las cuales están delimitadas y definidas por la Dirección de Hidráulica de Entre Ríos. En su sitio oficial, podemos encontrar diversa información de cada una de las cuencas, entre ella parámetros físicos y ubicación. En la *Figura 8.1* podemos observar un mapa de las provincia con todas las cuencas principales, y a continuación, en la *Figura 8.2* se observa una imagen satelital, con la delimitación de las cuencas las cuales rodean a la intersección. Como podemos observar, la rotonda está situada dentro de la Cuenca de Aportes Menores Al Río Paraná, pero muy cerca de los límites con las Cuencas del Arroyo las Conchas y del Río Gualeguay. Debido a esto, e interpretando las cartas topográficas obtenidas anteriormente, se sabe que el lugar en cuestión es un terreno elevado, rodeado de terreno absorbente y sin la presencia de ningún cauce importante en sus cercanías. Por esto, es que el análisis hidrológico consistirá solamente en analizar la rotonda como una cuenca pequeña con los métodos descriptos en el capítulo anterior y con el objetivo de que el agua que se acumule en la isleta central en una eventual tormenta no desborde hacia la calzada.

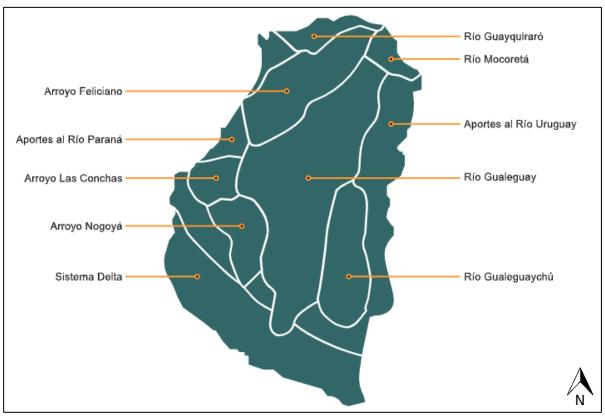


Figura 8.1 – Cuencas de la provincia de Entre Ríos

Figura 8.2 – Ubicación de la intersección con las cuencas delimitadas

En cuanto al área en particular, desde la información generada en el apartado 3.2 específicamente en la *Figura 3.5* y *Figura 3.6* se puede interpretar como el sector más elevado es exactamente en el centro del empalme existente con una cota IGN +92.00. Si se tiene como línea divisoria la calzada actual, el agua escurre hacia el Norte en la parte superior, y hacia el Sur en la parte inferior. Por lo que, en definitiva, es indistinto desde el punto de vista topográfico para que sector se deriva el agua proveniente desde el centro de la rotonda. Por lo tanto, teniendo en cuenta los factores humanos y de desarrollo existentes en la zona, entre ellos la estación de servicio en el suroeste y el terreno privado ubicado al noreste, las alcantarillas y por consecuencia los caudales de aporte serán derivados hacia el noroeste y sureste de la intersección. En la siguiente figura, podemos observar lo descripto anteriormente y también se agregan las numeraciones de las isletas que se estudiarán como pequeñas cuencas, así como también la ubicación a modo de croquis de las alcantarillas y las dinámicas hídricas correspondientes a la rotonda.

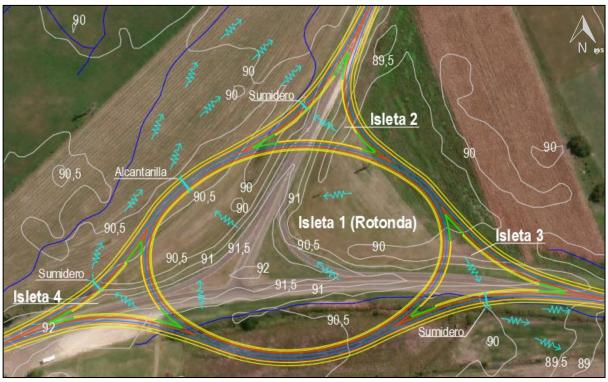


Figura 8.3 – Croquis de dinámica hídrica de la rotonda

8.2 Determinación de caudales de aporte

Como se dijo anteriormente, para la estimación de los caudales de aporte de la rotonda se utilizará el método racional. Este método es utilizado en hidrología para calcular el caudal máximo que puede aportar una determinada cuenca hidrográfica. Básicamente consiste en estimar la intensidad de la lluvia, el área de la cuenca hidrográfica y la escorrentía producida en función de la permeabilidad del suelo. La estimación del caudal (Q) se obtiene multiplicando el coeficiente de escorrentía (C) por el área de la cuenca (A) y por la intensidad de la precipitación (I), como se puede observar en la *Ecuación 8.1*.

 $Q = C \cdot I \cdot A$ Ecuación 8.1

Cabe destacar que la estimación de estos caudales se realizará considerando como cuencas a las isletas 1, 2, 3 y 4. La Isleta 1 es la que tendrá mayor caudal por lo que se planteará una alcantarilla como se mencionó anteriormente. Para las isletas 2, 3 y 4, al ser similares en todos los parámetros mencionados anteriormente, solo se verificará aquella cuyo caudal sea mayor.

Por otro lado, se hace referencia a las recurrencias que se consideraron para las tormentas de diseño, de las cuales se habla en el siguiente apartado. Diversos manuales y autores recomiendan distintas recurrencias tanto para el diseño como para la verificación de las obras complementarias como lo son estas alcantarillas, que generalmente se basan en cuestiones económicas. En este proyecto, se seguirá lo que se rige en el ART. 1.3.2.4. del Pliego de Especificaciones Técnicas Particulares Anexo III de la DNV. Aquí se recomienda que para el diseño de alcantarillas transversales en rutas bidireccionales se deberá adoptar como recurrencia de diseño 25 años con revancha del 20% del tirante de operación de la misma, es decir que funcionen como máximo al 80% de su capacidad, y como recurrencia de verificación para 50 años bajo el criterio que se produzca escurriendo libremente por la estructura o que el desnivel entre el hombro del talud aguas arriba y la cota del pelo de agua para dicha recurrencia sea igual o mayor a 60,00 [cm].

8.2.1 Cálculo de Intensidades (I)

Para el cálculo de la intensidad, se utilizaron las tormentas de diseño de Paraná provistas por el Manual de Tormentas de Diseño de Entre Ríos, un documento de investigación publicado en conjunto por la Universidad Tecnológica Nacional Facultad Regional Concordia y Dirección de Hidráulica Provincial. Este manual, con el objetivo de poder obtener las intensidades máximas para distintas recurrencias, nos provee las denominadas Curvas Intensidad-Duración-Frecuencia (IDF). Estas curvas se arman a partir de extensos estudios hidrológicos llevados a cabo mediante estaciones pluviográficas dispuestas en varias localidades y otros análisis estadísticos que requieren registros de tormentas durante varios años, y nos permiten el análisis directo de tormentas de corta duración y alta intensidad en función de la duración y la recurrencia. A continuación, en la IMAGEN se pueden observar la curva IDF utilizadas en este caso, como se dijo antes en la ciudad de Paraná. Con la *Ecuación 8.2* que se muestra a continuación, la cual fue obtenida de las curvas mencionadas, se calcula la intensidad para cada una de las isletas teniendo en cuenta el período de retorno (Tr) y la duración (d):

$$I = \frac{601 \cdot (Tr)^{0.23}}{(d+6)^{0.69}} \quad Ecuación \ 8.2$$

En este caso, la duración (d) estará dada por el tiempo de concentración (Tc) de la cuenca, es decir, el tiempo que tarda el agua en viajar desde el punto más lejano de la cuenca hasta el punto de descarga, a través de todos los arroyos, ríos y canales que conforman la cuenca. En este caso, para poder determinar el tiempo de concentración se utilizará la Fórmula de Kirpich para pequeñas cuencas rurales. Esta expresión se muestra en la *Ecuación 8.3* y se tiene en cuenta dos parámetros físicos que son la longitud del cauce principal hasta la divisoria en kilómetros (L_F), y la diferencia de elevación entre la cabecera y la salida del cauce en metros (ΔH):

$$Tc = \left(0.87 \cdot \frac{L_F^3}{\Delta H}\right)^{0.385}$$
 Ecuación 8.3

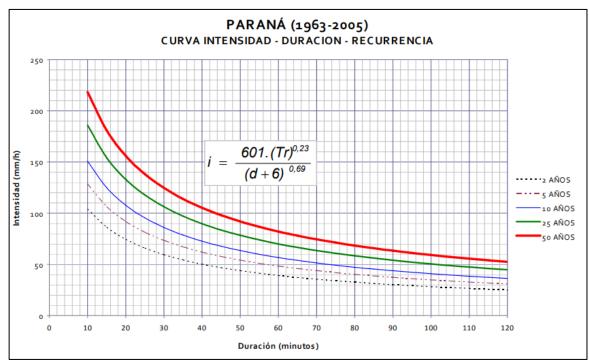


Figura 8.4 – Curva IDF de Paraná, Entre Ríos

Cabe destacar que para los cálculos de los parámetros físicos de las isletas de la rotonda que se mencionan anteriormente, se utilizaron los planos y perfiles transversales que se muestran en el *Anexo VII*. También se menciona que se establece un mínimo de 5 minutos de tiempo de concentración (0,0833 h) para que los valores de intensidad obtenidos sean más acordes a la realidad.

A continuación, se tiene una tabla resumen con los resultados obtenidos a partir de las ecuaciones anteriores:

Tr L_{F} Tc Tr diseño I_{25} I_{50} $\Delta_{\rm H}$ verificación Isleta [años] [km] [m][horas] [años] [mm/h][mm/h]232,87 1 0,209 1,25 0,142618 25 50 198,55 2 0,064 1,88 0,083333 240,90 282,54 25 50 3 0,070 0,083333 25 282,54 1,78 50 240,90 0,071 50 1,58 0,083333 25 240,90 282,54

Tabla 8.1 – Determinación de intensidad de las tormentas

8.2.2 Cálculo de área (A) y coeficiente de escorrentía (C)

Para poder determinar los caudales de aporte, se necesita obtener la superficie total de la cuenca, así como también detectar que tipo de superficie es y clasificarlas según la *Tabla 8.2* que se presenta a continuación.

Tabla 8.2 - Coeficientes de escorrentía para ser usados en el método racional

Tabla 8.2 - Coeficientes de escorrent	и риги			e retorr			
Característica de la superficie		5	10	25	50	100	500
Áreas desarrolladas		•		•	•	•	•
Asfáltico	0,73	0,77	0,81	0,86	0,90	0,95	1,00
Concreto / techo	0,75	0,8	0,83	0,88	0,92	0,97	1,00
Zonas verdes (jardines, parques, etc.)							
Condición pobre (cubierta de pasto n	nenor d	lel 50 %	del ár	ea)			
Plano, 0-2%	0,32	0,34	0,37	0,4	0,44	0,47	0,58
Promedio, 2-7%	0,37	0,4	0,43	0,46	0,49	0,53	0,61
Pendiente, superior a 7%	0,4	0,43	0,45	0,49	0,52	0,55	0,62
Condición promedio (cubierta de pas	sto del :	50 al 75	% del	área)			
Plano, 0-2%	0,25	0,28	0,3	0,34	0,37	0,41	0,53
Promedio, 2-7%	0,33	0,36	0,38	0,42	0,45	0,49	0,58
Pendiente, superior a 7%	0,37	0,4	0,42	0,46	0,49	0,53	0,60
Condición buena (cubierta de pasto r	nayor c	lel 75 %	ó del ár	rea)			
Plano, 0-2%	0,21	0,23	0,25	0,29	0,32	0,36	0,49
Promedio, 2-7%	0,29	0,32	0,35	0,39	0,42	0,46	0,56
Pendiente, superior a 7%	0,34	0,37	0,4	0,44	0,47	0,51	0,58
Áreas no desarrolladas							
Área de cultivos							
Plano, 0-2%	0,31	0,34	0,36	0,4	0,43	0,47	0,57
Promedio, 2-7%	0,35	0,38	0,41	0,44	0,48	0,51	0,60
Pendiente, superior a 7%	0,39	0,42	0,44	0,48	0,51	0,54	0,61
Pastizales							
Plano, 0-2%	0,25	0,28	0,3	0,34	0,37	0,41	0,53
Promedio, 2-7%	0,33	0,36	0,38	0,42	0,45	0,49	0,58
Pendiente, superior a 7%	0,37	0,4	0,42	0,46	0,49	0,53	0,60
Bosques							
Plano, 0-2%	0,22	0,25	0,28	0,31	0,35	0,39	0,48
Promedio, 2-7%	0,31	0,34	0,36	0,4	0,43	0,47	0,56
Pendiente, superior a 7%	0,35	0,39	0,41	0,45	0,48	0,52	0,58

Como puede observarse, existen diversas clasificaciones según las características de la superficie en estudio. En este proyecto, se consideran dos tipos de superficies para obtener los coeficientes de escorrentía: "Asfalto" y "Pastizales Plano, 0-2%". En la *Figura 8.5* puede verse como las superficies se obtienen en AutoCAD a partir de los planos generados en el capítulo número 4.

Una vez obtenidas las superficies y clasificadas se obtienen los coeficientes de escorrentía para cada isleta. Cabe destacar, que para la isleta 1, se tienen dos coeficientes de escorrentía distintos y dos áreas, por lo que se hace una ponderación de este coeficiente a partir de las áreas. En la *Tabla 8.3* puede verse un resumen de lo descripto anteriormente.

Figura 8.5 – Superficies y clasificación de las isletas

Tabla 8.3 – Resumen de áreas y coeficientes de escorrentía

		s y coeficientes de esco.	
AREAS	Superficie	C _{TR=25}	$C_{TR=50}$
	[Ha]	CTR=25	CTR=50
A1- Pastizal	3,018	0,30	0,34
A1- Asfalto	0,214	0,81	0,86
A1 - Total	3,232	0,33	0,37
A2 - Pastizal	0,207	0,30	0,34
A3 - Pastizal	0,261	0,30	0,34
A4 - Pastizal	0,205	0,30	0,34

8.2.3 Cálculo de caudales (Q)

En los apartados anteriores se expuso detalladamente la metodología para calcular los caudales con el método racional, y todos los términos que comprenden este método aproximado. A continuación, se presentan la *Tabla 8.4* y la

ISLETA	ATOTAL	CTR ₌₂₅	ITR ₌₂₅	QTR ₌₂₅
ISLETA	[Ha]	C1K=25	[mm/h]	[m3/s]
1	3,232	0,33	198,55	0,595
2	0,207	0,30	240,90	0,042
3	0,261	0,30	240,90	0,052

ISLETA	ATOTAL CTR=25		ITR ₌₂₅	QTR ₌₂₅
ISLETA	[Ha]	C1K=25	[mm/h]	[m3/s]
4	0,205	0,30	240,90	0,041

Tabla 8.5 que resumen de los datos obtenidos anteriormente y los caudales resultantes, calculados a partir de la *Ecuación 8.1*.

Tabla 8.4 – Caudales para 25 años de recurrencia

ISLETA	A _{TOTAL}	$C_{TR=25}$	$I_{TR=25}$	QTR=25
ISLETA	[Ha]	C1R=25	[mm/h]	[m3/s]
1	3,232	0,33	198,55	0,595
2	0,207	0,30	240,90	0,042
3	0,261	0,30	240,90	0,052
4	0,205	0,30	240,90	0,041

Tabla 8.5 – Caudales para 50 años de recurrencia

ISLETA	A _{TOTAL}	A _{TOTAL} C _{TR=50}	$I_{TR=50}$	Q _{TR=50}
ISELTA	[Ha]	C1R=50	[mm/h]	[m3/s]
1	3,232	0,37	232,87	0,783
2	0,207	0,34	282,54	0,055
3	0,261	0,34	282,54	0,070
4	0,205	0,34	282,54	0,055

8.3 Diseño de alcantarilla y sumideros

Como se dijo anteriormente como obras complementarias de drenaje en este proyecto, se plantearán una alcantarilla en la isleta 1, y tres sumideros en solera con cabezal a la salida en las Isletas 2, 3 y 4. Para la elección de las dimensiones de los elementos en cuestión, se utilizará el Plano Tipo O-41211- I MODIF de la DNV. Este plano, tiene las dimensiones estandarizadas de las alcantarillas que podrían adoptarse según distintas necesidades. En este caso, se considerarán todas como "Alcantarillas rectas" y de los distintos cuadros de este plano se adoptarán las dimensiones correspondientes para luego ser verificadas.

Cabe destacar que para las isletas 2, 3 y 4 se propone el mismo sumidero y se verifica para la isleta 3, ya que es aquella de mayor caudal. Esto se justifica ya que los datos y características de estas isletas son muy similares.

8.4 Verificaciones con HY-8

En este apartado se presentan las respectivas verificaciones que se realizaron con el software HY-8. En primer lugar, se resumen en una tabla los datos de entrada que se introducen en el programa. Luego se obtienen las imágenes de salida de la sección que devuelve el software, y las tablas con los valores de salida se incluyen en el *Anexo V*.

8.4.1 Verificación de alcantarilla en Isleta 1

En la *Figura* 8.6, se presenta la sección en el lugar de la rotonda donde estaría la alcantarilla, con sus respectivas cotas de nivel y longitudes. La alcantarilla se planteó de hormigón armado de 0,75 [m] de altura y 1,20 [m] de ancho y cabezales de entrada y salida. Los demás datos de entrada al software se especifican a continuación en la *Tabla* 8.6.

Tabla 8.6 – Tabla resumen de datos de entrada en HY-8 para alcantarilla

Datos	Traducción en	Valor	Unidad	Observaciones
	software Discharge			
Datos de descarga	Data			
Caudal de diseño	Design Flow	0,595	$[m^3/s]$	25 años de recurrencia
Caudal máximo	Maximum Flow	0,783	$[m^3/s]$	50 años de recurrencia
Datos del canal	Tailwater Data			
Tipo de canal	Channel Type	Irreg	gular	Según planos de detalle
Pendiente longitudinal	Channel Slope	0,005	[m/m]	
Coeficiente de Manning	Manning's "n"	0,030		Fondo de canal
Coeficiente de Manning	Manning's "n"	0,050		Taludes del canal
Cota de canal a la salida	Channel Invert Elevation	88,45	[m]	Fondo de canal
Datos de calzada	Roadway Data			
Perfil de la calzada	Roadway Profile Shape	-	-	Constante
Progresiva inicial	First Roadway Station	0		
Longitud transversal a alcantarilla	Crest Lenght	200	[m]	
Cota de elevación	Crest Elevation	91,00	[m]	Rasante de calzada
Material	Roadway Surface	-	-	Calzada pavimentada
Ancho	Top Width	10,30	[m]	"J" Según plano tipo DNV
Datos de alcantarilla	Culvert Data			
Nombre	Name			Rotonda RN12-RN127
Tipo de perfil	Shape			Rectangular
Material	Material			Hormigón
Ancho	Span	1200,0	[mm]	"L" Según plano tipo DNV
Altura	Rise	750,00	[mm]	"H" Según plano tipo DNV
Sedimento	Embedment Depth	0	[m]	Se adopta
Coeficiente de Manning	Manning's "n"	0,014		Se adopta según tablas
Tipo de alcantarilla	Culvert Type			Simple de un tramo
Configuración de entrada	Inlet Configuration			Borde cuadrado con cabecera (Square Edge 90°)

Datos	Traducción en software	Valor	Unidad	Observaciones
Depresión de entrada	Inlet Despression			No
Datos del sitio	Site Data			
Progresiva de entrada	Inlet Station	0		
Cota de elevación de entrada	Inlet Elevation	89,185	[m]	
Progresiva de salida	Outlet Station	12,576		
Cota de elevación de salida	Outlet Elevation	89,059	[m]	pendiente del 1%

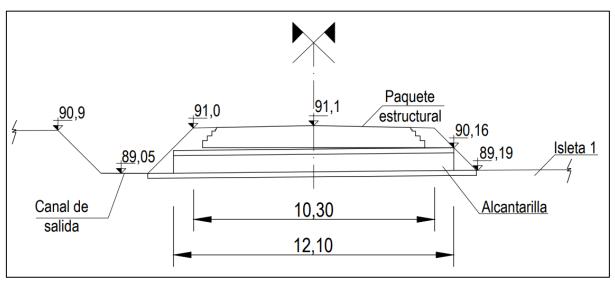


Figura 8.6 – Alcantarilla en Isleta 1

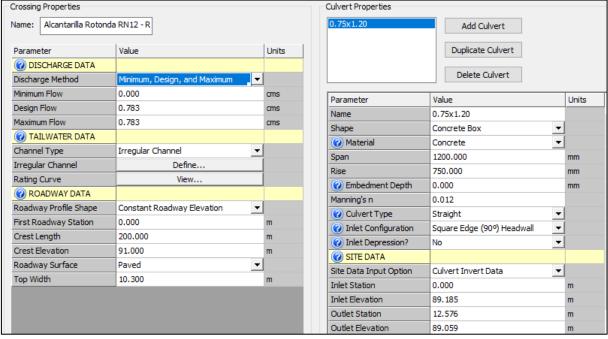
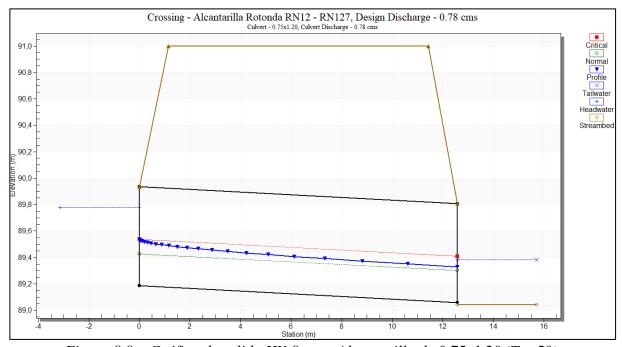
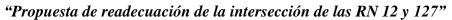


Figura 8.7 – Datos de entrada en HY-8

Una vez cargados los datos, se analiza el modelo de la sección con el programa. En el Anexo V se adjuntan las tablas de resultados que devuelve el programa para este modelo y que comprenden las distribuciones del caudal entre la alcantarilla y el sobrepaso del camino, información de la alcantarilla, entre otros. En la Figura~8.8 se puede observar que, para los valores de caudal con un periodo de retorno a 50 años, la alcantarilla trabaja a una capacidad del 46,70% y trabaja por control de entrada. Con esto se verifica la alcantarilla y además se garantiza el correcto funcionamiento debido al escaso mantenimiento a futuro.




Figura 8.8 – Gráfico de salida HY-8 para Alcantarilla de 0,75x1,20 (Tr=50)

8.4.2 Verificación de alcantarilla en Isleta 3

Al igual que en el apartado anterior, en la *Figura 8.9*, se presenta la sección en el lugar de la rotonda donde estaría el sumidero, con sus respectivas cotas de nivel y longitudes. La alcantarilla se planteó de caños de hormigón prefabricados de diámetro nominal (DN) 800,00 [mm] y con cabezal en la salida. Los demás datos de entrada al software se especifican a continuación en la *Tabla 8.7*.

Tabla 8.7 – Tabla resumen de datos de entrada en HY-8 para sumidero

DATOS	Traducción en software	Valor	Unidad	Observación
Datos de descarga	Discharge Data			
Caudal de diseño	Design Flow	0,052	$[m^3/s]$	25 años de recurrencia
Caudal máximo	Maximum Flow	0,069	$[m^3/s]$	50 años de recurrencia
Datos del canal de salida	Tailwater Data			
Tipo de canal	Channel Type	Irreg	ular	Según planos de detalle
Pendiente longitudinal	Channel Slope	0,005	[m/m]	
Coeficiente de Manning	Manning's "n"	0,030		Fondo de canal

DATOS	Traducción en software	Valor	Unidad	Observación
Coeficiente de Manning	Manning's "n"	0,050		Taludes del canal
Cota de canal a la salida	Channel Invert Elevation	88,45	[m]	Fondo de canal
Datos de calzada	Roadway Data			
Perfil de la calzada	Roadway Profile Shape	1	-	Constante
Progresiva inicial	First Roadway Station	0		
Longitud transversal a alcantarilla	Crest Lenght	200	[m]	
Cota de elevación	Crest Elevation	90,30	[m]	Rasante de calzada
Material	Roadway Surface	1	-	Calzada pavimentada
Ancho	Top Width	10,30	[m]	Ancho de calzada c/ banquina
Datos de alcantarilla	Culvert Data			
Nombre	Name			Isleta 3 DN800
Tipo de perfil	Shape			Circular
Material	Material			Hormigón
Diametro	Diameter	800,00	[mm]	"L" Según plano tipo DNV
Sedimento	Embedment Depth	0	[m]	
Coeficiente de Manning	Manning's "n"	0,012		Adoptado por el software
Tipo de alcantarilla	Culvert Type			Simple de un tramo
Configuración de entrada	Inlet Configuration			Borde cuadrado con cabecera (Square Edge with Headwall)
Depresión de entrada	Inlet Despression			No
Datos del sitio	Site Data			
Progresiva de entrada	Inlet Station	0		
Cota de elevación de entrada	Inlet Elevation	88,60	[m]	
Progresiva de salida	Outlet Station	12,10	[m]	"J" Según plano tipo DNV
Cota de elevación de salida	Outlet Elevation	88,48	[m]	Pendiente del 1%

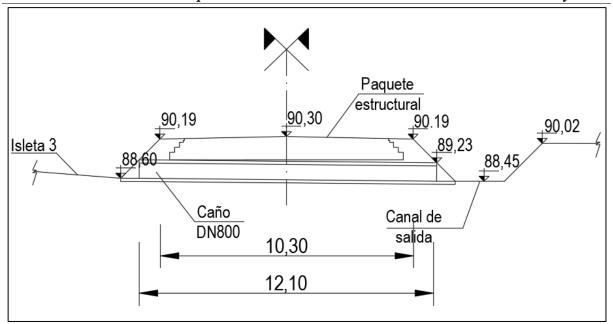


Figura 8.9 – Sumidero en isleta 3

Al igual que en apartado anterior, el análisis de la sección con el software es el mismo. En el *Anexo V* se adjuntan las tablas de resultados que devuelve el programa para este modelo y que comprenden la distribución del caudal entre la alcantarilla y el sobrepaso del camino, información de la alcantarilla, entre otros. En la *Figura 8.10* se puede observar que, para los valores de caudal con un periodo de retorno a 50 años, la cañería trabaja a una capacidad del 38,00% y trabaja por control de entrada. Con esto se verifica la alcantarilla y además se garantiza el correcto funcionamiento debido al escaso mantenimiento a futuro.

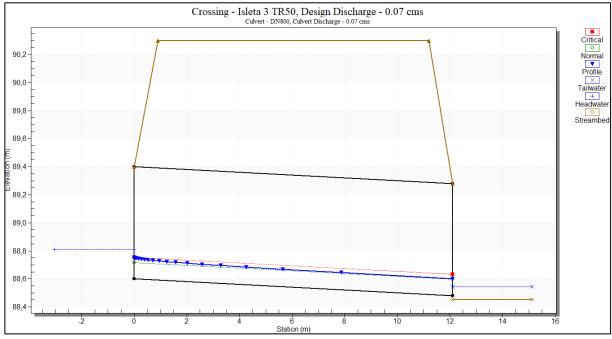


Figura 8.10 - Gráfico de salida HY-8 para sumidero de 0,80 [m] (Tr=50)

9. Señalización e iluminación

En el presente capítulo se desarrolla la disposición del proyecto de señalización e iluminación complementarios al proyecto de readecuación de la intersección, de acuerdo con las reglamentaciones vigentes y en función de las necesidades y exigencias de seguridad y transitabilidad previstas para la obra, teniendo en cuenta que se trata de una intersección importante entre dos rutas nacionales.

9.1 Señalamiento horizontal

Las marcas viales o demarcación horizontal son las señales de tránsito aplicadas sobre la calzada, con la finalidad de guiar el tránsito vehicular, regular la circulación y advertir determinadas circunstancias. La regulación incluye la transmisión de órdenes y/o indicación de zonas prohibidas. La Demarcación Horizontal aumenta los niveles de seguridad y eficacia de la circulación, por lo que es necesario que se tengan en cuenta en cualquier actuación vial como parte del diseño y no como mero agregado posterior a su concepción.

En este sentido, se tuvieron en cuenta las recomendaciones del "Manual de Señalamiento Horizontal" de la DNV, el cual define el diseño de las marcas viales horizontales establecidas por la ley 24.449 según el tipo de vía del que se trate, que incluye las líneas longitudinales, transversales, símbolos, leyendas y otras demarcaciones especiales, en el entendimiento que su diseño corresponde a su dimensionamiento geométrico y su forma de implantación. En la *Figura 9.1* se muestran los patrones básicos de señalamiento horizontal.

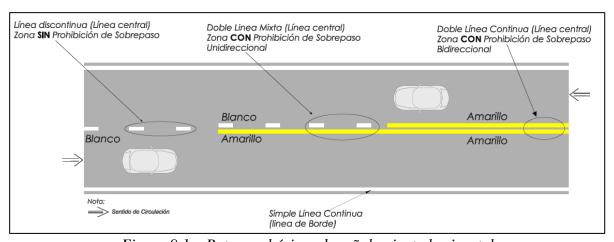


Figura 9.1 – Patrones básicos de señalamiento horizontal

En las rutas convergentes se plantea demarcación horizontal de doble línea amarilla (prohibición de sobrepaso bidireccional), siguiendo las medidas indicadas en la *Figura 9.2*, las cuales acabaran en las isletas que dividen los caminos, como se muestra en la *Figura 9.3*. También, se plantea la colocación de líneas blancas con relieve transversales al eje de la calzada, las cuales se denominan líneas de reducción de velocidad. En las secciones de la rotonda donde se produce el entrecruzamiento de carriles, se plantea demarcar con líneas discontinuas blancas que permitan distinguir los carriles, siguiendo las dimensiones mostradas en la *Figura 9.4*. Por último, se plantea bordear el óvalo central de la rotonda con una línea

amarilla continua y con línea continua blanca los bordes externos de los tramos de ruta convergentes.

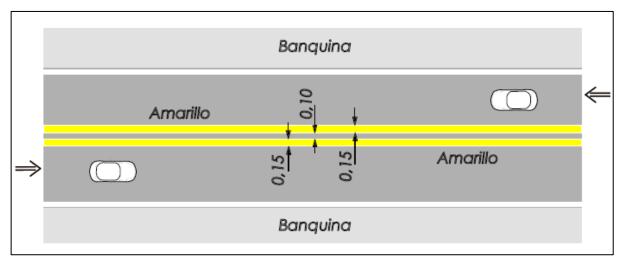


Figura 9.2 – Esquema de doble línea amarilla

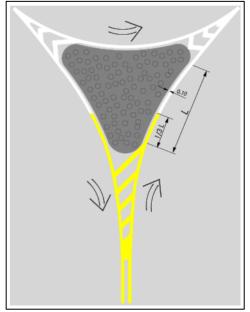


Figura 9.3 – Esquema de marca de isleta

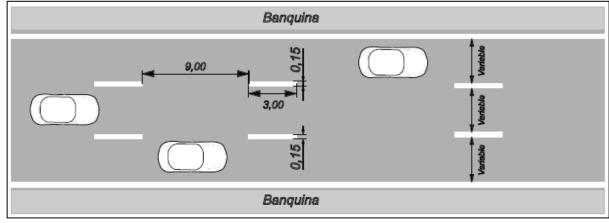


Figura 9.4 – Esquema de línea divisoria de carril

El plano de señalización horizontal con la demarcación horizontal completa del proyecto se presenta en el *Anexo VII*.

9.2 Señalamiento vertical

La circulación vehicular y peatonal, como se mencionó antes, deben ser guiadas y reguladas a fin de que puedan llevarse a cabo en forma segura, fluida y ordenada, siendo el señalamiento vertical un elemento fundamental para lograr este objetivo. A través de la señalización, se trasmite a los usuarios de las vías, la forma correcta y segura de circular, con el propósito de evitar riesgos y demoras innecesarias. El señalamiento vertical, debe brindar información clara, precisa e inequívoca, estando destinado a transmitir al usuario de la vía pública órdenes, advertencias, indicaciones u orientaciones, mediante códigos comunes en todo el país y de modo coherente con los utilizados en la región.

Las señales verticales son señales de tránsito colocadas al costado del camino (laterales) o elevadas sobre la calzada, mediante pórticos o ménsulas (aéreas), con la finalidad de guiar el tránsito, regular la circulación, y advertir determinadas circunstancias. La regulación incluye la trasmisión de órdenes, y/o restricciones de distinta índole. Al momento de colocarlas se debe tener en cuenta que deben ser uniformes en su diseño, posición y aplicación. Es necesaria su uniformidad a fin de que las señales sean reconocidas y entendidas instantáneamente por los usuarios de la vía; esto es, fácil para leer, fácil para entender.

En este sentido, se tuvieron en cuenta las consideraciones del "Manual de Señalamiento Vertical" de la DNV, el cual define el diseño de señales verticales establecidas por la ley 24.449. En la *Figura 9.5* y la *Figura 9.6* se puede el ángulo correcto de colocación de las señales y la correcta ubicación de estas en zonas rurales, respectivamente.

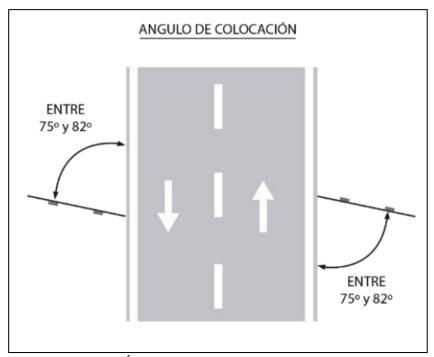


Figura 9.5 - Ángulo de colocación de señales verticales

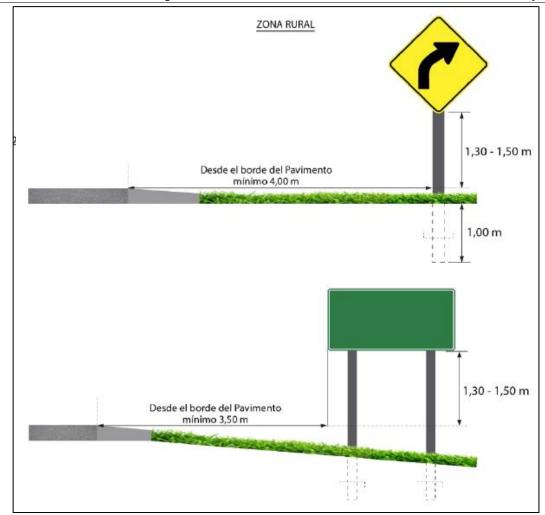


Figura 9.6 – Ubicación de señales verticales

Siguiendo el manual, en la dirección convergente a la rotonda se colocaron carteles de límites de velocidad máxima, para indicar la reducción de velocidad necesaria para ingresar a la rotonda. También, a los 250,00 [m] se colocaron carteles de proximidad de rotonda y a los 150,00 [m] carteles que indican los destinos y rutas de correspondientes a cada salida de la rotonda. En las isletas se colocaron señales indicadoras de sentido de circulación obligatorio. Por último, en las salidas se colocaron carteles que indican los destinos y paneles de velocidad combinada.

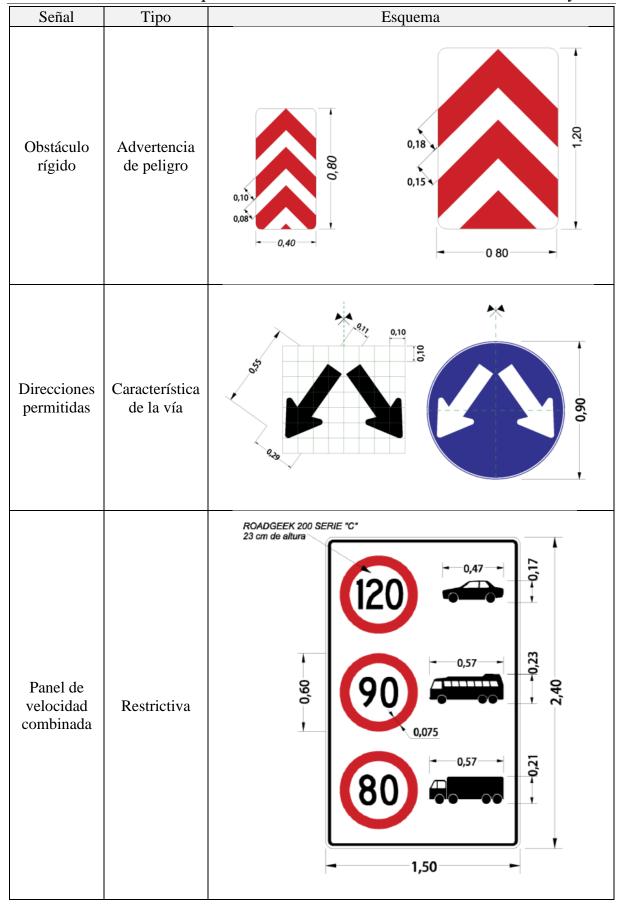

En la *Tabla 9.1* se muestran los esquemas de señalización vertical junto con las dimensiones reglamentarias en metros.

Tabla 9.1 - Esquema y dimensiones de señalización vertical

Señal	Tipo	Esquema y almensiones de senalización vertical Esquema
Orientación y destinos	Informativa	A SANTA FE PARANA CORRIENTES 2,40 x 1,20
Proximidad de rotonda	Preventiva	0,41 0,10 gg of one of the contract of the con
Velocidad máxima	Restrictiva	600 050 050 050 070 070 070 070 070 070 0
Paso obligado	Restrictiva	0,29 0,10 01.0 05.0 06.0

De esta manera, en el Anexo VII se muestra la disposición de la señalización vertical.

9.3 Iluminación

Para el proyecto de alumbrado se siguieron las premisas establecidas en el Pliego de Especificaciones Técnicas Generales de la DNV.

De acuerdo con este, se proyectaron columnas con una separación de 35,00 [m], las cuales serán columnas tubulares de acero con una altura libre de 12,00 [m] y se colocarán a 1,00 [m] detrás de las barandas. Estas estarán empotradas, con una fundación de hormigón de dimensiones 70,00 [cm] x 70,00 [cm] y una altura de 1,60 [m] de manera de que una décima parte de la columna quede empotrada y quede una distancia libre sobre el terreno y debajo de la columna de 20,00 [cm]. En base a esto, pe prevé un modelo de columnas metálicas de 13,20 [m] de alto con un brazo recto de 2,00 [m] que soporten un peso del artefacto de hasta 25,00 [kg]. El plano de detalle se adjunta en el *Anexo VII*.

Se propone utilizar luminaria de tecnología LED de 200,00 [W], como la que se muestra en la *Figura 9.7*, la cual tiene una vida útil de 100.000 [h]. Estas cuentan con grandes beneficios como lo son su larga durabilidad, su bajo peso y su eficiencia eléctrica, ya que permiten un ahorro mayor al 50% contra las lámparas de descarga. Estas piezas además son de fácil montaje y cuentan con una gran protección mecánica, por lo que necesitan un mantenimiento mínimo.

Figura 9.7 – Lámpara de iluminación LED

10. Evaluación de impacto ambiental

El presente capítulo contempla el desarrollo del estudio de impacto ambiental que la ejecución de la rotonda y sus obras complementarias generará en las inmediaciones y alrededores de la zona, identificando y evaluando las consecuencias tanto positivas como negativas que conllevará la ejecución de las obras, y desarrollando las medidas de mitigación necesarias.

Las planillas utilizadas para esta evaluación se encuentran en el *Anexo VI*.

10.1 Área de influencia

Se define como área de influencia de la obra (AI) a la superficie delimitada teniendo en cuenta la relación de esta con la intervención que se proyecta ejecutar en su etapa constructiva y operativa. Esta se puede observar en la *Figura 10.1*. El área delimitada será la receptora directa de los impactos positivos y negativos de las etapas mencionadas, la cual abarca una extensión de 2,67 [km²].

Figura 10.1 – Área de influencia

10.2 Descripción del medio receptor

En primer lugar, en cuanto al medio físico destacan:

• <u>Clima</u>: de acuerdo con el Instituto Nacional de Tecnología Agropecuaria (INTA), la zona de la intersección estudiada pertenece a una región de clima templado húmedo, sin situaciones extremas, favorable para los cultivos. El régimen térmico es templado,

presentándose una temperatura media anual de 18,4 [°C] y una precipitación media anual de alrededor de 1.100 – 1.200 [mm].

- <u>Suelos, geología y edafología</u>: el proyecto se encuentra dentro de un área en la cual no interviene la urbanización. Los terrenos aledaños son utilizados para la actividad productiva. Los suelos predominantes en zona corresponden al orden Molisol y en menor medida Vertisol. En cuanto a la zonificación sísmica, según el Instituto Nacional de Prevención Sísmica (INPRES), el proyecto se ubica en la zona 0, cuya peligrosidad sísmica es muy reducida.
- <u>Vegetación y fauna</u>: el proyecto está emplazado en un área utilizada principalmente para la actividad agraria. Debido a esto, la vegetación existente consiste en los cultivos y una muy escasa presencia de árboles. Respecto a la fauna, las especies más numerosas son las aves y los insectos. También se encuentran, en menor medida, especies domésticas como gatos, perros y caballos.
- <u>Hidrología</u>: el área de influencia del proyecto se encuentra en el límite entre la Cuenca de Aportes Menores al Río Paraná, Cuenca del Arroyo Las Conchas y la Cuenca del Río Gualeguay. Debido a que el área de influencia está en una zona alta, no se generan inundaciones cuando se producen precipitaciones.
- <u>Aire</u>: en la zona de proyecto se puede considerar que la contaminación del aire se debe principalmente a las emisiones de gases de los vehículos que diariamente circulan por ella.

Por otra parte, en lo referente al medio socioeconómico se distinguen:

- <u>Actividad económica</u>: en la zona de proyecto se encuentran distintos comercios y comedores, además de una estación de servicio. Estos son concurridos principalmente por camioneros, los cuales se detienen ya sea para cargar combustible o para descansar. Los terrenos aledaños a la zona de proyecto se utilizan con fines agrarios.
- <u>Tránsito</u>: como se mostró en el apartado 3.1.1, el tránsito de la intersección es diverso respecto a los tipos de vehículos, habiendo una alta presencia de vehículos pesados. Con el proyecto se prevé mejorar las condiciones de seguridad de los transeúntes.
- <u>Infraestructura y servicios públicos</u>: la zona cuenta con red de agua potable y energía eléctrica. En cuanto a transporte público, no existe ninguna línea de colectivos que pase por la zona de proyecto. En esta zona, sin embargo, funciona una parada de colectivos de media y larga distancia que son utilizados por la gente que vive en las cercanías para ir a las localidades de los alrededores.

10.3 Estudio de impacto ambiental

La evaluación de impacto ambiental se realizó en base a la "Guía Metodológica para la Evaluación de Impacto Ambiental" de Vicente Conesa Fernández Vitora, utilizando una matriz simplificada respecto de la propuesta por este autor.

La matriz utilizada es de doble entrada, colocando en las filas las principales acciones del proyecto y, en las columnas los principales factores ambientales del sistema receptor. De este modo, se identifican en los casilleros de cruce entre las filas y columnas las interacciones potenciales positivas y negativas que ocurrirían entre cada uno. Luego, se realiza una valorización como se explica a continuación.

En primer lugar, se identifica el carácter del impacto (positivo o negativo); seguidamente se cuantifican según el criterio del equipo evaluador los parámetros de Intensidad (In), Extensión (Ex) y Duración (Du) del impacto en el ambiente receptor. De la combinación ponderada de estos tres parámetros surge el valor de Magnitud (Mg) del impacto, a través de la utilización de la *Ecuación 10.1*.

$$Mg = \pm (0.50 \cdot In + 0.30 \cdot Ex + 0.20 \cdot Du)$$
 Ecuación 10.1

Siendo:

- \pm (Carácter o signo): + Positivo / Negativo.
- <u>Intensidad</u>: cuantificación del vigor o grado de cambio que produce el impacto (baja: 2; media: 5; alta: 10).
- <u>Extensión</u>: alcance espacial o superficie afectada por el impacto (predial: 2; local: 5; regional: 10).
- <u>Duración</u>: escala temporal referida al tiempo de persistencia de las consecuencias del impacto (corto: 2; mediano: 5; largo plazo: 10).

Seguidamente se cuantifican los parámetros de Reversibilidad (Re) y Probabilidad de Ocurrencia (Oc) del impacto:

- <u>Reversibilidad</u>: posibilidad de retornar a la situación inicial (total: 2; parcial: 5; nula: 10).
- <u>Probabilidad de ocurrencia</u>: estima la probabilidad de que ocurra el impacto durante la vida útil del proyecto (baja: 2; mediana: 5; cierta: 10).

Finalmente, de la combinación ponderada de los parámetros de Magnitud, Reversibilidad y Probabilidad de Ocurrencia surge le Valor de Impacto Ambiental (VIA). Para impactos positivos resulta VIA = Mg. Para impactos negativos, el VIA se calcula con la expresión de la *Ecuación 10.2*.

$$VIA = 0.60 \cdot Mg + 0.25 \cdot Re + 0.15 \cdot Oc$$
 Ecuación 10.2

El VIA toma valores que van de 2 a 10, pudiendo ser positivo o negativo. Asimismo, dependiendo del valor, su criticidad puede ser baja, media o compatible, resultando el impacto como se muestra en la *Tabla 10.1*.

Tabla 10.1 - Criticidad de impacto ambiental

=									
VIA	2	3	4	5	6	7	8	9	10
Criticidad	Baja			Media			Alta		
Balance -	Compatible			Moderado			Severo		
Balance +	Bajo			Medio		Alto			

A continuación, se describen los factores que conforman las filas de la matriz, los cuales representan de manera simplificada al medio receptor:

- <u>Suelo</u>: suelo y subsuelo.
- <u>Actividad económica</u>: comercios y empleo en la zona, incluyendo la actividad que puede generar la misma obra.
- Calidad del aire: presencia o no de partículas, humos, olores, etc.
- Escurrimiento de agua: hace referencia a la dinámica hidráulica sobre el suelo.
- Redes de servicios públicos: hace referencia a los servicios existentes en la zona de obra.
- <u>Paisaje</u>: paisaje en la zona de proyecto.
- Red vial: hace referencia a la transitabilidad.

Con respecto a las acciones del proyecto (columnas) en la etapa constructiva, se identifican las siguientes:

- <u>Demoliciones</u>: se refiere a demolición de la intersección actual y los tramos de calzada a reemplazar.
- Movimiento de suelo: trabajos de excavación y relleno previos a la pavimentación.
- <u>Pavimentación</u>: ejecución de paquete estructural.
- <u>Alumbrado y señalización</u>: provisión de columnas de alumbrado, demarcación horizontal de la traza y colocación de carteles y nomencladores de calles.

En tanto en la etapa operativa del proyecto se identifican:

- <u>Presencia física de la obra</u>: se refiere a la implantación definitiva del proyecto completo con sus distintos componentes en el espacio físico.
- Función de las obras: incluye los beneficios directos asociados al proyecto.
- <u>Mantenimiento</u>: contempla las tareas necesarias para la correcta conservación de la obra durante su vida útil.

De esta manera, se identificaron y evaluaron 38 interacciones. En la *Tabla 10.2* y la *Tabla 10.3* se muestra la matriz de importancia para la etapa constructiva y operativa, respectivamente. El cálculo de los impactos y la matriz final se adjuntan en el *Anexo VI*.

Tabla 10.2 – Matriz de impacto ambiental – Etapa constructiva

Factores	Acciones del proyecto							
ambientales	Demoliciones	Movimiento de suelo	Pavimentación	Alumbrado y señalización	Valor medio			
Suelo	-3,95	-4,85	-3,95	-	-4,25			
Actividad económica	2,00	2,00	2,00	2,00	2,00			
Escurrimiento de agua	-2,00	-2,00	-3,35	1	-2,45			
Calidad del aire	-2,45	-2,45	-3,35	-	-2,75			
Redes de servicios públicos	-2,81	-2,90	-2,00	-	-2,57			
Paisaje	-3,95	-3,56	-2,45	-2,00	-2,99			
Red vial	-4,46	-4,25	-4,64	-2,00	-3,84			
	V	-2,41						

Tabla 10.3 – Matriz de impacto ambiental – Etapa operativa

	Acciones del proyecto						
Factores ambientales	Presencia física de la obra Función de las obras Mantenimien		Mantenimiento	Valor medio			
Suelo	-4,91	-	-	-4,91			
Actividad económica	6,00	8,50	6,00	6,83			
Escurrimiento de agua	3,60	3,60	3,60	3,60			
Calidad del aire	-	-2,96	-2,96 -				
Redes de servicios públicos	-	5,10		5,10			
Paisaje	5,10	7,60		6,35			
Red vial	6,00 8,50		-2,00	4,17			
	VIA pro	2,60					

De la valoración final se puede observar que para la etapa constructiva el VIA promedio es de -2,41, por lo que se presentaría un impacto negativo en el medio receptor.

Sin embargo, para la etapa operativa de la obra el VIA promedio es de 2,60, con lo cual se puede decir que la obra presentará un impacto positivo en el medio receptor.

Finalmente, ponderando ambos valores se obtiene un valor final para de obra de VIA = 0.10, por lo que la obra se considera viable ambientalmente.

10.4 Descripción de los impactos identificados

En este tipo de obras, la mayor parte de los efectos potenciales negativos se asocian a la etapa constructiva, es decir que derivan de acciones que finalizan en un plazo de tiempo coincidente con el cronograma de la obra.

De las 38 interacciones identificadas y evaluadas en toda la vida útil del proyecto, se puede ver claramente que la etapa constructiva es la que genera mayor cantidad de impactos. En esta etapa se evaluaron 24 interacciones entre las acciones del proyecto y el ambiente, de las cuales 20 resultaron impactos negativos "compatibles" con el ambiente y 4 impactos positivos. No se detectaron impactos negativos "moderados" ni "severos".

De las acciones del proyecto evaluadas durante la construcción surge que las tareas de demoliciones, movimiento de suelo y pavimentación generan los mayores impactos, siendo la red vial el factor ambiental más afectado. Esto se da debido a que para ejecutar la obra es necesario desviar completamente el tránsito que converge en la intersección. También se producen impactos en el suelo y el paisaje, debido a que se deberán expropiar terrenos para poder realizar la obra. En tanto la calidad del aire se verá afectada debido a la generación de polvillo durante la ejecución de los trabajos. Se identifican también potenciales impactos negativos sobre las redes de servicios públicos, dado que es probable que se produzcan roturas de estos durante la excavación y zanjeo. Como impacto positivo se identifica la actividad económica que genera la ejecución de la obra, principalmente en la contratación de mano de obra, aunque los comercios y estación de servicio en la cercanía puedan verse afectados, pero esto es sólo por un periodo de tiempo corto.

Durante la etapa operativa se puede ver un impacto positivo en la red vial, debido a que el proyecto mejorará las condiciones de seguridad vial y transitabilidad al resolver la nueva intersección mejor los giros a la izquierda. También se identifican impactos positivos en la actividad económica, el paisaje y el escurrimiento de agua. Se reconoce un impacto negativo moderado en el suelo, debido al hecho de que para poder implantar la obra es necesario realizar expropiaciones de algunos terrenos aledaños que actualmente se utilizan para la siembra. Además, se reconoce un impacto leve en la red vial a la hora de realizar el mantenimiento de la intersección, y en la calidad del aire, debido a que se espera que la obra atraiga mayor volumen de tránsito que se traduce en mayores emisiones de gases al ambiente.

10.5 Medidas de mitigación

Con el fin de disminuir los impactos en el ambiente de la obra, se contemplan algunas medidas de mitigación y compensación de impactos negativos, buscando a su vez sacar el máximo provecho a los beneficios que esta aporta.

- Resguardar la tierra excedente resultante de excavaciones para su posterior reposicionamiento en la superficie u otro aprovechamiento de esta.
- Gestionar y preservar correctamente los residuos de la demolición del asfalto existente para poder utilizarlos posteriormente para realizar reciclado.
- Colocar todas las señales de seguridad vial necesarias durante la ejecución de la obra.
- Realizar caminos secundarios de forma que el tránsito se vea afectado lo menos posible durante la ejecución de la obra.
- Determinar lugares adecuados para el almacenamiento y carga de los materiales de construcción.
- Forestar la zona con especies autóctonas del lugar.
- Garantizar la capacitación de los obreros en el manejo de residuos sólidos y basura orgánica. Verificar que se cuente con un sistema adecuado para tal fin, y que no se incineren desperdicios en el sitio.
- Controlar periódicamente pérdidas de aceite y combustible en vehículos y maquinarias.
- En cuanto a las plantas asfálticas y las instalaciones temporales, deben evitar de colocarse en áreas de drenaje natural.
- Garantizar la correcta utilización de los sanitarios portátiles, así como su desagote e higienización en tiempo y forma.

Bibliografía

Dirección Nacional de Vialidad (1980). Normas de Diseño Geométrico de Carreteras. (Disponible en http://castagninoingenieria.com.ar/normas_disenio_geometrico_1980_atlas.pdf).

Dirección Nacional de Vialidad (2007). Manual de Evaluación y Gestión Ambiental de Obras Viales. MEGA II. Edición 2007. (Disponible en https://www.argentina.gob.ar/sites/default/files/seci_completo.pdf).

Dirección Nacional de Vialidad (2012). Manual de Señalamiento Horizontal. Buenos Aires. 1ª Edición. (Disponible en https://www.argentina.gob.ar/obras-publicas/vialidad-nacional/institucional/normativa/manuales).

Dirección Nacional de Vialidad. Normas de Ensayo. Buenos Aires. (Disponible en http://www1.frm.utn.edu.ar/labvial/Normas%20de%20Ensayo.pdf).

Dirección Nacional de Vialidad (2017). Manual de Señalamiento Vertical. Buenos Aires. Edición 2017. (Disponible en https://www.argentina.gob.ar/sites/default/files/manual sv.pdf).

American Association of State Highway and Transportation Officials (1993). Guía AASHTO para el Diseño de Estructuras de Pavimentos. (Disponible en https://dokumen.tips/download/link/guia-aashto-93-version-en-espanol.html)

Página 100 Bibliografía Gabrielli - Londero

Anexos

En los anexos se presenta toda la documentación respaldatoria y la pertinente para la ejecución del proyecto.

Anexo I: Planillas y gráficos de estudio de tránsito.

Anexo II: Planillas de cómputo y presupuesto de alternativas

Anexo III: Tablas de diseño geométrico de la DNV

Anexo IV: Planos tipo de la DNV

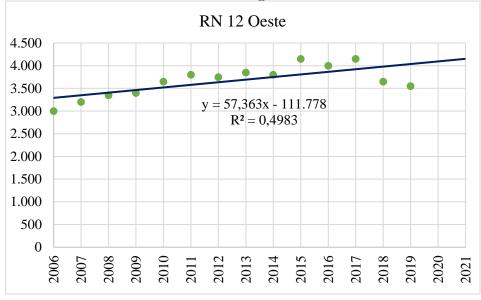
Anexo V: Salidas de software HY-8

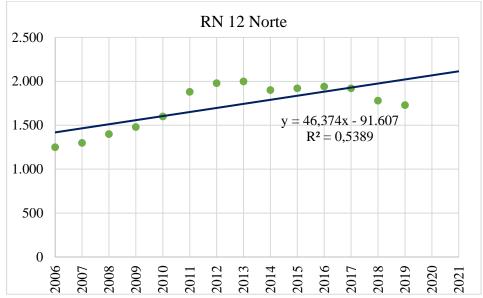
Anexo VI: Planillas de evaluación de impacto ambiental

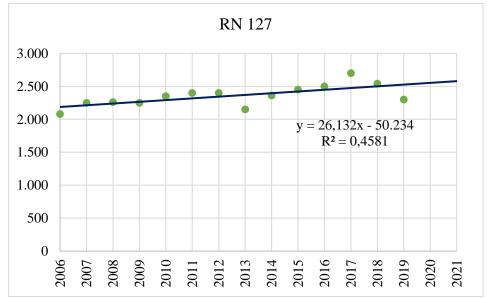
Anexo VII: Planos

Anexo I: Planillas y gráficos de estudio de tránsito

- − Planilla N°1: Datos de TMDA de la DNV
- Gráficos de rectas de regresión de tránsito
- Planilla N°2: Tasa de crecimiento anual porcentual
- Planilla N°3: Tránsito fututo e incremento de tránsito (2022 2044)
- Gráficos de evolución del tránsito futuro
- Planilla N°4: Composición vehicular del tránsito futuro


Planilla N°1: Datos de TMDA de la DNV


Año	TMDA						
Allo	RN 12 Oeste	RN 12 Norte	RN 127				
2006	3.000	1.250	2.080				
2007	3.200	1.300	2.250				
2008	3.350	1.400	2.260				
2009	3.400	1.480	2.250				
2010	3.650	1.600	2.350				
2011	3.800	1.880	2.400				
2012	3.750	1.980	2.400				
2013	3.850	2.000	2.150				
2014	3.800	1.900	2.360				
2015	4.150	1.920	2.450				
2016	4.000	1.940	2.500				
2017	4.150	1.920	2.700				
2018	3.650	1.780	2.540				
2019	3.550	1.730	2.300				
2020	2.450	1.200	1.640				
2021	3.350	1.700	2.250				


Página 2 Anexo I Gabrielli - Londero

$$TP_j = \frac{\sum_{i=1}^n T_i}{n}$$

Planilla N°2: Tasas de crecimiento anual porcentual

RN 12 Oeste		RN 12 Norte			RN 127			
Año	TMDA	Ti	Año	TMDA	Ti	Año	TMDA	T_{i}
2006	3.292		2006	1.419		2006	2.187	
2007	3.350	1,74%	2007	1.466	3,27%	2007	2.213	1,19%
2008	3.407	1,71%	2008	1.512	3,16%	2008	2.239	1,18%
2009	3.464	1,68%	2009	1.558	3,07%	2009	2.265	1,17%
2010	3.522	1,66%	2010	1.605	2,98%	2010	2.291	1,15%
2011	3.579	1,63%	2011	1.651	2,89%	2011	2.317	1,14%
2012	3.636	1,60%	2012	1.697	2,81%	2012	2.344	1,13%
2013	3.694	1,58%	2013	1.744	2,73%	2013	2.370	1,12%
2014	3.751	1,55%	2014	1.790	2,66%	2014	2.396	1,10%
2015	3.808	1,53%	2015	1.837	2,59%	2015	2.422	1,09%
2016	3.866	1,51%	2016	1.883	2,52%	2016	2.448	1,08%
2017	3.923	1,48%	2017	1.929	2,46%	2017	2.474	1,07%
2018	3.981	1,46%	2018	1.976	2,40%	2018	2.500	1,06%
2019	4.038	1,44%	2019	2.022	2,35%	2019	2.527	1,05%
2020	4.095	1,42%	2020	2.068	2,29%	2020	2.553	1,03%
2021	4.153	1,40%	2021	2.115	2,24%	2021	2.579	1,02%
2022	4.210	1,38%	2022	2.161	2,19%	2022	2.605	1,01%
	TP _{RN12} Oeste	1,55%		TP _{RN12} Norte	2,66%		TP _{RN127}	1,10%

"Propuesta de readecuación de la intersección de las RN 12 y 127"
$$TF_i = TMDA_{2022} \cdot \left(1 + \frac{TP_j}{100}\right)^m$$

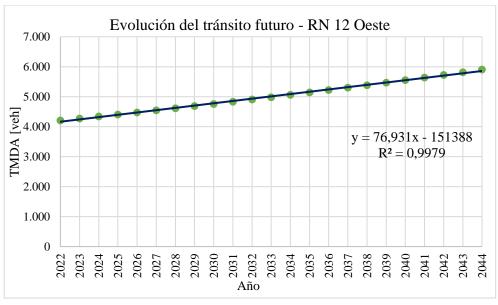
Planilla $N^{\circ}3$ -A: Tránsitos futuros e incremento de tránsito (2022-2044)

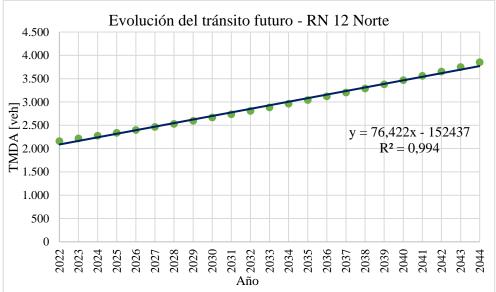
			N 12 Oeste) ue transito (2022-2044)
Año	m	Tf _i [veh]	IT [veh]	Etapa
2022	0	4.210	0	Proyecto
2023	1	4.275	65	Proyecto
2024	2	4.342	132	Ejecución de obra
2025	3	4.409	199	Progresión año 1
2026	4	4.477	267	Progresión año 2
2027	5	4.547	337	Progresión año 3
2028	6	4.617	407	Progresión año 4
2029	7	4.689	479	Progresión año 5
2030	8	4.761	551	Progresión año 6
2031	9	4.835	625	Progresión año 7
2032	10	4.910	700	Progresión año 8
2033	11	4.986	776	Progresión año 9
2034	12	5.063	853	Progresión año 10
2035	13	5.142	932	Progresión año 11
2036	14	5.222	1.012	Progresión año 12
2037	15	5.302	1.093	Progresión año 13
2038	16	5.385	1.175	Progresión año 14
2039	17	5.468	1.258	Progresión año 15
2040	18	5.553	1.343	Progresión año 16
2041	19	5.639	1.429	Progresión año 17
2042	20	5.726	1.516	Progresión año 18
2043	21	5.815	1.605	Progresión año 19
2044	22	5.905	1.695	Progresión año 20

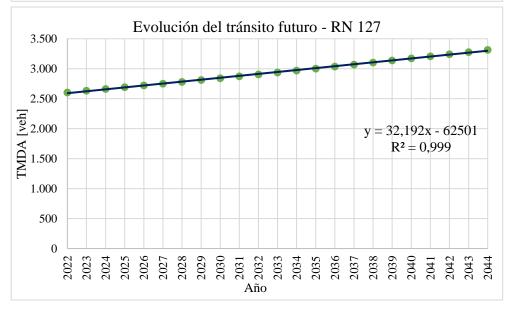
Planilla $N^{\circ}3$ -B: Tránsitos futuros e incremento de tránsito (2022-2044)

Pia	RN 12 Norte									
Año	m	Tfi [veh]	IT [veh]	Etapa						
2022	0	2.161	0	Proyecto						
2023	1	2.219	57	Proyecto						
2024	2	2.278	117	Ejecución de obra						
2025	3	2.338	177	Progresión año 1						
2026	4	2.401	239	Progresión año 2						
2027	5	2.464	303	Progresión año 3						
2028	6	2.530	369	Progresión año 4						
2029	7	2.597	436	Progresión año 5						
2030	8	2.666	505	Progresión año 6						
2031	9	2.737	576	Progresión año 7						
2032	10	2.810	649	Progresión año 8						
2033	11	2.885	724	Progresión año 9						
2034	12	2.962	800	Progresión año 10						
2035	13	3.040	879	Progresión año 11						
2036	14	3.121	960	Progresión año 12						
2037	15	3.204	1.043	Progresión año 13						
2038	16	3.289	1.128	Progresión año 14						
2039	17	3.377	1.216	Progresión año 15						
2040	18	3.467	1.306	Progresión año 16						
2041	19	3.559	1.398	Progresión año 17						
2042	20	3.654	1.492	Progresión año 18						
2043	21	3.751	1.590	Progresión año 19						
2044	22	3.851	1.689	Progresión año 20						

Página 6 Anexo I Gabrielli - Londero




Planilla $N^{\circ}3$ -C: Tránsitos futuros e incremento de tránsito (2022-2044)


Pian	RN 127										
Año	m	Tfi [veh]	IT [veh]	Etapa							
2022	0	2.605	0	Proyecto							
2023	1	2.634	29	Proyecto							
2024	2	2.663	58	Ejecución de obra							
2025	3	2.692	87	Progresión año 1							
2026	4	2.721	117	Progresión año 2							
2027	5	2.751	146	Progresión año 3							
2028	6	2.782	177	Progresión año 4							
2029	7	2.812	207	Progresión año 5							
2030	8	2.843	238	Progresión año 6							
2031	9	2.874	270	Progresión año 7							
2032	10	2.906	301	Progresión año 8							
2033	11	2.938	333	Progresión año 9							
2034	12	2.970	365	Progresión año 10							
2035	13	3.003	398	Progresión año 11							
2036	14	3.036	431	Progresión año 12							
2037	15	3.069	465	Progresión año 13							
2038	16	3.103	498	Progresión año 14							
2039	17	3.137	532	Progresión año 15							
2040	18	3.172	567	Progresión año 16							
2041	19	3.207	602	Progresión año 17							
2042	20	3.242	637	Progresión año 18							
2043	21	3.278	673	Progresión año 19							
2044	22	3.314	709	Progresión año 20							

Gráficos de evolución del tránsito futuro

Planilla N°4: Composición vehicular del tránsito futuro

RN 12 Oeste								
Tipo de vehículo	Composición [%]	Volumen [veh]						
Livianos	71,63%	4.230						
Colectivos	1,57%	93						
Camiones sin acoplado	8,80%	520						
Camiones con acoplado y articulado	18,00%	1.063						
Sumatoria	100,00%	5.905						

RN 12 Norte								
Tipo de vehículo	Composición [%]	Volumen [veh]						
Livianos	68,18%	2.625						
Colectivos	0,98%	38						
Camiones sin acoplado	10,03%	386						
Camiones con acoplado y articulado	20,83%	802						
Sumatoria	100,00%	3.851						

RN 127								
Tipo de vehículo	Composición [%]	Volumen [veh]						
Livianos	68,55%	2.272						
Colectivos	1,35%	45						
Camiones sin acoplado	8,55%	283						
Camiones con acoplado y articulado	21,55%	714						
Sumatoria	100,00%	3.314						

Anexo II: Planillas de cómputo y presupuesto de alternativas

- Planillas N°5: Presupuesto N°1 de obra similar desactualizadas (marzo 2019)
- Planillas N°6: Presupuesto N°2 de obra similar desactualizadas. (marzo 2019)
- Planillas N°7: Presupuesto N°3 de obra similar desactualizadas. (abril 2019)
- Planillas N°8: Presupuesto N°4 de obra similar desactualizadas. (abril 2019)
- Planilla N°9: Tablas de coeficientes de actualización de precios
- Planillas $N^{\circ}10$: Presupuesto $N^{\circ}1$ de obra similar actualizada a mes base de proyecto (enero 2019)
- Planilla $N^{\circ}11$: Presupuesto $N^{\circ}2$ de obra similar actualizada a mes base de proyecto (enero 2019)
- Planilla $N^{\circ}12$: Presupuesto $N^{\circ}3$ de obra similar actualizada a mes base de proyecto (enero 2019)
- Planilla $N^{\circ}13$: Presupuesto $N^{\circ}4$ de obra similar actualizada a mes base de proyecto (enero 2019)
- Planilla N°14: Cómputo de alternativa 1 − Rotonda
- − Planilla N°15: Cómputo de alternativa 2 Trompeta
- − Planilla N°16: Presupuesto de alternativa 1 Rotonda
- Planilla N°17: Presupuesto de alternativa 2 − Trompeta
- Planilla N°18: Comparativa económica de propuestas

Planillas N°5: Presupuesto N°1 de obra similar desactualizada (marzo 2019)

DIIDDO	ITEM	SUB	DESCRIPCIÓN	UNI-		PRECIO	PRESUPU	ESTO
RUBRO	HEM	ITEM	– DESCRIPCIÓN	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
1			TERRAPLENES Y MOVIMIENTOS DE SUELOS				\$ 2.315.677.818,51	28,48%
	1.1		Desbosque, destronque y limpieza del terreno	На	5,78	\$ 135.735,43	\$ 783.872,12	0,01%
	1.2		Apertura de caja	m3	1.345,01	\$ 764,27	\$ 1.027.951,79	0,01%
	1.3		Terraplén con compactación especial	m3	2.068.010,02	\$ 944,78	\$ 1.953.818.128,48	24,03%
	1.4		Terraplén sin compactación especial	m3	344.151,45	\$ 918,13	\$ 315.976.852,81	3,89%
	1.5		Forestación compensatoria	un	768,00	\$ 2.379,27	\$ 1.827.278,67	0,02%
	1.6		Saneamiento de cunetas	m3	66.327,68	\$ 636,89	\$ 42.243.734,64	0,52%
2			PAVIMENTOS Y BANQUINAS				\$ 4.238.040.394,63	52,12%
	2.1		Suelo tratado con cal					
		2.1.1	Suelo tratado con cal para pavimento asfáltico; tal que CBR>8%	m3	186.057,04	\$ 2.433,16	\$ 452.705.656,38	5,57%
	2.2		Bases y Subbases no bituminosas					
		2.2.1	Suelo arena cemento; RCS > 15 kg/cm2	m3	141.237,92	\$ 4.584,31	\$ 647.478.120,94	7,96%
		2.2.2	Base de estabilizado granular con cemento, tal que RCS 22 a 25 kg/cm2 a los 7 días.	m3	107.931,07	\$ 7.752,05	\$ 836.686.799,04	10,29%
	2.3		Mezclas y capas asfálticas					
		2.3.1	Mezcla de concreto asfáltico para alteo de rasante - Tipo CAC D-19 CA30; e prom=0,09 m	tn	2.239,67	\$ 6.838,51	\$ 15.316.017,35	0,19%
		2.3.2	Mezcla de concreto asfáltico para ensanche de pavimento - Tipo CAC D- 19 CA30; e=0,20 m	m2	8.226,85	\$ 2.915,58	\$ 23.986.008,69	0,29%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPUESTO	
KUBKU	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		2.3.3	Sub-Base de concreto asfáltico tipo CAC D-19 CA30; e=0,06 m	m2	31.779,46	\$ 803,77	\$ 25.543.284,66	0,31%
		2.3.4	Sub-Base de concreto asfáltico tipo CAC D-19 CA30; e=0,08 m	m2	169.310,72	\$ 1.031,35	\$ 174.619.280,41	2,15%
		2.3.5	Sub-Base de concreto asfáltico tipo CAC D-19 CA30; e=0,09 m	m2	346.334,87	\$ 1.145,15	\$ 396.604.481,55	4,88%
		2.3.6	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,05 m	m2	34.032,19	\$ 779,72	\$ 26.535.463,39	0,33%
		2.3.7	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,06 m	m2	10.237,49	\$ 931,88	\$ 9.540.090,62	0,12%
		2.3.8	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,07 m	m2	36.251,58	\$ 1.057,60	\$ 38.339.823,41	0,47%
		2.3.9	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,08 m	m2	449.806,85	\$ 1.103,31	\$ 496.275.401,12	6,10%
		2.3.10	Base de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	79.290,51	\$ 670,61	\$ 53.173.211,30	0,65%
		2.3.11	Base de concreto asfáltico tipo CAC D-19 CA30; e=0,07 m	m2	42.585,34	\$ 898,20	\$ 38.250.128,15	0,47%
		2.3.12	Carpeta de concreto asfáltico tipo SMA 19-AM3; e=0,05 m	m2	554.148,44	\$ 958,36	\$ 531.073.163,97	6,53%
		2.3.13	Carpeta de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	277.074,78	\$ 690,49	\$ 191.316.574,59	2,35%
		2.3.14	Carpeta de concreto asfáltico tipo CAC D-19 CA30; e=0,06 m	m2	20.511,75	\$ 808,26	\$ 16.578.733,75	0,20%
		2.3.15	Carpeta de concreto asfáltico tipo CAC D-19 CA30; e=0,07 m	m2	21.285,89	\$ 937,32	\$ 19.951.643,58	0,25%

DIJDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	JESTO
RUBRO	ITEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	2.4		Riegos					
		2.4.1	Riego de curado con emulsión catiónica CI	m2	1.370.752,13	\$ 72,24	\$ 99.026.270,28	1,22%
		2.4.2	Riego de liga con emulsión catiónica CRR	m2	1.011.331,33	\$ 43,69	\$ 44.186.319,10	0,54%
		2.4.3	Riego de liga con emulsión catiónica CRR-m	m2	1.084.476,55	\$ 55,08	\$ 59.730.881,58	0,73%
	2.5		Varios					
		2.5.1	Demolición de pavimento existente	m2	44.121,96	\$ 530,58	\$ 23.410.411,37	0,29%
		2.5.2	Fresado del pavimento bituminoso existente	m2	93.011,56	\$ 104,93	\$ 9.759.694,28	0,12%
		2.5.3	Bacheo profundo	m3	100,44	\$ 7.636,87	\$ 767.012,19	0,01%
		2.5.4	Bacheo superficial	m3	334,78	\$ 19.247,42	\$ 6.443.743,30	0,08%
		2.5.5	Sellado de fisuras en carpeta	m	18.022,27	\$ 41,18	\$ 742.179,63	0,01%
3			OBRAS DE ARTE MENORES				\$ 470.628.969,71	5,79%
	3.1		Hormigón de cemento portland H-4, excluida la armadura	m3	656,94	\$ 11.896,07	\$ 7.815.050,87	0,10%
	3.2		Hormigón de cemento portland H-8, excluida la armadura	m3	414,79	\$ 13.048,54	\$ 5.412.423,44	0,07%
	3.3		Hormigón de cemento portland H-13, excluida la armadura	m3	996,42	\$ 18.782,79	\$ 18.715.629,78	0,23%
	3.4		Hormigón de cemento portland H-17, excluida la armadura	m3	1.253,20	\$ 21.446,73	\$ 26.877.105,41	0,33%
	3.5		Hormigón de cemento portland H-21, excluida la armadura	m3	8.198,03	\$ 25.189,74	\$ 206.506.233,56	2,54%
	3.6		Acero especial en barras ADN-420 colocado	tn	508,55	\$ 231.362,15	\$ 117.659.763,16	1,45%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	IESTO
KUBKU	HEM	ITEM	I DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	3.7		Colocación de caños de H°A°, Ø=0,80 m	m	803,96	\$ 9.419,19	\$ 7.572.650,04	0,09%
	3.8		Sumidero de hormigón armado y reja de acero	un	8,00	\$ 84.222,85	\$ 673.782,78	0,01%
	3.9		Excavación para fundaciones y desagües	m3	36.966,68	\$ 2.147,78	\$ 79.396.330,68	0,98%
4			OBRAS COMPLEMENTARIAS				\$ 258.714.149,14	3,18%
	4.1		Barandas, Alambrados y otras					
		4.1.1	Sistema de contención lateral (H2-W4-A)	m	17.377,61	\$ 3.882,81	\$ 67.473.969,08	0,83%
		4.1.2	Retiro de baranda metálica	m	1.959,06	\$ 1.282,85	\$ 2.513.180,63	0,03%
		4.1.3	Cordón montable de hormigón 0,70 m de ancho	m	1.509,26	\$ 3.866,31	\$ 5.835.252,13	0,07%
		4.1.4	Cordón Protector de Borde de Pavimento	m	440,74	\$ 1.771,65	\$ 780.842,42	0,01%
		4.1.5	Tranquera s/plano J-5084 - Tipo "B"	un	120,00	\$ 52.136,34	\$ 6.256.360,77	0,08%
		4.1.6	Tranquera existente a retirar	un	42,00	\$ 13.939,80	\$ 585.471,48	0,01%
		4.1.7	Alambrado nuevo s/plano H-2840-I - Tipo "C"	m	23.069,65	\$ 901,77	\$ 20.803.598,65	0,26%
		4.1.8	Alambrado existente a retirar	m	19.506,60	\$ 441,93	\$ 8.620.461,13	0,11%
		4.1.9	Alambrado existente a trasladar	m	41.768,70	\$ 987,14	\$ 41.231.655,83	0,51%
		4.1.10	Desalentador de circulación (Shoulder Rumble Strip)	m	77.928,67	\$ 33,37	\$ 2.600.868,42	0,03%
	4.2		Traslado de servicios					
		4.2.1	Línea de Media Tensión a construir (7,6 kV)	m	25.556,47	\$ 843,54	\$ 21.557.876,69	0,27%
		4.2.2	Línea de Media Tensión a construir (13,2 kV)	m	8.583,89	\$ 1.839,07	\$ 15.786.343,20	0,19%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	JESTO
RUBRU	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		4.2.3	Línea de Media Tensión a construir (33,0 kV)	m	2.544,34	\$ 2.667,41	\$ 6.786.783,84	0,08%
		4.2.4	Traslado de línea de Media Tensión (7,6 kV)	m	22.394,31	\$ 1.177,91	\$ 26.378.592,87	0,32%
		4.2.5	Traslado de línea de Media Tensión (13,2 kV)	m	6.920,79	\$ 2.568,61	\$ 17.776.831,55	0,22%
		4.2.6	Traslado de línea de Media Tensión (33,0 kV)	m	2.432,99	\$ 3.738,93	\$ 9.096.773,70	0,11%
		4.2.7	Alteo de línea de Media Tensión (7,6 kV)	m	116,86	\$ 1.177,91	\$ 137.656,24	0,00%
		4.2.8	Alteo de línea de Media Tensión (13,2 kV)	m	198,06	\$ 2.568,61	\$ 508.750,06	0,01%
		4.2.9	Alteo de línea de Media Tensión (33,0 kV)	m	121,72	\$ 3.738,93	\$ 455.113,91	0,01%
	4.3		Demoliciones					
		4.3.1	Demolición de alcantarillas	m2	1.392,88	\$ 2.374,65	\$ 3.307.591,52	0,04%
		4.3.2	Demolición de construcciones	m2	111,04	\$ 1.982,88	\$ 220.175,00	0,00%
5			PUENTES				\$ 451.220.045,01	5,55%
	5.1		Hormigón armado H-30 para Superestructura (losa tablero, viguetas transv., defensas) excluida armadura	m3	1.162,31	\$ 32.994,52	\$ 38.349.762,49	0,47%
	5.2		Hormigón armado H-38 para elementos prefabricados excluida armadura	m3	41,48	\$ 35.613,47	\$ 1.477.077,21	0,02%
	5.3		Hormigón armado H-38 para Vigas prefabricadas postensadas, excluida armadura, incluido traslado y montaje.	m3	1.466,62	\$ 35.695,00	\$ 52.351.068,62	0,64%
	5.4		Hormigón armado H-21 para losas de aproximación excluida armadura	m3	361,39	\$ 26.032,25	\$ 9.407.798,07	0,12%

DIJDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	JESTO
RUBRO	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	5.5		Hormigón armado H-21 para infraestructura (dinteles, columnas y estribos) excluida armadura	m3	983,56	\$ 26.765,93	\$ 26.326.028,76	0,32%
	5.6		Hormigón armado H-21 con cemento ARS para pilotes excavados, excluida armadura, incluida excavación	m3	1.418,67	\$ 58.318,66	\$ 82.734.820,55	1,02%
	5.7		Hormigón simple H-17 para muro de pie en revestimientos de estribos	m3	132,60	\$ 21.446,73	\$ 2.843.748,94	0,03%
	5.8		Concreto asfáltico en caliente para carpeta de desgaste, espesor 5 cm	m2	5.287,48	\$ 958,36	\$ 5.067.300,39	0,06%
	5.9		Prelosas prefabricadas de Hormigón armado H-30 incluida armadura, espesor 5 cm	m2	5.867,24	\$ 1.896,53	\$ 11.127.427,84	0,14%
	5.10		Acero especial en barras tipo ADN 420 colocado.	tn	502,45	\$ 215.957,05	\$ 108.506.599,63	1,33%
	5.11		Acero para pretensado, colocado, con tensión de rotura mayor o igual que 19.000 kg/cm2	tn	96,80	\$ 297.537,58	\$ 28.800.756,98	0,35%
	5.12		Traslado y montaje de vigas postensadas	un	88,00	\$ 77.534,68	\$ 6.823.051,86	0,08%
	5.13		Placas de Neopreno, dureza Shore 60, zunchadas, colocados, incluyendo el mortero Grouting para tetones	un	176,00	\$ 5.903,07	\$ 1.038.940,18	0,01%
	5.14		Juntas de dilatación de asfalto modificado	m	347,62	\$ 4.326,11	\$ 1.503.826,41	0,02%
	5.15		Baranda para defensa vehicular con sistema de Contención H4, Ancho de Trabajo W4 e Índice de Severidad B, colocada y pintada	m	1.024,08	\$ 5.955,14	\$ 6.098.544,10	0,08%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	JESTO
RUBRU	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	5.16		Caños para desagüe de hierro galvanizado Ø 100 mm, Verticales en Calzadas cada 2,50 m, Conducciones Longitudinales y Bajadas en Estribos y Pilares, incluyendo codos, curvas, enchufes, bocas de inspección, soportes, etc., colocados	Gl	1,00	\$ 376.685,02	\$ 376.685,02	0,00%
	5.17		Escalera para desagüe de Hormigón Armado H-13 de 0,25 m2 de sección, incluido pasadores de Ø 12 mm cada 2 m y hormigón simple H -13 para pendiente según plano DNV J-6710-I.	m	463,73	\$ 4.699,20	\$ 2.179.165,05	0,03%
	5.18		Excavación para fundaciones	m3	244,23	\$ 2.147,78	\$ 524.552,10	0,01%
	5.19		Muros de suelo mecánicamente estabilizado incluyendo escamas, armaduras, soleras, esquineros, transporte y montaje	m2	2.433,29	\$ 23.088,78	\$ 56.181.636,40	0,69%
	5.20		Provisión y colocación de Losas de hormigón simple H-8 para revestimiento de taludes. Espesor 0,10 m. Según plano tipo DNV R-267	m2	1.498,25	\$ 2.026,86	\$ 3.036.749,17	\$ 0,00
	5.21		Provisión y Colocación de Colchonetas de piedra embolsada, espesor 0,17 m	m2	1.079,85	\$ 5.167,04	\$ 5.579.619,73	0,07%
	5.22		Provisión y Colocación de geotextil no tejido	m2	1.079,85	\$ 113,95	\$ 123.048,82	0,00%
	5.23		Recubrimiento con Hormigón tipo H-8	m3	58,38	\$ 13.048,54	\$ 761.836,69	0,01%
6			OTROS				\$ 396.867.255,23	4,88%
	6.1		Supervisión / Inspección de obra					
		6.1.1	Cuota mensual por cada movilidad	mes	60,00	\$ 80.911,34	\$ 4.854.680,65	0,06%

RUBRO	ITEM	SUB	- DESCRIPCIÓN	UNI-	CANTIDAD		PRESUPUESTO	
KUBKU	TTEN	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		6.1.2	Adicional por kilómetro de movilidad	km	330.000,00	\$ 10,34	\$ 3.410.642,31	0,04%
		6.1.3	Provisión de vivienda para personal de supervisión	mes	30,00	\$ 46.812,61	\$ 1.404.378,36	0,02%
		6.1.4	Movilización de obra	Gl	1,00	\$ 387.197.553,92	\$ 387.197.553,92	4,76%
	PRESUPUESTO TOTAL DE OBRA						\$ 8.131.148.632,22	100,00%
PRESUPUESTO TOTAL DE OBRA					(\$/km)		\$ 234.250.450,70	
			PRESUPUESTO TOTAL DE OBRA	x KM	(U\$S/km)		\$ 5.385.067,83	

Planillas $N^{\circ}6$: Presupuesto $N^{\circ}2$ de obra similar desactualizada (marzo 2019)

DUDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	JESTO
RUBRO	ITEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
1			TERRAPLENES Y MOVIMIENTOS DE SUELOS				\$ 2.382.625.636,30	31,47%
	1.1		Desbosque, destronque y limpieza del terreno	На	5,78	\$ 135.735,43	\$ 783.872,12	0,01%
	1.2		Apertura de caja	m3	1.169,91	\$ 764,27	\$ 894.127,51	0,01%
	1.3		Terraplén con compactación especial	m3	2.139.012,28	\$ 944,78	\$ 2.020.899.770,56	26,69%
	1.4		Terraplén sin compactación especial	m3	344.151,45	\$ 918,13	\$ 315.976.852,81	4,17%
	1.5		Forestación compensatoria	un	768,00	\$ 2.379,27	\$ 1.827.278,67	0,02%
	1.6		Saneamiento de cunetas	m3	66.327,68	\$ 636,89	\$ 42.243.734,64	0,56%
2			PAVIMENTOS Y BANQUINAS				\$ 3.637.946.983,52	48,05%
	2.1		Suelo tratado con cal					
		2.1.1	Subrasante de suelo tratado con cal; CUV=2%	m3	183.709,27	\$ 2.107,55	\$ 387.176.736,14	5,11%
		2.1.2	Suelo tratado con cal para pavimento asfáltico; tal que CBR>8%	m3	47.963,19	\$ 2.433,16	\$ 116.701.897,67	1,54%
	2.2		Bases y Subbases no bituminosas					
		2.2.1	Suelo arena cemento; RCS > 15 kg/cm2	m3	31.502,70	\$ 4.584,31	\$ 144.418.079,28	1,91%
		2.2.2	Base de estabilizado granular con cemento, tal que RCS 22 a 25 kg/cm2 a los 7 días.	m3	7.296,87	\$ 7.752,05	\$ 56.565.657,39	0,75%
		2.2.3	Base de hormigón pobre H8, RCS > que 80 kg/cm2	m3	85.672,98	\$ 9.297,41	\$ 796.537.256,02	10,52%
	2.3		Mezclas y capas asfálticas					
		2.3.1	Mezcla de concreto asfáltico para alteo de rasante - Tipo CAC D-19 CA30; e prom=0,09 m	tn	2.239,67	\$ 6.838,51	\$ 15.316.017,35	0,20%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUP	UESTO
KUBKU	IIEWI	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		2.3.2	Mezcla de concreto asfáltico para ensanche de pavimento - Tipo CAC D- 19 CA30; e=0,20 m	m2	8.226,85	\$ 2.915,58	\$ 23.986.008,69	0,32%
		2.3.3	Sub-Base de concreto asfáltico tipo CAC D-19 CA30; e=0,06 m	m2	31.779,46	\$ 803,77	\$ 25.543.284,66	0,34%
		2.3.4	Sub-Base de concreto asfáltico tipo CAC D-19 CA30; e=0,08 m	m2	11.196,49	\$ 1.031,35	\$ 11.547.544,63	0,15%
		2.3.5	Sub-Base de concreto asfáltico tipo CAC D-19 CA30; e=0,09 m	m2	41.777,90	\$ 1.145,15	\$ 47.841.858,71	0,63%
		2.3.6	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,05 m	m2	34.032,19	\$ 779,72	\$ 26.535.463,39	0,35%
		2.3.7	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,06 m	m2	10.237,49	\$ 931,88	\$ 9.540.090,62	0,13%
		2.3.8	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,07 m	m2	36.251,58	\$ 1.057,60	\$ 38.339.823,41	0,51%
		2.3.9	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,08 m	m2	18.892,27	\$ 1.103,31	\$ 20.843.989,18	0,28%
		2.3.10	Base de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	39.673,25	\$ 670,61	\$ 26.605.378,49	0,35%
		2.3.11	Carpeta de concreto asfáltico tipo SMA 19-AM3; e=0,05 m	m2	104.344,12	\$ 958,36	\$ 99.999.125,54	1,32%
		2.3.12	Carpeta de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	222.036,31	\$ 690,49	\$ 153.313.216,71	2,02%
	2.4		Riegos					
		2.4.1	Riego de curado con emulsión catiónica CI	m2	255.001,50	\$ 72,24	\$ 18.421.891,92	0,24%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	JESTO
KUBKU	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		2.4.2	Riego de liga con emulsión catiónica CRR	m2	368.315,39	\$ 43,69	\$ 16.092.155,97	0,21%
		2.4.3	Riego de liga con emulsión catiónica CRR-m	m2	203.757,65	\$ 55,08	\$ 11.222.579,03	0,15%
	2.5		Calzada de hormigón					
		2.5.1	Calzada de hormigón simple HP 4,5 T4 con juntas; e=0,20 m	m2	44.524,22	\$ 2.298,86	\$ 102.354.776,11	1,35%
		2.5.2	Calzada de hormigón simple HP 4,5 T4 con juntas; e=0,22 m	m2	23.819,49	\$ 2.528,74	\$ 60.233.335,89	0,80%
		2.5.3	Calzada de hormigón simple HP 4,5 T1 con juntas; e=0,25 m	m2	475.943,79	\$ 2.873,57	\$ 1.367.657.773,95	18,06%
		2.5.4	Calzada de hormigón simple HP 4,5 T1 con juntas; e=0,28 m	m2	6.223,59	\$ 3.218,40	\$ 20.030.002,00	0,26%
	2.6		Varios					
		2.6.1	Demolición de pavimento existente	m2	44.121,96	\$ 530,58	\$ 23.410.411,37	0,31%
		2.6.2	Fresado del pavimento bituminoso existente	m2	93.011,56	\$ 104,93	\$ 9.759.694,28	0,13%
		2.6.3	Bacheo profundo	m3	100,44	\$ 7.636,87	\$ 767.012,19	0,01%
		2.6.4	Bacheo superficial	m3	334,78	\$ 19.247,42	\$ 6.443.743,30	0,09%
		2.6.5	Sellado de fisuras en carpeta	m	18.022,27	\$ 41,18	\$ 742.179,63	0,01%
3			OBRAS DE ARTE MENORES				\$ 470.628.969,71	6,22%
	3.1		Hormigón de cemento portland H-4, excluida la armadura	m3	656,94	\$ 11.896,07	\$ 7.815.050,87	0,10%
	3.2		Hormigón de cemento portland H-8, excluida la armadura	m3	414,79	\$ 13.048,54	\$ 5.412.423,44	0,07%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUP	UESTO
KUBKU		ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	3.3		Hormigón de cemento portland H-13, excluida la armadura	m3	996,42	\$ 18.782,79	\$ 18.715.629,78	0,25%
	3.4		Hormigón de cemento portland H-17, excluida la armadura	m3	1.253,20	\$ 21.446,73	\$ 26.877.105,41	0,35%
	3.5		Hormigón de cemento portland H-21, excluida la armadura	m3	8.198,03	\$ 25.189,74	\$ 206.506.233,56	2,73%
	3.6		Acero especial en barras ADN-420 colocado	tn	508,55	\$ 231.362,15	\$ 117.659.763,16	1,55%
	3.7		Colocación de caños de H°A°, Ø=0,80 m	m	803,96	\$ 9.419,19	\$ 7.572.650,04	0,10%
	3.8		Sumidero de hormigón armado y reja de acero	un	8,00	\$ 84.222,85	\$ 673.782,78	0,01%
	3.9		Excavación para fundaciones y desagües	m3	36.966,68	\$ 2.147,78	\$ 79.396.330,68	1,05%
4			OBRAS COMPLEMENTARIAS				\$ 258.714.149,14	3,42%
	4.1		Barandas, Alambrados y otras					
		4.1.1	Sistema de contención lateral (H2-W4-A)	m	17.377,61	\$ 3.882,81	\$ 67.473.969,08	0,89%
		4.1.2	Retiro de baranda metálica	m	1.959,06	\$ 1.282,85	\$ 2.513.180,63	0,03%
		4.1.3	Cordón montable de hormigón 0,70 m de ancho	m	1.509,26	\$ 3.866,31	\$ 5.835.252,13	0,08%
		4.1.4	Cordón Protector de Borde de Pavimento	m	440,74	\$ 1.771,65	\$ 780.842,42	0,01%
		4.1.5	Tranquera s/plano J-5084 - Tipo "B"	un	120,00	\$ 52.136,34	\$ 6.256.360,77	0,08%
		4.1.6	Tranquera existente a retirar	un	42,00	\$ 13.939,80	\$ 585.471,48	0,01%
		4.1.7	Alambrado nuevo s/plano H-2840-I - Tipo "C"	m	23.069,65	\$ 901,77	\$ 20.803.598,65	0,27%
		4.1.8	Alambrado existente a retirar	m	19.506,60	\$ 441,93	\$ 8.620.461,13	0,11%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUP	UESTO
RUBRU	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		4.1.9	Alambrado existente a trasladar	m	41.768,70	\$ 987,14	\$ 41.231.655,83	0,54%
		4.1.10	Desalentador de circulación (Shoulder Rumble Strip)	m	77.928,67	\$ 33,37	\$ 2.600.868,42	0,03%
	4.2		Traslado de servicios					
		4.2.1	Línea de Media Tensión a construir (7,6 kV)	m	25.556,47	\$ 843,54	\$ 21.557.876,69	0,28%
		4.2.2	Línea de Media Tensión a construir (13,2 kV)	m	8.583,89	\$ 1.839,07	\$ 15.786.343,20	0,21%
		4.2.3	Línea de Media Tensión a construir (33,0 kV)	m	2.544,34	\$ 2.667,41	\$ 6.786.783,84	0,09%
		4.2.4	Traslado de línea de Media Tensión (7,6 kV)	m	22.394,31	\$ 1.177,91	\$ 26.378.592,87	0,35%
		4.2.5	Traslado de línea de Media Tensión (13,2 kV)	m	6.920,79	\$ 2.568,61	\$ 17.776.831,55	0,23%
		4.2.6	Traslado de línea de Media Tensión (33,0 kV)	m	2.432,99	\$ 3.738,93	\$ 9.096.773,70	0,12%
		4.2.7	Alteo de línea de Media Tensión (7,6 kV)	m	116,86	\$ 1.177,91	\$ 137.656,24	0,00%
		4.2.8	Alteo de línea de Media Tensión (13,2 kV)	m	198,06	\$ 2.568,61	\$ 508.750,06	0,01%
		4.2.9	Alteo de línea de Media Tensión (33,0 kV)	m	121,72	\$ 3.738,93	\$ 455.113,91	0,01%
	4.3		Demoliciones					
		4.3.1	Demolición de alcantarillas	m2	1.392,88	\$ 2.374,65	\$ 3.307.591,52	0,04%
		4.3.2	Demolición de construcciones	m2	111,04	\$ 1.982,88	\$ 220.175,00	0,00%

DLIDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPI	UESTO
RUBRO	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
5			PUENTES				\$ 451.220.045,01	5,96%
	5.1		Hormigón armado H-30 para Superestructura (losa tablero, viguetas transv., defensas) excluida armadura	m3	1.162,31	\$ 32.994,52	\$ 38.349.762,49	0,51%
	5.2		Hormigón armado H-38 para elementos prefabricados excluida armadura	m3	41,48	\$ 35.613,47	\$ 1.477.077,21	0,02%
	5.3		Hormigón armado H-38 para Vigas prefabricadas postensadas excluida armadura, incluido traslado y montaje.	m3	1.466,62	\$ 35.695,00	\$ 52.351.068,62	0,69%
	5.4		Hormigón armado H-21 para losas de aproximación excluida armadura	m3	361,39	\$ 26.032,25	\$ 9.407.798,07	0,12%
	5.5		Hormigón armado H-21 para infraestructura (dinteles, columnas y estribos) excluida armadura	m3	983,56	\$ 26.765,93	\$ 26.326.028,76	0,35%
	5.6		Hormigón armado H-21 con cemento ARS para pilotes excavados, excluida armadura, incluida excavación	m3	1.418,67	\$ 58.318,66	\$ 82.734.820,55	1,09%
	5.7		Hormigón simple H-17 para muro de pie en revestimientos de estribos	m3	132,60	\$ 21.446,73	\$ 2.843.748,94	0,04%
	5.8		Concreto asfáltico en caliente para carpeta de desgaste, espesor 5 cm	m2	5.287,48	\$ 958,36	\$ 5.067.300,39	0,07%
	5.9		Prelosas prefabricadas de Hormigón armado H-30 incluida armadura, espesor 5 cm	m2	5.867,24	\$ 1.896,53	\$ 11.127.427,84	0,15%
	5.10		Acero especial en barras tipo ADN 420 colocado.	tn	502,45	\$ 215.957,05	\$ 108.506.599,63	1,43%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPI	UESTO
KUBKU	IIEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	5.11		Acero para pretensado, colocado, con tensión de rotura mayor o igual que 19.000 kg/cm2	tn	96,80	\$ 297.537,58	\$ 28.800.756,98	0,38%
	5.12		Traslado y montaje de vigas postesadas	un	88,00	\$ 77.534,68	\$ 6.823.051,86	0,09%
	5.13		Placas de Neopreno, dureza Shore 60, zunchadas, colocados, incluyendo el mortero Grouting para tetones	un	176,00	\$ 5.903,07	\$ 1.038.940,18	0,01%
	5.14		Juntas de dilatación de asfalto modificado	m	347,62	\$ 4.326,11	\$ 1.503.826,41	0,02%
	5.15		Baranda para defensa vehicular con sistema de Contención H4, Ancho de Trabajo W4 e Índice de Severidad B, colocada y pintada	m	1.024,08	\$ 5.955,14	\$ 6.098.544,10	0,08%
	5.16		Caños para desagüe de hierro galvanizado Ø 100 mm, Verticales en Calzadas cada 2,50 m, Conducciones Longitudinales y Bajadas en Estribos y Pilares, incluyendo codos, curvas, enchufes, bocas de inspección, soportes, etc., colocados	gl	1,00	\$ 376.685,02	\$ 376.685,02	0,00%
	5.17		Escalera para desagüe de Hormigón Armado H-13 de 0,25 m2 de sección, incluido pasadores de Ø 12 mm cada 2 m y hormigón simple H -13 para pendiente según plano DNV J-6710-I.	m	463,73	\$ 4.699,20	\$ 2.179.165,05	0,03%
	5.18		Excavación para fundaciones	m3	244,23	\$ 2.147,78	\$ 524.552,10	0,01%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	JESTO
KUBKU		ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	5.19		Muros de suelo mecánicamente estabilizado incluyendo escamas, armaduras, soleras, esquineros, transporte y montaje	m2	2.433,29	\$ 23.088,78	\$ 56.181.636,40	0,74%
	5.20		Provisión y colocación de Losas de hormigón simple H-8 para revestimiento de taludes. Espesor 0,10 m. Según plano tipo DNV R-267	m2	1.498,25	\$ 2.026,86	\$ 3.036.749,17	\$ 0,00
	5.21		Provisión y Colocación de Colchonetas de piedra embolsada, espesor 0,17 m	m2	1.079,85	\$ 5.167,04	\$ 5.579.619,73	0,07%
	5.22		Provisión y Colocación de geotextil no tejido	m2	1.079,85	\$ 113,95	\$ 123.048,82	0,00%
	5.23		Recubrimiento con hormigón tipo H-8	m3	58,38	\$ 13.048,54	\$ 761.836,69	0,01%
6			OTROS				\$ 370.171.883,73	4,89%
	6.1		Supervisión / Inspección de obra					
		6.1.1	Cuota mensual por cada movilidad	mes	60,00	\$ 80.911,34	\$ 4.854.680,65	0,06%
		6.1.2	Adicional por kilómetro de movilidad	km	330.000,00	\$ 10,34	\$ 3.410.642,31	0,05%
		6.1.3	Provisión de vivienda para personal de supervisión	mes	30,00	\$ 46.812,61	\$ 1.404.378,36	0,02%
		6.1.4	Movilización de obra	Gl	1,00	\$ 360.502.182,42	\$ 360.502.182,42	4,76%
PRESUPUESTO TOTAL DE OBRA							\$ 7.571.307.667,42	100,00%
PRESUP	UESTO	TOTA	L DE OBRA x KM (\$/km)				\$ 218.121.979,28	
PRESUP	UESTO	TOTA	L DE OBRA x KM (U\$S/km)			\$ 5.014.298,37		

Planillas $N^{\circ}7$: Presupuesto $N^{\circ}3$ de obra similar desactualizada (abril 2019)

	Pianilias N°7: Presupuesto N°3 de obra similar desactualizada (abril 2019)									
RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU			
KUDKU	TTENT	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA		
1			TAREAS PRELIMINARES							
	1.1		Movilización de obra	gl	1,00	\$ 419.780.150,82	\$ 419.780.150,82	4,762%		
2			TERRAPLENES Y MOVIMIENTOS DE SUELOS							
	2.1		Desbosque, destronque y limpieza del terreno	На	14,72	\$ 147.998,95	\$ 2.178.097,46	0,025%		
	2.2		Terraplén con compactación especial	m3	3.332.727,65	\$ 953,81	\$ 3.178.775.271,15	36,059%		
	2.3		Terraplén sin compactación especial	m3	494.548,84	\$ 948,99	\$ 469.321.494,71	5,324%		
	2.4		Forestación compensatoria	un	2.101,00	\$ 2.743,59	\$ 5.764.284,43	0,065%		
3			PAVIMENTOS Y BANQUINAS							
	3.1		Suelo tratado con cal	m3	270.435,94	\$ 1.795,86	\$ 485.664.065,66	5,509%		
	3.2		Sub-base de suelo calcáreo	m3	136.063,70	\$ 2.078,05	\$ 282.746.571,53	3,207%		
	3.3		Base de estabilizado granular con cemento	m3	118.107,25	\$ 8.171,81	\$ 965.150.527,34	10,948%		
	3.4		Riego de curado con emulsión de rotura rápida CRR0	m2	641.434,40	\$ 67,37	\$ 43.212.917,84	0,490%		
	3.5		Riego de Liga con emulsión asfáltica catiónica de rotura rápida modificada con polímeros tipo CRR m	m2	1.547.088,18	\$ 51,85	\$ 80.220.049,72	0,910%		
	3.6		Base de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	283.445,76	\$ 842,09	\$ 238.685.436,65	2,708%		
	3.7		Base de concreto asfáltico tipo CAC D-19 CA30; e=0,06 m	m2	111.577,64	\$ 1.009,45	\$ 112.631.927,37	1,278%		
	3.8		Base de concreto asfáltico tipo CAC D-19 AM3; e=0,05 m	m2	365.302,15	\$ 963,82	\$ 352.085.426,76	3,994%		

DIIDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUP	JESTO
RUBRO	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	3.9		Base de concreto asfáltico tipo CAC D-19 AM3; e=0,07 m	m2	134.825,19	\$ 1.348,12	\$ 181.760.400,52	2,062%
	3.10		Carpeta de concreto asfáltico tipo SMA 12-AM3; e=0,05 m	m2	492.906,10	\$ 1.221,73	\$ 602.198.994,60	6,831%
	3.11		Carpeta de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	171.743,93	\$ 865,74	\$ 148.685.368,47	1,687%
	3.12		Micro concreto asfáltico en caliente tipo MAC F10 AM3; e=0,03 m	m2	38.676,26	\$ 744,38	\$ 28.789.872,03	0,327%
4			OBRAS DE ARTE MENORES					
	4.1		Hormigón de cemento portland H-4	m3	24,63	\$ 19.867,27	\$ 489.416,35	0,006%
	4.2		Hormigón de cemento portland H-8	m3	802,59	\$ 21.107,00	\$ 16.940.207,78	0,192%
	4.3		Hormigón de cemento portland H-13	m3	5.300,72	\$ 25.426,69	\$ 134.779.805,32	1,529%
	4.4		Hormigón de cemento portland H-21 excluida la armadura	m3	2.456,18	\$ 29.392,33	\$ 72.192.806,29	0,819%
	4.5		Acero especial en barras ADN-420 colocado para obras de arte	tn	120,60	\$ 186.700,37	\$ 22.516.249,16	0,255%
	4.6		Sumidero de H° A° con reja de acero de 0,60 x 1,90 m y caño de H° de 1,00 m	un	19,00	\$ 357.355,07	\$ 6.789.746,27	0,077%
	4.7		Sumidero de reja de acero de 0,60 x 1,90 m en alcantarilla	un	11,00	\$ 45.233,08	\$ 497.563,93	0,006%
	4.8		Caños de chapa ondulada galvanizada s/PL H-10236, D=3,00 m	m	73,93	\$ 37.132,45	\$ 2.745.276,29	0,031%
	4.9		Caños de chapa ondulada galvanizada s/PL H-10236, D=3,00 m	m	86,25	\$ 47.352,26	\$ 4.084.321,71	0,046%
	4.10		Caños de H°A°, D=1,00 m	m	645,39	\$ 13.485,51	\$ 8.703.416,52	0,099%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPI	UESTO
KUBKU	ITEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	4.11		Cuneta revestida de H°A° (armadura incluida)	m2	1.218,11	\$ 2.830,32	\$ 3.447.632,09	0,039%
	4.12		Excavación para fundaciones y desagües	m3	5.305,26	\$ 1.753,01	\$ 9.300.165,80	0,105%
5			PUENTES					
6			OBRAS COMPLEMENTARIAS					
	6.1		Barandas, Alambrados y otras					
		6.1.1	Retiro de baranda metálica	m	2.606,44	\$ 1.175,15	\$ 3.062.954,16	0,035%
		6.1.2	Baranda metálica cincada para defensa s/pl tipo H-10237 - DNV	m	76.818,04	\$ 4.606,68	\$ 353.876.427,84	4,014%
		6.1.3	Baranda de defensa vehicular s/Plano Tipo Z-4196	m	20,20	\$ 8.182,35	\$ 165.283,55	0,002%
		6.1.4	Baranda de Hormigón Tipo New Jersey	m	202,65	\$ 9.337,41	\$ 1.892.192,55	0,021%
		6.1.5	Alambrado existente a retirar	m	11.423,00	\$ 469,80	\$ 5.366.568,22	0,061%
		6.1.6	Alambrado existente a trasladar	m	13.723,79	\$ 1.316,56	\$ 18.068.242,39	0,205%
		6.1.7	Alambrado nuevo s/plano H-2840-I - tipo "C"	m	44.392,50	\$ 1.593,04	\$ 70.719.084,79	0,802%
		6.1.8	Tranquera existente a retirar	un	20,00	\$ 6.338,16	\$ 126.763,19	0,001%
		6.1.9	Tranquera s/plano J-5084- Tipo B	un	87,00	\$ 53.640,00	\$ 4.666.680,38	0,053%
		6.1.1	Cordón montable de hormigón 0,20 m de ancho	m	499,89	\$ 2.141,21	\$ 1.070.369,77	0,012%
		6.1.11	Cordón montable de hormigón 0,30 m de ancho	m	0,00	\$ 2.607,65	\$ 0,00	0,000%
		6.1.12	Cordón cuneta de hormigón 0,70 m de ancho	m	2.730,01	\$ 5.315,81	\$ 14.512.207,20	0,165%
		6.1.13	Cordón Protector de Borde de Pavimento	m	187,51	\$ 1.686,53	\$ 316.235,45	0,004%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUP	JESTO
KUDKU	HEIVI	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		6.1.14	Colectora de tierra abovedada	m	44.526,39	\$ 584,55	\$ 26.027.768,52	0,295%
	6.2		Señalización					
		6.2.1	Señalización vertical	m2	258,76	\$ 14.720,88	\$ 3.809.244,11	0,043%
		6.2.2	Señalización vertical a retirar	un	36,00	\$ 1.473,21	\$ 53.035,53	0,001%
		6.2.3	Ménsula con placa de 2,4 x 1,8 m	un	36,00	\$ 114.845,08	\$ 4.134.423,05	0,047%
		6.2.4	Pórtico con 2 placas de 2,4 x 1,8 m	un	13,00	\$ 286.267,16	\$ 3.721.473,03	0,042%
		6.2.5	Señalización horizontal por pulverización 1,5 mm	m2	24.039,04	\$ 1.301,54	\$ 31.287.662,99	0,355%
		6.2.6	Señalización horizontal por extrusión 3 mm	m2	2.303,14	\$ 3.390,43	\$ 7.808.648,21	0,089%
	6.3		Demoliciones					
		6.3.1	Demolición de pavimento asfáltico existente	m2	7.667,44	\$ 576,85	\$ 4.422.986,64	0,050%
		6.3.2	Demolición de alcantarillas	m2	159,36	\$ 1.369,17	\$ 218.194,01	0,002%
		6.3.3	Demolición de construcciones	m2	1.970,56	\$ 1.729,76	\$ 3.408.598,98	0,039%
	6.4		Traslado de Servicios Públicos	gl	1,00	\$ 36.887.816,18	\$ 36.887.816,18	0,418%
7			ILUMINACIÓN					
	7.1		Tablero General de Medición, Comando y Protección	un	8,00	\$ 212.795,15	\$ 1.702.361,22	0,019%
	7.2		Tablero Seccional de Comando y Protección	un	20,00	\$ 192.405,92	\$ 3.848.118,33	0,044%
	7.3		Canalización para tendido eléctrico en terreno natural	m	44.981,00	\$ 2.464,43	\$ 110.852.746,24	1,257%
	7.4		Canalización para tendido eléctrico bajo pavimento	m	2.631,00	\$ 5.196,84	\$ 13.672.895,46	0,155%
	7.5		Columna H=9,00m libre con brazo de 2,50m completa con artefacto 150W SAP super	un	56,00	\$ 88.710,63	\$ 4.967.795,14	0,056%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	JESTO
KUBKU	HEW	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	7.6		Columna H=9,00m libre con brazo de 2,50m completa con artefacto 250W SAP super	un	814,00	\$ 88.710,63	\$ 72.210.450,81	0,819%
	7.7	Columna H=12,00m libre con brazo de 2,50m completa con artefacto 150W SAP super		un	45,00	\$ 102.115,12	\$ 4.595.180,37	0,052%
	7.8		Columna H=12,00m libre con brazo de 2,50m completa con artefacto 250W SAP super	un	514,00	\$ 102.115,12	\$ 52.487.171,28	0,595%
	7.9		Columna H=12,00m libre con brazo de 2,50m completa con artefacto 400W SAP super	un	16,00	\$ 102.115,12	\$ 1.633.841,91	0,019%
	7.10		Artefacto bajo puente completo 250W SAP super	un	18,00	\$ 39.084,00	\$ 703.512,04	0,008%
	7.11		Conductor subterráneo 4x16 mm2	m	42.992,00	\$ 825,40	\$ 35.485.583,56	0,403%
	7.12		Alimentador subterráneo 3x120/70 mm2	m	4.620,00	\$ 5.224,33	\$ 24.136.382,40	0,274%
	7.13		Subestación Transformadora Aérea 25 kVA	un	0,00	\$ 269.954,75	\$ 0,00	0,000%
	7.14		Subestación Transformadora Aérea 63 kVA	un	8,00	\$ 387.910,76	\$ 3.103.286,11	0,035%
	7.15		Extensión LMT para provisión de Energía electrica	gl	1,00	\$ 1.975.440,10	\$ 1.975.440,10	0,022%
8			OTROS					
	8.1		Supervisión / Inspección de obra					
		8.1.1	Cuota mensual por cada movilidad	mes	48,00	\$ 86.729,08	\$ 4.162.995,74	0,047%
		8.1.2	Adicional por kilómetro de movilidad	km	264.000,00	\$ 11,47	\$ 3.028.096,02	0,034%
8.1.3 Vivienda para personal de supervisión mes 24,00						\$ 44.041,05	\$ 1.056.985,14	0,012%
			PRECIO TOTAL DE OBR	A:			\$ 8.815.383.167,17	100,00%

Planillas N°8: Presupuesto N°4 de obra similar desactualizada (abril 2019)

DUDDO	TOTAL F	SUB	Pianinas N°8: Presupuesto N°4		CANTIDAD	PRECIO	PRESUF	PUESTO
RUBRO	ITEM	ITEM	DESCRIPCIÓN	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
1			TAREAS PRELIMINARES					
	1.1		Movilización de obra	gl	1,00	\$ 19.441.974,16	\$ 19.441.974,16	4,762%
2			TERRAPLENES Y MOVIMIENTOS DE SUELOS					
	2.1		Desbosque, destronque y limpieza del terreno	На	2,07	\$ 147.998,95	\$ 305.978,30	0,075%
	2.2		Terraplén con compactación especial	m3	84.060,41	\$ 953,81	\$ 80.177.310,37	19,638%
	2.3		Terraplén sin compactación especial	m3	1.076,35	\$ 948,99	\$ 1.021.444,51	0,250%
	2.4		Forestación compensatoria	un	185,00	\$ 2.743,59	\$ 507.564,31	0,124%
3			PAVIMENTOS Y BANQUINAS					
	3.1		Suelo tratado con cal	m3	16.350,97	\$ 1.795,86	\$ 29.363.991,96	7,192%
	3.2		Sub-base de suelo calcáreo	m3	8.509,68	\$ 2.078,05	\$ 17.683.509,43	4,331%
	3.3		Base de estabilizado granular con cemento	m3	7.778,47	\$ 8.171,81	\$ 63.564.228,56	15,569%
	3.4		Riego de curado con emulsión de rotura rápida CRR0	m2	54.959,48	\$ 67,37	\$ 3.702.575,98	0,907%
	3.5		Riego de Liga con emulsión asfáltica catiónica de rotura rápida modificada con polimeros tipo CRR m	m2	123.959,57	\$ 51,85	\$ 6.427.586,61	1,574%
	3.6		Base de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	37.310,51	\$ 842,09	\$ 31.418.622,88	7,695%
	3.7		Base de concreto asfáltico tipo CAC D-19 CA30; e=0,06 m	m2	0,00	\$ 1.009,45	\$ 0,00	0,000%
	3.8		Base de concreto asfáltico tipo CAC D-19 AM3; e=0,05 m	m2	36.777,02	\$ 963,82	\$ 35.446.421,86	8,682%

DIJDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUF	PUESTO
RUBRO	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	3.9		Base de concreto asfáltico tipo CAC D-19 AM3; e=0,07 m	m2	0,00	\$ 1.348,12	\$ 0,00	0,000%
	3.10		Carpeta de concreto asfáltico tipo SMA 12-AM3; e=0,05 m	m2	36.243,54	\$ 1.221,73	\$ 44.279.877,01	10,845%
	3.11		Carpeta de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	13.628,50	\$ 865,74	\$ 11.798.723,62	2,890%
	3.12		Micro concreto asfáltico en caliente tipo MAC F10 AM3; e=0,03 m	m2	0,00	\$ 744,38	\$ 0,00	0,000%
4			OBRAS DE ARTE MENORES					
	4.1		Hormigón de cemento portland H-4	m3	14,74	\$ 19.867,27	\$ 292.766,79	0,072%
	4.2		Hormigón de cemento portland H-8	m3	100,49	\$ 21.107,00	\$ 2.120.953,79	0,519%
	4.3		Hormigón de cemento portland H-13	m3	223,81	\$ 25.426,69	\$ 5.690.629,49	1,394%
	4.4		Hormigón de cemento portland H-21 excluida la armadura	m3	274,13	\$ 29.392,33	\$ 8.057.451,44	1,974%
	4.5		Acero especial en barras ADN-420 colocado para obras de arte	tn	15,20	\$ 186.700,37	\$ 2.837.154,22	0,695%
	4.6		Sumidero de H° A° con reja de acero de 0,60 x 1,90 m y caño de H° de 1,00 m	un	3,00	\$ 357.355,07	\$ 1.072.065,20	0,263%
	4.7		Sumidero de reja de acero de 0,60 x 1,90 m en alcantarilla	un	-	\$ 45.233,08	\$ 0,00	0,000%
	4.8		Caños de chapa ondulada galvanizada s/PL H-10236, D=3,00 m	m	-	\$ 37.132,45	\$ 0,00	0,000%
	4.9		Caños de chapa ondulada galvanizada s/PL H-10235, D=3,50 m	m	-	\$ 47.352,26	\$ 0,00	0,000%
	4.10		Caños de H°A°, D=1,00 m	m	121,20	\$ 13.485,51	\$ 1.634.444,42	0,400%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUI	PUESTO
KUBKU	TIEWI	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	4.11		Cuneta revestida de H°A° (armadura incluida)	m2	-	\$ 2.830,32	\$ 0,00	0,000%
	4.12		Excavación para fundaciones y desagües	m3	700,89	\$ 1.753,01	\$ 1.228.658,41	0,301%
5			PUENTES					
6			OBRAS COMPLEMENTARIAS					
	6.1		Barandas, Alambrados y otras					
		6.1.1	Retiro de baranda metálica	m	0,00	\$ 1.175,15	\$ 0,00	0,000%
		6.1.2	Baranda metálica cincada para defensa s/plano tipo H-10237 - DNV	m	1.795,81	\$ 4.606,68	\$ 8.272.707,16	2,026%
		6.1.3	Baranda de defensa vehicular s/Plano Tipo Z-4196	m	12,12	\$ 8.182,35	\$ 99.170,13	0,024%
		6.1.4	Baranda de Hormigón Tipo New Jersey	m	0,00	\$ 9.337,41	\$ 0,00	0,000%
		6.1.5	Alambrado existente a retirar	m	291,11	\$ 469,80	\$ 136.763,74	0,033%
		6.1.6	Alambrado existente a trasladar	m	3.295,26	\$ 1.316,56	\$ 4.338.419,47	1,063%
		6.1.7	Alambrado nuevo s/plano H-2840-I - tipo "C"	m	4.227,40	\$ 1.593,04	\$ 6.734.415,71	1,649%
		6.1.8	Tranquera existente a retirar	un	4,00	\$ 6.338,16	\$ 25.352,64	0,006%
		6.1.9	Tranquera s/plano J-5084- Tipo B	un	15,00	\$ 53.640,00	\$ 804.600,07	0,197%
		6.1.10	Cordón montable de hormigón 0,20 m de ancho	m	500,90	\$ 2.141,21	\$ 1.072.532,40	0,263%
		6.1.11	Cordón montable de hormigón 0,30 m de ancho	m	163,40	\$ 2.607,65	\$ 426.084,96	0,104%
		6.1.12	Cordón cuneta de hormigón 0,70 m de ancho	m	204,65	\$ 5.315,81	\$ 1.087.859,85	0,266%
		6.1.13	cordón Protector de Borde de Pavimento	m	340,41	\$ 1.686,53	\$ 574.112,56	0,141%
		6.1.14	Colectora de tierra abovedada	m	0,00	\$ 584,55	\$ 0,00	0,000%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUI	PUESTO
KUBKU		ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	6.2		Señalización					
		6.2.1	Señalización vertical	m2	18,83	\$ 14.720,88	\$ 277.155,35	0,068%
		6.2.2	Señalización vertical a retirar	un	4,00	\$ 1.473,21	\$ 5.892,84	0,001%
		6.2.3	Ménsula con placa de 2,4 x 1,8 m	un	3,00	\$ 114.845,08	\$ 344.535,25	0,084%
		6.2.4	Pórtico con 2 placas de 2,4 x 1,8 m	un	0,00	\$ 286.267,16	\$ 0,00	0,000%
		6.2.5	Señalización horizontal por pulverización 1,5 mm	m2	1.749,05	\$ 1.301,54	\$ 2.276.447,20	0,558%
		6.2.6	Señalización horizontal por extrusión 3 mm	m2	167,57	\$ 3.390,43	\$ 568.146,47	0,139%
	6.3		Demoliciones					
		6.3.1	Demolición de pavimento asfáltico existente	m2	0,00	\$ 576,85	\$ 0,00	0,000%
		6.3.2	Demolición de alcantarillas	m2	80,48	\$ 1.369,17	\$ 110.184,64	0,027%
		6.3.3	Demolición de construcciones	m2	0,00	\$ 1.729,76	\$ 0,00	0,000%
	6.4		Traslado de Servicios Públicos	gl	1,00	\$ 0,00	\$ 0,00	0,000%
7			ILUMINACIÓN					
	7.1		Tablero General de Medición, Comando y Protección	un	1,00	\$ 212.795,15	\$ 212.795,15	0,052%
	7.2		Tablero Seccional de Comando y Protección	un	0,00	\$ 192.405,92	\$ 0,00	0,000%
	7.3		Canalización para tendido eléctrico en terreno natural	m	1.816,00	\$ 2.464,43	\$ 4.475.413,78	1,096%
	7.4		Canalización para tendido eléctrico bajo pavimento	m	84,00	\$ 5.196,84	\$ 436.534,86	0,107%
	7.5		Columna H=9,00m libre con brazo de 2,50m completa con artefacto 150W SAP super	un	3,00	\$ 88.710,63	\$ 266.131,88	0,065%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUP	PUESTO
KUDKU	TTEN	ITEM	DESCRII CION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	7.6		Columna H=9,00m libre con brazo de 2,50m completa con artefacto 250W SAP super	un	6,00	\$ 88.710,63	\$ 532.263,77	0,130%
	7.7		Columna H=12,00m libre con brazo de 2,50m completa con artefacto 150W SAP super	un	6,00	\$ 102.115,12	\$ 612.690,72	0,150%
	7.8		Columna H=12,00m libre con brazo de 2,50m completa con artefacto 250W SAP super	un	32,00	\$ 102.115,12	\$ 3.267.683,82	0,800%
	7.9		Columna H=12,00m libre con brazo de 2,50m completa con artefacto 400W SAP super	un	4,00	\$ 102.115,12	\$ 408.460,48	0,100%
	7.10		Artefacto bajo puente completo 250W SAP super	un	0,00	\$ 39.084,00	\$ 0,00	0,000%
	7.11		Conductor subterráneo 4x16 mm2	m	1.672,00	\$ 825,40	\$ 1.380.068,29	0,338%
	7.12		Alimentador subterráneo 3x120/70 mm2	m	228,00	\$ 5.224,33	\$ 1.191.146,14	0,292%
	7.13		Subestación Transformadora Aérea 25 kVA	un	1,00	\$ 269.954,75	\$ 269.954,75	0,066%
	7.14		Subestación Transformadora Aérea 63 kVA	un	0,00	\$ 387.910,76	\$ 0,00	0,000%
	7.15		Extensión LMT para provisión de Energía Eléctrica	gl	0,00	\$ 1.975.440,10	\$ 0,00	0,000%
	PRECIO TOTAL DE OBRA:							100,00%

Planilla N°9: Tablas	Planilla N°9: Tablas de coeficientes de actualización de precios								
FECHA	\$/DÓLAR	OBSERVACIONES							
mar-19	\$ 43,50	Promedio dólar oficial y dólar paralelo							
abr-19	\$ 45,50	Promedio dólar oficial y dólar paralelo							
ene-23	\$ 181,59	Dólar oficial							
ene-23	\$ 352,00	Dólar paralelo							
ene-23	\$ 266,80	Promedio dólar oficial y dólar paralelo							
Variación porcentual	613,32%	mar-19 a ene-23							
Variación porcentual	586,36%	abr-19 a ene-23							
FECHA	\$/LITRO	OBSERVACIONES							
mar-19	\$ 30,40	Gasoil común sin IVA							

FECHA	\$/LITRO	OBSERVACIONES
mar-19	\$ 30,40	Gasoil común sin IVA
abr-19	\$ 31,89	Gasoil común sin IVA
ene-23	\$ 183,47	Gasoil común sin IVA

Variación porcentual	603,42%	mar-19 a ene-23
Variación porcentual	575,32%	abr-19 a ene-23

Marzo de 2019	a enero de 2023	Abril de 2019 a enero de 2023		
Variación porcentual del dólar	613,32%	Variación porcentual del dólar	586,36%	
Variación porcentual del gasoil	603,42%	Variación porcentual del gasoil	575,32%	
Variación porcentual promedio	608,37%	Variación porcentual promedio	580,84%	
INDICE DE ACTUALIZACIÓN	6,08	INDICE DE ACTUALIZACIÓN	5,81	

Planillas N°10: Presupuesto N°1 de obra similar actualizada a mes base de proyecto (enero 2023)

SIIB			minas N 10: Presupuesto N 1 de obra		CANTIDAD	PRECIO	PRESUPUESTO	
RUBRO	ITEM	ITEM	DESCRIPCIÓN	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
1			TERRAPLENES Y MOVIMIENTOS DE SUELOS				\$ 14.087.966.216,52	28,48%
	1.1		Desbosque, destronque y limpieza del terreno	На	5,78	\$ 825.778,16	\$ 4.768.868,89	0,01%
	1.2		Apertura de caja	m3	1.345,01	\$ 4.649,64	\$ 6.253.784,49	0,01%
	1.3		Terraplén con compactación especial	m3	2.068.010,02	\$ 5.747,80	\$ 11.886.508.376,65	24,03%
	1.4		Terraplén sin compactación especial	m3	344.151,45	\$ 5.585,68	\$ 1.922.318.896,02	3,89%
	1.5		Forestación compensatoria	un	768,00	\$ 14.474,84	\$ 11.116.676,04	0,02%
	1.6		Saneamiento de cunetas	m3	66.327,68	\$ 3.874,70	\$ 256.999.614,44	0,52%
2			PAVIMENTOS Y BANQUINAS				\$ 25.783.107.402,32	52,12%
	2.1		Suelo tratado con cal					
		2.1.1	Suelo tratado con cal para pavimento asfáltico; tal que CBR>8%	m3	186.057,04	\$ 14.802,67	\$ 2.754.140.468,98	5,57%
	2.2		Bases y Subbases no bituminosas					
		2.2.1	Suelo arena cemento; RCS > 15 kg/cm2	m3	141.237,92	\$ 27.889,71	\$ 3.939.084.194,21	7,96%
		2.2.2	Base de estabilizado granular con cemento, tal que RCS 22 a 25 kg/cm2 a los 7 días.	m3	107.931,07	\$ 47.161,39	\$ 5.090.179.326,56	10,29%
	2.3		Mezclas y capas asfálticas					
		2.3.1	Mezcla de concreto asfáltico para alteo de rasante - Tipo CAC D-19 CA30; e prom=0,09 m	tn	2.239,67	\$ 41.603,65	\$ 93.178.564,49	0,19%
		2.3.2	Mezcla de concreto asfáltico para ensanche de pavimento - Tipo CAC D-19 CA30; e=0,20 m	m2	8.226,85	\$ 17.737,58	\$ 145.924.479,41	0,29%

DIJDDO	ITEM	SUB ITEM	DESCRIPCIÓN	UNI- DAD	CANTIDAD TOTAL	PRECIO UNITARIO	PRESUPUESTO	
RUBRO							PRECIO	INCIDENCIA
		2.3.3	Sub-Base de concreto asfáltico tipo CAC D-19 CA30; e=0,06 m	m2	31.779,46	\$ 4.889,90	\$ 155.398.531,06	0,31%
		2.3.4	Sub-Base de concreto asfáltico tipo CAC D-19 CA30; e=0,08 m	m2	169.310,72	\$ 6.274,48	\$ 1.062.337.128,05	2,15%
		2.3.5	Sub-Base de concreto asfáltico tipo CAC D-19 CA30; e=0,09 m	m2	346.334,87	\$ 6.966,77	\$ 2.412.835.884,47	4,88%
		2.3.6	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,05 m	m2	34.032,19	\$ 4.743,59	\$ 161.434.681,80	0,33%
		2.3.7	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,06 m	m2	10.237,49	\$ 5.669,30	\$ 58.039.366,84	0,12%
		2.3.8	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,07 m	m2	36.251,58	\$ 6.434,18	\$ 233.249.259,72	0,47%
		2.3.9	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,08 m	m2	449.806,85	\$ 6.712,23	\$ 3.019.207.175,18	6,10%
		2.3.10	Base de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	79.290,51	\$ 4.079,83	\$ 323.491.635,33	0,65%
		2.3.11	Base de concreto asfáltico tipo CAC D-19 CA30; e=0,07 m	m2	42.585,34	\$ 5.464,41	\$ 232.703.577,68	0,47%
		2.3.12	Carpeta de concreto asfáltico tipo SMA 19-AM3; e=0,05 m	m2	554.148,44	\$ 5.830,40	\$ 3.230.907.483,18	6,53%
		2.3.13	Carpeta de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	277.074,78	\$ 4.200,74	\$ 1.163.919.012,40	2,35%
		2.3.14	Carpeta de concreto asfáltico tipo CAC D-19 CA30; e=0,06 m	m2	20.511,75	\$ 4.917,21	\$ 100.860.594,29	0,20%
		2.3.15	Carpeta de concreto asfáltico tipo CAC D-19 CA30; e=0,07 m	m2	21.285,89	\$ 5.702,39	\$ 121.380.478,10	0,25%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
KUBKU	II EIVI	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	2.4		Riegos					
		2.4.1	Riego de curado con emulsión catiónica CI	m2	1.370.752,13	\$ 439,50	\$ 602.449.416,39	1,22%
		2.4.2	Riego de liga con emulsión catiónica CRR	m2	1.011.331,33	\$ 265,81	\$ 268.817.780,13	0,54%
		2.4.3	Riego de liga con emulsión catiónica CRR-m	m2	1.084.476,55	\$ 335,08	\$ 363.386.752,25	0,73%
	2.5		Varios					
		2.5.1	Demolición de pavimento existente	m2	44.121,96	\$ 3.227,93	\$ 142.422.698,79	0,29%
		2.5.2	Fresado del pavimento bituminoso existente	m2	93.011,56	\$ 638,37	\$ 59.375.376,90	0,12%
		2.5.3	Bacheo profundo	m3	100,44	\$ 46.460,68	\$ 4.666.297,60	0,01%
		2.5.4	Bacheo superficial	m3	334,78	\$ 117.096,20	\$ 39.202.015,59	0,08%
		2.5.5	Sellado de fisuras en carpeta	m	18.022,27	\$ 250,54	\$ 4.515.222,92	0,01%
3			OBRAS DE ARTE MENORES				\$ 2.863.181.126,82	5,79%
	3.1		Hormigón de cemento portland H-4, excluida la armadura	m3	656,94	\$ 72.372,50	\$ 47.544.685,06	0,10%
	3.2		Hormigón de cemento portland H-8, excluida la armadura	m3	414,79	\$ 79.383,87	\$ 32.927.740,63	0,07%
	3.3		Hormigón de cemento portland H-13, excluida la armadura	m3	996,42	\$ 114.269,48	\$ 113.860.899,77	0,23%
	3.4		Hormigón de cemento portland H-17, excluida la armadura	m3	1.253,20	\$ 130.476,19	\$ 163.513.140,70	0,33%
	3.5		Hormigón de cemento portland H-21, excluida la armadura	m3	8.198,03	\$ 153.247,66	\$ 1.256.328.846,18	2,54%
	3.6		Acero especial en barras ADN-420 colocado	tn	508,55	\$ 1.407.545,61	\$ 715.810.617,19	1,45%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
RUBRU	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	3.7		Colocación de caños de H°A°, Ø=0,80 m	m	803,96	\$ 57.303,82	\$ 46.069.983,08	0,09%
	3.8		Sumidero de hormigón armado y reja de acero	un	8,00	\$ 512.389,34	\$ 4.099.114,72	0,01%
	3.9		Excavación para fundaciones y desagües	m3	36.966,68	\$ 13.066,53	\$ 483.026.099,49	0,98%
4			OBRAS COMPLEMENTARIAS				\$ 1.573.947.879,83	3,18%
	4.1		Barandas, Alambrados y otras					
		4.1.1	Sistema de contención lateral (H2-W4-A)	m	17.377,61	\$ 23.621,99	\$ 410.493.631,44	0,83%
		4.1.2	Retiro de baranda metálica	m	1.959,06	\$ 7.804,52	\$ 15.289.520,64	0,03%
		4.1.3	Cordón montable de hormigón 0,70 m de ancho	m	1.509,26	\$ 23.521,61	\$ 35.500.117,61	0,07%
		4.1.4	Cordón Protector de Borde de Pavimento	m	440,74	\$ 10.778,23	\$ 4.750.437,02	0,01%
		4.1.5	Tranquera s/plano J-5084 - Tipo "B"	un	120,00	\$ 317.183,59	\$ 38.062.030,25	0,08%
		4.1.6	Tranquera existente a retirar	un	42,00	\$ 84.806,01	\$ 3.561.852,33	0,01%
		4.1.7	Alambrado nuevo s/plano H-2840-I - Tipo "C"	m	23.069,65	\$ 5.486,15	\$ 126.563.545,48	0,26%
		4.1.8	Alambrado existente a retirar	m	19.506,60	\$ 2.688,56	\$ 52.444.586,28	0,11%
		4.1.9	Alambrado existente a trasladar	m	41.768,70	\$ 6.005,51	\$ 250.842.396,89	0,51%
		4.1.10	Desalentador de circulación (Shoulder Rumble Strip)	m	77.928,67	\$ 203,04	\$ 15.822.989,79	0,03%
	4.2		Traslado de servicios					
		4.2.1	Línea de Media Tensión a construir (7,6 kV)	m	25.556,47	\$ 5.131,87	\$ 131.152.371,93	0,27%
		4.2.2	Línea de Media Tensión a construir (13,2 kV)	m	8.583,89	\$ 11.188,39	\$ 96.039.901,57	0,19%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
KUBKU	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		4.2.3	Línea de Media Tensión a construir (33,0 kV)	m	2.544,34	\$ 16.227,79	\$ 41.288.982,71	0,08%
		4.2.4	Traslado de línea de Media Tensión (7,6 kV)	m	22.394,31	\$ 7.166,12	\$ 160.480.323,42	0,32%
		4.2.5	Traslado de línea de Media Tensión (13,2 kV)	m	6.920,79	\$ 15.626,76	\$ 108.149.501,78	0,22%
		4.2.6	Traslado de línea de Media Tensión (33,0 kV)	m	2.432,99	\$ 22.746,65	\$ 55.342.344,92	0,11%
		4.2.7	Alteo de línea de Media Tensión (7,6 kV)	m	116,86	\$ 7.166,12	\$ 837.463,86	0,00%
		4.2.8	Alteo de línea de Media Tensión (13,2 kV)	m	198,06	\$ 15.626,76	\$ 3.095.099,67	0,01%
		4.2.9	Alteo de línea de Media Tensión (33,0 kV)	m	121,72	\$ 22.746,65	\$ 2.768.791,64	0,01%
	4.3		Demoliciones					
		4.3.1	Demolición de alcantarillas	m2	1.392,88	\$ 14.446,71	\$ 20.122.504,63	0,04%
		4.3.2	Demolición de construcciones	m2	111,04	\$ 12.063,28	\$ 1.339.485,97	0,00%
5			PUENTES				\$ 2.745.102.405,67	5,55%
	5.1		Hormigón armado H-30 para Superestructura (losa tablero, viguetas transv., defensas) excluida armadura	m3	1.162,31	\$ 200.729,85	\$ 233.309.726,43	0,47%
	5.2		Hormigón armado H-38 para elementos prefabricados excluida armadura	m3	41,48	\$ 216.662,85	\$ 8.986.143,80	0,02%
	5.3		Hormigón armado H-38 para Vigas prefabricadas postensadas excluida armadura, incluido traslado y montaje.	m3	1.466,62	\$ 217.158,87	\$ 318.489.938,54	0,64%

DIIDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPUESTO	
RUBRO	ITEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	5.4		Hormigón armado H-21 para losas de aproximación excluida armadura	m3	361,39	\$ 158.373,29	\$ 57.234.534,26	0,12%
	5.5		Hormigón armado H-21 para infraestructura (dinteles, columnas y estribos) excluida armadura	m3	983,56	\$ 162.836,79	\$ 160.160.537,35	0,32%
	5.6		Hormigón armado H-21 con cemento ARS para pilotes excavados, excluida armadura, incluida excavación	m3	1.418,67	\$ 354.795,19	\$ 503.336.581,42	1,02%
	5.7		Hormigón simple H-17 para muro de pie en revestimientos de estribos	m3	132,60	\$ 130.476,19	\$ 17.300.610,05	0,03%
	5.8		Concreto asfáltico en caliente para carpeta de desgaste, espesor 5 cm	m2	5.287,48	\$ 5.830,40	\$ 30.828.104,03	0,06%
	5.9		Prelosas prefabricadas de Hormigón armado H-30 incluida armadura, espesor 5 cm	m2	5.867,24	\$ 11.538,01	\$ 67.696.303,11	0,14%
	5.10		Acero especial en barras tipo ADN 420 colocado.	tn	502,45	\$ 1.313.825,06	\$ 660.125.211,57	1,33%
	5.11		Acero para pretensado, colocado, con tensión de rotura mayor o igual que 19.000 kg/cm2	tn	96,80	\$ 1.810.139,27	\$ 175.216.123,82	0,35%
	5.12		Traslado y montaje de vigas postensadas	un	88,00	\$ 471.700,31	\$ 41.509.627,71	0,08%
	5.13		Placas de Neopreno, dureza Shore 60, zunchadas, colocados, incluyendo el mortero Grouting para tetones	un	176,00	\$ 35.912,70	\$ 6.320.634,93	0,01%
	5.14		Juntas de dilatación de asfalto modificado	m	347,62	\$ 26.318,92	\$ 9.148.878,81	0,02%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
KUBKU		ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	5.15		Baranda para defensa vehicular con sistema de Contención H4, Ancho de Trabajo W4 e Índice de Severidad B, colocada y pintada	m	1.024,08	\$ 36.229,51	\$ 37.101.915,73	0,08%
	5.16		Caños para desagüe de hierro galvanizado Ø 100 mm, Verticales en Calzadas cada 2,50 m, Conducciones Longitudinales y Bajadas en Estribos y Pilares, incluyendo codos, curvas, enchufes, bocas de inspección, soportes, etc., colocados	gl	1,00	\$ 2.291.651,17	\$ 2.291.651,17	0,00%
	5.17		Escalera para desagüe de Hormigón Armado H-13 de 0,25 m2 de sección, incluido pasadores de Ø 12 mm cada 2 m y hormigón simple H -13 para pendiente según plano DNV J-6710- I.	m	463,73	\$ 28.588,69	\$ 13.257.458,92	0,03%
	5.18		Excavación para fundaciones	m3	244,23	\$ 13.066,53	\$ 3.191.235,06	0,01%
	5.19		Muros de suelo mecánicamente estabilizado incluyendo escamas, armaduras, soleras, esquineros, transporte y montaje	m2	2.433,29	\$ 140.466,00	\$ 341.794.091,25	0,69%
	5.20		Provisión y colocación de Losas de hormigón simple H-8 para revestimiento de taludes. Espesor 0,10 m. Según plano tipo DNV R-267	m2	1.498,25	\$ 12.330,90	\$ 18.474.772,00	\$ 0,00
	5.21		Provisión y Colocación de Colchonetas de piedra embolsada, espesor 0,17 m	m2	1.079,85	\$ 31.434,92	\$ 33.944.918,27	0,07%

DIIDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
RUBRO	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	5.22		Provisión y Colocación de geotextil no tejido	m2	1.079,85	\$ 693,24	\$ 748.596,22	0,00%
	5.23		Recubrimiento con Hormigón tipo H-8	m3	58,38	\$ 79.383,87	\$ 4.634.811,22	0,01%
6			OTROS				\$ 2.414.434.529,48	4,88%
	6.1		Supervisión / Inspección de obra					
		6.1.1	Cuota mensual por cada movilidad	mes	60,00	\$ 492.243,04	\$ 29.534.582,24	0,06%
		6.1.2	Adicional por kilómetro de movilidad	km	330.000,00	\$ 62,88	\$ 20.749.438,12	0,04%
		6.1.3	Provisión de vivienda para personal de supervisión	mes	30,00	\$ 284.795,45	\$ 8.543.863,37	0,02%
		6.1.4	Movilización de obra	Gl	1,00	\$ 2.355.606.645,75	\$ 2.355.606.645,75	4,76%
PRESUPUESTO TOTAL DE OBRA							\$ 49.467.739.560,65	100,00%
PRESUP	PRESUPUESTO TOTAL DE OBRA x KM (\$/km)							
PRESUPUESTO TOTAL DE OBRA x KM (U\$S/km)							\$ 32.761.316,40	

Planillas N°11: Presupuesto N°2 de obra similar actualizada a mes base de proyecto (enero 2023)

D.L.ID.D.C		SUB	DESCRIPCIÓN 2 de obra		CANTIDAD	PRECIO	PRESUPU	ESTO
RUBRO	ITEM	ITEM	DESCRIPCIÓN	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
1			TERRAPLENES Y MOVIMIENTOS DE SUELOS				\$ 14.495.258.883,86	31,47%
	1.1		Desbosque, destronque y limpieza del terreno	На	5,78	\$ 825.778,16	\$ 4.768.868,89	0,01%
	1.2		Apertura de caja	m3	1.169,91	\$ 4.649,64	\$ 5.439.633,28	0,01%
	1.3		Terraplén con compactación especial	m3	2.139.012,28	\$ 5.747,80	\$ 12.294.615.195,19	26,69%
	1.4		Terraplén sin compactación especial	m3	344.151,45	\$ 5.585,68	\$ 1.922.318.896,02	4,17%
	1.5		Forestación compensatoria	un	768,00	\$ 14.474,84	\$ 11.116.676,04	0,02%
	1.6		Saneamiento de cunetas	m3	66.327,68	\$ 3.874,70	\$ 256.999.614,44	0,56%
2			PAVIMENTOS Y BANQUINAS				\$ 22.132.299.144,43	48,05%
	2.1		Suelo tratado con cal					
		2.1.1	Subrasante de suelo tratado con cal; CUV=2%	m3	183.709,27	\$ 12.821,78	\$ 2.355.479.995,98	5,11%
		2.1.2	Suelo tratado con cal para pavimento asfáltico; tal que CBR>8%	m3	47.963,19	\$ 14.802,67	\$ 709.983.218,99	1,54%
	2.2		Bases y Subbases no bituminosas					
		2.2.1	Suelo arena cemento; RCS > 15 kg/cm2	m3	31.502,70	\$ 27.889,71	\$ 878.601.075,54	1,91%
		2.2.2	Base de estabilizado granular con cemento, tal que RCS 22 a 25 kg/cm2 a los 7 días.	m3	7.296,87	\$ 47.161,39	\$ 344.130.372,54	0,75%
		2.2.3	Base de hormigón pobre H8, RCS > que 80 kg/cm2	m3	85.672,98	\$ 56.562,99	\$ 4.845.920.215,38	10,52%
	2.3		Mezclas y capas asfálticas					
		2.3.1	Mezcla de concreto asfáltico para alteo de rasante - Tipo CAC D-19 CA30; e prom=0,09 m	tn	2.239,67	\$ 41.603,65	\$ 93.178.564,49	0,20%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
KUBKU	HEW	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		2.3.2	Mezcla de concreto asfáltico para ensanche de pavimento - Tipo CAC D-19 CA30; e=0,20 m	m2	8.226,85	\$ 17.737,58	\$ 145.924.479,41	0,32%
		2.3.3	Sub-Base de concreto asfáltico tipo CAC D-19 CA30; e=0,06 m	m2	31.779,46	\$ 4.889,90	\$ 155.398.531,06	0,34%
		2.3.4	Sub-Base de concreto asfáltico tipo CAC D-19 CA30; e=0,08 m	m2	11.196,49	\$ 6.274,48	\$ 70.252.181,57	0,15%
		2.3.5	Sub-Base de concreto asfáltico tipo CAC D-19 CA30; e=0,09 m	m2	41.777,90	\$ 6.966,77	\$ 291.057.108,11	0,63%
		2.3.6	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,05 m	m2	34.032,19	\$ 4.743,59	\$ 161.434.681,80	0,35%
		2.3.7	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,06 m	m2	10.237,49	\$ 5.669,30	\$ 58.039.366,84	0,13%
		2.3.8	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,07 m	m2	36.251,58	\$ 6.434,18	\$ 233.249.259,72	0,51%
		2.3.9	Base de concreto asfáltico tipo CAC D-19 AM3; e=0,08 m	m2	18.892,27	\$ 6.712,23	\$ 126.809.270,74	0,28%
		2.3.10	Base de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	39.673,25	\$ 4.079,83	\$ 161.860.026,62	0,35%
		2.3.11	Carpeta de concreto asfáltico tipo SMA 19-AM3; e=0,05 m	m2	104.344,12	\$ 5.830,40	\$ 608.368.008,29	1,32%
		2.3.12	Carpeta de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	222.036,31	\$ 4.200,74	\$ 932.716.719,20	2,02%
	2.4		Riegos					
		2.4.1	Riego de curado con emulsión catiónica CI	m2	255.001,50	\$ 439,50	\$ 112.073.876,98	0,24%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
KUBKU		ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		2.4.2	Riego de liga con emulsión catiónica CRR	m2	368.315,39	\$ 265,81	\$ 97.900.384,86	0,21%
		2.4.3	Riego de liga con emulsión catiónica CRR-m	m2	203.757,65	\$ 335,08	\$ 68.275.177,57	0,15%
	2.5		Calzada de hormigón					
		2.5.1	Calzada de hormigón simple HP 4,5 T4 con juntas; e=0,20 m	m2	44.524,22	\$ 13.985,63	\$ 622.699.158,05	1,35%
		2.5.2	Calzada de hormigón simple HP 4,5 T4 con juntas; e=0,22 m	m2	23.819,49	\$ 15.384,19	\$ 366.443.550,28	0,80%
		2.5.3	Calzada de hormigón simple HP 4,5 T1 con juntas; e=0,25 m	m2	475.943,79	\$ 17.482,03	\$ 8.320.465.118,76	18,06%
		2.5.4	Calzada de hormigón simple HP 4,5 T1 con juntas; e=0,28 m	m2	6.223,59	\$ 19.579,88	\$ 121.857.189,84	0,26%
	2.6		Varios					
		2.6.1	Demolición de pavimento existente	m2	44.121,96	\$ 3.227,93	\$ 142.422.698,79	0,31%
		2.6.2	Fresado del pavimento bituminoso existente	m2	93.011,56	\$ 638,37	\$ 59.375.376,90	0,13%
		2.6.3	Bacheo profundo	m3	100,44	\$ 46.460,68	\$ 4.666.297,60	0,01%
		2.6.4	Bacheo superficial	m3	334,78	\$ 117.096,20	\$ 39.202.015,59	0,09%
		2.6.5	Sellado de fisuras en carpeta	m	18.022,27	\$ 250,54	\$ 4.515.222,92	0,01%
3			OBRAS DE ARTE MENORES				\$ 2.863.181.126,82	6,22%
	3.1		Hormigón de cemento portland H-4, excluida la armadura	m3	656,94	\$ 72.372,50	\$ 47.544.685,06	0,10%
	3.2		Hormigón de cemento portland H-8, excluida la armadura	m3	414,79	\$ 79.383,87	\$ 32.927.740,63	0,07%

DIIDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
RUBRO	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	3.3		Hormigón de cemento portland H-13, excluida la armadura	m3	996,42	\$ 114.269,48	\$ 113.860.899,77	0,25%
	3.4		Hormigón de cemento portland H-17, excluida la armadura	m3	1.253,20	\$ 130.476,19	\$ 163.513.140,70	0,35%
	3.5		Hormigón de cemento portland H-21, excluida la armadura	m3	8.198,03	\$ 153.247,66	\$ 1.256.328.846,18	2,73%
	3.6		Acero especial en barras ADN-420 colocado	tn	508,55	\$ 1.407.545,61	\$ 715.810.617,19	1,55%
	3.7		Colocación de caños de H°A°, Ø=0,80 m	m	803,96	\$ 57.303,82	\$ 46.069.983,08	0,10%
	3.8		Sumidero de hormigón armado y reja de acero	un	8,00	\$ 512.389,34	\$ 4.099.114,72	0,01%
	3.9		Excavación para fundaciones y desagües	m3	36.966,68	\$ 13.066,53	\$ 483.026.099,49	1,05%
4			OBRAS COMPLEMENTARIAS				\$ 1.573.947.879,83	3,42%
	4.1		Barandas, Alambrados y otras					
		4.1.1	Sistema de contención lateral (H2-W4-A)	m	17.377,61	\$ 23.621,99	\$ 410.493.631,44	0,89%
		4.1.2	Retiro de baranda metálica	m	1.959,06	\$ 7.804,52	\$ 15.289.520,64	0,03%
		4.1.3	Cordón montable de hormigón 0,70 m de ancho	m	1.509,26	\$ 23.521,61	\$ 35.500.117,61	0,08%
		4.1.4	Cordón Protector de Borde de Pavimento	m	440,74	\$ 10.778,23	\$ 4.750.437,02	0,01%
		4.1.5	Tranquera s/plano J-5084 - Tipo "B"	un	120,00	\$ 317.183,59	\$ 38.062.030,25	0,08%
		4.1.6	Tranquera existente a retirar	un	42,00	\$ 84.806,01	\$ 3.561.852,33	0,01%
		4.1.7	Alambrado nuevo s/plano H-2840-I - Tipo "C"	m	23.069,65	\$ 5.486,15	\$ 126.563.545,48	0,27%
		4.1.8	Alambrado existente a retirar	m	19.506,60	\$ 2.688,56	\$ 52.444.586,28	0,11%

DIIDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
RUBRO	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		4.1.9	Alambrado existente a trasladar	m	41.768,70	\$ 6.005,51	\$ 250.842.396,89	0,54%
		4.1.10	Desalentador de circulación (Shoulder Rumble Strip)	m	77.928,67	\$ 203,04	\$ 15.822.989,79	0,03%
	4.2		Traslado de servicios					
		4.2.1	Línea de Media Tensión a construir (7,6 kV)	m	25.556,47	\$ 5.131,87	\$ 131.152.371,93	0,28%
		4.2.2	Línea de Media Tensión a construir (13,2 kV)	m	8.583,89	\$ 11.188,39	\$ 96.039.901,57	0,21%
		4.2.3	Línea de Media Tensión a construir (33,0 kV)	m	2.544,34	\$ 16.227,79	\$ 41.288.982,71	0,09%
		4.2.4	Traslado de línea de Media Tensión (7,6 kV)	m	22.394,31	\$ 7.166,12	\$ 160.480.323,42	0,35%
		4.2.5	Traslado de línea de Media Tensión (13,2 kV)	m	6.920,79	\$ 15.626,76	\$ 108.149.501,78	0,23%
		4.2.6	Traslado de línea de Media Tensión (33,0 kV)	m	2.432,99	\$ 22.746,65	\$ 55.342.344,92	0,12%
		4.2.7	Alteo de línea de Media Tensión (7,6 kV)	m	116,86	\$ 7.166,12	\$ 837.463,86	0,00%
		4.2.8	Alteo de línea de Media Tensión (13,2 kV)	m	198,06	\$ 15.626,76	\$ 3.095.099,67	0,01%
		4.2.9	Alteo de línea de Media Tensión (33,0 kV)	m	121,72	\$ 22.746,65	\$ 2.768.791,64	0,01%
	4.3		Demoliciones					
		4.3.1	Demolición de alcantarillas	m2	1.392,88	\$ 14.446,71	\$ 20.122.504,63	0,04%
		4.3.2	Demolición de construcciones	m2	111,04	\$ 12.063,28	\$ 1.339.485,97	0,00%
5			PUENTES				\$ 2.745.102.405,67	5,96%
	5.1		Hormigón armado H-30 para Superestructura (losa tablero,	m3	1.162,31	\$ 200.729,85	\$ 233.309.726,43	0,51%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
KUBKU		ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
			viguetas transv., defensas) excluida armadura					
	5.2		Hormigón armado H-38 para elementos prefabricados excluida armadura	m3	41,48	\$ 216.662,85	\$ 8.986.143,80	0,02%
	5.3		Hormigón armado H-38 para Vigas prefabricadas postensadas excluida armadura, incluido traslado y montaje.	m3	1.466,62	\$ 217.158,87	\$ 318.489.938,54	0,69%
	5.4		Hormigón armado H-21 para losas de aproximación excluida armadura	m3	361,39	\$ 158.373,29	\$ 57.234.534,26	0,12%
	5.5		Hormigón armado H-21 para infraestructura (dinteles, columnas y estribos) excluida armadura	m3	983,56	\$ 162.836,79	\$ 160.160.537,35	0,35%
	5.6		Hormigón armado H-21 con cemento ARS para pilotes excavados, excluida armadura, incluida excavación	m3	1.418,67	\$ 354.795,19	\$ 503.336.581,42	1,09%
	5.7		Hormigón simple H-17 para muro de pie en revestimientos de estribos	m3	132,60	\$ 130.476,19	\$ 17.300.610,05	0,04%
	5.8		Concreto asfáltico en caliente para carpeta de desgaste, espesor 5 cm	m2	5.287,48	\$ 5.830,40	\$ 30.828.104,03	0,07%
	5.9		Prelosas prefabricadas de Hormigón armado H-30 incluida armadura, espesor 5 cm	m2	5.867,24	\$ 11.538,01	\$ 67.696.303,11	0,15%
	5.10		Acero especial en barras tipo ADN 420 colocado.	tn	502,45	\$ 1.313.825,06	\$ 660.125.211,57	1,43%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
KUBKU	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	5.11		Acero para pretensado, colocado, con tensión de rotura mayor o igual que 19.000 kg/cm2	tn	96,80	\$ 1.810.139,27	\$ 175.216.123,82	0,38%
	5.12		Traslado y montaje de vigas postensadas	un	88,00	\$ 471.700,31	\$ 41.509.627,71	0,09%
	5.13		Placas de Neopreno, dureza Shore 60, zunchadas, colocados, incluyendo el mortero Grouting para tetones	un	176,00	\$ 35.912,70	\$ 6.320.634,93	0,01%
	5.14		Juntas de dilatación de asfalto modificado	m	347,62	\$ 26.318,92	\$ 9.148.878,81	0,02%
	5.15		Baranda para defensa vehicular con sistema de Contención H4, Ancho de Trabajo W4 e Índice de Severidad B, colocada y pintada	m	1.024,08	\$ 36.229,51	\$ 37.101.915,73	0,08%
	5.16		Caños para desagüe de hierro galvanizado Ø 100 mm, Verticales en Calzadas cada 2,50 m, Conducciones Longitudinales y Bajadas en Estribos y Pilares, incluyendo codos, curvas, enchufes, bocas de inspección, soportes, etc., colocados	gl	1,00	\$ 2.291.651,17	\$ 2.291.651,17	0,00%
	5.17		Escalera para desagüe de Hormigón Armado H-13 de 0,25 m2 de sección, incluido pasadores de Ø 12 mm cada 2 m y hormigón simple H -13 para pendiente según plano DNV J-6710- I.	m	463,73	\$ 28.588,69	\$ 13.257.458,92	0,03%
	5.18		Excavación para fundaciones	m3	244,23	\$ 13.066,53	\$ 3.191.235,06	0,01%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
KUBKU	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	5.19		Muros de suelo mecánicamente estabilizado incluyendo escamas, armaduras, soleras, esquineros, transporte y montaje	m2	2.433,29	\$ 140.466,00	\$ 341.794.091,25	0,74%
	5.20		Provisión y colocación de Losas de hormigón simple H-8 para revestimiento de taludes. Espesor 0,10 m. Según plano tipo DNV R- 267	m2	1.498,25	\$ 12.330,90	\$ 18.474.772,00	\$ 0,00
	5.21		Provisión y Colocación de Colchonetas de piedra embolsada, espesor 0,17 m	m2	1.079,85	\$ 31.434,92	\$ 33.944.918,27	0,07%
	5.22		Provisión y Colocación de geotextil no tejido	m2	1.079,85	\$ 693,24	\$ 748.596,22	0,00%
	5.23		Recubrimiento con hormigón tipo H-8	m3	58,38	\$ 79.383,87	\$ 4.634.811,22	0,01%
6			OTROS				\$ 2.252.027.009,39	4,89%
	6.1		Supervisión / Inspección de obra					
		6.1.1	Cuota mensual por cada movilidad	mes	60,00	\$ 492.243,04	\$ 29.534.582,24	0,06%
		6.1.2	Adicional por kilómetro de movilidad	km	330.000,00	\$ 62,88	\$ 20.749.438,12	0,05%
		6.1.3	Provisión de vivienda para personal de supervisión	mes	30,00	\$ 284.795,45	\$ 8.543.863,37	0,02%
		6.1.4	Movilización de obra	Gl	1,00	\$ 2.193.199.125,66	\$ 2.193.199.125,66	4,76%
PRESUP	UESTO	TOTA	\$ 46.061.816.450,01	100,00%				
PRESUP	UESTO	TOTA		\$ 1.326.995.945,03				
PRESUP	UESTO	TOTA	L DE OBRA x KM (U\$S/km)		\$ 30.505.653,91			

Planillas N°12: Presupuesto N°3 de obra similar actualizada a mes base de proyecto (enero 2023)

DATE OF		SUB	nmas N 12: Presupuesto N 3 de obra	UNI-	CANTIDAD	PRECIO	PRESUPUI	ESTO
RUBRO	ITEM	ITEM	DESCRIPCIÓN	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
1			TAREAS PRELIMINARES					
	1.1		Movilización de obra	gl	1,00	\$ 2.438.266.609,73	\$ 2.438.266.609,73	4,762%
2			TERRAPLENES Y MOVIMIENTOS DE SUELOS					
	2.1		Desbosque, destronque y limpieza del terreno	На	14,72	\$ 859.642,61	\$ 12.651.342,12	0,025%
	2.2		Terraplén con compactación especial	m3	3.332.727,65	\$ 5.540,12	\$ 18.463.716.277,17	36,059%
	2.3		Terraplén sin compactación especial	m3	494.548,84	\$ 5.512,14	\$ 2.726.024.390,49	5,324%
	2.4		Forestación compensatoria	un	2.101,00	\$ 15.935,98	\$ 33.481.483,67	0,065%
3			PAVIMENTOS Y BANQUINAS					
	3.1		Suelo tratado con cal	m3	270.435,94	\$ 10.431,12	\$ 2.820.949.186,25	5,509%
	3.2		Sub-base de suelo calcáreo	m3	136.063,70	\$ 12.070,20	\$ 1.642.315.681,28	3,207%
	3.3		Base de estabilizado granular con cemento	m3	118.107,25	\$ 47.465,47	\$ 5.606.016.148,21	10,948%
	3.4		Riego de curado con emulsión de rotura rápida CRR0	m2	641.434,40	\$ 391,31	\$ 250.999.516,00	0,490%
	3.5		Riego de Liga con emulsión asfáltica catiónica de rotura rápida modificada con polimeros tipo CRR m	m2	1.547.088,18	\$ 301,18	\$ 465.953.114,46	0,910%
	3.6		Base de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	283.445,76	\$ 4.891,20	\$ 1.386.389.349,98	2,708%
	3.7		Base de concreto asfáltico tipo CAC D-19 CA30; e=0,06 m	m2	111.577,64	\$ 5.863,32	\$ 654.215.467,67	1,278%
	3.8		Base de concreto asfáltico tipo CAC D-19 AM3; e=0,05 m	m2	365.302,15	\$ 5.598,29	\$ 2.045.066.061,78	3,994%

DIIDDO	ITEM	SUB	DECODIRCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
RUBRO	ITEM	ITEM	DESCRIPCIÓN	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	3.9		Base de concreto asfáltico tipo CAC D-19 AM3; e=0,07 m	m2	134.825,19	\$ 7.830,46	\$ 1.055.743.857,09	2,062%
	3.10		Carpeta de concreto asfáltico tipo SMA 12-AM3; e=0,05 m	m2	492.906,10	\$ 7.096,35	\$ 3.497.834.993,14	6,831%
	3.11		Carpeta de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	171.743,93	\$ 5.028,59	\$ 863.629.613,23	1,687%
	3.12		Micro concreto asfáltico en caliente tipo MAC F10 AM3; e=0,03 m	m2	38.676,26	\$ 4.323,69	\$ 167.224.161,33	0,327%
4			OBRAS DE ARTE MENORES					
	4.1		Hormigón de cemento portland H-4	m3	24,63	\$ 115.397,78	\$ 2.842.744,11	0,006%
	4.2		Hormigón de cemento portland H-8	m3	802,59	\$ 122.598,70	\$ 98.396.131,69	0,192%
	4.3		Hormigón de cemento portland H-13	m3	5.300,72	\$ 147.689,31	\$ 782.860.024,08	1,529%
	4.4		Hormigón de cemento portland H-21 excluida la armadura	m3	2.456,18	\$ 170.723,49	\$ 419.327.375,77	0,819%
	4.5		Acero especial en barras ADN-420 colocado para obras de arte	tn	120,60	\$ 1.084.437,34	\$ 130.784.217,39	0,255%
	4.6		Sumidero de H° A° con reja de acero de 0,60 x 1,90 m y caño de H° de 1,00 m	un	19,00	\$ 2.075.674,44	\$ 39.437.814,27	0,077%
	4.7		Sumidero de reja de acero de 0,60 x 1,90 m en alcantarilla	un	11,00	\$ 262.733,53	\$ 2.890.068,79	0,006%
	4.8		Caños de chapa ondulada galvanizada s/PL H-10236, D=3,00 m	m	73,93	\$ 215.681,50	\$ 15.945.764,73	0,031%
	4.9		Caños de chapa ondulada galvanizada s/PL H-10236, D=3,00 m	m	86,25	\$ 275.042,62	\$ 23.723.525,80	0,046%
	4.10		Caños de H°A°, D=1,00 m	m	645,39	\$ 78.329,77	\$ 50.553.247,55	0,099%

DLIDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
RUBRO	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	4.11		Cuneta revestida de H°A° (armadura incluida)	m2	1.218,11	\$ 16.439,74	\$ 20.025.354,21	0,039%
	4.12		Excavación para fundaciones y desagües	m3	5.305,26	\$ 10.182,25	\$ 54.019.428,23	0,105%
5			PUENTES					
6			OBRAS COMPLEMENTARIAS					
	6.1		Barandas, Alambrados y otras					
		6.1.1	Retiro de baranda metálica	m	2.606,44	\$ 6.825,79	\$ 17.790.976,66	0,035%
		6.1.2	Baranda metálica cincada para defensa s/pl tipo H-10237 - DNV	m	76.818,04	\$ 26.757,63	\$ 2.055.468.978,91	4,014%
		6.1.3	Baranda de defensa vehicular s/Plano Tipo Z-4196	m	20,20	\$ 47.526,69	\$ 960.039,12	0,002%
		6.1.4	Baranda de Hormigón Tipo New Jersey	m	202,65	\$ 54.235,76	\$ 10.990.681,41	0,021%
		6.1.5	Alambrado existente a retirar	m	11.423,00	\$ 2.728,83	\$ 31.171.374,02	0,061%
		6.1.6	Alambrado existente a trasladar	m	13.723,79	\$ 7.647,18	\$ 104.948.249,77	0,205%
		6.1.7	Alambrado nuevo s/plano H-2840-I - tipo "C"	m	44.392,50	\$ 9.253,08	\$ 410.767.357,11	0,802%
		6.1.8	Tranquera existente a retirar	un	20,00	\$ 36.814,80	\$ 736.296,02	0,001%
		6.1.9	Tranquera s/plano J-5084- Tipo B	un	87,00	\$ 311.564,59	\$ 27.106.119,56	0,053%
		6.1.1	Cordón montable de hormigón 0,20 m de ancho	m	499,89	\$ 12.437,10	\$ 6.217.175,52	0,012%
		6.1.11	Cordón montable de hormigón 0,30 m de ancho	m	0,00	\$ 15.146,40	\$ 0,00	0,000%
		6.1.12	Cordón cuneta de hormigón 0,70 m de ancho	m	2.730,01	\$ 30.876,53	\$ 84.293.242,98	0,165%
		6.1.13	Cordón Protector de Borde de Pavimento	m	187,51	\$ 9.796,11	\$ 1.836.833,75	0,004%

DIIDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
RUBRO	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		6.1.14	Colectora de tierra abovedada	m	44.526,39	\$ 3.395,30	\$ 151.180.656,81	0,295%
	6.2		Señalización					
		6.2.1	Señalización vertical	m2	258,76	\$ 85.505,30	\$ 22.125.754,87	0,043%
		6.2.2	Señalización vertical a retirar	un	36,00	\$ 8.557,04	\$ 308.053,53	0,001%
		6.2.3	Ménsula con placa de 2,4 x 1,8	un	36,00	\$ 667.070,45	\$ 24.014.536,30	0,047%
		6.2.4	Pórtico con 2 placas de 2,4 x 1,8	un	13,00	\$ 1.662.764,78	\$ 21.615.942,10	0,042%
		6.2.5	Señalización horizontal por pulverización 1,5 mm	m2	24.039,04	\$ 7.559,89	\$ 181.732.423,05	0,355%
		6.2.6	Señalización horizontal por extrusión 3 mm	m2	2.303,14	\$ 19.693,09	\$ 45.356.042,09	0,089%
	6.3		Demoliciones					
		6.3.1	Demolición de pavimento asfáltico existente	m2	7.667,44	\$ 3.350,61	\$ 25.690.639,80	0,050%
		6.3.2	Demolición de alcantarillas	m2	159,36	\$ 7.952,75	\$ 1.267.366,16	0,002%
		6.3.3	Demolición de construcciones	m2	1.970,56	\$ 10.047,22	\$ 19.798.632,86	0,039%
	6.4		Traslado de Servicios Públicos	gl	1,00	\$ 214.260.560,70	\$ 214.260.560,70	0,418%
7			ILUMINACIÓN					
	7.1		Tablero General de Medición, Comando y Protección	un	8,00	\$ 1.236.007,27	\$ 9.888.058,12	0,019%
	7.2		Tablero Seccional de Comando y Protección	un	20,00	\$ 1.117.577,67	\$ 22.351.553,37	0,044%
	7.3		Canalización para tendido eléctrico en terreno natural	m	44.981,00	\$ 14.314,52	\$ 643.881.205,96	1,257%
	7.4		Canalización para tendido eléctrico bajo pavimento	m	2.631,00	\$ 30.185,54	\$ 79.418.153,53	0,155%
	7.5		Columna H=9,00m libre con brazo de 2,50m completa con artefacto 150W SAP super	un	56,00	\$ 515.270,10	\$ 28.855.125,70	0,056%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPUI	ESTO
KUBKU		ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	7.6		Columna H=9,00m libre con brazo de 2,50m completa con artefacto 250W SAP super	un	814,00	\$ 515.270,10	\$ 419.429.862,82	0,819%
	7.7		Columna H=12,00m libre con brazo de 2,50m completa con artefacto 150W SAP super	un	45,00	\$ 593.129,25	\$ 26.690.816,20	0,052%
	7.8		Columna H=12,00m libre con brazo de 2,50m completa con artefacto 250W SAP super	un	514,00	\$ 593.129,25	\$ 304.868.433,95	0,595%
	7.9		Columna H=12,00m libre con brazo de 2,50m completa con artefacto 400W SAP super	un	16,00	\$ 593.129,25	\$ 9.490.067,98	0,019%
	7.10		Artefacto bajo puente completo 250W SAP super	un	18,00	\$ 227.016,97	\$ 4.086.305,44	0,008%
	7.11		Conductor subterráneo 4x16 mm2	m	42.992,00	\$ 4.794,28	\$ 206.115.780,75	0,403%
	7.12		Alimentador subterráneo 3x120/70 mm2	m	4.620,00	\$ 30.345,16	\$ 140.194.659,45	0,274%
	7.13		Subestación Transformadora Aérea 25 kVA	un	0,00	\$ 1.568.015,17	\$ 0,00	0,000%
	7.14		Subestación Transformadora Aérea 63 kVA	un	8,00	\$ 2.253.155,28	\$ 18.025.242,23	0,035%
	7.15		Extensión LMT para provisión de Energía Eléctrica	gl	1,00	\$ 11.474.219,57	\$ 11.474.219,57	0,022%
8			OTROS					
	8.1		Supervisión / Inspección de obra					
		8.1.1	Cuota mensual por cada movilidad	mes	48,00	\$ 503.760,40	\$ 24.180.498,97	0,047%
		8.1.2	Adicional por kilómetro de movilidad	km	264.000,00	\$ 66,62	\$ 17.588.505,33	0,034%
		8.1.3	Vivienda para personal de supervisión	mes	24,00	\$ 255.809,65	\$ 6.139.431,69	0,012%
			PRECIO TOTAL DE OB	RA:			\$ 51.203.598.804,38	100,00%

Planillas $N^{\circ}13$: Presupuesto $N^{\circ}4$ de obra similar actualizada a mes base de proyecto (enero 2023)

	Plannias N 15: Presupuesto N 4 de obra similar actualizada a mes base de proyecto (enero 2025)									
RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO		
KUBKU	11 EW	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA		
1			TAREAS PRELIMINARES							
	1.1		Movilización de obra	gl	1,00	\$ 2.438.266.609,73	\$ 2.438.266.609,73	4,762%		
2			TERRAPLENES Y MOVIMIENTOS DE SUELOS							
	2.1		Desbosque, destronque y limpieza del terreno	На	14,72	\$ 859.642,61	\$ 12.651.342,12	0,025%		
	2.2		Terraplén con compactación especial	m3	3.332.727,65	\$ 5.540,12	\$ 18.463.716.277,17	36,059%		
	2.3		Terraplén sin compactación especial	m3	494.548,84	\$ 5.512,14	\$ 2.726.024.390,49	5,324%		
	2.4		Forestación compensatoria	un	2.101,00	\$ 15.935,98	\$ 33.481.483,67	0,065%		
3			PAVIMENTOS Y BANQUINAS							
	3.1		Suelo tratado con cal	m3	270.435,94	\$ 10.431,12	\$ 2.820.949.186,25	5,509%		
	3.2		Sub-base de suelo calcáreo	m3	136.063,70	\$ 12.070,20	\$ 1.642.315.681,28	3,207%		
	3.3		Base de estabilizado granular con cemento	m3	118.107,25	\$ 47.465,47	\$ 5.606.016.148,21	10,948%		
	3.4		Riego de curado con emulsión de rotura rápida CRR0	m2	641.434,40	\$ 391,31	\$ 250.999.516,00	0,490%		
	3.5		Riego de Liga con emulsión asfáltica catiónica de rotura rápida modificada con polímeros tipo CRR m	m2	1.547.088,18	\$ 301,18	\$ 465.953.114,46	0,910%		
	3.6		Base de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	283.445,76	\$ 4.891,20	\$ 1.386.389.349,98	2,708%		
	3.7		Base de concreto asfáltico tipo CAC D-19 CA30; e=0,06 m	m2	111.577,64	\$ 5.863,32	\$ 654.215.467,67	1,278%		
	3.8		Base de concreto asfáltico tipo CAC D-19 AM3; e=0,05 m	m2	365.302,15	\$ 5.598,29	\$ 2.045.066.061,78	3,994%		

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
RUBRU	HEIVI	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	3.9		Base de concreto asfáltico tipo CAC D-19 AM3; e=0,07 m	m2	134.825,19	\$ 7.830,46	\$ 1.055.743.857,09	2,062%
	3.10		Carpeta de concreto asfáltico tipo SMA 12-AM3; e=0,05 m	m2	492.906,10	\$ 7.096,35	\$ 3.497.834.993,14	6,831%
	3.11		Carpeta de concreto asfáltico tipo CAC D-19 CA30; e=0,05 m	m2	171.743,93	\$ 5.028,59	\$ 863.629.613,23	1,687%
	3.12		Micro concreto asfáltico en caliente tipo MAC F10 AM3; e=0,03 m	m2	38.676,26	\$ 4.323,69	\$ 167.224.161,33	0,327%
4			OBRAS DE ARTE MENORES					
	4.1		Hormigón de cemento portland H-4	m3	24,63	\$ 115.397,78	\$ 2.842.744,11	0,006%
	4.2		Hormigón de cemento portland H-8	m3	802,59	\$ 122.598,70	\$ 98.396.131,69	0,192%
	4.3		Hormigón de cemento portland H-13	m3	5.300,72	\$ 147.689,31	\$ 782.860.024,08	1,529%
	4.4		Hormigón de cemento portland H-21 excluida la armadura	m3	2.456,18	\$ 170.723,49	\$ 419.327.375,77	0,819%
	4.5		Acero especial en barras ADN-420 colocado para obras de arte	tn	120,60	\$ 1.084.437,34	\$ 130.784.217,39	0,255%
	4.6		Sumidero de H° A° con reja de acero de 0,60 x 1,90 m y caño de H° de 1,00 m	un	19,00	\$ 2.075.674,44	\$ 39.437.814,27	0,077%
	4.7		Sumidero de reja de acero de 0,60 x 1,90 m en alcantarilla	un	11,00	\$ 262.733,53	\$ 2.890.068,79	0,006%
	4.8		Caños de chapa ondulada galvanizada s/PL H-10236, D=3,00 m	m	73,93	\$ 215.681,50	\$ 15.945.764,73	0,031%
	4.9		Caños de chapa ondulada galvanizada s/PL H-10236, D=3,00 m	m	86,25	\$ 275.042,62	\$ 23.723.525,80	0,046%
	4.10		Caños de HºAº, D=1,00 m	m	645,39	\$ 78.329,77	\$ 50.553.247,55	0,099%

DIJDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
RUBRO	ITEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	4.11		Cuneta revestida de H°A° (armadura incluida)	m2	1.218,11	\$ 16.439,74	\$ 20.025.354,21	0,039%
	4.12		Excavación para fundaciones y desagües	m3	5.305,26	\$ 10.182,25	\$ 54.019.428,23	0,105%
5			PUENTES					
6			OBRAS COMPLEMENTARIAS					
	6.1		Barandas, Alambrados y otras					
		6.1.1	Retiro de baranda metálica	m	2.606,44	\$ 6.825,79	\$ 17.790.976,66	0,035%
		6.1.2	Baranda metálica cincada para defensa s/pl tipo H-10237 - DNV	m	76.818,04	\$ 26.757,63	\$ 2.055.468.978,91	4,014%
		6.1.3	Baranda de defensa vehicular s/Plano Tipo Z-4196	m	20,20	\$ 47.526,69	\$ 960.039,12	0,002%
		6.1.4	Baranda de Hormigón Tipo New Jersey	m	202,65	\$ 54.235,76	\$ 10.990.681,41	0,021%
		6.1.5	Alambrado existente a retirar	m	11.423,00	\$ 2.728,83	\$ 31.171.374,02	0,061%
		6.1.6	Alambrado existente a trasladar	m	13.723,79	\$ 7.647,18	\$ 104.948.249,77	0,205%
		6.1.7	Alambrado nuevo s/plano H-2840-I - tipo "C"	m	44.392,50	\$ 9.253,08	\$ 410.767.357,11	0,802%
		6.1.8	Tranquera existente a retirar	un	20,00	\$ 36.814,80	\$ 736.296,02	0,001%
		6.1.9	Tranquera s/plano J-5084- Tipo B	un	87,00	\$ 311.564,59	\$ 27.106.119,56	0,053%
		6.1.1	Cordón montable de hormigón 0,20 m de ancho	m	499,89	\$ 12.437,10	\$ 6.217.175,52	0,012%
		6.1.11	Cordón montable de hormigón 0,30 m de ancho	m	0,00	\$ 15.146,40	\$ 0,00	0,000%
		6.1.12	Cordón cuneta de hormigón 0,70 m de ancho	m	2.730,01	\$ 30.876,53	\$ 84.293.242,98	0,165%
		6.1.13	Cordon Protector de Borde de Pavimento	m	187,51	\$ 9.796,11	\$ 1.836.833,75	0,004%

RUBRO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
KUBKU	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
		6.1.14	Colectora de tierra abovedada	m	44.526,39	\$ 3.395,30	\$ 151.180.656,81	0,295%
	6.2		Señalización					
		6.2.1	Señalización vertical	m2	258,76	\$ 85.505,30	\$ 22.125.754,87	0,043%
		6.2.2	Señalización vertical a retirar	un	36,00	\$ 8.557,04	\$ 308.053,53	0,001%
		6.2.3	Ménsula con placa de 2,4 x 1,8 m	un	36,00	\$ 667.070,45	\$ 24.014.536,30	0,047%
		6.2.4	Pórtico con 2 placas de 2,4 x 1,8 m	un	13,00	\$ 1.662.764,78	\$ 21.615.942,10	0,042%
		6.2.5	Señalización horizontal por pulverización 1,5 mm	m2	24.039,04	\$ 7.559,89	\$ 181.732.423,05	0,355%
		6.2.6	Señalización horizontal por extrusión 3 mm	m2	2.303,14	\$ 19.693,09	\$ 45.356.042,09	0,089%
	6.3		Demoliciones					
		6.3.1	Demolición de pavimento asfáltico existente	m2	7.667,44	\$ 3.350,61	\$ 25.690.639,80	0,050%
		6.3.2	Demolición de alcantarillas	m2	159,36	\$ 7.952,75	\$ 1.267.366,16	0,002%
		6.3.3	Demolición de construcciones	m2	1.970,56	\$ 10.047,22	\$ 19.798.632,86	0,039%
	6.4		Traslado de Servicios Públicos	gl	1,00	\$ 214.260.560,70	\$ 214.260.560,70	0,418%
7			ILUMINACIÓN					
	7.1		Tablero General de Medición, Comando y Protección	un	8,00	\$ 1.236.007,27	\$ 9.888.058,12	0,019%
	7.2		Tablero Seccional de Comando y Protección	un	20,00	\$ 1.117.577,67	\$ 22.351.553,37	0,044%
	7.3		Canalización para tendido eléctrico en terreno natural	m	44.981,00	\$ 14.314,52	\$ 643.881.205,96	1,257%
	7.4		Canalización para tendido eléctrico bajo pavimento	m	2.631,00	\$ 30.185,54	\$ 79.418.153,53	0,155%
	7.5		Columna H=9,00m libre con brazo de 2,50m completa con artefacto 150W SAP super	un	56,00	\$ 515.270,10	\$ 28.855.125,70	0,056%

DIJDDO	ITEM	SUB	DESCRIPCIÓN	UNI-	CANTIDAD	PRECIO	PRESUPU	ESTO
RUBRO	HEM	ITEM	DESCRIPCION	DAD	TOTAL	UNITARIO	PRECIO	INCIDENCIA
	7.6		Columna H=9,00m libre con brazo de 2,50m completa con artefacto 250W SAP super	un	814,00	\$ 515.270,10	\$ 419.429.862,82	0,819%
	7.7		Columna H=12,00m libre con brazo de 2,50m completa con artefacto 150W SAP super	un	45,00	\$ 593.129,25	\$ 26.690.816,20	0,052%
	7.8		Columna H=12,00m libre con brazo de 2,50m completa con artefacto 250W SAP super	un	514,00	\$ 593.129,25	\$ 304.868.433,95	0,595%
	7.9		Columna H=12,00m libre con brazo de 2,50m completa con artefacto 400W SAP super	un	16,00	\$ 593.129,25	\$ 9.490.067,98	0,019%
	7.10		Artefacto bajo puente completo 250W SAP super	un	18,00	\$ 227.016,97	\$ 4.086.305,44	0,008%
	7.11		Conductor subterráneo 4x16 mm2	m	42.992,00	\$ 4.794,28	\$ 206.115.780,75	0,403%
	7.12		Alimentador subterráneo 3x120/70 mm2	m	4.620,00	\$ 30.345,16	\$ 140.194.659,45	0,274%
	7.13		Subestación Transformadora Aérea 25 kVA	un	0,00	\$ 1.568.015,17	\$ 0,00	0,000%
	7.14		Subestación Transformadora Aérea 63 kVA	un	8,00	\$ 2.253.155,28	\$ 18.025.242,23	0,035%
	7.15		Extensión LMT para provisión de Energía Eléctrica	gl	1,00	\$ 11.474.219,57	\$ 11.474.219,57	0,022%
8			OTROS					
	8.1		Supervisión / Inspección de obra					
		8.1.1	Cuota mensual por cada movilidad	mes	48,00	\$ 503.760,40	\$ 24.180.498,97	0,047%
		8.1.2	Adicional por kilómetro de movilidad	km	264.000,00	\$ 66,62	\$ 17.588.505,33	0,034%
		8.1.3	vivienda para personal de supervisión	mes	24,00	\$ 255.809,65	\$ 6.139.431,69	0,012%
			PRECIO TOTAL DE OB	KA:			\$ 51.203.598.804,38	100,00%

Planilla N°14: Cómputo de alternativa 1 – Rotonda

			Planilla N°14: Computo de	anen	iauva 1	<u> </u>	noma	1			
		~			DIME	NSIC	NES	CANT		CANTI	DADES
RU- BR O	ITE M	SUB ITE M	DESIGNACION DE TRABAJO	UNI- DA D	A	В	С	PARC	CANT	PARCIAL	TOTAL
1			TERRAPLENES Y MOVIMIENTOS DE SUELOS								
	1.1		Terraplén con compactación especial	m3		-	-	952,75	1,00	952,75	952,75
2			PAVIMENTOS Y BANQUINAS								
	2.1		Suelo tratado con cal								
		2.1.1	Suelo tratado con cal	m3	20.170),27	0,3	6.051,08	1,00	6.051,08	6.051,08
	2.2		Bases y Subbases no bituminosas								
		2.2.1	Subbase de suelo calcáreo, VSR mayor o igual a 40%	m3	19.314	,11	0,2	3.862,82	1,00	3.862,82	3.862,82
		2.2.2	Base de suelo calcáreo con cemento, tal que RCS 20 kg/cm2 a los 7 días.	m3	18.455	5,87	0,2	3.691,17	1,00	3.691,17	3.691,17
	2.3		Mezclas y capas asfálticas								
		2.3.1	Base de concreto asfáltico tipo CAC D-19 CA30; e=0,08 m	m2	17.811	,02	-	17.811,02	1,00	17.811,02	17.811,02
		2.3.2	Carpeta de concreto asfáltico tipo SMA 12-AM3; e=0,07 m	m2	17.595	5,84	-	17.595,84	1,00	17.595,84	17.595,84
	2.4		Riegos								
		2.4.1	Riego de curado con emulsión catiónica CI	m2	35.406	,86	-	35.406,86	1,00	35.406,86	35.406,86
		2.4.2	Riego de liga con emulsión catiónica CRR	m2	93.347	,10	-	93.347,10	1,00	93.347,10	93.347,10
3			OBRAS DE ARTE MENORES								
	3.1		Hormigón de cemento portland H-13, excluida la armadura	m3	1,57			1,57	3,00	1,57	4,71

DII		arrb			DIMEN	ISIO	NES	CANT		CANTI	DADES
RU- BR O	ITE M	SUB ITE M	DESIGNACION DE TRABAJO	UNI- DA D	A	В	С	PARC	CANT	PARCIAL	TOTAL
	3.2		Hormigón de cemento portland H-21, excluida la armadura	m3	11,87			11,87	3,00	11,87	35,61
	3.3		Acero especial en barras ADN-420 colocado	tn	1,01			1,01	3,00	1,01	3,03
4			OBRAS COMPLEMENTARIAS								
	4.1		Barandas, Alambrados y otras								
		4.1.1	Sistema de contención lateral (H2-W4-A)	m	-	-	-	2.500,00	1,00	2.500,00	2.500,00
		4.1.2	Retiro de baranda metálica	m	-	-	-	764,39	1,00	764,39	764,39
		4.1.3	Cordón montable de hormigón 0,30 m de ancho	m	117,0 0			117,00	3,00	351,00	1.053,00
		4.1.4	Cordón Protector de Borde de Pavimento	m	-	-	-	300,00	1,00	300,00	300,00
		4.1.5	Alambrado existente a retirar	m	453,4 7			453,47	1,00	453,47	453,47
	4.2		Traslado de servicios								
		4.2.2	Traslado de línea de Media Tensión (13,2 kV)	m	-	-	-	190,00	1,00	190,00	190,00
		4.2.3	Traslado de línea de Media Tensión (33,0 kV)	m	-	-	-	250,00	1,00	250,00	250,00
	4.3		Demoliciones								
		4.3.1	Demolición de pavimento asfáltico existente	m2	ı	1	-	14.302,66	1,00	14.302,66	14.302,66
	4.4		Señalización								
		4.4.1	Señalización vertical	m2	-	-	-	40,00	1,00	40,00	40,00
		4.4.2	Señalización vertical a retirar	un	_	_	-	32,00	1,00	32,00	32,00
		4.4.5	Señalización horizontal por pulverización 1,5 mm	m2	-	-	_	615,85	1,00	615,85	615,85
		4.4.6	Señalización horizontal por extrusión 3 mm	m2	-	-	-	87,98	1,00	87,98	87,98

					DIME	NSIO	NES	CANT		CANTII	DADES
RU- BR O	ITE M	SUB ITE M	DESIGNACION DE TRABAJO	UNI- DA D	A	В	С	PARC	CANT	PARCIAL	TOTAL
5			ILUMINACIÓN								
	5.1		Tablero General de Medición, Comando y Protección	un	ı	-	1	1,00	1,00	1,00	1,00
	5.2		Tablero Seccional de Comando y Protección	un	-	-	1	1,00	1,00	1,00	1,00
	5.3		Canalización para tendido eléctrico en terreno natural	m	-	-	1	2.970,00	1,00	2.970,00	2.970,00
	5.4		Canalización para tendido eléctrico bajo pavimento	m	ı	1	ı	30,00	1,00	30,00	30,00
	5.6		Columna H=9,00m libre con brazo de 2,50m completa con artefacto 250W SAP super	un	-	-	-	99,00	1,00	99,00	99,00
	5.11		Conductor subterráneo 4x16 mm2	m	-	-	-	2.970,00	1,00	2.970,00	2.970,00
	5.12		Alimentador subterráneo 3x120/70 mm2	m	1	-	ı	500,00	1,00	500,00	500,00
	5.13		Subestación Transformadora Aérea 25 kVA	un	ı	-	1	1,00	1,00	1,00	1,00
6			OTROS								
	6.1		Supervisión / Inspección de obra								
		6.1.1	Cuota mensual por cada movilidad	mes	-	-	-	18,00	1,00	18,00	18,00
		6.1.2	Adicional por kilómetro de movilidad	km	-	-	1	151.296,0 0	1,00	151.296,0 0	151.296,0 0
		6.1.3	Provisión de vivienda para personal de supervisión	mes	-	-	-	18,00	1,00	18,00	18,00
		6.1.4	Movilización de obra	Gl	-	-	-	1,00	1,00	1,00	1,00

Planilla $N^{\circ}15$: Cómputo de alternativa 2 – Trompeta

			Tiannia IV 13. Computo de		DIME			CANT		CANTI	DADES
RU- BR O	ITE M	SUB ITE M	DESIGNACION DE TRABAJO	UNI- DA D	A	В	С	PARC	CANT	PARCIAL	TOTAL
1			TERRAPLENES Y MOVIMIENTOS DE SUELOS								
	1.1		Terraplén con compactación especial	m3	-	-	-	115.073,0 0	1,00	115.073,0	115.073,0 0
2			PAVIMENTOS Y BANQUINAS								
	2.1		Suelo tratado con cal								
		2.1.1	Suelo tratado con cal	m3	47.239	9,22	0,3	14.171,77	1,00	14.171,77	14.171,77
	2.2		Bases y Subbases no bituminosas								
		2.2.1	Subbase de suelo calcáreo, VSR mayor o igual a 40%	m3	46.662	2,85	0,2	9.332,57	1,00	9.332,57	9.332,57
		2.2.2	Base de suelo calcareo con cemento, tal que RCS 20 kg/cm2 a los 7 días.	m3	44.883	3,36	0,2	8.976,67	1,00	8.976,67	8.976,67
	2.3		Mezclas y capas asfalticas								
		2.3.1	Base de concreto asfáltico tipo CAC D-19 CA30; e=0,08 m	m2	43.539	9,55	-	43.539,55	1,00	43.539,55	43.539,55
		2.3.2	Carpeta de concreto asfáltico tipo SMA 12-AM3; e=0,07 m	m2	43.088	3,60	-	43.088,60	1,00	43.088,60	43.088,60
	2.4		Riegos								
		2.4.1	Riego de curado con emulsión catiónica CI	m2	86.628	3,15	-	86.628,15	1,00	86.628,15	86.628,15
		2.4.2	Riego de liga con emulsión catiónica CRR	m2	225.41	3,59	-	225.413,5 9	1,00	225.413,5	225.413,5 9
3			OBRAS DE ARTE MENORES								

		arra			DIME	NSIO	NES	CANT		CANTI	DADES
RU- BR O	ITE M	SUB ITE M	DESIGNACION DE TRABAJO	UNI- DA D	A	В	С	PARC	CANT	PARCIAL	TOTAL
	3.1		Hormigón de cemento portland H-13, excluida la armadura	m3	-	ı	-	1,57	6,00	1,57	9,42
	3.2		Hormigón de cemento portland H-21, excluida la armadura	m3	-	-	1	11,87	6,00	11,87	71,21
	3.3		Acero especial en barras ADN-420 colocado	tn	-	1	-	1,01	6,00	1,01	6,05
4			OBRAS COMPLEMENTARIAS								
	4.1		Barandas, Alambrados y otras								
		4.1.1	Sistema de contención lateral (H2-W4-A)	m	-	ı	-	2.500,00	1,00	2.500,00	2.500,00
		4.1.2	Retiro de baranda metálica	m	-	ı	-	764,39	1,00	764,39	764,39
		4.1.3	Cordón montable de hormigón 0,30 m de ancho	m	117,0 0			117,00	3,00	351,00	1.053,00
		4.1.4	Cordón Protector de Borde de Pavimento	m	1	ı	-	300,00	1,00	300,00	300,00
		4.1.5	Alambrado existente a retirar	m	453,4 7			453,47	1,00	453,47	453,47
	4.2		Traslado de servicios								
		4.2.2	Traslado de línea de Media Tensión (13,2 kV)	m	-	ı	-	190,00	1,00	190,00	190,00
		4.2.3	Traslado de línea de Media Tensión (33,0 kV)	m	1	1	-	250,00	1,00	250,00	250,00
	4.3		Demoliciones								
		4.3.1	Demolición de pavimento asfáltico existente	m2	-	-	-	14.302,66	1,00	14.302,66	14.302,66
	4.4		Señalización								
		4.4.1	Señalización vertical	m2	-	-	-	40,00	1,00	40,00	40,00
		4.4.2	Señalización vertical a retirar	un	-	-	-	32,00	1,00	32,00	32,00
		4.4.5	Señalización horizontal por pulverización 1,5 mm	m2	-	-	-	615,85	1,00	615,85	615,85
		4.4.6	Señalización horizontal por extrusión 3 mm	m2	-	-	-	87,98	1,00	87,98	87,98

					DIME	NSIO	NES	CANT		CANTI	DADES
RU- BR O	ITE M	SUB ITE M	DESIGNACION DE TRABAJO	UNI- DA D	A	В	С	PARC	CANT	PARCIAL	TOTAL
5			ILUMINACIÓN								
	5.1		Tablero General de Medición, Comando y Protección	un	-	-	-	1,00	1,00	1,00	1,00
	5.2		Tablero Seccional de Comando y Protección	un	-	-	-	1,00	1,00	1,00	1,00
	5.3		Canalización para tendido eléctrico en terreno natural	m	-	1	-	2.970,00	1,00	2.970,00	2.970,00
	5.4		Canalización para tendido eléctrico bajo pavimento	m	-	-	-	30,00	1,00	30,00	30,00
	5.6		Columna H=9,00m libre con brazo de 2,50m completa con artefacto 250W SAP super	un	-	-	-	99,00	1,00	99,00	99,00
	5.11		Conductor subterráneo 4x16 mm2	m	-	-	-	2.970,00	1,00	2.970,00	2.970,00
	5.12		Alimentador subterráneo 3x120/70 mm2	m	-	1	-	500,00	1,00	500,00	500,00
	5.13		Subestación Transformadora Aérea 25 kVA	un	-	-	-	1,00	1,00	1,00	1,00
6			OTROS								
	6.1		Supervisión / Inspección de obra								
		6.1.1	Cuota mensual por cada movilidad	mes	-	-	-	18,00	1,00	18,00	18,00
		6.1.2	Adicional por kilómetro de movilidad	km	-	-	-	151.296,0 0	1,00	151.296,0 0	151.296,0 0
		6.1.3	Provisión de vivienda para personal de supervisión	mes	-	-	-	18,00	1,00	18,00	18,00
		6.1.4	Movilización de obra	Gl	-	-	-	1,00	1,00	1,00	1,00

Planilla N°16: Presupuesto de alternativa 1 – Rotonda

	Pianina N 10: Presupuesto de alternativa 1 – Rotonda										
RUBRO	ITEM	ITEM	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO	PRESUF	PUESTO			
RUI	III	SUB	DESCRII CION	INI	TOTAL	UNITARIO	IMPORTE TOTAL	INCIDENCIA			
1			TERRAPLENES Y MOVIMIENTOS DE SUELOS				\$ 5.476.216,14	0,59%			
	1.1		Terraplén con compactación especial	m3	952,75	\$ 5.747,80	\$ 5.476.216,14	0,59%			
2			PAVIMENTOS Y BANQUINAS				\$ 607.499.907,11	65,99%			
	2.1		Suelo tratado con cal								
		2.1.1	Suelo tratado con cal	m3	6.051,08	\$ 10.431,12	\$ 63.119.525,11	6,86%			
	2.2		Bases y Subbases no bituminosas								
		2.2.1	Subbase de suelo calcáreo, VSR mayor o igual a 40%	m3	3.862,82	\$ 27.889,71	\$ 107.732.948,10	11,70%			
		2.2.2	Base de suelo calcáreo con cemento, tal que RCS 20 kg/cm2 a los 7 días.	m3	3.691,17	\$ 47.161,39	\$ 174.080.919,98	18,91%			
	2.3		Mezclas y capas asfálticas								
		2.3.1	Base de concreto asfáltico tipo CAC D-19 CA30; e=0,08 m	m2	17.811,02	\$ 5.464,41	\$ 97.326.646,54	10,57%			
		2.3.2	Carpeta de concreto asfáltico tipo SMA 12-AM3; e=0,07 m	m2	17.595,84	\$ 7.096,35	\$ 124.866.246,28	13,56%			
	2.4		Riegos								
		2.4.1	Riego de curado con emulsión catiónica CI	m2	35.406,86	\$ 439,50	\$ 15.561.414,94	1,69%			
		2.4.2	Riego de liga con emulsión catiónica CRR	m2	93.347,10	\$ 265,81	\$ 24.812.206,16	2,70%			
3			OBRAS DE ARTE MENORES				\$ 10.254.712,48	1,11%			
	3.1		Hormigón de cemento portland H-13, excluida la armadura	m3	4,71	\$ 114.269,48	\$ 538.329,25	0,06%			

RUBRO	ITEM	ITEM	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO	PRESUF	PUESTO
RU	IT	SUB	BBSCRI CIGI	INI	TOTAL	UNITARIO	IMPORTE TOTAL	INCIDENCIA
	3.2		Hormigón de cemento portland H-21, excluida la armadura	m3	35,61	\$ 153.247,66	\$ 5.456.477,83	0,59%
	3.3		Acero especial en barras ADN-420 colocado	tn	3,03	\$ 1.407.545,61	\$ 4.259.905,40	0,46%
4			OBRAS COMPLEMENTARIAS				\$ 141.450.575,62	15,36%
	4.1		Barandas, Alambrados y otras					
		4.1.1	Sistema de contención lateral (H2-W4-A)	m	2.500,00	\$ 23.621,99	\$ 59.054.976,16	6,41%
		4.1.2	Retiro de baranda metálica	m	764,39	\$ 7.804,52	\$ 5.965.721,90	0,65%
		4.1.3	Cordón montable de hormigón 0,30 m de ancho	m	351,00	\$ 15.146,40	\$ 5.316.384,82	0,58%
		4.1.4	Cordón Protector de Borde de Pavimento	m	300,00	\$ 10.778,23	\$ 3.233.468,30	0,35%
		4.1.5	Alambrado existente a retirar	m	453,47	\$ 2.688,56	\$ 1.219.179,19	0,13%
	4.2		Traslado de servicios					
		4.2.2	Traslado de línea de Media Tensión (13,2 kV)	m	190,00	\$ 15.626,76	\$ 2.969.084,99	0,32%
		4.2.3	Traslado de línea de Media Tensión (33,0 kV)	m	250,00	\$ 22.746,65	\$ 5.686.662,31	0,62%
	4.3		Demoliciones					
		4.3.1	Demolición de pavimento asfáltico existente	m2	14.302,66	\$ 3.350,61	\$ 47.922.688,53	5,21%
	4.4		Señalización					
		4.4.1	Señalización vertical	m2	40,00	\$ 85.505,30	\$ 3.420.212,08	0,37%
		4.4.2	Señalización vertical a retirar	un	32,00	\$ 8.557,04	\$ 273.825,36	0,03%
		4.4.3	Señalización horizontal por pulverización 1,5 mm	m2	615,85	\$ 7.559,89	\$ 4.655.789,46	0,51%
		4.4.4	Señalización horizontal por extrusión 3 mm	m2	87,98	\$ 19.693,09	\$ 1.732.582,52	0,19%
5			ILUMINACIÓN				\$ 105.860.515,14	11,50%
	5.1		Tablero General de Medición, Comando y Protección	Medición, Comando y un 1,00 \$ 1.236.007,2		\$ 1.236.007,27	\$ 1.236.007,27	0,13%

RUBRO	ITEM	ITEM	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO	PRESUF	PUESTO
RUE	ITI	SUB]	DESCRIPCION	IIND	TOTAL	UNITARIO	IMPORTE TOTAL	INCIDENCIA
	5.2		Tablero Seccional de Comando y Protección	un	1,00	\$ 1.117.577,67	\$ 1.117.577,67	0,12%
	5.3		Canalización para tendido eléctrico en terreno natural	m	2.670,00	\$ 14.314,52	\$ 38.219.755,45	4,15%
	5.4		Canalización para tendido eléctrico bajo pavimento	m	123,75	\$ 30.185,54	\$ 3.735.460,47	0,41%
	5.5		Columna H=9,00m libre con brazo de 2,50m completa con artefacto 250W SAP super	un	75,00	\$ 515.270,10	\$ 38.645.257,63	4,20%
	5.6		Conductor subterráneo 4x16 mm2	m	2458,50	\$ 4.794,28	\$ 11.786.742,81	1,28%
	5.7		Alimentador subterráneo 3x120/70 mm2	m	355,50	\$ 30.345,16	\$ 10.787.705,94	1,17%
	5.8		Subestación Transformadora Aérea 25 kVA	un	1,00	\$ 1.568.015,17	\$ 1.568.015,17	0,17%
6			OTROS				\$ 50.071.199,44	5,44%
	6.1		Supervisión / Inspección de obra					
		6.1.1	Cuota mensual por cada movilidad	mes	18,00	\$ 492.243,04	\$ 8.860.374,67	0,96%
		6.1.2	Adicional por kilómetro de movilidad	km	10.000,00	\$ 62,88	\$ 628.770,85	0,07%
		6.1.3	Provisión de vivienda para personal de supervisión	mes	18,00	\$ 284.795,45	\$ 5.126.318,02	0,56%
		6.1.4	Movilización de obra	Gl	1,00	\$ 35.455.735,89	\$ 35.455.735,89	3,85%
			PRESUPUESTO TOTAL DE LA OBRA				\$ 920.613.125,93	100,00%
			COSTOS DE EXPROPIACIÓN					
			Terreno a expropiar	0,93	\$ 2.500,00 USD	\$ 814.903,76		

Planilla $N^{\circ}17$: Presupuesto de alternativa 2 – Trompeta

DUDDO	ITEM	SUB	DECODIDCION	OAD	CANTIDAD	PRECIO UNITARIO	PRESUPU	ESTO
RUBRO	HEM	ITEM	DESCRIPCION	UNIDAD	TOTAL	PRECIO UNITARIO	PRECIO	INCIDENCIA
1			TERRAPLENES Y MOVIMIENTOS DE SUELOS				\$ 661.416.623,50	14,62%
	1.1		Terraplén con compactación especial	m3	115.073,00	\$ 5.747,80	\$ 661.416.623,50	14,62%
2			PAVIMENTOS Y BANQUINAS				\$ 1.473.141.516,70	32,57%
	2.1		Suelo tratado con cal					
		2.1.1	Suelo tratado con cal	m3	14.171,77	\$ 10.431,12	\$ 147.827.370,95	3,27%
	2.2		Bases y Subbases no bituminosas					
		2.2.1	Subbase de suelo calcáreo, VSR mayor o igual a 40%	m3	9.332,57	\$ 27.889,71	\$ 260.282.643,33	5,76%
		2.2.2	Base de suelo calcáreo con cemento, tal que RCS 20 kg/cm2 a los 7 días.	m3	8.976,67	\$ 47.161,39	\$ 423.352.362,78	9,36%
	2.3		Mezclas y capas asfálticas					
		2.3.1	Base de concreto asfáltico tipo CAC D-19 CA30; e=0,08 m	m2	43.539,55	\$ 5.464,41	\$ 237.917.773,83	5,26%
		2.3.2	Carpeta de concreto asfáltico tipo SMA 12-AM3; e=0,07 m	m2	43.088,60	\$ 7.096,35	\$ 305.771.800,80	6,76%
	2.4		Riegos					
		2.4.1	Riego de curado con emulsión catiónica CI	m2	86.628,15	\$ 439,50	\$ 38.073.315,58	0,84%
		2.4.2	Riego de liga con emulsión catiónica CRR	m2	225.413,59	\$ 265,81	\$ 59.916.249,43	1,32%
3			OBRAS DE ARTE MENORES				\$ 20.509.424,96	0,45%
	3.1		Hormigón de cemento portland H-13, excluida la armadura	m3	9,42	\$ 114.269,48	\$ 1.076.658,49	0,02%

RUBRO	ITEM	SUB	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRESUPU	JESTO
RUBRO	TILIVI	ITEM	DESCRIPCION	IND	TOTAL	FRECIO UNITARIO	PRECIO	INCIDENCIA
	3.2		Hormigón de cemento portland H-21, excluida la armadura	m3	71,21	\$ 153.247,66	\$ 10.912.955,66	0,24%
	3.3		Acero especial en barras ADN-420 colocado	tn	6,05	\$ 1.407.545,61	\$ 8.519.810,80	0,19%
4			OBRAS COMPLEMENTARIAS				\$ 288.418.313,33	6,38%
	4.1		Barandas, Alambrados y otras			,		
		4.1.1	Sistema de contención lateral (H2-W4-A)	m	8.180,00	\$ 23.621,99	\$ 193.227.882,01	4,27%
		4.1.2	Retiro de baranda metálica	m	764,39	\$ 7.804,52	\$ 5.965.721,90	0,13%
		4.1.3	Cordón montable de hormigón 0,30 m de ancho	m	500,00	\$ 15.146,40	\$ 7.573.197,76	0,17%
		4.1.4	Cordón Protector de Borde de Pavimento	m	300,00	\$ 10.778,23	\$ 3.233.468,30	0,07%
		4.1.5	Alambrado existente a retirar	m	453,47	\$ 2.688,56	\$ 1.219.179,19	0,03%
	4.2		Traslado de servicios					
		4.2.2	Traslado de línea de Media Tensión (13,2 kV)	m	190,00	\$ 15.626,76	\$ 2.969.084,99	0,07%
		4.2.3	Traslado de línea de Media Tensión (33,0 kV)	m	250,00	\$ 22.746,65	\$ 5.686.662,31	0,13%
	4.3		Demoliciones					
		4.3.1	Demolición de pavimento asfáltico existente	m2	14.302,66	\$ 3.350,61	\$ 47.922.688,53	1,06%
	4.4		Señalización					
		4.4.1	Señalización vertical	m2	55,00	\$ 85.505,30	\$ 4.702.791,61	0,10%
		4.4.2	Señalización vertical a retirar	un	32,00	\$ 8.557,04	\$ 273.825,36	0,01%

RUBRO	ITEM	SUB	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRESUPU	UESTO	
KUBKU	II EWI	ITEM	DESCRIPCION	IINI	TOTAL	PRECIO UNITARIO	PRECIO	INCIDENCIA	
		4.4.3	Señalización horizontal por pulverización 1,5 mm	m2	1.508,10	\$ 7.559,89	\$ 11.401.072,51	0,25%	
		4.4.4	Señalización horizontal por extrusión 3 mm	m2	215,44	\$ 19.693,09	\$ 4.242.738,87	0,09%	
5			PUENTES				\$ 1.736.853.875,64	38,40%	
	5.1		Hormigón armado H-30 para Superestructura (losa tablero, viguetas transv., defensas) excluida armadura	m3	184,91	\$ 200.729,85	\$ 37.117.456,48	0,82%	
	5.2		Hormigón armado H-38 para elementos prefabricados excluida armadura	m3	6,60	\$ 216.662,85	\$ 1.429.613,79	0,03%	
	5.3		Hormigón armado H-38 para Vigas prefabricadas postensadas excluida armadura, incluido traslado y montaje.	m3	233,33	\$ 217.158,87	\$ 50.668.853,86	1,12%	
	5.4		Hormigón armado H-21 para losas de aproximación excluida armadura	m3	57,49	\$ 158.373,29	\$ 9.105.494,09	0,20%	
	5.5		Hormigón armado H-21 para infraestructura (dinteles, columnas y estribos) excluida armadura	m3	156,48	\$ 162.836,79	\$ 25.480.085,49	0,56%	
	5.6		Hormigón armado H-21 con cemento ARS para pilotes excavados, excluida armadura, incluida excavación	m3	225,70	\$ 354.795,19	\$ 80.076.274,32	1,77%	
	5.7	_	Hormigón simple H-17 para muro de pie en revestimientos de estribos	m3	21,09	\$ 130.476,19	\$ 2.752.369,78	0,06%	
	5.8		Concreto asfáltico en caliente para carpeta de desgaste, espesor 5 cm	m2	1.295,25	\$ 5.830,40	\$ 7.551.826,57	0,17%	

RUBRO	ITEM	SUB	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRESUPU	ESTO
KUBKO	TTEM	ITEM	DESCRIPCION	IND	TOTAL	FRECIO UNITARIO	PRECIO	INCIDENCIA
	5.9		Prelosas prefabricadas de Hormigón armado H-30 incluida armadura, espesor 5 cm	m2	1.295,25	\$ 11.538,01	\$ 14.944.603,74	0,33%
	5.10		Acero especial en barras tipo ADN 420 colocado.	tn	933,43	\$ 1.313.825,06	\$ 1.226.357.398,24	27,12%
	5.11		Acero para pretensado, colocado, con tensión de rotura mayor o igual que 19.000 kg/cm2	tn	79,93	\$ 1.810.139,27	\$ 144.692.537,25	3,20%
	5.12		Traslado y montaje de vigas postensadas	un	14,00	\$ 471.700,31	\$ 6.603.804,41	0,15%
	5.13		Placas de Neopreno, dureza Shore 60, zunchadas, colocados, incluyendo el mortero Grouting para tetones	un	21,00	\$ 35.912,70	\$ 754.166,67	0,02%
	5.14		Juntas de dilatación de asfalto modificado	m	40,00	\$ 26.318,92	\$ 1.052.756,93	0,02%
	5.15		Excavación para fundaciones	m3	141,37	\$ 13.066,53	\$ 1.847.236,64	0,04%
	5.16		Muros de suelo mecánicamente estabilizado incluyendo escamas, armaduras, soleras, esquineros, transporte y montaje	m2	900,00	\$ 140.466,00	\$ 126.419.397,41	2,80%
6			ILUMINACIÓN				\$ 153.586.442,66	3,40%
	6.1		Tablero General de Medición, Comando y Protección	un	1,00	\$ 1.236.007,27	\$ 1.236.007,27	0,03%
	6.2		Tablero Seccional de Comando y Protección	un	1,00	\$ 1.117.577,67	\$ 1.117.577,67	0,02%
	6.3		Canalización para tendido eléctrico en terreno natural	m	3.916,00	\$ 14.314,52	\$ 56.055.641,33	1,24%

RUBRO	ITEM	SUB	DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRESUPU	ESTO
ROBRO	TTLM	ITEM	DESCRIPCION	UNI	TOTAL	TRECTO UNITARIO	PRECIO	INCIDENCIA
	6.4		Canalización para tendido eléctrico bajo pavimento	m	181,50	\$ 30.185,54	\$ 5.478.675,36	0,12%
	6.5		Columna H=9,00m libre con brazo de 2,50m completa con artefacto 250W SAP super	un	110,00	\$ 515.270,10	\$ 56.679.711,19	1,25%
	6.6		Artefacto bajo puente completo 250W SAP super	un	1,00	\$ 227.016,97	\$ 227.016,97	0,01%
	6.7		Conductor subterráneo 4x16 mm2	m	3605,80	\$ 4.794,28	\$ 17.287.222,79	0,38%
	6.8		Alimentador subterráneo 3x120/70 mm2	m	500,00	\$ 30.345,16	\$ 15.172.582,19	0,34%
	6.9		Subestación Transformadora Aérea 25 kVA	un	1,00	\$ 1.568.015,17	\$ 1.568.015,17	0,03%
7			OTROS				\$ 188.606.570,25	4,17%
	7.1		Supervisión / Inspección de obra					
		7.1.1	Cuota mensual por cada movilidad	mes	18,00	\$ 492.243,04	\$ 8.860.374,67	0,20%
		7.1.2	Adicional por kilómetro de movilidad	km	10.000,00	\$ 62,88	\$ 628.770,85	0,01%
		7.1.3	Provisión de vivienda para personal de supervisión	mes	18,00	\$ 284.795,45	\$ 5.126.318,02	0,11%
		7.1.4	Movilización de obra	Gl	1,00	\$ 173.991.106,70	\$ 173.991.106,70	3,85%
			PRESUPUESTO TOTAL DE LA OBRA				\$ 4.522.532.767,03	100,00%
COSTOS	DE EX	KPROPI	ACIÓN					
Terreno a	exprop	iar		Ha	6,32	\$ 2.500,00 Dolar blue	\$ 5.563.396,96	

Planilla N°18: Comparativa económica de propuestas

T laillia	N°18: Comparativa econ	offica de propuestas	
	COMPARATIVA ECO	NÓMICA	
COMPARATIVA ECONÓMICA	Intersección a nivel de tipo rotonda	Intersección a desnivel de tipo trompeta	Variación
TERRAPLENES Y MOVIMIENTOS DE SUELO	\$ 5.476.216,14	\$ 661.416.623,50	12077,99%
PAVIMENTOS Y BANQUINAS	\$ 607.499.907,11	\$ 1.473.141.516,70	242,49%
OBRAS DE ARTE MENORES	\$ 10.254.712,48	\$ 20.509.424,96	200,00%
OBRAS COMPLEMENTARIAS	\$ 141.450.575,62	\$ 288.418.313,33	203,90%
PUENTES	\$ 0,00	\$ 1.736.853.875,64	-
ILUMINACIÓN	\$ 105.860.515,14	\$ 153.586.442,66	145,08%
OTROS	\$ 50.071.199,44	\$ 188.606.570,25	376,68%
COSTOS DE EXPROPIACIÓN	\$ 814.903,76	\$ 5.563.396,96	682,71%
IMPORTES TOTALES	\$ 920.613.125,93	\$ 4.522.532.767,03	491,25%

Anexo III: Tablas de diseño geométrico de la DNV

- Tabla N°3 del manual "Normas de Diseño Geométrico de Carreteras"
- Planilla N°1 del manual "Normas de Diseño Geométrico de Carreteras"

TABLA Nº 3 ELEMENTOS DE DISEÑO GEOMETRICO DE CURVAS HORIZONTALES PARA CAMINOS RURALES DE 2 TROCHAS, EN FUNCION DE LA VELOCIDAD DIRECTRIZ, PARA PERALTES MAXIMOS DEL 6%.-V. Velocidad directriz, en Km/h,-R RADIO, en m.-P. Peralte, en %-Le: Longitud minimo de tronsición, en m.-S: Sobreancho, en m.

×	V = 30 Km/h.	Km/h		V= 40 Km/h.	Km/h.	_		. 4/E	۸ . 6	E	. P.	-	m/h.	>	V= 80 Km/h.	Ė	V. 90	Km/h.			m/h.	Vell	V=110 Km/h.	-	V*120 Km/h.	Km/h.	>	V+130 Km/h.		-	H/F.	æ
Ê	P L.	S		P Le	S	۵	٥	S	۵	٠		P Le	S	۵	۲.	S	P Le	0	۵	L.	S	<u>a</u>		S	P Le	S	۵	١.	S	P Le	8	E
30	6 30**		2.40										NOTAS		1º) Las valores de las radios ubicados sobre las lineas de puntos () solo deben usarse	es de lo	os radio	s ubica	dos sob	re los	lineas	de puni) so	.) solo	deben	USGESE	en cos	en casos exfremos	mos			30
40	6 30 **		1.90			-								20)	olov so	es de la	os radio	s ubico	dos baje	o to line	0 corto	do (-) debe	COUST	derorse	desed	bles.					40
50	5 30	1.50	20											3.) [3*) Los valores de los radios ubicados las líneas de punto y raya () dan adecuado visibilidad nocturna para velocidades	es de le	os radio	s ubico	sol sob	lineas	de puni	10 7 107	0 (.) don	odecua	do visib	lided r	octurna	poro v	elocido	des	20
09		1.3	30 6		1.60	0								_	iguales a la directriz.	0 10 0	irectriz															9
70		-	1.10 6		1.40									4.)	4*) Los valores de los radios ubicados bajo la línea de doble punto y raya () dan adecuado visibilidad	res de	los roc	lios ubic	cados b	010 101	neo de	doblep	unto y r	040	00 (n adeci	odo vis	ibilidad	noctur	nocturno poro		70
80	5 30**		1.00	6 30	1.30	0									velocidades laugles at 90% de la velocidad directriz.	des iqu	oles of	90%	te lo ve	locidod	directr	iz.										80
90	4 30**			30.	30 ** 1.10	9 0	50	1.30						5.)	Para los casas indicados con asterisco (*) se adoptara como peralte la pendiente transversal de la calzada, siempre que	50800	indicad	08 500	dsteris	1 (*) 05	e odop	tara co	mo perc	Tite to	pendien	ite tran	Versot	de lo co	Izada. s	iempre	900	90
00	4 30 **		0.90		30 ** 1.10	9 0	40*	1.20							ella sea mayor que los volores indicados en esta tobla.	MOVOT	que to	s volor	es indi	codos	en esta	toblo.										100
20	4 30		0.70		30 ** 0.90	9 0	30 0 0	1.00						6.9	Para valores de los radios ubicados bajo la doble línea (===) las curvas no deben peraltarse, debiendose mantener	ores de	1 105 10	dios ut	Sicados	bajo 16	o dobie	lineo (100	CULVOS	no de	ben per	Harse.	debiend	ose ma			120
40	3 30 * 4	1	090	1	0.80	9		080	6 5	-	00				perfil fransversal	gnsvers	sal de	la calzado	000													140
160	3 30 **	1	-		0.70	-	30.	080	9	50 0.	06			7.07	Las iongitudes de transición indicadas en esta tabla son las mínimas. No obstante, por razones de estetica, de ser	itudes	de tron	sición	indicod	ds en e	sto tobi	la son l	os mini	MOS. N	o obste	infe, pe	r razon	es de es	tetico.	de ser		160
180	3 30 **	-	0.50	1 30 **	• 0.70	2	30	0.70	9	40 ** 0	080				posible, deberan introducirse transiciones cuyas longitudes sean de 1,5 a 2 veces las	debera	n intro	ducirse	fronsi	ciones	CUYOS I	ongitude	es seon	de 1.5 a	2 vece	s los m	nimos.	minimos, y moyores que 0,1	es que	9.1 R		180
200	3 30	-	-	4 30 **	. 0.60	-	30	30 0.70	9	40 0	-	09 9	0.80		-	1	-			-		-	-	L					L			200
220	2 * 30	-	-	4 30 *	090	1	30	30 . 0 60	2	0 0	L	6 50	0.80				-												I			220
50	2 * 30	+	t	3 30	0.50	T	30	090	1	40 0	090	6 40 **	0.70	1	90 0	0.80			L									-	I			250
000	2 + 30		1	3 30	1	T	30.	0.50	5	40.0		6 40	09.0	9	50 0	0.70										-						300
350	2 * 30	-	T	3 30	1	T	30	1	1	40 ** 0	1	1	09.0	+	50	090	9	80 070	0				-					-	 			350
00	1 * 30	+	T	1	-	T	30	1	T	-	H	Т		١٥	+	090	+	1	10				-				-	-	I			400
150	- 30	H	t	2 30 *	1	m	30	1	4	+	1	5 40	-	2	1	0.50	6 5	50 0.60	9 0	80	09.0			-								450
00				1		100	30		4	-		4 40	1	2		1	-	1	9 09	-	090		-		-				-	-		500
50			2	30 *			3 30	1	3 4	40	1	4 40	1	2	50	1	5	50 0.50	9 0	09	0.50	9	80 0	0.60						-		550
009				2 30 *	-		* 30		3 4	40	-	4 40	1	5	50	-		- 0	9	9	050	-		09								600
700				2 30 *	1		2 * 30	1	3.4	10		4 40	1	4	.50		5 5	- 09		-	1	9	80 0	050	6 80	0 0 0			-			700
800				1 30			2. 30	١	3	40	1	3 40	1	4	20	1	5 5	50 -	5	9	1				6 80	0.50	9	80 (0 20			800
900						2	2 . 30	1	2. 4	40	1	3 40	1	4	50	1		0	2		1	2		1	_	-	9	80	0.50	_		006
0001						04	2 . 30	1	2 . 4	40		3 40	1	3	50		4 5	- 0	- 5	09	1	5	- 09		-	1-0	9	80	-	001 9	050	1000
200						•	- 30	1	2 . 4		1	2 40	1	2	20	1	3 5	000	4	-	1	2	60		5 80	1 0	5	80		6 80	1	1200
1500									1. 40	-	1	2 + 40	1	2*	50	1	_	50	3	1	1	4	- 09	1	4 80	0 =	4	80	1	5 80	1	1500
1800						-			100	40	1	2 # 40	1	2 *	50	1	2 5	09	3	09	1	3	- 09	1	3 80	1 0	4	80		4 80	1	1800
2000										-		1 * 40	1	2.	50	1	2 5	50	- 2*	09 *	1	3	- 09	-	3 80	1	ю	80	_		-	2000
2500												1 . 40	1	-	50	1		50	- 2.	09	1	2.	09		2. 80	0	10	80		3 80		2500
3000		-												-	20	1	•	50	- 2.	09	1	2.	- 09	1	2. 80	0	. 2 .	1		2. 80	1	3000
3500					-												- 5	50	-	9 80	1	2.	- 09	1	2. 80	1	2.		1	2. 80	-	3500
4000	NOTAS	8.)	Aunous	desec	o saide	or roll	ones d	e estel	co. las	Iransic	n 8910	8°) Aunque deseables por rationes de estético, las transiciones no son indispensables pora	dispens	obles	DOCO		-	50	-	1	1	-	. 09	1	2. 80	1	.2	80	1	2 80	1	4000
4500			rodios	ubica	dos boj	10 10 11	il ben	Bno (-).En e	stos co	Sos, le	radios ubicados bajo la tínea tiena (). En estas casas, las langitudes indicadas son las	udes in	dicada	s son la				-	-	1	-	- 09	-	1. 80	- 0	-	80		2. 80	1	4500
5000			minim	s sobr	p sol s	ve deb	berd de	Sarroll	minimas sobre las que deberá desarrollarse el peralle	peralle									-	09 •	1	-	- 08	1	1. 80	1	-	80	1	1. 80	1	2000
0009		1 (.6		05 005	ibni so	sopos	con do	ble ast	erisco	nd (**)	r nabe	Para los casos indicados con doble asterisco (**) pueden reemplazarse las transiciones	orse la	s trans	siciones	-						•	09		1. 80	1	-	90	1	1. 80	1	6000
7000			espira	es por	Iransi	ciones	simpl	ss, ubic	espirales par transiciones simples, ubicando el sobreancho	sobre		en el Inferior	erior de	e la curva	LVO										1. 80	1	-	80	1	1 . 80	1	7000
8000			circular	37.																							-	80	1	1 . 80	1	8000
0000																		THE PERSON NAMED IN COLUMN		-	-			division and district			The second	The residence of the latest designation of	The Party of the P	Manager of the last of the las		

RUHALES

CAMINOS 90 GEOMETRICO DISENO DE CARACTERISTICAS

-	-		ngamenton in	-	dennin	-	quantino	-	·	-	genanon	·	-	-	-	-	-	ų	-	-
			15000	DIE N.	2						=		2	3		2	9	=	0	6
		POR	90051	DIF N.	2		=	\$		1.	I	:	3	E	WAL.	2	3		a	2
	10	PREVIS-	1500 5	DE.N. D	2	1			:	3	=	CANAL	z	2	2	s	a	1	2	2
9	CAMINOS	TRANSITO PR	-	DIEMD	5		1		CANAL	4	2	:	=	я	3	=	2	DIREC.	3	8
S	CA	N VE	150 5			CAN.	2	0	5	=		2	z	2	DIREC	8		2	2	2
O	CON	VOL TO E	150	DE N. DIEN.	z	AN. C			2	1		PREC	2	=	2	3	2			
2	LES	REVIS-	8	DIE NIV. D	2	=		z		=	=	2	z	:		:	=	1	1	1
0	CON FERROCARRILE	TRANSITO PREVIS- EN TRENES POR DIA	10-100	NIV.	,	2	2	8	:	5	=	ANIVEL	=	3	z	a			2	a a
	N FERR		0-10 10	DIF NIV. DIE		1	3.	2	A NIVEL	,	3	n A	=	z	=	=			3	=
DE		SEGUN VOL.	-	-	300	000	80	003	830 A	8.30	830	8.30	830	830	630	830	200.2	2.00	8	2.00
ANCHOS DE	ENTRE GUARDA-	SU LUZ	mts ats	3300 >2x1300	> 33.00 >2x1300	2500 ≥ 20.00	2500 3 2000	2100 1 1600	1330	330	070	330	1330	ST/O	3,30	13,30	8.50	806	9.00	800
		5 00 S		1:2 > 3	1:2 × 3:	1	-T-	-10	117	1.12	1:12	131-1	-42	-100	1 711	11-12	-12	-12	-12	107
DEL		300 × 00 800 × 00	C/BARAN	1:3	100	1:2 1:1	2 1:1	1-12	1:2:	- 2	150	2:	1.2	-10	1:2	- 13	-101	-12	10	1:1
SES ADIE	LTUR	1,50 300		4:-	4::	4:1	1:4	-10	4:	4:	-10	1:4	1.5	-101	10	1:2	-ica	1:2	1:2	1:12
TALUDES DEL	SU ALTURA	0 A 150	S/BARAN-	1:6	1:8	1:6	1:6	100	4:	4:1	1:2	4:1	5.	1.2	1:4	1:2	-12	1:2	1:2	1:17
	T	OTAL	s t t	>3300	>3300	₹2500	32500	3.21.00	13.30	1330	10.70	1330	1330	970	13.30	13.30	850	9.00	9.00	8.00
MIENTO	-	BANQUINA CANTERO TOTAL 6 CENTRAL	D :	11,00	11.00	4.00	4.00	1.00	1	1	1	1	1	1	1	1	1	1	1	1
DE CORONAMIENTO	1	DUINA CA		350	9	9	300	3.00	3.00	3.80	2.00	3.00	3.30	.50	3.30	3.30	.25	1.50	1.50	1.00
	-	DA BANQU	a s	3.5	3.50	3.00	30		3.0	-		-			-	-		-	-	-
ANCHOS	1	CALZADA	e E	7.50	7.50	7.50	7.50	7.00	7.30	7.30	6.70	730	6.70	6.70	6.70	670	6.00	009	6.00	800
DIST.MINIMA DE		DETEN-SOBRE- CION PASO	e e	8.60	240	8.60	7.40	240	800	6.80	4.70	7.40	6.10	400	680	470	260	610	330	061
DIST.M		DETEN -CION	Ē	260	185	260	-85	0 =	220	160	90	185	135	75	160	90	45	135	09	30
A	0	NOT DE	VOL. MIN.	1	1	1	1	1.	3800	670	380	1	1	3100	1	1	1	1	1	1
Y LONGITUDES	DEL MAR	DE TRANSITO DIARIO DE DISEÑO DE PROPERIO DE DISEÑO DE DISEÑO DE DISEÑO DE DIARIO DE DI	OL. MAX. VOL. MIN.	3800	2100	3800	1400	1000	780	400	270	670	480	380	1	3100	1000	1	1	1
	NIVEL C	DE TRANS	1-	in	4	ın	ru.	9	IO.	2	7	20	9	7	9	7	10	9	80	01
TES M	2	0	at s	1400	940	340	540	330	540	540	240	540	330	240	330	240	190	240	180	160
PENDIENTES MAXIMAS	HASTA	DESEABLE PEND.	%	cu	10	10	100	4	10	117	10	10	4	ro.	4	22	8	20	9	7
MO	T	DESEABLE ABSOLUTO DESEABLES PEND. LON	mts	200	200	200	200	220	-600	400	160	200	300	120	400	160	20	300	80	25
DIO MINI	7	SEABLE	mts	1200	800	200	800	350	008	009	250	800	430	180	009	250	90	520	120	40
PERALTE RADIO MINIMO	-			8	8	8	8	01		60	01	89	01	0	8	01	10	8	. 01	01
PER	VELO. MANIES	CIDAD DIREC-		150	110	130	011	80	120	001	10 01	011	80	09	00	2	40	96	8	35
	5	IA CID	(S) Nm/		depoints	-	-		-	-					-		_		-	A
		TOPOGRAFIA CIDAD DIRECTRIZ		LLANURA	ONDULADA	LLANURA	ONDULADA	MONTA ROSA	UANURA	CNDULADA	MONTAÑOSA	LLANURA .	ONDULADA	MONTAROSA	LANURA	CHDULADA	MONTAROSA	LLANURA	CNCULADA	MONTANOSA
CAS	O'A	DE	-CHAS	10401	10.10		242			N			64	- Tanasana		~			60	,
RIST	ON-	ROL.	808			DTAL	0	ARCAL		PARCIAL.		MAGAL	SIR O	CONTROL	R	CONTROL		N	- Constitution	CON 1 MC
CARACTERISTICAS	OLUMIC	DIARIO DE DE DE DE	(C)	SISONO TOTAL	200	SCOO TOTAL	4	150CO PARCIAL	1500	4	9000	SOO PARCIAL	4	1800 0	180	4	800		×150	
CATEGORIA	1>	CAMINO		FESTIVAL			H		. polyarus	Ħ			目		0	Ħ			þo	
beening	SAICOOM	-	-	Li	-	MAININGE	epake	-	NAME OF TAXABLE PARTY.	ni/Stanes	murch	-	PERSONAL PROPERTY.	monel	wy personal	NATION O	mod	MITS AND ADDRESS OF THE PARTY O	terianoni	MANUFACT TO SERVICE STATE OF THE SERVICE STATE OF T

⊕ ∞ ⊕

ELVOLUMEN MEDIO DIAMIO DE TRAUISITO DE DOSEÑO DEBERA CORRESPONDER. A LITRANSITO PROBABILE A LOS 28 AÑOS. — LOS VOLUMERRES LIMITES, SUPERIORE CATEGORIAL, SE CHEGORIA, EN ENTREMANLA, SON SUPERIOR DE CATEGORIAL, 2015 FIGURAN EN ESTRICAMILLA, SON FOOMAN ADORDER, 2016 FINE STANDAR ADORDER. SON CHARGAS, SE DEBENA OBTENER DE LAS TABLAS IN'N 47 19.—
FOOMAN ADORDER SE PROCENTES EN ANDERES. LIMITES MAS AUGUSTOS CAURON ON STREHINDEN AD MENTINES AND SE DE LOSTODE. LA GRAM.
EN ESTE CASO LOS RADORS MININGOS DE RECUENTE REGINA TABLA N°S.
EN ESTE ASO LOS RADORS MININGOS DE AUGUSTARAS OF RECUENTE ROBER A ALTURAS PROCESTALES BASTA BOO. AN SOBRE EL NIVELDEL MAXIN O E 6 %, BE DETRICA TO STREAM A DIVINA A ALTURAS PROCESTALES DE MASTA BOO. AN SOBRE EL NIVELDEL MAS Y TRANSTO DE DES NO TOTAS AND STREAM A PORTA ALLES DE MASTA BOO. AN SOBRE EL NIVELDEL MAS Y TRANSTO DE DES NO TOTAS AND STREAM A PORTA ALLES DE MASTA BOO. AN SOBRE EL NIVELDEL MAS Y TRANSTO DE DES NO TOTAS AND STREAM A PORTA ALLES DE MASTA BOO. AND SALDIAL STREAM A STRANSTORMA SERIAN, BY DE PORTA BOO. AND SALDIAL STRANSTORMA SERIAN, BY SALDIAL ST 6

LAS DISTANCIAS MINIMAS DE VISBILIDAD PARA DETENCION DEBERAN MANTENENSE EN TODO EL CAMINO. EN SECONDES DE CAMINO DE S. NE. DE LANGO, EN DO POSIBLE DEBERAN MANTENDES SOUIBUTES PONCENTAJES DE LONGITUD QUE PERMITAN EL SOBRE-TROS: ZONA LLIAM DO 18, E, DRIA O NOLALDA SO 96, 7, ZONA MONTAJOSA 30 96, ...

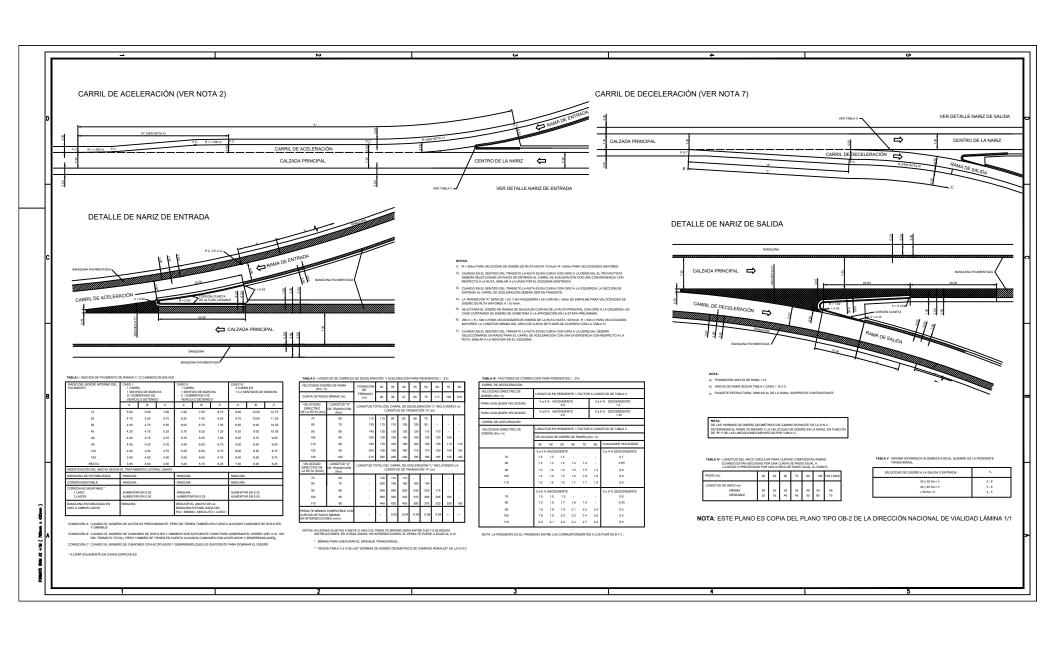
EN CASO DE LLEVAR BARANDA DE SEGURIDAD, EL ANCHO DE LAS BANQUINAS SE AUMENTARA EN 0,50 m

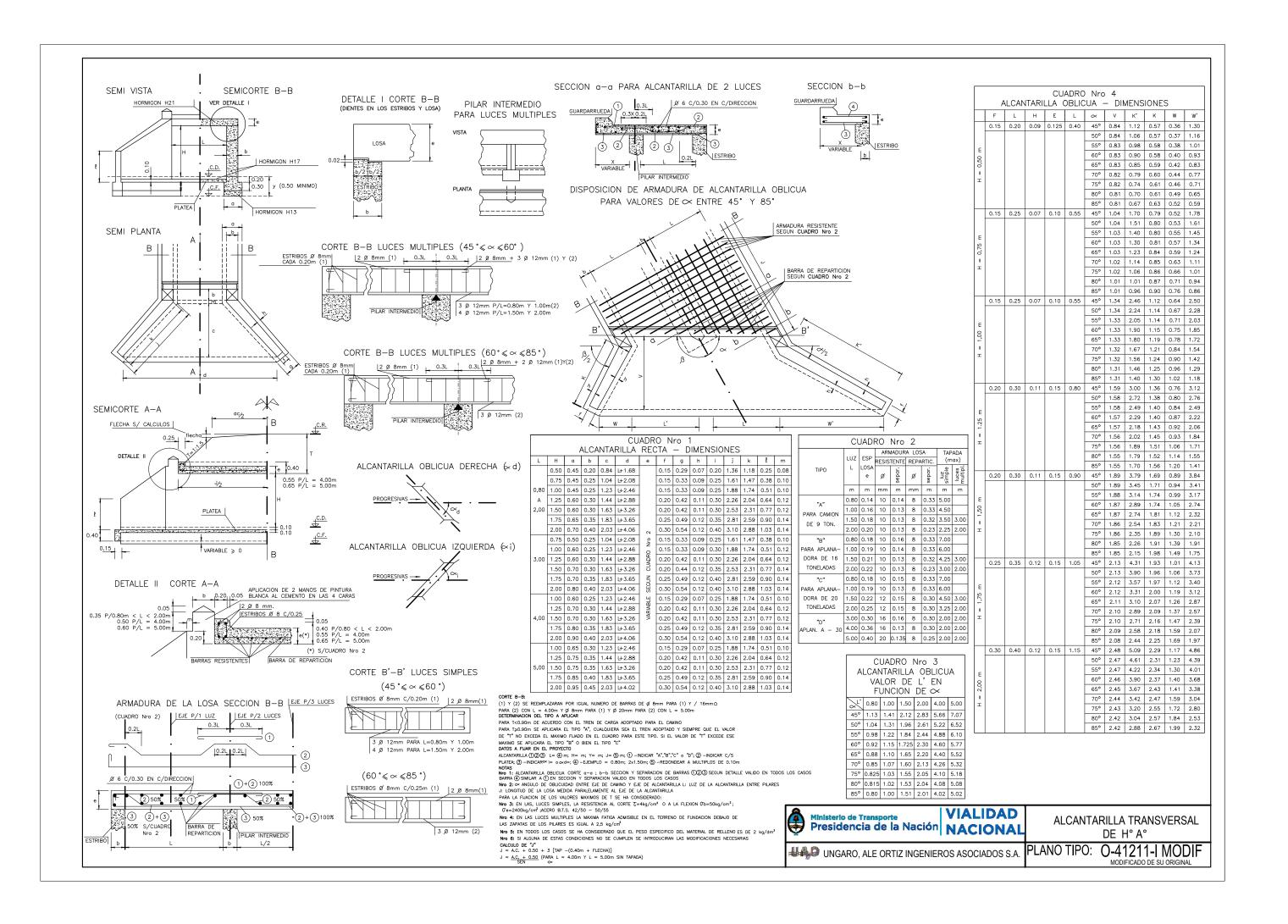
BY ZONAS ONDULADAS, CON GRAN PORCENTALE DE EXCANACION EN RICCA, LOS YALUDES DEL TENRAPLEN SERAN LOS QUE PORCESCONDAN CARANGOS ES ZONA MONTANOSAS, EL MISIARA CÁTEGORÍA.

EN ZONAS MONTANOSAS, SIA APRECÍABLE PORCENTALE DE EXCANCION EN ROCA. LOS YALUDES DEL TENRAPLEN SERANE LOS SECULOS ALAMINOSAS, SIA APRECÍABLE DE TONE LA MATURALEZ A DEL CASA SECULOS ALAMISOS ACENTAS A MATURALEZ A DEL CÓS SECULOS ALAMISOS EN LA PLANTILA, NO PLOJECA MATURANEZ A DEL CÓS SECULOS ALAMISOS EN LA POR ACLASAS FINDROS, SECULOS ALAMISOS EN LA ANTINAMA EN AS PROPRECÍADOS EN LA POR ACLASAS FINDROS, SECULOS ALAMISOS EN CARANGOS EN LA PLANTILA, NO PLOJECA MATURALEZ A DEL CASA SINCIDAS DO PERMITAL. A MATURALEZ A DEL CÓS SINCIDAS DO PERMITA. LA SATURA EN LA SECULOS ALAMISOS, SELVERE QUE LA MATURALEZ A DE LOS SINCIDAS DO PERMITA. LA PARA CAMISTO CORRESADORA A CAMISTOS CORRIANA LOS ANTINOS ANTINOS ANTINOS. SELVERE QUE LA MATURALEZ A DE LOS SINCIDAS DO PERMITA. LA PARA LA CAMISTOS CONTRADORAS. POR MATURALEZ DEL PARA CONDICIONES O PROPINCIO EN CONDUCIONES DEL COS CAJOS O PARTICULAR ES. ...

(B) REDIAS. — NO OBSTANTE ES RECOMENÍABLE QUE SURAR DE CONSTUDIO ECONOMICO DE LOS CAJOS O PARTICULAR ES. ... (B) EN CASO DE LLEVAR BANANDA DE SEGURIODO, EL ANCHODE LAS B

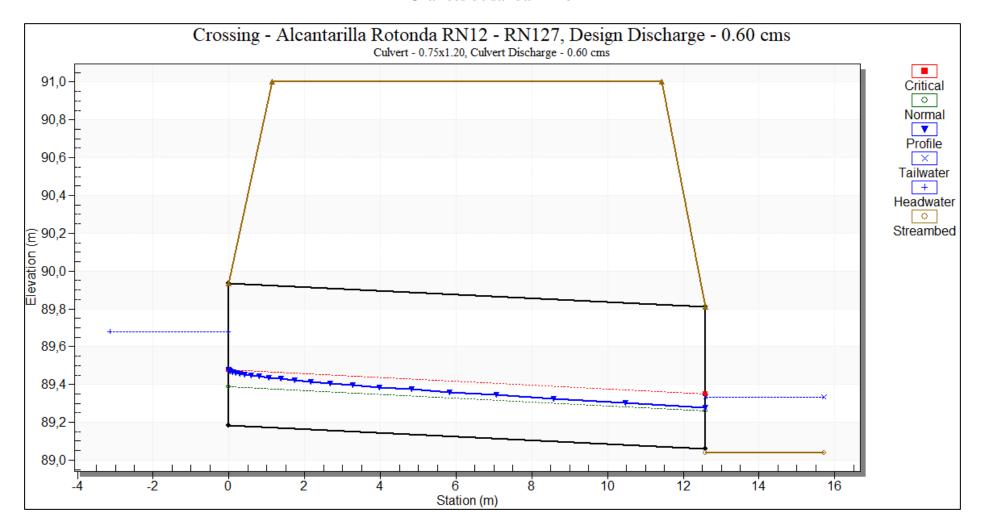
(7) ANCHO DESEABLE > 11.00 m., EN ZONA LLANA U ONDULADA.


(B) EN TROUSA ONDULADAS, CON BANA PORCENTA, ED EXCANACIONE

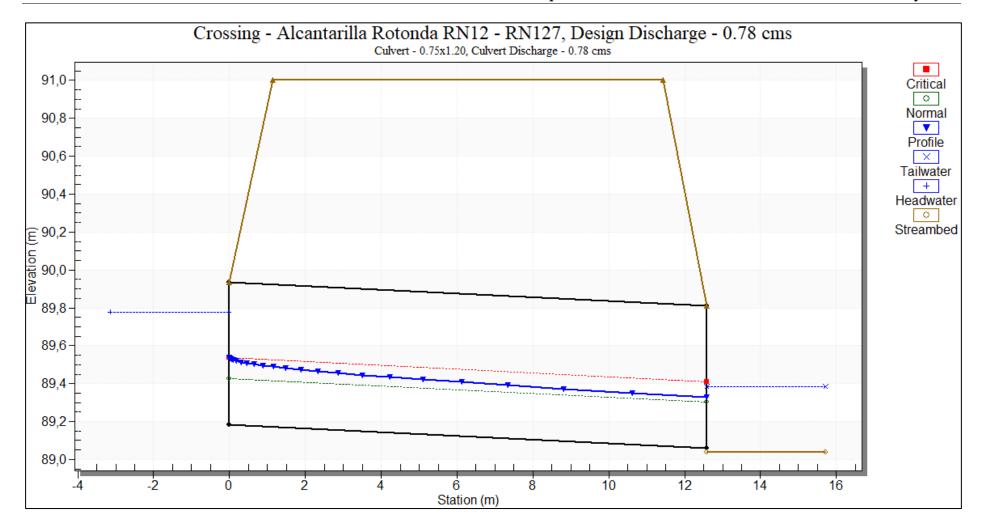

(C) OPPRESPONDA A CAMINGS DE ZONA. MONTHÂGA, DE LA MISMA

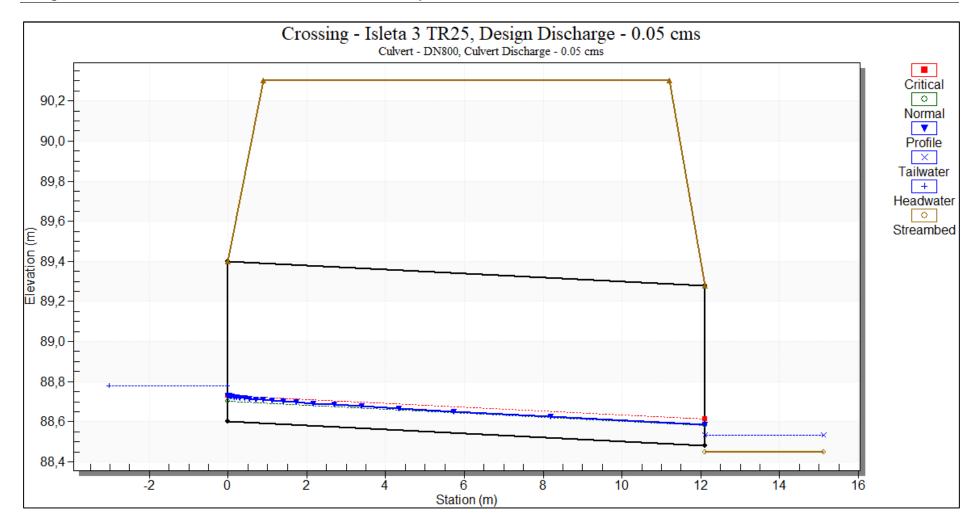
Anexo IV: Planos tipo de la DNV

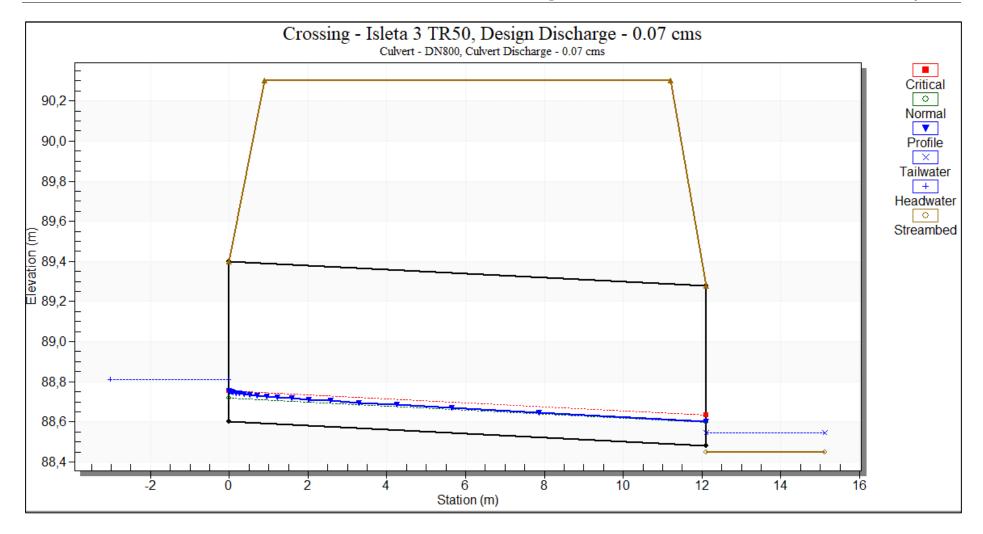
- Plano tipo OB2 de la DNV
- Plano tipo 0-41211-I Modificado de la DNV



Anexo V: Salidas de software HY-8


- Gráficos de salida de software HY-8
- Planillas de salida de software HY-8


Gráficos de salida HY-8



Planillas de salida de Software HY-8

HY-8 Analysis Results Crossing Summary Table

Culvert Crossing: Alcantarilla Rotonda RN12 - RN127 – Isleta 1 TR=25

Headwater Elevation (m)	Total Discharge (cms)	0.75x1.20 Discharge (cms)	Roadway Discharge (cms)	Iterations
89,18	0,00	0,00	0,00	1
89,29	0,06	0,06	0,00	1
89,36	0,12	0,12	0,00	1
89,41	0,18	0,18	0,00	1
89,46	0,24	0,24	0,00	1
89,50	0,30	0,30	0,00	1
89,54	0,36	0,36	0,00	1
89,58	0,42	0,42	0,00	1
89,61	0,48	0,48	0,00	1
89,65	0,54	0,54	0,00	1
89,68	0,60	0,60	0,00	1
91,00	2,75	2,75	0,00	Overtopping

HY-8 Analysis Results Culvert Summary Table - 0.75x1.20

Culvert Crossing: Alcantarilla Rotonda RN12 - RN127 – Isleta 1 Tr25

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0,00	0,00	89,18	0,00	0,0	0-NF	0,00	0,00	0,00	0,00	0,00	0,00
0,06	0,06	89,29	0,11	0.0*	1-S2n	0,05	0,06	0,05	0,10	1,08	0,31
0,12	0,12	89,36	0,17	0.0*	1-S2n	0,07	0,10	0,07	0,14	1,40	0,40
0,18	0,18	89,41	0,22	0,01	1-S2n	0,09	0,13	0,10	0,18	1,55	0,46
0,24	0,24	89,46	0,27	0,04	1-S2n	0,11	0,16	0,12	0,22	1,71	0,51
0,30	0,30	89,50	0,31	0,07	1-S2n	0,13	0,18	0,14	0,25	1,83	0,55
0,36	0,36	89,54	0,35	0,10	1-S2n	0,14	0,21	0,15	0,27	1,94	0,59
0,42	0,42	89,58	0,39	0,12	1-S2n	0,16	0,23	0,17	0,30	2,03	0,62
0,48	0,48	89,61	0,43	0,15	1-S2n	0,17	0,25	0,19	0,32	2,11	0,65
0,54	0,54	89,65	0,46	0,18	1-S2n	0,19	0,27	0,20	0,35	2,18	0,67
0,60	0,60	89,68	0,49	0,21	1-S2n	0,20	0,29	0,22	0,37	2,25	0,70

HY-8 Analysis Results
Crossing Summary Table
Culvert Crossing: Alcantarilla Rotonda RN12 - RN127 – Isleta 1 Tr=50

Headwater Elevation (m)	Total Discharge (cms)	0.75x1.20 Discharge (cms)	Roadway Discharge (cms)	Iterations
89,18	0,00	0,00	0,00	1
89,31	0,08	0,08	0,00	1
89,39	0,16	0,16	0,00	1
89,45	0,23	0,23	0,00	1
89,51	0,31	0,31	0,00	1
89,56	0,39	0,39	0,00	1
89,61	0,47	0,47	0,00	1
89,65	0,55	0,55	0,00	1
89,70	0,63	0,63	0,00	1
89,74	0,70	0,70	0,00	1
89,78	0,78	0,78	0,00	1
91,00	2,75	2,75	0,00	Overtopping

HY-8 Analysis Results Culvert Summary Table - 0.75x1.20

Culvert Crossing: Alcantarilla Rotonda RN12 - RN127 – Isleta 1 Tr=50

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0,00	0,00	89,18	0,00	0,0	0-NF	0,00	0,00	0,00	0,00	0,00	0,00
0,08	0,08	89,31	0,13	0.0*	1-S2n	0,05	0,08	0,06	0,11	1,16	0,34
0,16	0,16	89,39	0,20	0.0*	1-S2n	0,08	0,12	0,09	0,17	1,48	0,44
0,23	0,23	89,45	0,27	0,04	1-S2n	0,11	0,16	0,12	0,21	1,70	0,51
0,31	0,31	89,51	0,32	0,08	1-S2n	0,13	0,19	0,14	0,25	1,86	0,56
0,39	0,39	89,56	0,38	0,11	1-S2n	0,15	0,22	0,16	0,29	2,00	0,61
0,47	0,47	89,61	0,42	0,15	1-S2n	0,17	0,25	0,19	0,32	2,10	0,65
0,55	0,55	89,65	0,47	0,18	1-S2n	0,19	0,28	0,21	0,35	2,20	0,68
0,63	0,63	89,70	0,51	0,22	1-S2n	0,21	0,30	0,23	0,38	2,28	0,71
0,70	0,70	89,74	0,55	0,26	1-S2n	0,23	0,33	0,25	0,41	2,36	0,74
0,78	0,78	89,78	0,59	0,29	1-S2n	0,24	0,35	0,27	0,43	2,43	0,76

HY-8 Analysis Results Crossing Summary Table

Headwater Elevation (m)	Total Discharge (cms)	DN800 Discharge (cms)	Roadway Discharge (cms)	Iterations
88,60	0,00	0,00	0,00	1
88,66	0,01	0,01	0,00	1
88,68	0,01	0,01	0,00	1
88,70	0,02	0,02	0,00	1
88,71	0,02	0,02	0,00	1
88,73	0,03	0,03	0,00	1
88,74	0,03	0,03	0,00	1
88,75	0,04	0,04	0,00	1
88,76	0,04	0,04	0,00	1
88,77	0,05	0,05	0,00	1
88,78	0,05	0,05	0,00	1
90,30	1,51	1,51	0,00	Overtopping

HY-8 Analysis Results Culvert Summary Table - DN800

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0,00	0,00	88,60	0,00	0,0	0-NF	0,00	0,00	0,00	0,00	0,00	0,00
0,01	0,01	88,66	0,06	0.0*	1-S2n	0,03	0,04	0,03	0,04	2,19	0,12
0,01	0,01	88,68	0,08	0.0*	1-S2n	0,05	0,06	0,05	0,05	0,88	0,16
0,02	0,02	88,70	0,10	0.0*	1-S2n	0,06	0,07	0,06	0,06	0,95	0,19
0,02	0,02	88,71	0,11	0.0*	1-S2n	0,07	0,08	0,07	0,06	0,99	0,21
0,03	0,03	88,73	0,13	0.0*	1-S2n	0,07	0,09	0,08	0,07	1,08	0,23
0,03	0,03	88,74	0,14	0.0*	1-S2n	0,08	0,10	0,08	0,08	1,16	0,24
0,04	0,04	88,75	0,15	0.0*	1-S2n	0,09	0,11	0,09	0,08	1,22	0,26
0,04	0,04	88,76	0,16	0.0*	1-S2n	0,09	0,12	0,09	0,09	1,29	0,27
0,05	0,05	88,77	0,17	0,01	1-S2n	0,10	0,13	0,10	0,09	1,24	0,29
0,05	0,05	88,78	0,18	0,01	1-S2n	0,10	0,13	0,11	0,10	1,29	0,30

HY-8 Analysis Results Crossing Summary Table

Headwater Elevation (m)	Total Discharge (cms)	DN800 Discharge (cms)	Roadway Discharge (cms)	Iterations
88,60	0,00	0,00	0,00	1
88,67	0,01	0,01	0,00	1
88,69	0,01	0,01	0,00	1
88,71	0,02	0,02	0,00	1
88,73	0,03	0,03	0,00	1
88,75	0,04	0,04	0,00	1
88,76	0,04	0,04	0,00	1
88,77	0,05	0,05	0,00	1
88,79	0,06	0,06	0,00	1
88,80	0,06	0,06	0,00	1
88,81	0,07	0,07	0,00	1
90,30	1,51	1,51	0,00	Overtopping

HY-8 Analysis Results Culvert Summary Table - DN800

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0,00	0,00	88,60	0,00	0,0	0-NF	0,00	0,00	0,00	0,00	0,00	0,00
0,01	0,01	88,67	0,07	0.0*	1-S2n	0,04	0,05	0,04	0,04	0,74	0,14
0,01	0,01	88,69	0,09	0.0*	1-S2n	0,05	0,07	0,05	0,05	0,99	0,18
0,02	0,02	88,71	0,11	0.0*	1-S2n	0,07	0,08	0,07	0,06	1,00	0,21
0,03	0,03	88,73	0,13	0.0*	1-S2n	0,07	0,10	0,08	0,07	1,07	0,23
0,04	0,04	88,75	0,15	0.0*	1-S2n	0,08	0,11	0,08	0,08	1,20	0,26
0,04	0,04	88,76	0,16	0.0*	1-S2n	0,09	0,12	0,09	0,09	1,29	0,27
0,05	0,05	88,77	0,17	0,01	1-S2n	0,10	0,13	0,10	0,10	1,26	0,29
0,06	0,06	88,79	0,19	0,02	1-S2n	0,11	0,14	0,11	0,10	1,32	0,31
0,06	0,06	88,80	0,20	0,03	1-S2n	0,11	0,14	0,12	0,11	1,37	0,32
0,07	0,07	88,81	0,21	0,03	1-S2n	0,12	0,15	0,12	0,12	1,40	0,33

Anexo VI: Planillas de evaluación de impacto ambiental

- Planilla N°19: Matriz de impacto ambiental
- Planilla N°20: Cálculo de impacto ambiental

Planilla N°19: Matriz de impacto ambiental

				Acciones d	el proyec	to				
Factores		Etap	oa constructiva			Etapa operativa				Valor
ambientales	Demoliciones	Movimiento de suelo	Pavimentación	Alumbrado y señalización	Valor medio	Presencia física de la obra	Función de las obras	Mantenimiento	Valor medio	medio
Suelo	-3,95	-4,85	-3,95	-	-4,25	-4,91	-	-	-4,91	-4,58
Actividad económica	2,00	2,00	2,00	2,00	2,00	6,00	8,50	6,00	6,83	4,42
Escurrimiento de agua	-2,00	-2,00	-3,35	-	-2,45	3,60	3,60	3,60	3,60	0,58
Calidad del aire	-2,45	-2,45	-3,35	-	-2,75	-	-2,96	-	-2,96	-2,86
Redes de servicios públicos	-2,81	-2,90	-2,00	-	-2,57	-	5,10	-	5,10	1,27
Paisaje	-3,95	-3,56	-2,45	-2,00	-2,99	5,10	7,60	-	6,35	1,68
Red vial	-4,46	-4,25	-4,64	-2,00	-3,84	6,00	8,50	-2,00	4,17	0,16
					-2,41				2,60	0,10

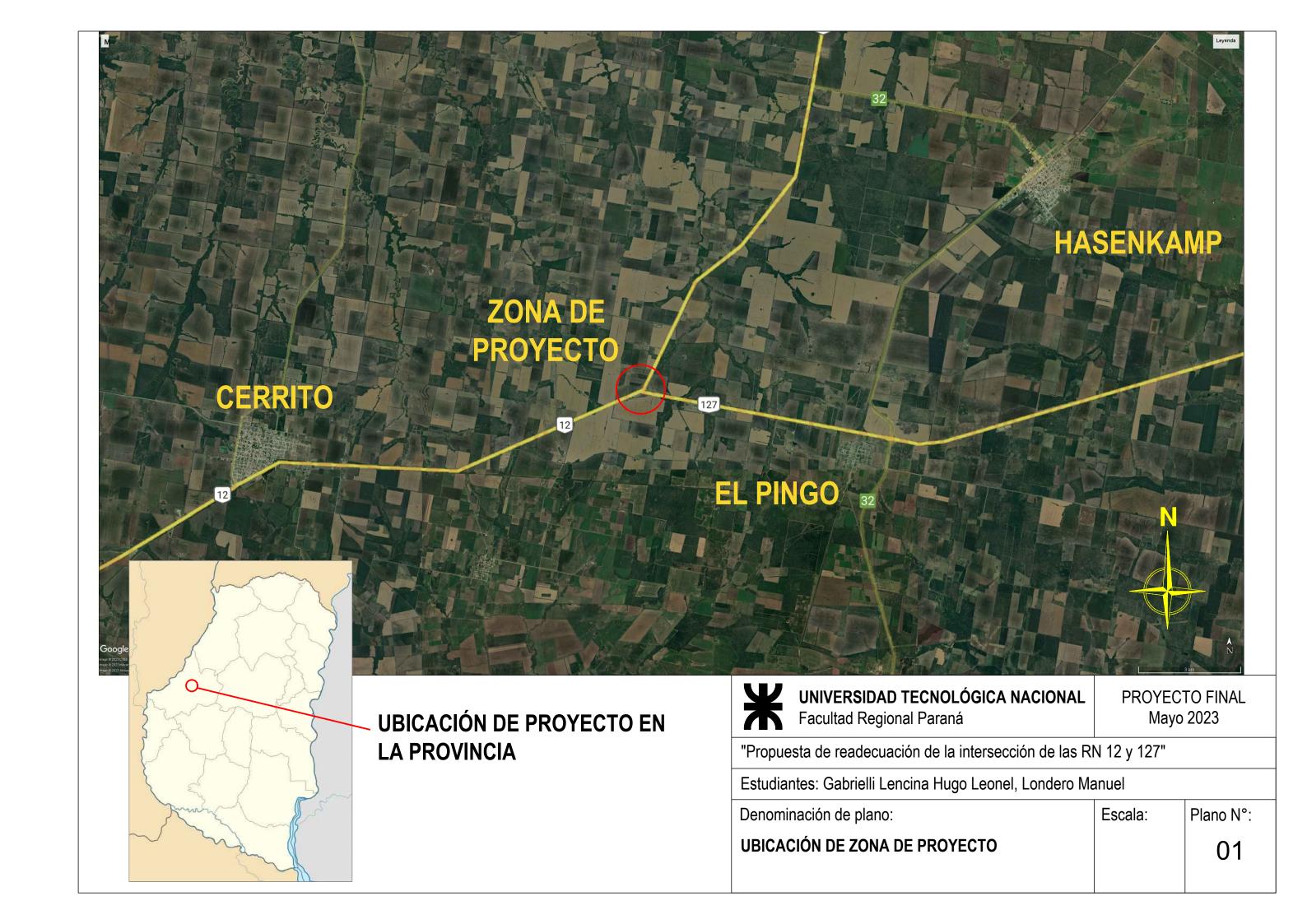
VIA	2	3	4	5	6	7	8	9	10	
Criticidad		Baja			Media		Alta			
Balance -	Compatible			N	Ioderad	o	Severo			
Balance +		Bajo		Medio			Alto			

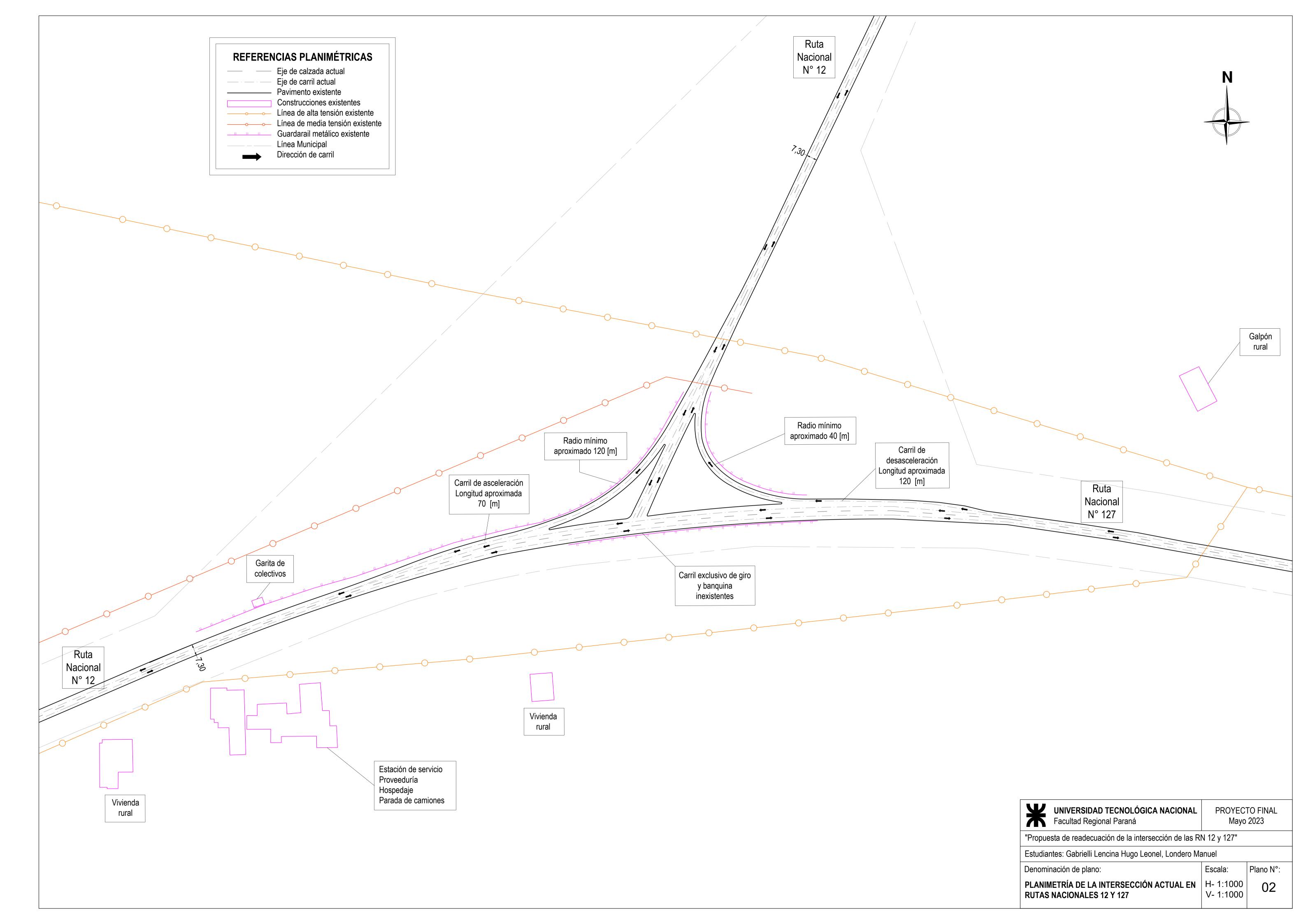
Planilla N°20: Cálculo de impacto ambiental

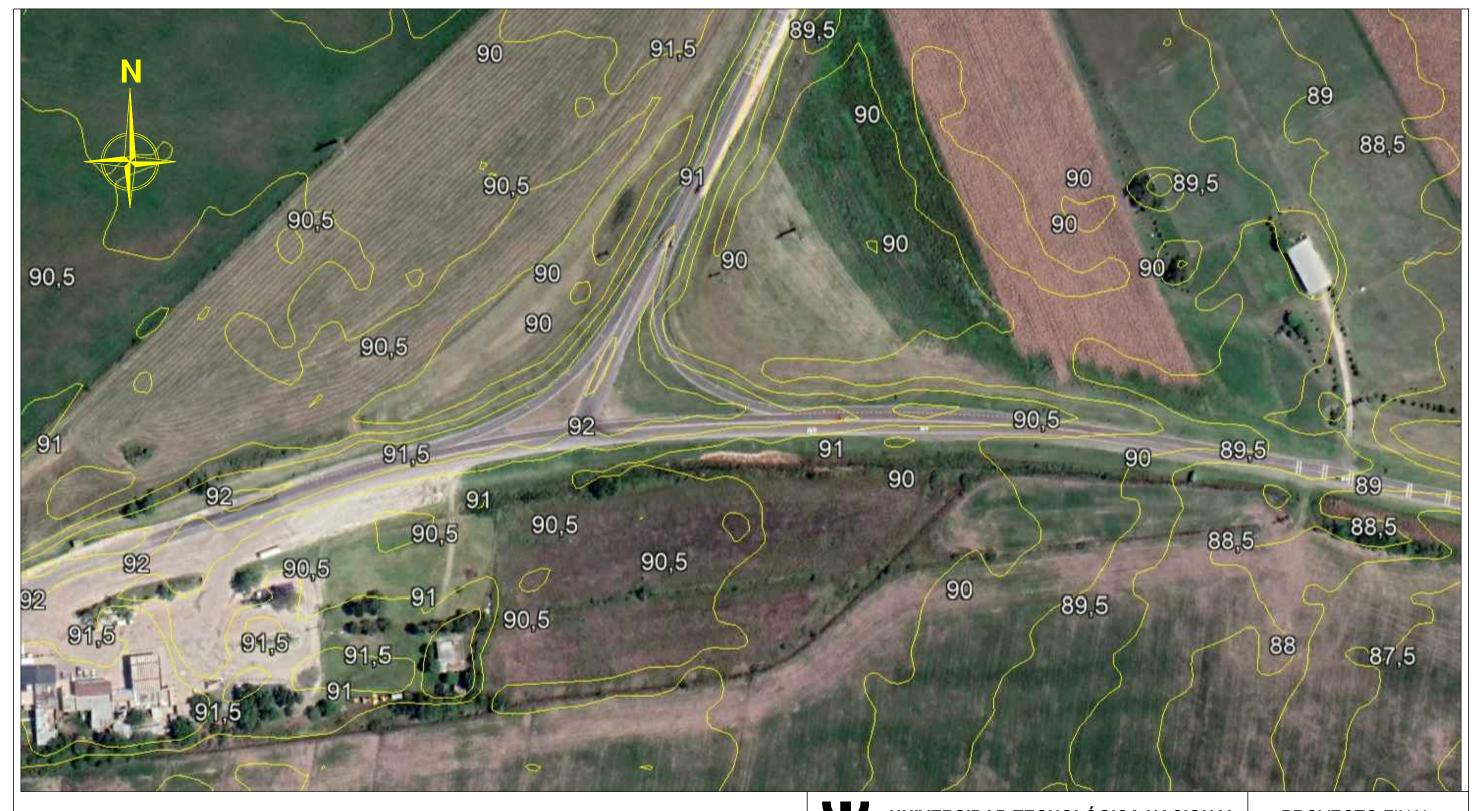
NIO		Impacto		Carácter	20: Calculo	Magn			Reversibilidad	Probabilidad de	7.77 A
N°	Acción del proyecto	Etapa	Factor ambiental	(+/-)	Intensidad (In)	Extensión (Ex)	Duración (Du)	Magnitud (Mg)	(Re)	ocurrencia (Oc)	VIA
1			Suelo	Negativo	2	2	2	2,00	5	10	-3,95
2			Actividad económica	Positivo	2	2	2	2,00	-	-	2,00
3			Escurrimiento de agua	Negativo	2	2	2	2,00	2	2	-2,00
4	Demoliciones	oliciones Constructiva	ane	Negativo	2	2	2	2,00	2	5	-2,45
5			Redes de servicios públicos	Negativo	2	2	5	2,60	2	5	-2,81
6			Paisaje	Negativo	2	2	2	2,00	5	10	-3,95
7			Red vial	Negativo	5	2	5	4,10	2	10	-4,46
8			Suelo	Negativo	5	2	2	3,50	5	10	-4,85
9			Actividad económica	Positivo	2	2	2	2,00	-	-	2,00
10			Escurrimiento de agua	Negativo	2	2	2	2,00	2	2	-2,00
11	Movimiento de suelo	Constructiva	Calidad del aire	Negativo	2	2	2	2,00	2	5	-2,45
12			Redes de servicios públicos	Negativo	5	2	2	3,50	2	2	-2,90
13			Paisaje	Negativo	2	2	5	2,60	5	5	-3,56
14			Red vial	Negativo	5	5	5	5,00	2	5	-4,25

7.10		Impacto		Carácter		Magn	nitud		Reversibilidad	Probabilidad de	
N°	Acción del proyecto	Etapa	Factor ambiental	(+/-)	Intensidad (In)	Extensión (Ex)	Duración (Du)	Magnitud (Mg)	(Re)	ocurrencia (Oc)	VIA
15			Suelo	Negativo	2	2	2	2,00	5	10	-3,95
16			Actividad económica	Positivo	2	2	2	2,00	-	-	2,00
17			Escurrimiento de agua	Negativo	5	2	2	3,50	2	5	-3,35
18	Pavimentación	Pavimentación Constructiva	Calidad del aire	Negativo	5	2	2	3,50	2	5	-3,35
19			Redes de servicios públicos	Negativo	2	2	2	2,00	2	2	-2,00
20			Paisaje	Negativo	2	2	2	2,00	2	5	-2,45
21			Red vial	Negativo	5	5	2	4,40	2	10	-4,64
22			Suelo	-	-	-	-	-	-	-	-
23			Actividad económica	Positivo	2	2	2	2,00	-	-	2,00
24			Escurrimiento de agua	-	-	-	-	-	-	-	-
25	señalización	Constructiva	Calidad del aire	-	-	-	-	-	-	-	-
26			Redes de servicios públicos	-	-	-	-	-	-	-	-
27			Paisaje	Negativo	2	2	2	2,00	2	2	-2,00
28			Red vial	Negativo	2	2	2	2,00	2	2	-2,00

1.10		Impacto		Carácter		Magn	itud		Reversibilidad	Probabilidad de	
N°	Acción del proyecto	Etapa	Factor ambiental	(+/-)	Intensidad (In)	Extensión (Ex)	Duración (Du)	Magnitud (Mg)	(Re)	ocurrencia (Oc)	VIA
29			Suelo	Negativo	2	2	10	3,60	5	10	-4,91
30			Actividad económica	Positivo	5	5	10	6,00	-	-	6,00
31	Presencia		Escurrimiento de agua	Positivo	2	2	10	3,60	-	-	3,60
32	física de la		Calidad del aire	-	-	-	-	-	-	-	-
33	obra	Redes de servicios públicos	-	-	-	-	-	-	-	-	
34			Paisaje	Positivo	5	2	10	5,10	-	-	5,10
35			Red vial	Positivo	5	5	10	6,00	-	-	6,00
36			Suelo	-	-	-	-	-	-	-	-
37			Actividad económica	Positivo	10	5	10	8,50	-	-	8,50
38			Escurrimiento de agua	Positivo	2	2	10	3,60	-	-	3,60
39	Función de las obras	Operativa	Calidad del aire	Negativo	2	2	10	3,60	2	2	-2,96
40	Jorus	Redes servici públic Paisa	Redes de servicios públicos	Positivo	5	2	10	5,10	-	-	5,10
41			Paisaje	Positivo	10	2	10	7,60	-	-	7,60
42			Red vial	Positivo	10	5	10	8,50	-	-	8,50




		Impacto		Carácter		Magn	itud		Reversibilidad	Probabilidad de	
N°	Acción del proyecto	Etapa	Factor ambiental	(+/-)	Intensidad (In)	Extensión (Ex)	Duración (Du)	Magnitud (Mg)	(Re)	ocurrencia (Oc)	VIA
43			Suelo	-	-	-	1	1	-	-	-
44	-	Actividad económica	Positivo	5	5	10	6,00	-	1	6,00	
45			Escurrimiento de agua	Positivo	2	2	10	3,60	-	-	3,60
46	Mantenimiento	Operativa	Calidad del aire	-	-	-	-	-	-	-	-
47		Redes de servicios públicos	servicios	-	-	-	-	-	-	-	-
48			Paisaje	-	-	-	-	-	-	-	-
49			Red vial	Negativo	2	2	2	2,00	2	2	-2,00



Anexo VII: Planos

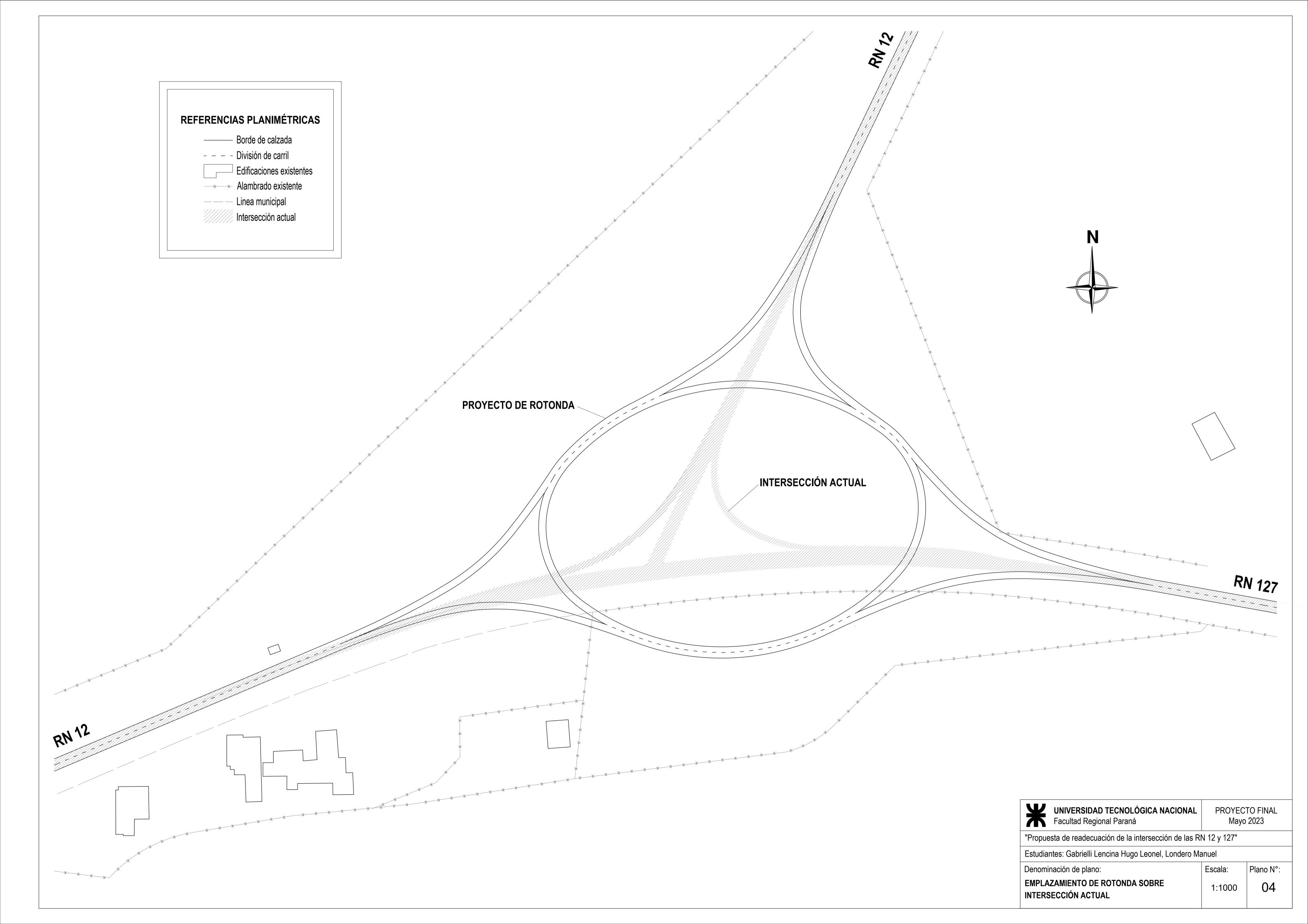
- Plano N°1: Ubicación de zona de proyecto
- Plano N°2: Planimetría de intersección actual
- Plano N^a3: Curvas de nivel de intersección actual
- Plano Nº4: Emplazamiento de rotonda sobre intersección actual
- Plano N°5: Planimetría general de rotonda
- Plano Nº6: Emplazamiento de trompeta sobre intersección actual
- Plano N°7-8: Planimetría general de trompeta
- Plano N°9: Detalle de paquete estructural
- Plano Nº10: Detalle de isletas para diseño hidráulico
- Plano Nº11: Detalles de alcantarillas
- Plano N°12: Esquema de señalización horizontal y vertical
- Plano N°13: Esquema de alumbrado público
- Plano N^a14: Área de influencia de proyecto
- Plano $N^{\circ}15 N^{\circ}18$: Perfiles transversales de rotonda
- Plano $N^{\circ}19 N^{\circ}22$: Perfiles transversales de trompeta
- Plano N°23: Esquema de puente de trompeta

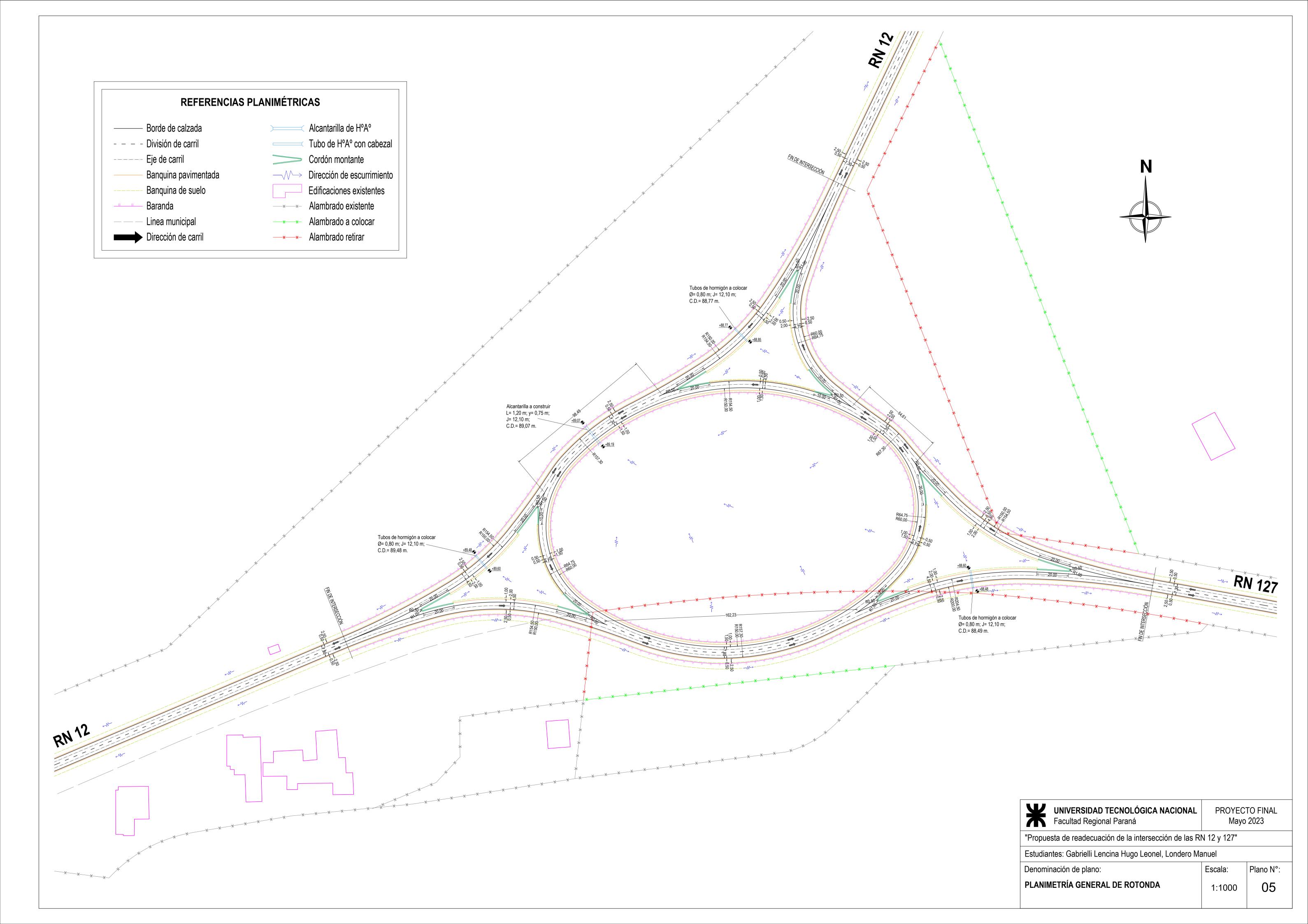
UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regional Paraná

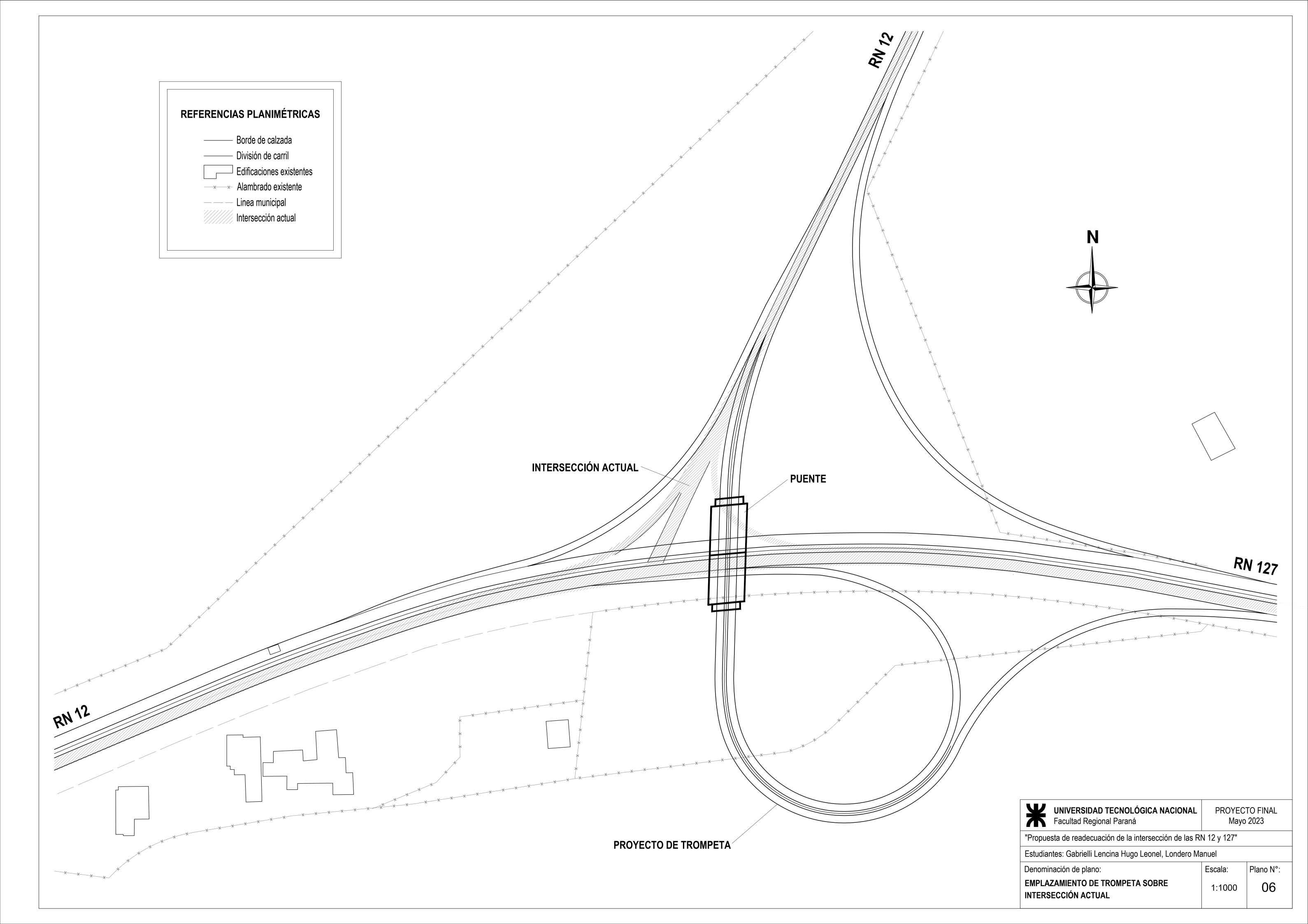
PROYECTO FINAL Mayo 2023

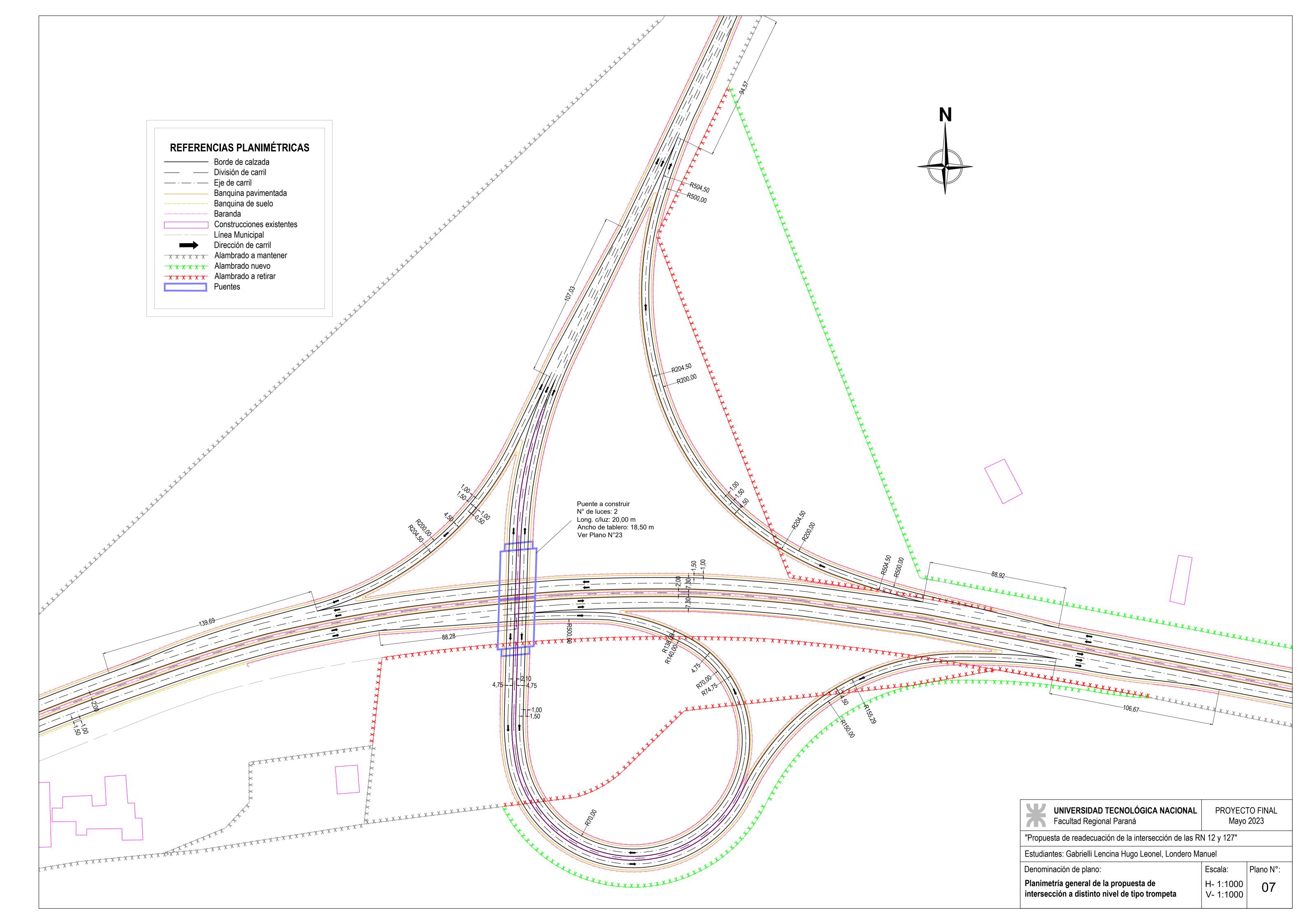
"Propuesta de readecuación de la intersección de las RN 12 y 127"

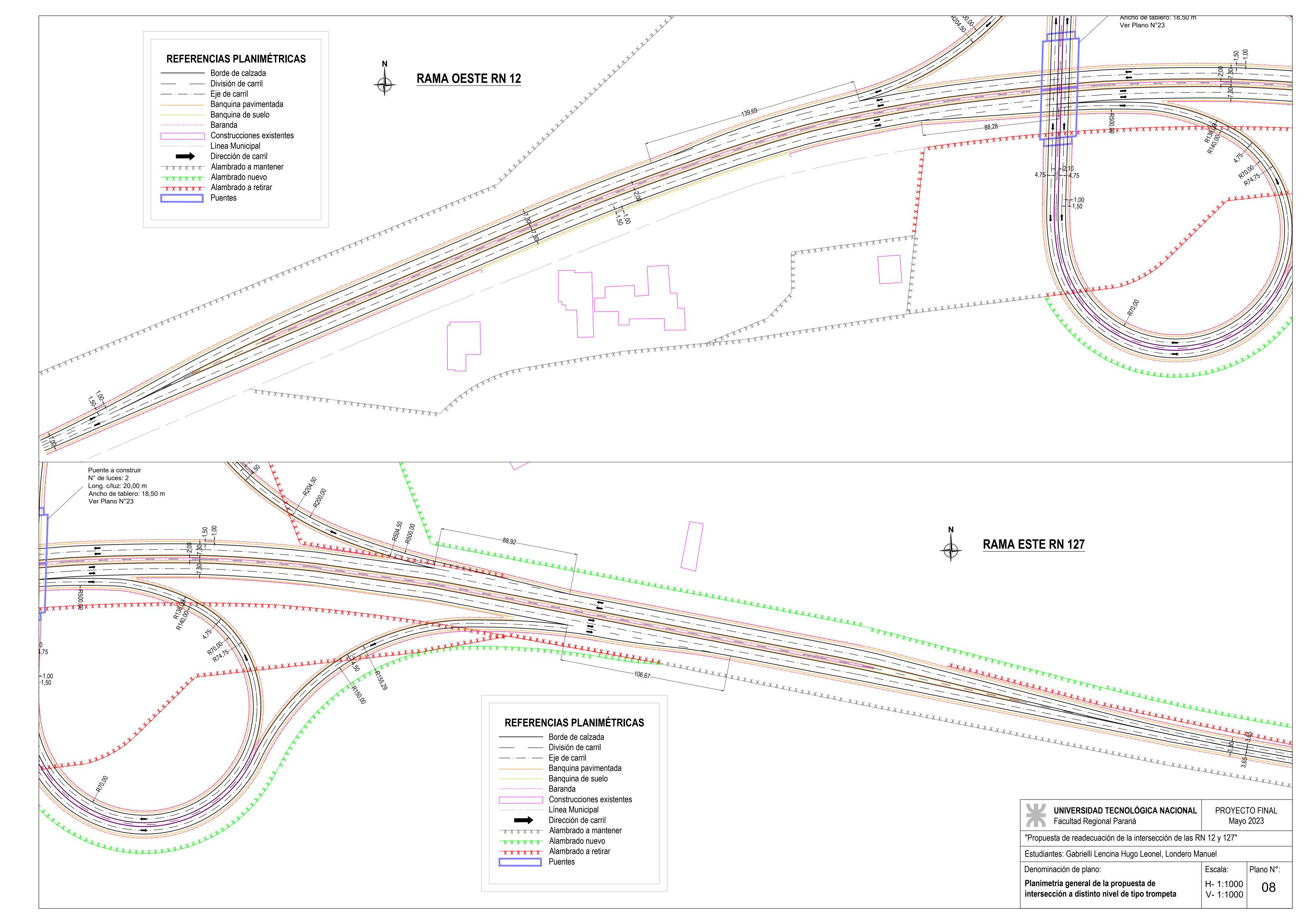
Estudiantes: Gabrielli Lencina Hugo Leonel, Londero Manuel

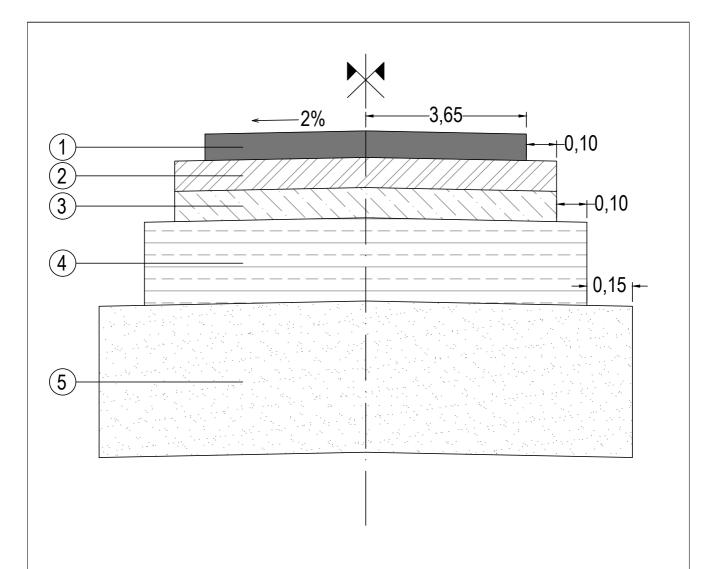

Denominación de plano:

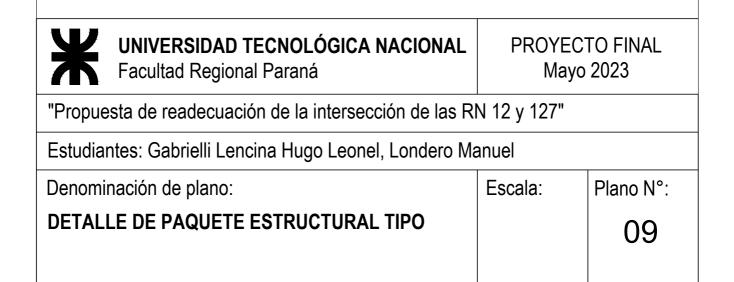

CURVAS DE NIVEL DE ZONA DE PROYECTO

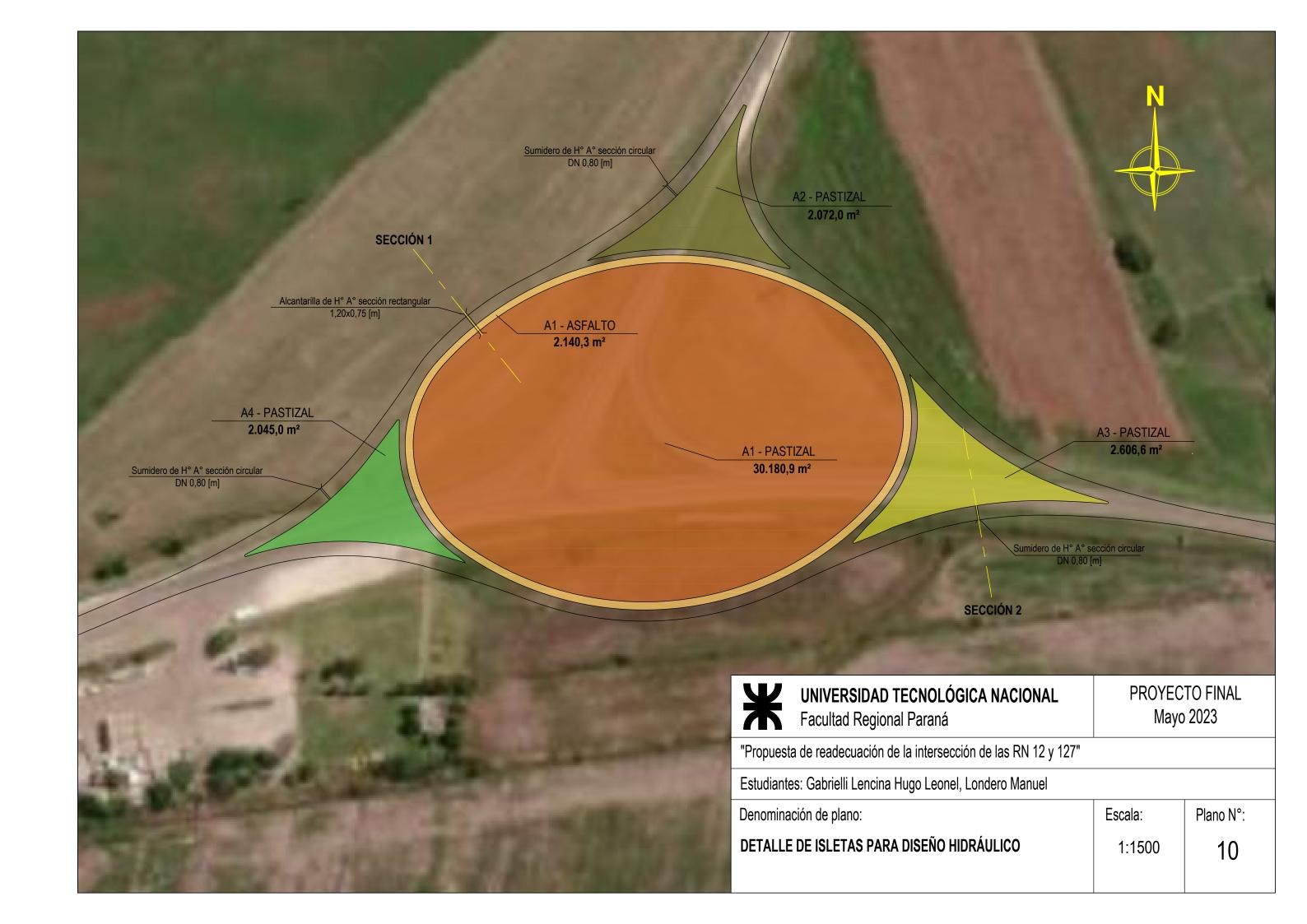

Escala:

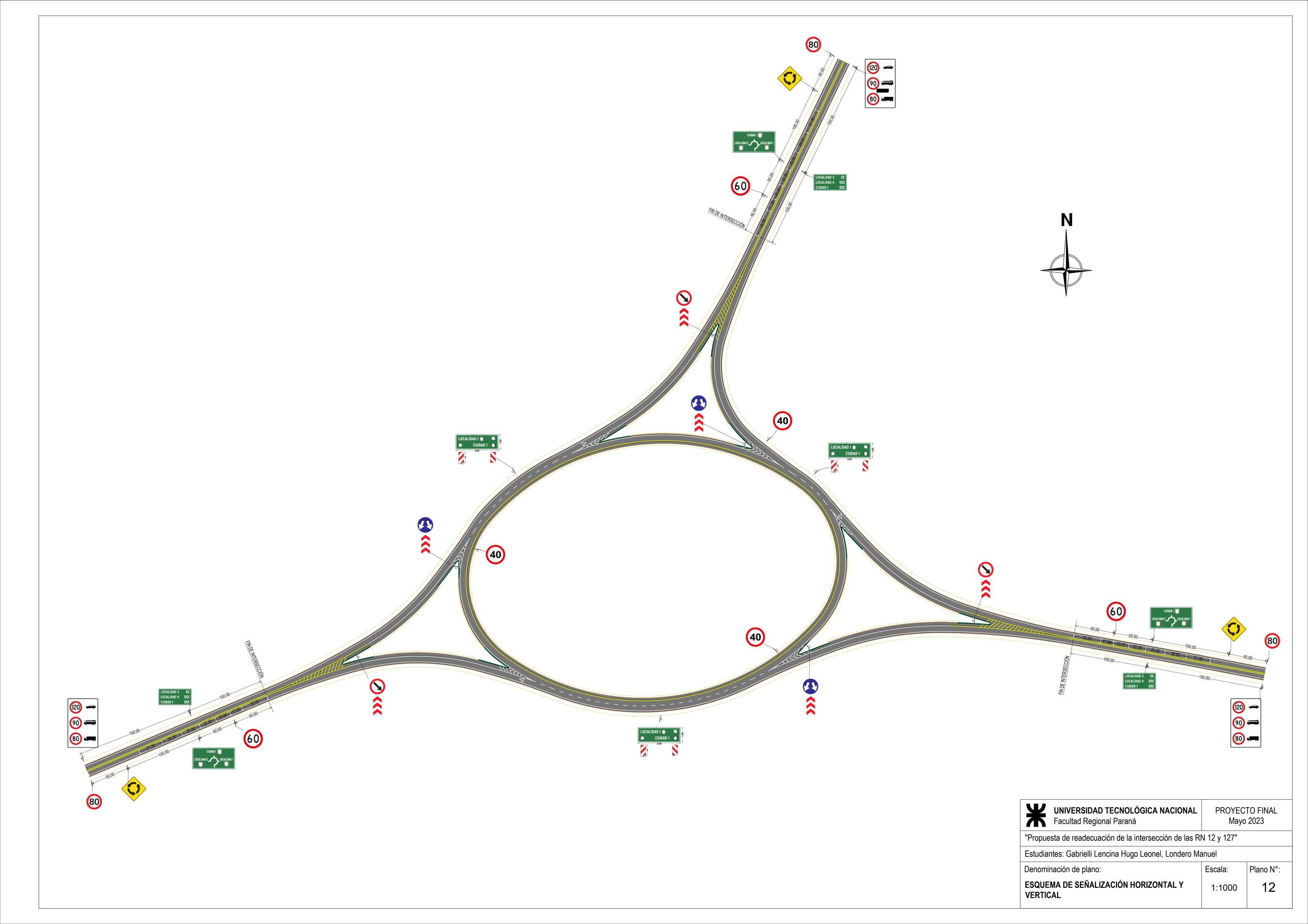

Plano N°:

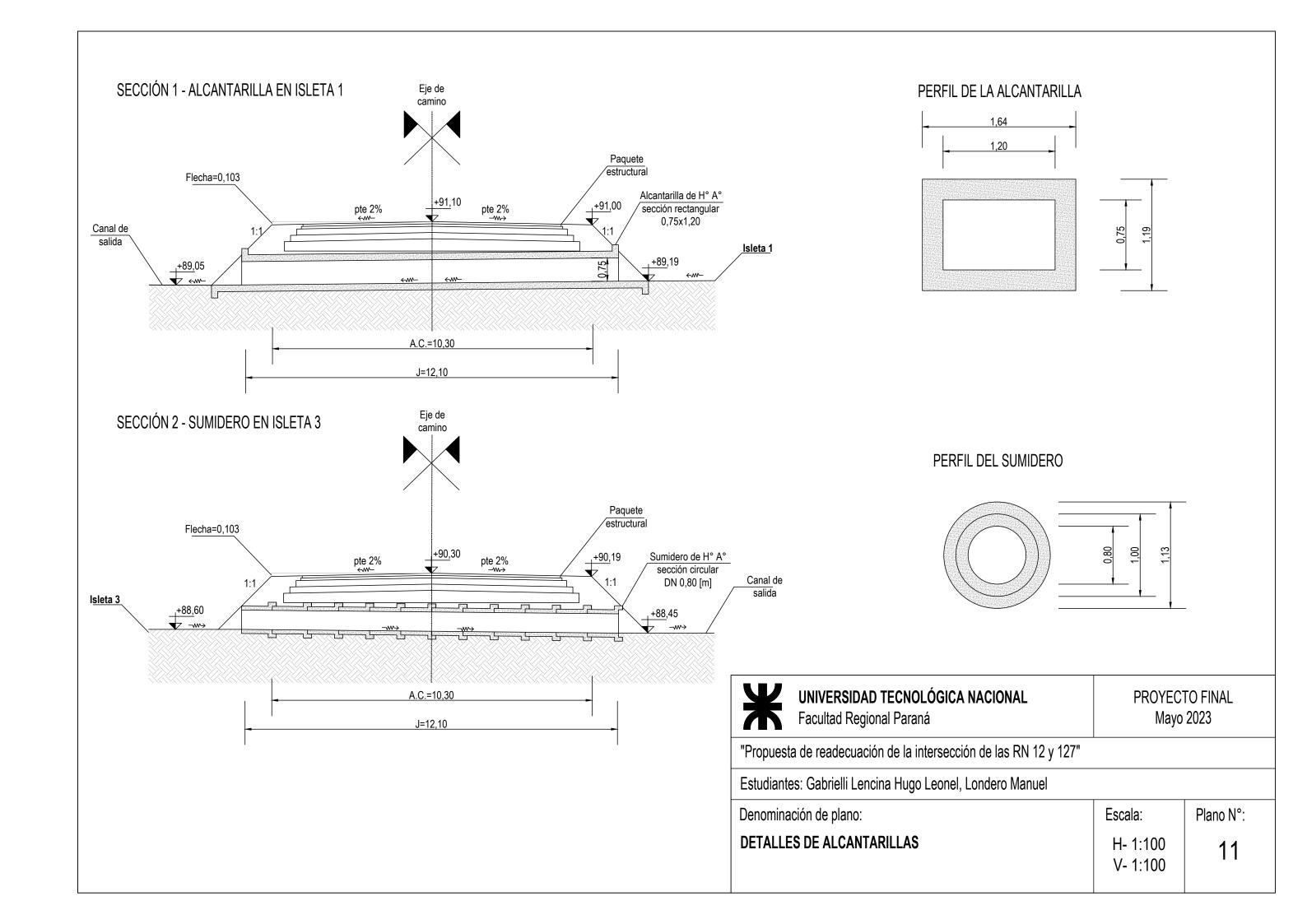

03

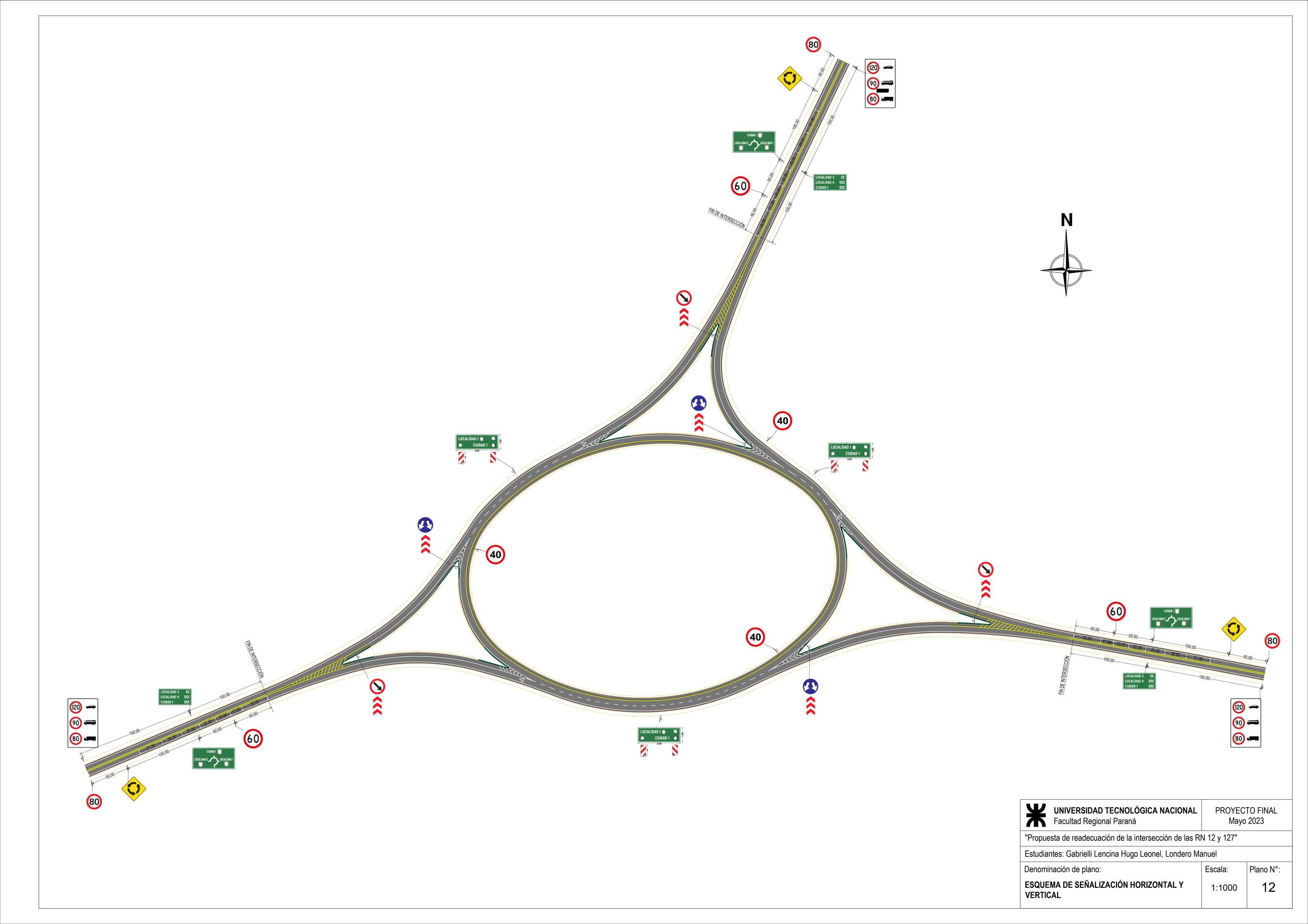


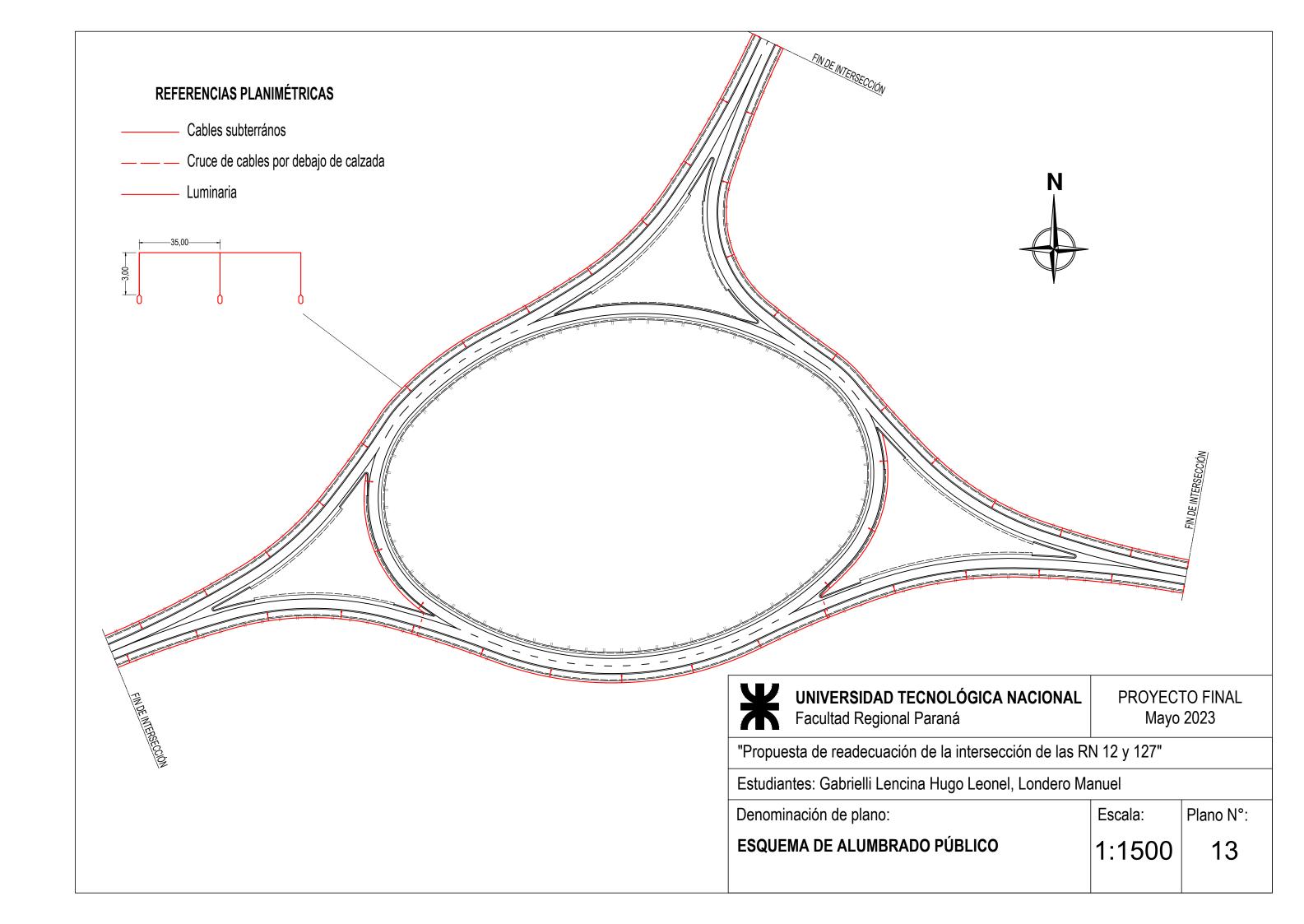









- 1) Carpeta asfáltica tipo Concreto asfáltico e = 7,00 cm
- 2 Base tipo Concreto asfáltico e = 8,00 cm
- (3) Base tipo Concreto asfáltico e = 8,00 cm
- 4 Base granular estabilizada con 3% de cemento e = 22,00 cm
- 5 Subbase granular VSR = 40% e = 40,00 cm



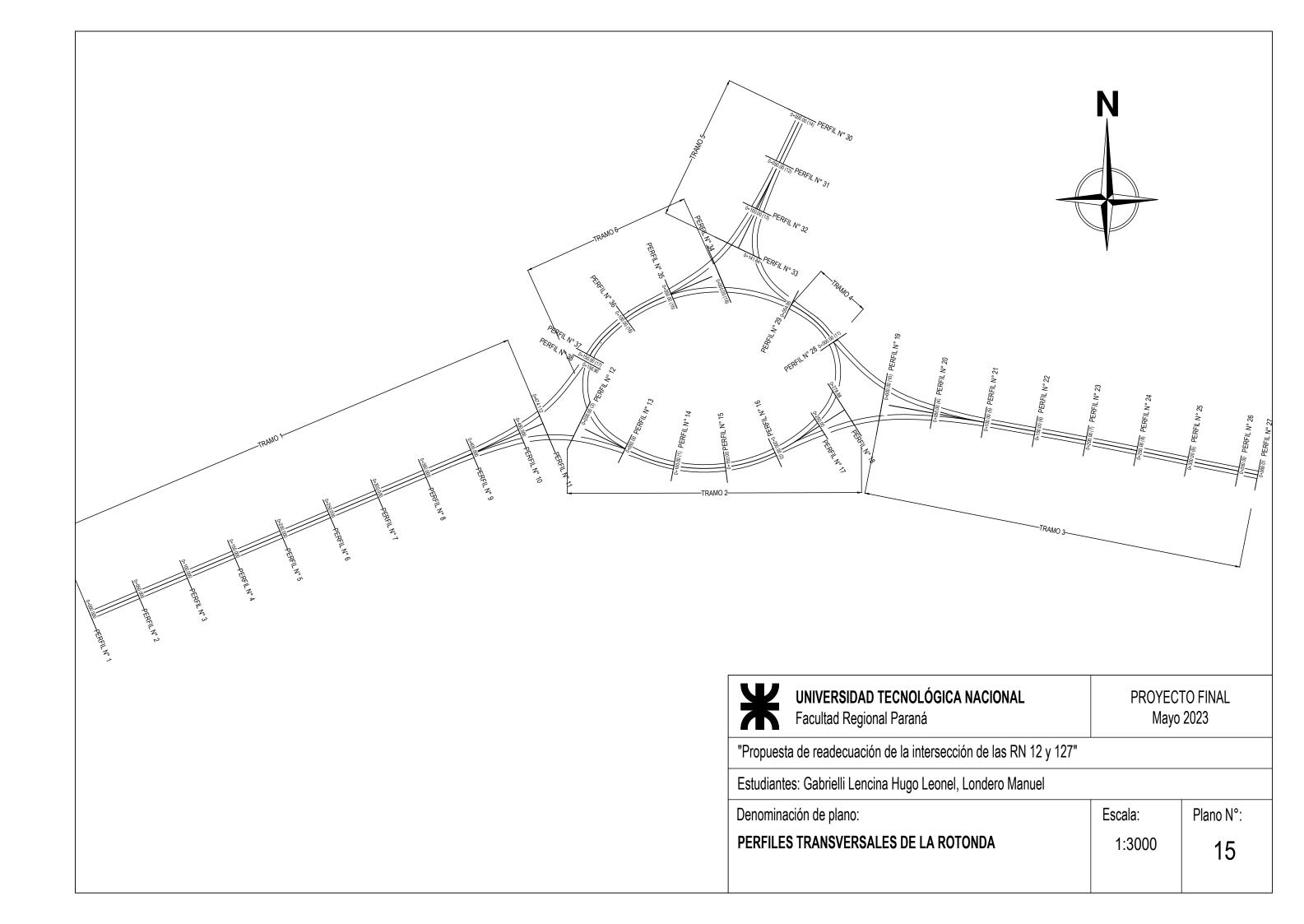
UNIVERSIDAD TECNOLÓGICA NACIONAL

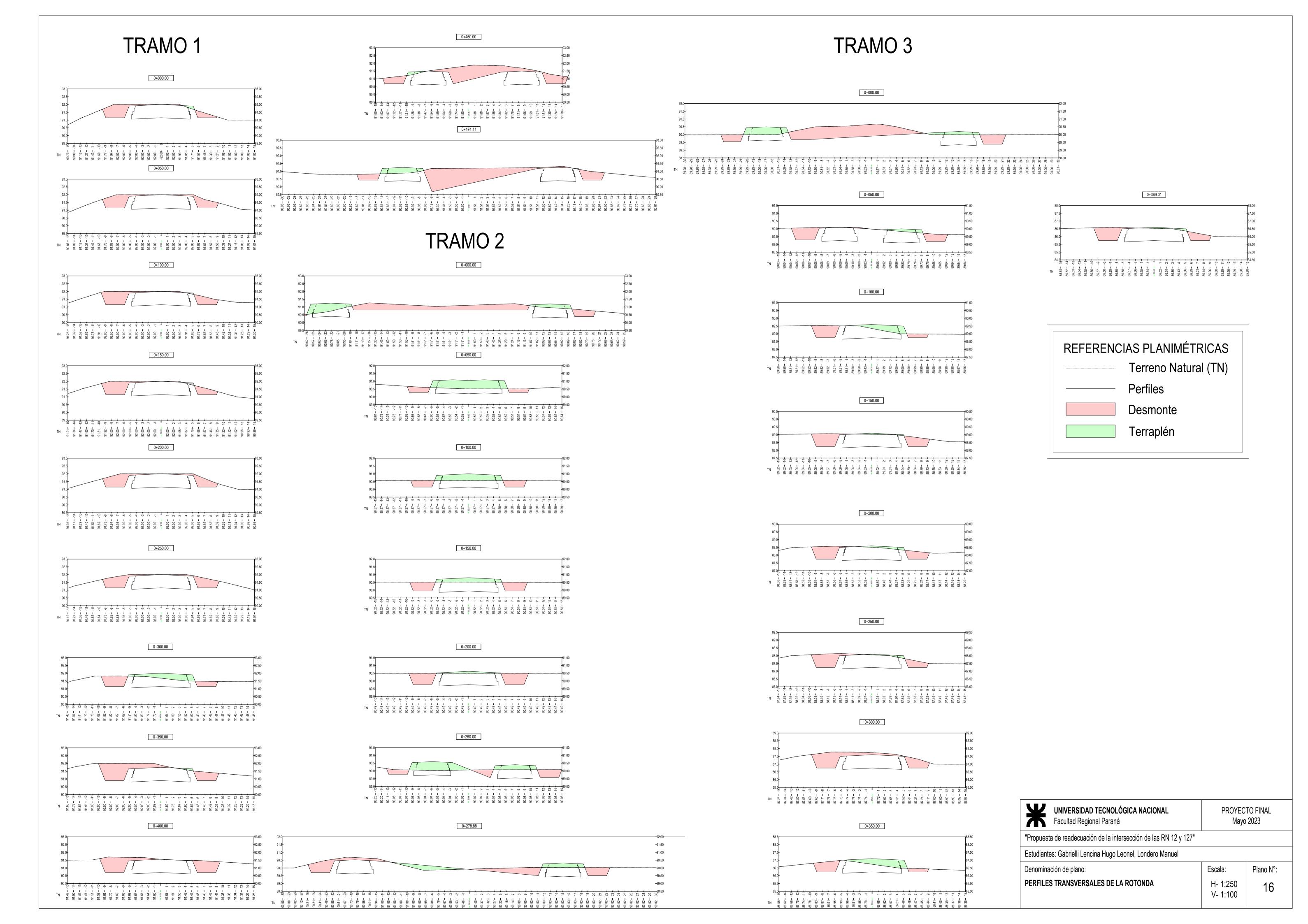
Facultad Regional Paraná

PROYECTO FINAL Mayo 2023

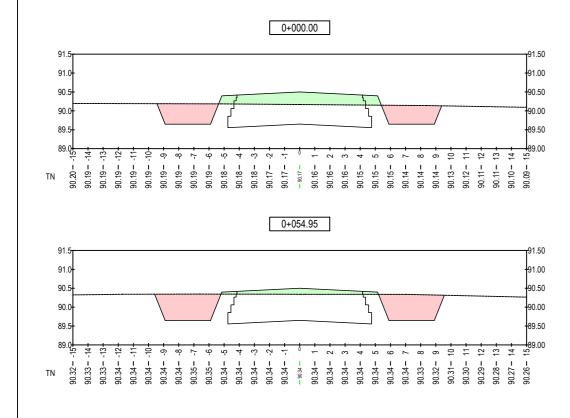
"Propuesta de readecuación de la intersección de las RN 12 y 127"

Estudiantes: Gabrielli Lencina Hugo Leonel, Londero Manuel

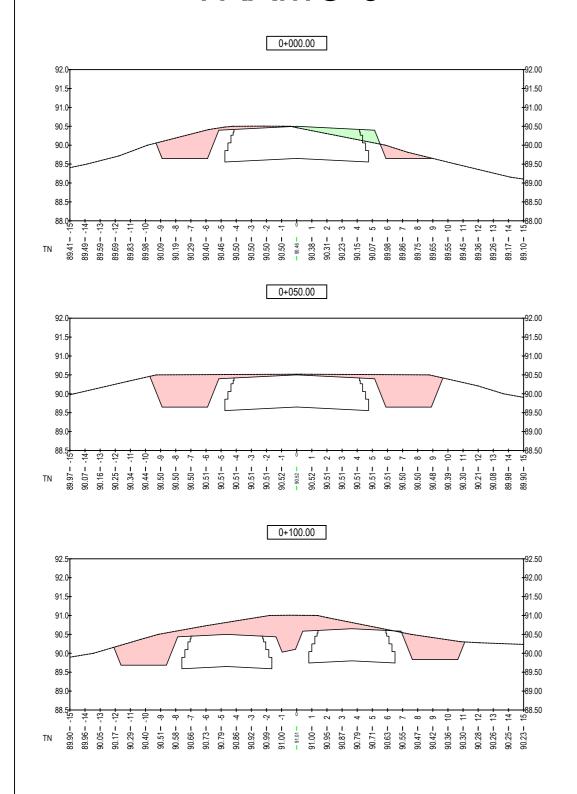

Denominación de plano:

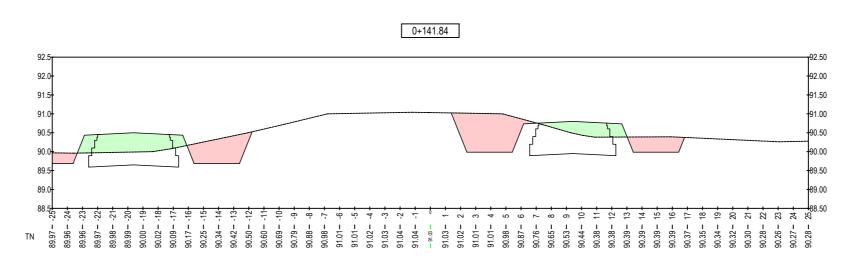

ÁREA DE INFLUENCIA DE PROYECTO

Escala:

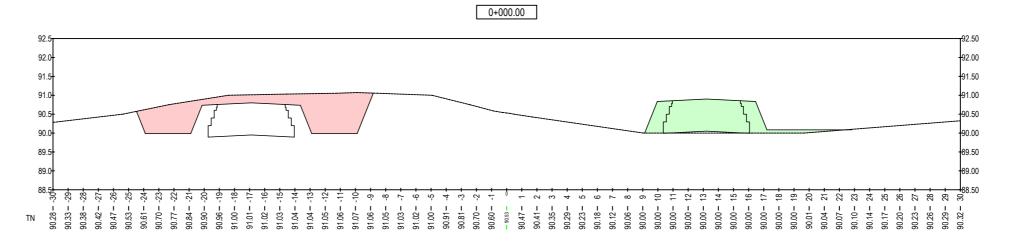

Plano N°:

15

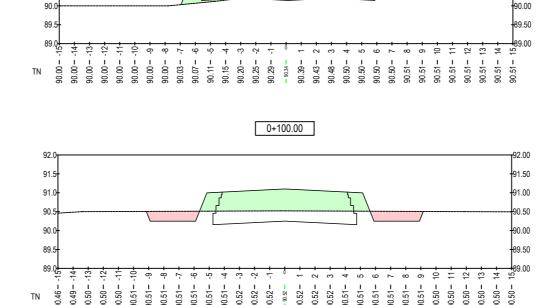


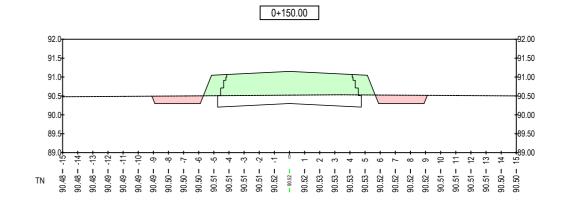


TRAMO 4



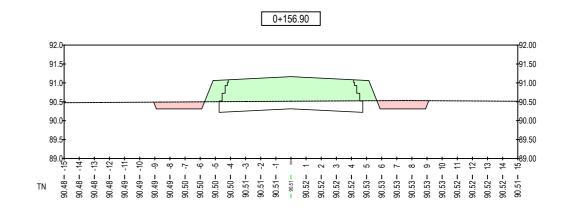
TRAMO 5



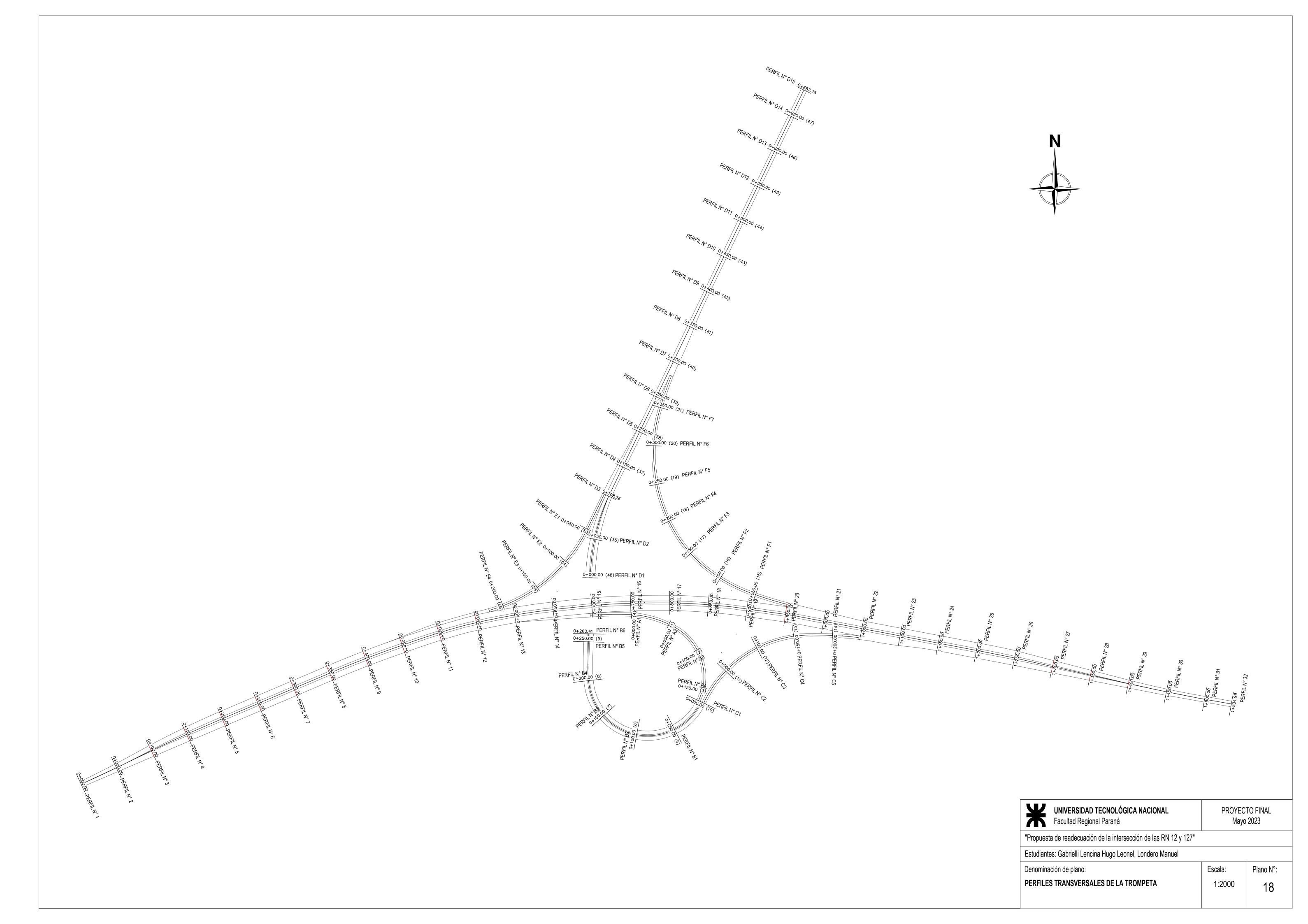


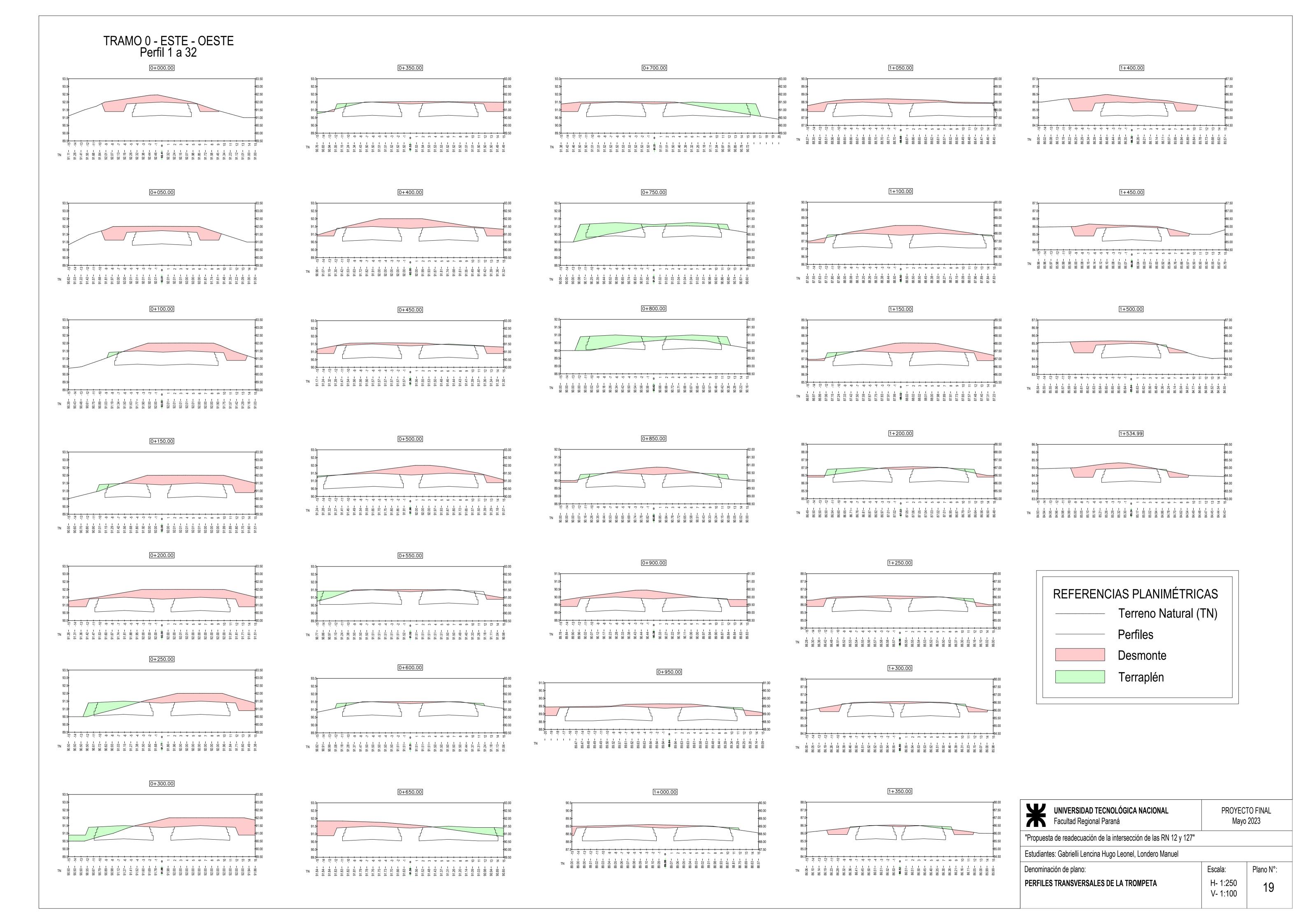
TRAMO 6

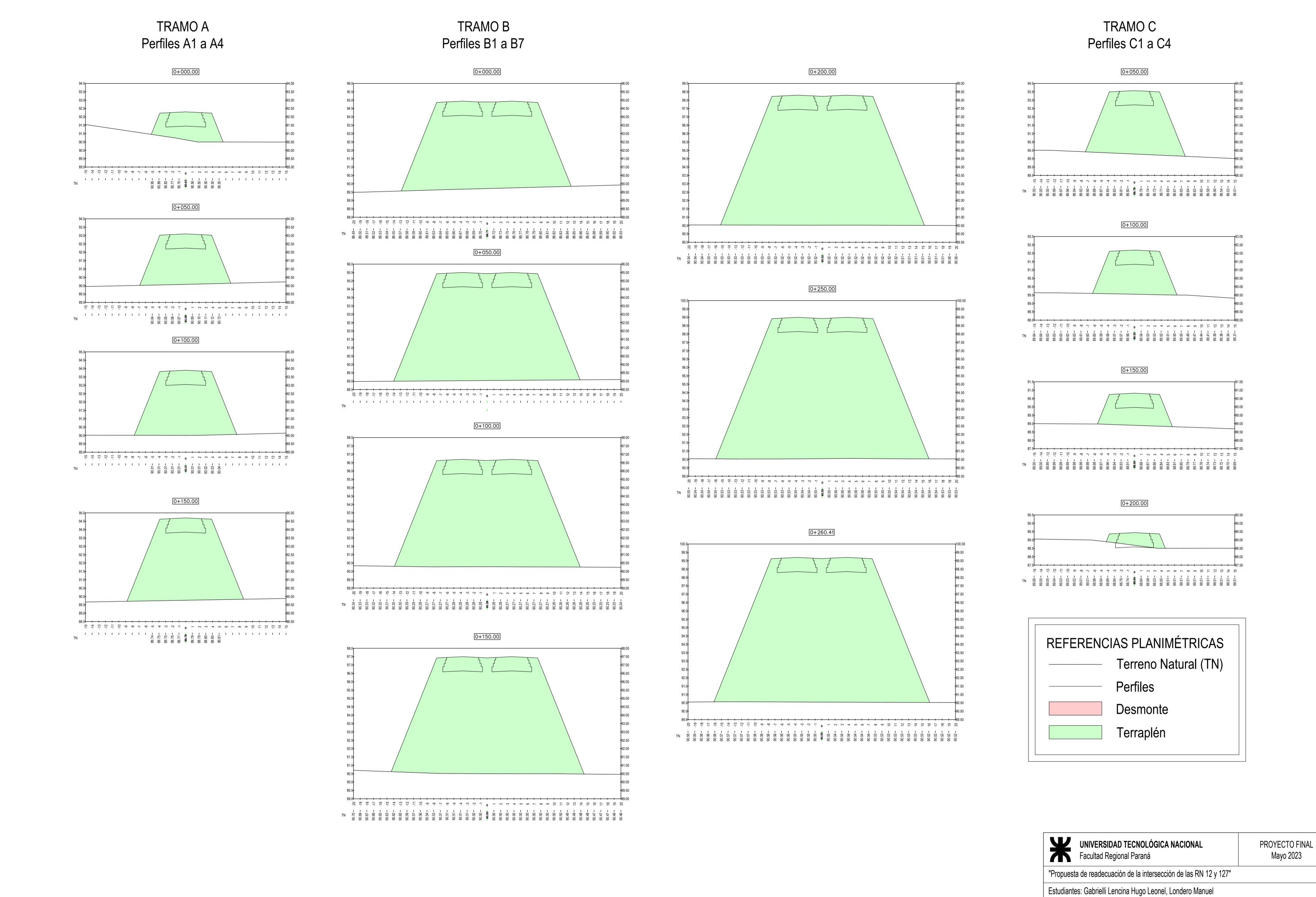
0+050.00


REFERENCIAS PLANIMÉTRICAS

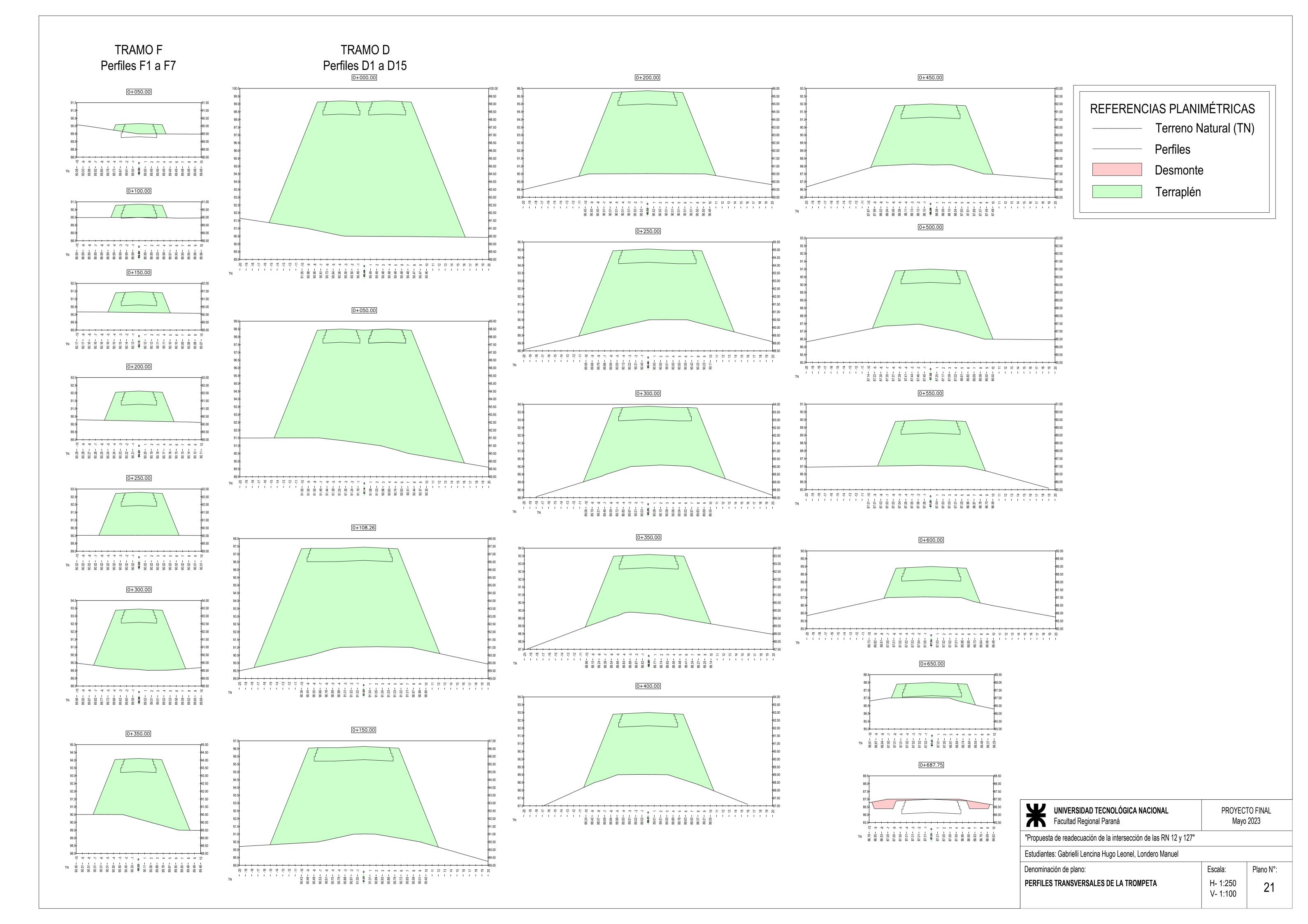
Perfiles


Desmonte

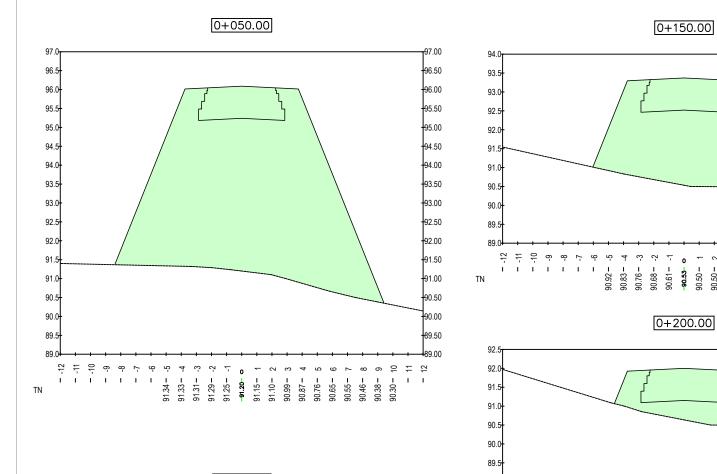

Terraplén

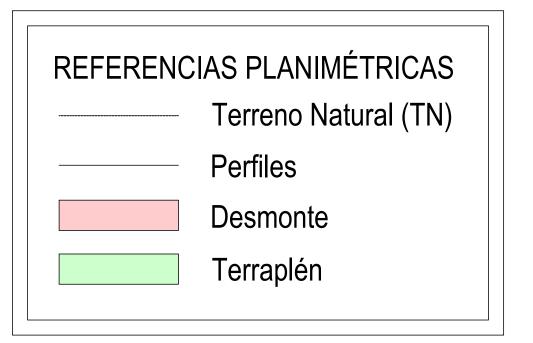

Terreno Natural (TN)

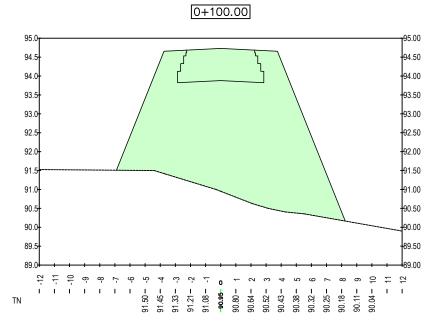
UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regional Paraná	PROYECTO FINAL Mayo 2023		
"Propuesta de readecuación de la intersección de las RN 12 y 127"			
Estudiantes: Gabrielli Lencina Hugo Leonel, Londero Manuel			
Denominación de plano:	Escala:	Plano N°:	
PERFILES TRANSVERSALES DE LA ROTONDA	H- 1:250 V- 1:100	11	



Denominación de plano:


PERFILES TRANSVERSALES DE LA TROMPETA


Escala:


H- 1:250 V- 1:100 Plano N°:

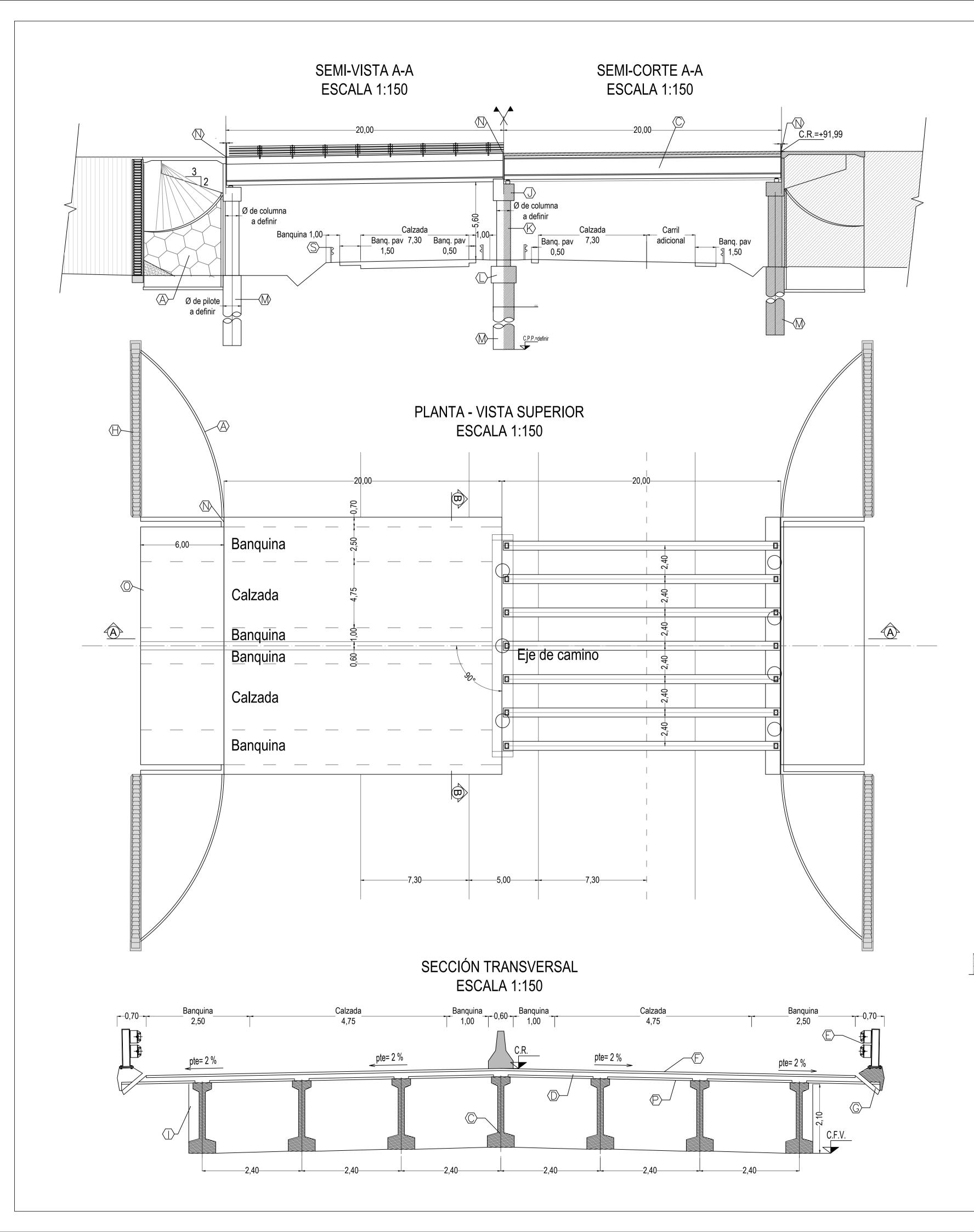
TRAMO E Perfiles E1 a E4

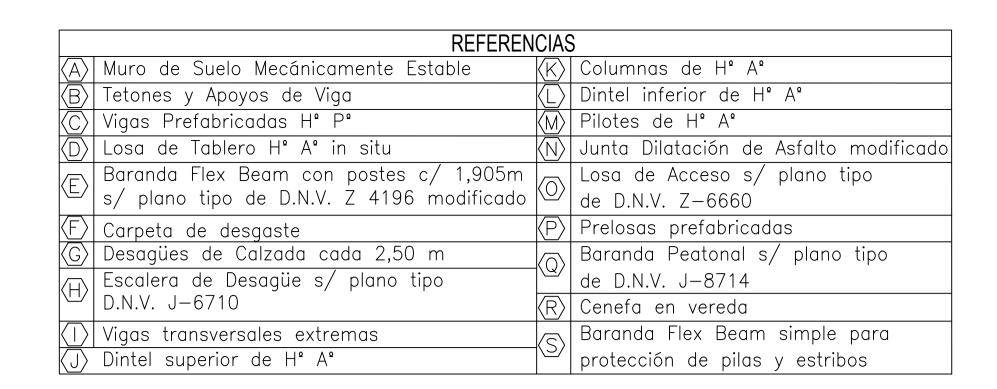
PROYECTO FINAL Mayo 2023

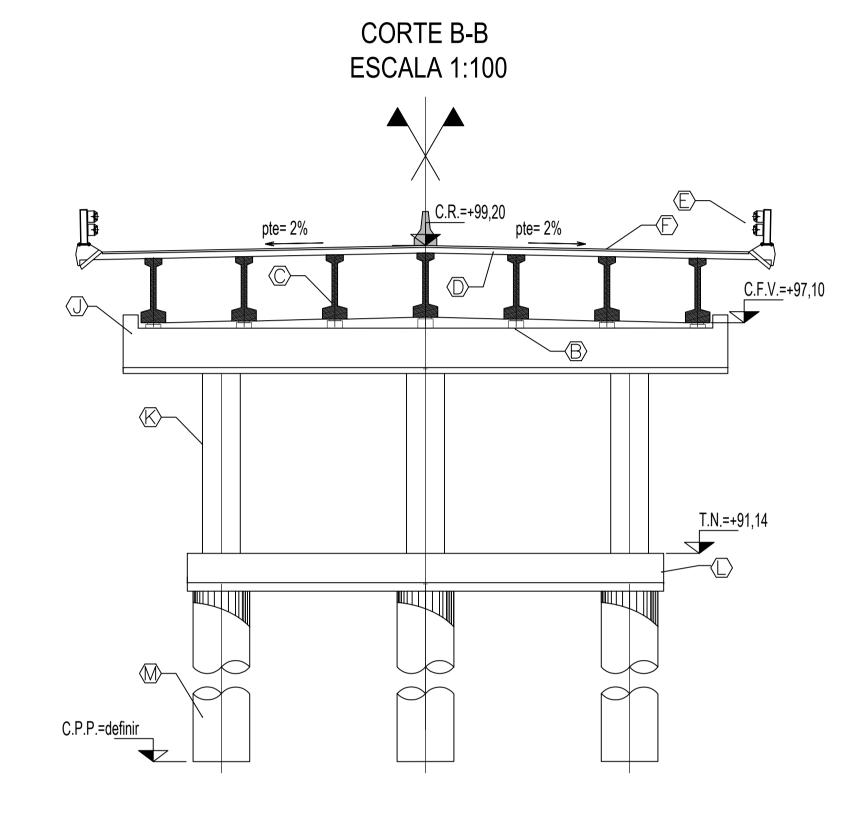
"Propuesta de readecuación de la intersección de las RN 12 y 127"

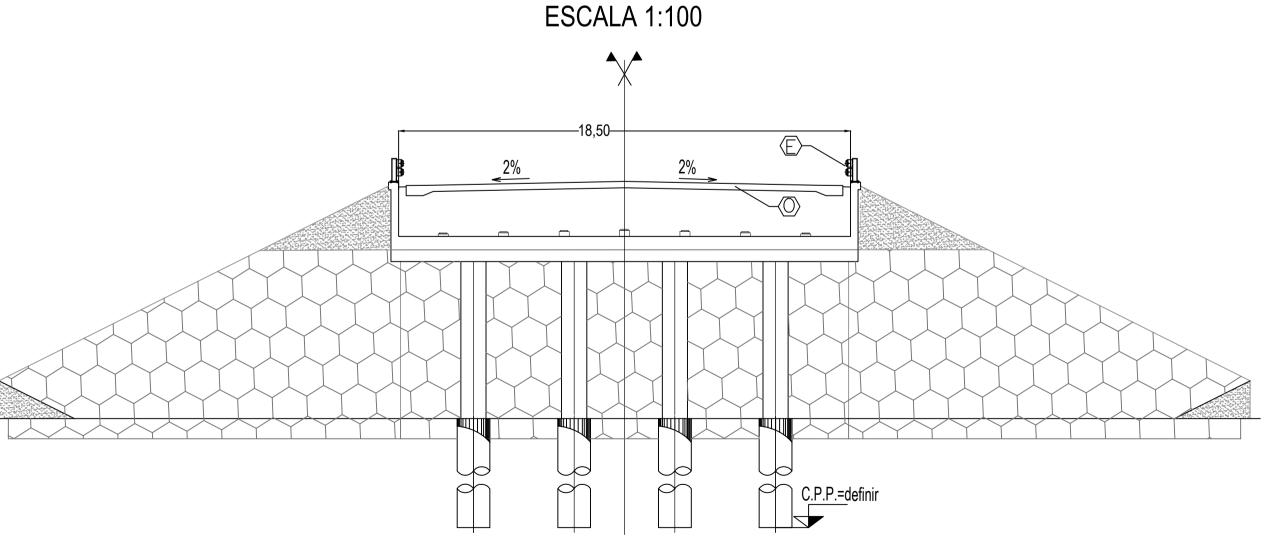
Estudiantes: Gabrielli Lencina Hugo Leonel, Londero Manuel

Denominación de plano:


PERFILES TRANSVERSALES DE LA TROMPETA


Escala:


Plano N°:


H- 1:250 V- 1:100

22

VISTA FRONTAL DE ESTRIBO

