
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 

for all other uses, in any current or future media, including reprinting/republishing this material 

for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works. 

 

This document contains the accepted version of the paper: 

J. Esarte, P. D. Folino and J. C. Gómez, "Moving in a Simulated Environment Through Deep 

Reinforcement Learning," 2022 IEEE Biennial Congress of Argentina (ARGENCON), San Juan, 

Argentina, 2022, pp. 1-6, doi: 10.1109/ARGENCON55245.2022.9939868.  



Moving in a Simulated Environment Through Deep 

Reinforcement Learning 

 

Javier Esarte 

Grupo de Inteligencia Artificial y Robótica 

National Technological University 

Ciudad de Buenos Aires, Argentina 

esart@frba.utn.edu.ar

Pablo Daniel Folino 

Grupo de Inteligencia Artificial y Robótica 

National Technological University  

Ciudad de Buenos Aires, Argentina 

pfolino@gmail.com 

Juan Carlos Gómez 

Grupo de Inteligencia Artificial 

National Institute of Industrial Technology  

San Martín, Argentina 

juanca@inti.gob.ar 

 

Abstract— Reinforcement learning is a field of artificial 

intelligence that is continuously evolving and has a wide variety 

of applications. In recent years major progress has been made 

in the application of deep reinforcement learning to high-

dimensional problems with continuous state and action spaces. 

This paper presents a complete analysis of the application of the 

soft actor-critic algorithm to teach a four legged robot with three 

joints on each leg how to move towards the center of a virtually 

simulated environment. The general formulation of the 

reinforcement learning problem is first presented, followed by 

the description of the environment under analysis and the 

applied algorithm. Afterwards, the obtained results are 

compared against those of a manually programmed policy, 

closing with a discussion of some key design choices and 

common challenges. 

Keywords—deep reinforcement learning, soft actor-critic, 
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I. INTRODUCTION 

A. Reinforcement Learning 

From the beginning of Artificial Intelligence, the idea of 
making a machine learn was beguiling. In the earliest '70s at 
Air Force Cambridge Research Laboratories, A. Harry Klopf 
proposed a new theory on intelligent adaptive systems [1]. His 
pioneering work provided a framework to understand 
neurophysiological, psychological and sociological properties 
of a living adaptive system. In the end of his book he made an 
analysis and review of Neural Nets and Heuristic 
Programming Studies approaches for the modeling and 
synthesis of learning and adaptive cybernetic systems. Sutton 
and Barto, in the late '70s, picked up the gauntlet and tackled 
the issue of machine learning and established its foundation. 
As they expressed in their book [2] about the simplest concept 
behind adaptive and learning systems: "This was simply the 
idea of a learning system that wants something, that adapts its 
behavior in order to maximize a special signal from its 
environment". This kind of "hedonistic" point of view was 
later called Reinforcement Learning. 

Many new reinforcement learning algorithms were 
developed from Sutton and Barto. Those new algorithms 
faced different problems in a great diversity of disciplines [3]. 
Despite the success of this approach, reinforcement learning 
problems with discrete states and actions faced the curse of 
dimensionality when the number of states and actions 
increases [4]. For continuous problems, techniques using 
parametric and nonparametric functions were developed. 
Some of them used Artificial Neural Networks (ANN) as 
function estimators to represent states, actions and policies 
learned [5]. 

Robotics is a good field for algorithm development in the 
area of reinforcement learning [6], especially for problems 
related to the design of complex behaviors, and even more so 
for those that face dynamic environments. Reinforcement 
learning algorithms provide a good trade-off solution by 
telling the robot what to do, through a reward function, and 
allowing it to learn how to do it by interacting with the 
environment. Heess et al [7] go further into this concept, 
saying that complex behaviors emerge from simple reward 
signals and challenge the agent learning with progressively 
more and more complex environments. 

Another remarkable thing about reinforcement learning is 
that the "knowledge" gained during the learning process in the 
simulation stage can be transferred to the real robot. 
Therefore, it is not necessary to carry out the entire learning 
process in a physical robot, which can be initially replaced by 
a simulated model. Neither is it necessary to start from zero, it 
is possible to transfer knowledge from a human expert (if there 
exists) to an agent through instrumented command, literally 
copying the expert actions observed in real interactions. This 
saves time and money, while only requiring the agent’s model. 

B. Deep Reinforcement Learning 

The first algorithm to successfully apply neural networks 
to reinforcement learning was the Deep Q-Network (DQN) 
algorithm [8], which optimized a neural network to estimate 
the state-action value function by sampling from a replay 
buffer, while the policy evaluated all possible actions in a 
discrete action space and selected the one that produced the 
highest state-action value. 

Later, the Double DQN algorithm [9] introduced a change 
that reduced overestimation by adding a second set of weights 
for the state-action value function network and alternating on 
each learning step the weights between the online network 
(used to determine the optimal action) and the target network 
(used to estimate the state-action value). 

There are also other algorithms like A3C [10] and TRPO 
[11], where the policy is explicitly represented and is 
optimized in order to maximize the objective function. These 
are called policy based methods, while the ones that try to 
determine the state value function or the state-action value 
function are called value based methods. 

Both approaches have pros and cons, while policy based 
methods are more stable because they optimize directly the 
policy, value based methods find the policy indirectly but 
reuse data gathered more efficiently. Some algorithms 
combine both approaches like the deep deterministic policy 
gradient (DDPG) algorithm [12], which extends the structure 
presented by the DQN algorithm by combining it with 
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deterministic policy gradients and replacing the discrete action 
space used by previous algorithms by a parameterized 
function represented by a neural network allowing the use of 
continuous action spaces. 

The soft actor-critic (SAC) algorithm [13][14], which will 
be explained in more detail in the following sections, shares a 
similar structure with the DDPG algorithm but replaces the 
deterministic policy by a stochastic one in order to regulate 
exploration according to the policy’s entropy. 

C. Project Context 

The Grupo de Inteligencia Artificial y Robótica of the 
Universidad Tecnológica Nacional hosts a number of research 
and development projects focused on the application of 
reinforcement learning to simulated and physical robots. One 
of the group’s first projects in this area targeted the planar 
motion of wheeled robots of different topologies. In recent 
years research on legged robots has begun with the objective 
of applying them to a variety of different surfaces and 
environment. The present paper conveys the results of the first 
stage of this project, the objective of which is the development 
of the framework required to carry out the agent’s training in 
a simulated environment. 

II. METHODS 

A. The Reinforcement Learning Problem 

The reinforcement learning problem consists in finding the 
optimum policy, which directs the acting of an agent, in order 
to maximize the expected cumulative reward obtained from 
the agent’s interactions with its environment. 

A complete description of the environment on a given 
instant defines a state, and the set of all possible states defines 
the state space 𝒮. Similarly, the set of all the possible actions 
an agent can take in the environment defines the action space 
𝒜. 

A trajectory τ, also called episode, is the sequence of 
observed states and actions that begin in an initial state and 
span until a terminal state is reached or a maximum number 
of steps has been executed. 

The reward function 𝑟: 𝒮×𝒜×𝒮→ℝ associated to the 

environment represents the quality of the state transition 
produced by the agent’s action. Equation (1) represents the 
infinite-horizon discounted return, the exponentially weighted 
average of all the obtained rewards in a given trajectory, with 
discount factor γ. 

 𝑅(𝜏) = 𝑙𝑖𝑚
𝑇→∞

∑ 𝛾𝑡  𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)

𝑇

𝑡=0

 

The state value function is a function 𝑉𝜋: 𝒮→ℝ defined by 

(2), which represents the expected return of a trajectory 
obtained by beginning in an initial state 𝑠 and always acting 
according to the policy 𝜋. 

 𝑉𝜋(𝑠) = 𝔼𝜏~𝜋[𝑅(𝜏) | 𝑠0 = 𝑠] 

The state-action value function, also known as Q-function, 

is a function 𝑄𝜋: 𝒮×𝒜→ℝ defined by (3), which represents 

the expected return of a trajectory obtained by beginning in an 

initial state 𝑠, taking an arbitrary initial action 𝑎 and afterwards 
acting by following the policy 𝜋.  

 𝑄𝜋(𝑠, 𝑎) = 𝔼𝜏~𝜋[𝑅(𝜏) | 𝑠0 = 𝑠, 𝑎0 = 𝑎] 

The policy is the set of rules followed by the agent in order 
to choose its next action. Furthermore, it is possible to define 
the optimal policy as the arguments that maximize the state-
action value function. 

Finally, the Bellman equations (4) and (5) are a pair of 
self-consistency equations that recursively connect the state 
and state-action value functions to their values one step later.  

 𝑉𝜋(𝑠𝑡) = 𝔼𝑠𝑡+1~ℙ(⋅|𝑠𝑡){𝔼𝑎𝑡~𝜋[𝑟(𝑠𝑡, 𝑎𝑡 , 𝑠𝑡+1)] + 𝛾 𝑉𝜋(𝑠𝑡+1)} 

 𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝑠𝑡+1~ℙ(⋅|𝑠𝑡,𝑎𝑡){𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛾 𝔼𝑎𝑡+1~𝜋[𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)]} 

B. The Environment 

The environment is formed by an agent and the horizontal 
plane on which it moves. The agent’s objective is to reach 
within a certain radius of the environment’s center. 

The agent, presented in Fig. 1, models a tetrapod robot 
with three degrees of freedom on each leg. The first joint 
controls the leg’s position relative to the main body, while the 
remaining joints control the angle between adjacent leg 
segments. Each joint is capable of moving up to 45° in each 
direction with respect to the rest position.  

The state space comprises the agent’s position, the agent’s 
orientation and the position of each of the agent’s motor 
controlled joints, while the action space is composed of the 
target positions for all of the agent’s joints. 

The reward, defined in (6), is proportional to the change in 
the distance to the origin, except when the agent reaches the 
center position, in which case it receives the remaining 
distance as an additional. 

 𝑟(𝑑𝑡 , 𝑑𝑡+1) =  {
100(𝑑𝑡 − 𝑑𝑡+1) 𝑠𝑖 𝑑𝑡 > 0,1

100𝑑𝑡 𝑠𝑖 𝑑𝑡 ≤ 0,1
 

  

Fig. 1. Agent’s model in rest position, dimensions and movement limits. 



C. The Reinforcement Learning Algorithm 

The agent was trained using the soft actor-critic algorithm 
[14]. As other actor-critic algorithms, it divides its 
functionalities in two separate blocks: the actor, which selects 
the next action to be performed by the agent from the agent’s 
policy, and the critic, which evaluates the expected return of 
the action from the state-action value function. 

Both the policy and the state-action value function are 
estimated by multilayered artificial neural networks, which 
provide a flexible way to represent parameterized functions. 
The stochastic policy network outputs a sample taken from a 
flattened Gaussian distribution (7), whose mean value μ and 
standard deviation σ are internally estimated by densely 
connected layers from the current state of the environment. 
The state-action value function network is composed by two 
independently trained, densely connected, subnetworks that 
estimate the state-action value, the minimum of which is then 
taken as the network’s output, to reduce overestimation and 
improve the algorithm’s convergence [15]. 

 𝜋(⋅ |𝑠𝑡) = 𝑡𝑎𝑛ℎ (𝒩(𝜇(𝑠𝑡), 𝜎(𝑠𝑡))) 

Learning is achieved through an iterative process of policy 
application, shown in Fig. 2, and policy improvement, shown 
in Fig. 3. During policy application the agent acts in the 
environment, storing all state transitions in the replay buffer. 
Later the policy is improved by sampling the replay buffer and 
sequentially training the state-action value function neural 
network by stochastic gradient descent on (8) and the policy 
neural network by stochastic gradient descent on (9). 

 𝐿𝑄 = {𝑄𝜋(𝑠𝑡, 𝑎𝑡) − [𝑟𝑡 + 𝛾 (1 − 𝑒𝑛𝑑𝑡) 𝑉𝑡𝑎𝑟𝑔𝑒𝑡
𝜋 (𝑠𝑡+1)]}

2
 

  

Fig. 2. Data flow during policy application. For each step, the policy selects 

for the current state st the next action at, which is then executed in the 
environment producing the reward rt, the next state st+1 and the flag endt that 

signals if the reached state is terminal. Afterwards the obtained state 

transition tuple is stored in the replay buffer and the algorithm proceeds to 
the next step. 

  

Fig. 3. Data flow during policy improvement. For each training step, a 

batch of state transition tuples are sampled from the replay buffer and used 

to train the state-action value function by minimizing the mean squared 
Bellman error. Afterwards the policy is trained by maximizing the output of 

the state value function. 

 𝐿𝜋 = −𝑉𝜋(𝑠𝑡) = −{𝑄𝜋[𝑠𝑡 , 𝑎𝑡] − 𝛼 ln 𝜋(𝑎𝑡|𝑠𝑡)} ; 𝑎𝑡~𝜋(⋅ |𝑠𝑡)  

To regulate the balance between exploration and 
exploitation during training, the algorithm incorporates an 
entropy term to the reward. The entropy of a probability 
distribution is defined by (10) and can be interpreted as a 
measurement of the randomness of the distribution. When 
added to the reward, the entropy term preserves the standard 
deviation needed for the agent to explore, except in those cases 
in which selecting a specific subset of actions yields a reward 
greater than the lost entropy. 

 𝐻[𝜋(⋅ |𝑠𝑡)] = 𝔼𝑎𝑡~𝜋(⋅|𝑠𝑡)[− ln 𝜋(𝑎𝑡|𝑠𝑡)] = ∫ 𝜋(𝑎𝑡|𝑠𝑡) ln [
1

𝜋(𝑎𝑡|𝑠𝑡)
] 𝑑𝑎𝑡 

 Overall, the Soft Actor-Critic algorithm presents a low 
degree of sensibility to hyperparameter tuning, converging for 
a wide breadth of values. The first iteration of the algorithm 
[13] depended mainly on the tuning of the relative weight of 
the entropy term, controlled by coefficient α. The latest 
version [14] further simplified this process, dynamically 
adjusting the value of α during training by stochastic gradient 
descent on (11), which is approximated from the equations 
used to solve the dual of the reinforcement learning problem 
subjected to a minimum entropy constraint. 

 𝐿𝛼 = 𝔼𝑎𝑡~𝜋(⋅|𝑠𝑡)[−𝛼 ln 𝜋(𝑎𝑡|𝑠𝑡) − 𝛼 𝐻𝑚𝑖𝑛] 

D. The Simulation 

The simulation framework1 was divided into a 
reinforcement learning module and a virtual environment 
module. This allows replacing one module without the need to 
modify the other, which simplifies the process of changing 
environments and reinforcement learning algorithms. 
Furthermore, to keep the modules independent, the exchanged 
state and action vectors are normalized to the [-1, +1] range 
before transmission and are only mapped to the environment’s 
limits within the environment module. 

The reinforcement learning module was completely 
developed in Python, using the NumPy library for vectorized 
computation of the neural networks. The virtual environment 
module was divided between the Lua script running in the 
robot simulator and the environment’s interface in Python, the 
communication between both was implemented using sockets, 
providing a simple and flexible way to connect multiple 
parallel instances of the simulator to run simultaneously. 

The virtual environment module used the CoppeliaSim 
robot simulator [16] to build a model of the agent by 
assembling primitive shapes through joints, the position of 
which can be controlled by setting a target position for the 
corresponding proportional–integral–derivative controller. 
Special care was taken to prevent the accumulation of error in 
the physics engine by reloading the agent model and restarting 
the simulation for each episode. 

An episode begins in a random initial position and 
orientation selected by sampling uniform distributions and 
discarding any combination that has already reached the 
objective. An episode ends when either the agent reaches the 
objective, a maximum number of steps is carried out, or the 
agent gets too far away from the objective. 

1. Authors’ code repository: https://github.com/GIAR-SAC/Tetrapod 



For comparison’s sake, the same environment was 
executed with a manually programmed policy, in which the 
legs over the main body’s diagonals worked in pairs 
alternating between being raised and moving in the objective’s 
direction and being lowered and moving in the diametrically 
opposite direction, resulting in the agent crawling towards the 
objective. 

III. RESULTS 

The agent was trained for a duration of 30000 episodes 
using CoppeliaSim’s Newton engine in very accurate 
precision with a time differential of 50 milliseconds and a 
single pass per frame. Table I presents the set of 
hyperparameters used in the agent’s training, which were 
referenced from [14] and tuned individually to improve the 
expected return and reduce simulation times. Also, the total 
number of neurons used in both estimators was lowered in 
order to reduce the computational capacity that will eventually 
be required for the physical implementation of the robot. 

TABLE I.  TUNED HYPERPARAMETERS 

Hyperparameter Value 

Number of episodes 30000 

Maximum number of episode’s steps  1000 

Replay buffer capacity 106 

Discount factor 0.95 

Update factor 0.005 

Replay batch size 1000 

Number of steps per update 3 

Q-function neural network’s layers 128 relu - 64 relu - 32 relu - 1 linear 

Q-function optimizer (learning rate) Adam (0.001) 

Q-function regularization (weight) - 

Policy neural network’s layers 64 relu - 32 relu - 12 Flattened Gaussiana 

Policy optimizer (learning rate) Adam (0.001) 

Policy regularization (weight) - 

Initial entropy term weight 0.01 

Entropy term weight optimizer 
(learning rate) 

Adam (0.001) 

Minimum expected entropy Dim(𝒜) = 12 

a. Internally computes the mean using a hyperbolic tangent layer and the standard deviation using an 
exponential layer before using them to sample the flattened Gaussian distribution.  

A comparison between the agent’s trajectories starting 
from a variety of initial positions when following the 
programmed and the learned policies is shown in Fig. 4. 
Although both policies manage to reach the objective in a 
small number of steps, the way in which the agent moves is 
fairly different for each of them. The learned policy exploits 
the full movement capabilities of the joints, reaching the 
objective in a lower number of steps. Meanwhile, the 
programmed policy presents a more regular movement, 
behaving almost identically when moving in any direction. 

The quality of a policy can be determined by the expected 
return that can be obtained by following it. However, this 
value may vary significantly depending on the initial state of 
the episode. For the proposed reward function, the state 
variables that produce the greatest changes to the expected 
return are the two components of the position over the plane 
and the agent’s orientation. 

Fig. 5 presents the obtainable return from different initial 
positions when the agent’s orientation aligns with the 
direction of the objective for a number of cases. The rightmost 
plot presents the return that could be obtained if the agent 
reached the objective in a single step i.e. the maximum return. 
The second plot from the right show the return that could be 
obtained when performing equal distance steps of length 0.1 
toward the center, the further away the initial position is from 
the objective the more the return changes when compared to 
the maximum due to the exponential increase in the 
accumulated discount factor. The third and fourth plots 
correspond to the obtained return when the agent acted by 
following the programmed policy and learned policy 
respectively, as the programmed policy needs a larger number 
of steps to reach the objective the discount factor had a higher 
impact in the return. 

Additionally, Fig. 6 compares the obtained return when 
following the learned policy against the expected return 
computed from the learned state-action value function for the 
same set of states and the action selected by the learned policy 
for those states. The absolute difference between both was 
generally small, correctly approximating the expected return, 
becoming more significant around the edges of the area 
delimiting the possible random initial positions. 

  

Fig. 4. Trajectories from episodes beginning in different initial positions when following the programmed policy (top) and the learned policy (bottom). 



 

Fig. 5. Obtainable return from different initial positions when the agent’s orientation aligns with the direction of objective. 

 

Fig. 6. Obtained return when acting according to the learned policy (left), 

expected return computed from the learned state value function (center) and 
the absolute difference between both (right). 

IV. DISCUSSION 

A. The Reward Function 

As in all reinforcement learning algorithms, the way in 
which the reward is defined becomes a critical point for the 
learning process. The selected reward function must promote 
the desired outcome while discouraging undesired behavior.  

In this sense a number of alternatives could be proposed to 
the reward presented in this work. Giving a fixed reward only 
when the objective is achieved or making the reward inversely 
proportional to the remaining distance being just a few 
examples of this. 

However, special care should be taken when evaluating 
these alternatives. A reward inversely proportional to the 
remaining distance will move the agent closer to the objective 
but it will learn to avoid reaching it in order to extend the 
episode and continue obtaining the high reward available in 
its proximity. On the other hand, rewarding the agent for 
fulfilling the objective will encourage it to reduce the length 
of the episodes in order to reduce the discount to be applied to 
the fixed reward, however it will not be able to differentiate 
the quality of the steps taken in early episodes as the reward 
will be zero for most of them and the state-action value 
function has not yet been stablished. 

In comparison, the selected reward provided a way for the 
agent to evaluate the quality of the taken action since the 
beginning of the training while also avoiding certain caveats 
where the agent could exploit the reward function without 
reaching the intended objective completely. 

B. Learned vs. Programmed 

As mentioned in the introduction, in reinforcement 
learning the agent is told what to do, not how to do it. The 
learned behavior emerges purely from the reward with no 
additional knowledge of the complexities involved in moving 
the agent, while the programmed policy requires at least a 
basic understanding of how each action of the agent will affect 
its state, e.g. if all legs are kept touching the ground the robot 
slips on the same position instead of crawling. 

Also, as can be observed from the presented results, the 
learned policy yielded a higher return when compared to the 
programmed policy, making the later more efficient from an 
optimality point of view. This stems mainly from the 
difference in complexity between both policies and is 
reflected in the agent’s behavior, both when it performs larger 
movements and when it positions itself with its smaller side 
facing the objective in order to extend the reach of each step. 

On the other hand, when comparing the predictability of 
both approaches, it becomes impossible to assert that the 
learned policy will not produce any erratic behaviors for 
certain states due to the dimensionality of the state space. One 
example of this behavior was observed during training for a 
small number of states in some iterations of the algorithm, 
where the agent flipped itself upside down, a state from which 
it cannot recover due to the limitations in the joints’ 
movements. 

C. Virtual Environment 

Virtualizing the environment provides a number of 
benefits at the time of learning. First and foremost, the agent’s 
behavior during the early stages is practically random, which 
may end up damaging the physical robot, whereas it produces 
no harm at all to its virtual counterpart. 

Another advantage of the virtual environment resides in 
the possibility of running several instances in parallel. Which 
not only allows the execution of multiple instances of the 
algorithm to speed up hyperparameter tuning, but also 
provides a faster way of interacting with the environment by 
having multiple agents acting at the same time in separate 
environments while training a single policy and state-action 
value function. 

Nonetheless, it must be noted that when transferring the 
learned policy to the physical implementation of the agent, it 
may be necessary to perform some additional episodes of 
training to adjust the policy in order to reduce the error due to 
inaccuracies inherent to the environment’s model. 

D. Adjusting the Learning Process 

Monitoring the evolution of the learning process becomes 
an especially challenging aspect of high-dimensional 
environments. As the number of dimensions increases it 
becomes impossible to represent the policy, the state-action 
value function and the state value function in their entirety. 
This is the reason why Fig. 5 showed the return for a limited 
number of states, prioritizing those variables that produce the 
biggest changes while adjusting the rest to make the agent start 
in similar conditions from different positions. 

The mean squared Bellman error is another relevant 
indicator that should be tracked during learning in order to 



verify the self-consistency of the learned functions. Although 
it should be noted that it does not reflect the quality of the 
current solution but its validity and should always be paired 
with some measurement of the expected return. 

Another challenge arises from the large volume of data 
that is generated as the training progresses. As the number of 
episodes increases the visual separation between points in the 
time axis becomes increasingly small, after a certain number 
of episodes they start overlapping and eventually result in the 
minimum and maximum values overshadowing all 
intermediate points in their surroundings. Reducing the 
number of plotted points could potentially solve this issue at 
the cost of losing some information. Instead, dividing the time 
axis in a fixed number of segments and computing the mean 
and a few percentiles on each segment produces a similar 
result without losing information.  

Finally, high dimensional environments tend to require 
prolonged execution times for the algorithms to converge. To 
avoid having to start over on an eventual premature 
termination, e.g. power outage, lack of resources, etcetera, it 
is possible to periodically save the execution context 
alongside a random number, which is immediately set as the 
new random seed for the following period. In this way both 
when executing without interruption or when resuming 
execution, the random seed at the starting point after a save is 
always the same, making it possible to exactly replicate an 
execution from any given save point. This functionality can 
also be used to test different combinations of hyperparameters 
for environments that require extremely long training times 
that make it costly to restart training from zero. 

V. CONCLUSION 

In this work the application of a deep reinforcement 
learning algorithm to an environment with continuous state 
and action spaces has been analyzed, focusing on the design 
process of the framework, the transferability of the learned 
policy to a physical implementation and the repeatability of 
the presented results. 

A brief compilation of the evolution of the field was 
presented in the introduction, followed by the formulation of 
the reinforcement learning problem, the description of the 
environment under analysis, the soft actor-critic algorithm and 
the simulation environment used to train the agent. 
Afterwards, the results obtained from applying the 
reinforcement learning algorithm were shown and compared 

against those computed from an idealized analysis and the 
ones obtained when following a manually programmed 
policy. Finally, some key design choices and possible 
solutions to commonly encountered difficulties were 
discussed in the last section. 
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