
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material

for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

This document contains the accepted version of the paper:

J. Esarte, P. D. Folino and J. C. Gómez, "Moving in a Simulated Environment Through Deep

Reinforcement Learning," 2022 IEEE Biennial Congress of Argentina (ARGENCON), San Juan,

Argentina, 2022, pp. 1-6, doi: 10.1109/ARGENCON55245.2022.9939868.

Moving in a Simulated Environment Through Deep

Reinforcement Learning

Javier Esarte

Grupo de Inteligencia Artificial y Robótica

National Technological University

Ciudad de Buenos Aires, Argentina

esart@frba.utn.edu.ar

Pablo Daniel Folino

Grupo de Inteligencia Artificial y Robótica

National Technological University

Ciudad de Buenos Aires, Argentina

pfolino@gmail.com

Juan Carlos Gómez

Grupo de Inteligencia Artificial

National Institute of Industrial Technology

San Martín, Argentina

juanca@inti.gob.ar

Abstract— Reinforcement learning is a field of artificial

intelligence that is continuously evolving and has a wide variety

of applications. In recent years major progress has been made

in the application of deep reinforcement learning to high-

dimensional problems with continuous state and action spaces.

This paper presents a complete analysis of the application of the

soft actor-critic algorithm to teach a four legged robot with three

joints on each leg how to move towards the center of a virtually

simulated environment. The general formulation of the

reinforcement learning problem is first presented, followed by

the description of the environment under analysis and the

applied algorithm. Afterwards, the obtained results are

compared against those of a manually programmed policy,

closing with a discussion of some key design choices and

common challenges.

Keywords—deep reinforcement learning, soft actor-critic,

tetrapod robot, virtual environment, predictive control, machine

learning, robotics, artificial neural networks

I. INTRODUCTION

A. Reinforcement Learning

From the beginning of Artificial Intelligence, the idea of
making a machine learn was beguiling. In the earliest '70s at
Air Force Cambridge Research Laboratories, A. Harry Klopf
proposed a new theory on intelligent adaptive systems [1]. His
pioneering work provided a framework to understand
neurophysiological, psychological and sociological properties
of a living adaptive system. In the end of his book he made an
analysis and review of Neural Nets and Heuristic
Programming Studies approaches for the modeling and
synthesis of learning and adaptive cybernetic systems. Sutton
and Barto, in the late '70s, picked up the gauntlet and tackled
the issue of machine learning and established its foundation.
As they expressed in their book [2] about the simplest concept
behind adaptive and learning systems: "This was simply the
idea of a learning system that wants something, that adapts its
behavior in order to maximize a special signal from its
environment". This kind of "hedonistic" point of view was
later called Reinforcement Learning.

Many new reinforcement learning algorithms were
developed from Sutton and Barto. Those new algorithms
faced different problems in a great diversity of disciplines [3].
Despite the success of this approach, reinforcement learning
problems with discrete states and actions faced the curse of
dimensionality when the number of states and actions
increases [4]. For continuous problems, techniques using
parametric and nonparametric functions were developed.
Some of them used Artificial Neural Networks (ANN) as
function estimators to represent states, actions and policies
learned [5].

Robotics is a good field for algorithm development in the
area of reinforcement learning [6], especially for problems
related to the design of complex behaviors, and even more so
for those that face dynamic environments. Reinforcement
learning algorithms provide a good trade-off solution by
telling the robot what to do, through a reward function, and
allowing it to learn how to do it by interacting with the
environment. Heess et al [7] go further into this concept,
saying that complex behaviors emerge from simple reward
signals and challenge the agent learning with progressively
more and more complex environments.

Another remarkable thing about reinforcement learning is
that the "knowledge" gained during the learning process in the
simulation stage can be transferred to the real robot.
Therefore, it is not necessary to carry out the entire learning
process in a physical robot, which can be initially replaced by
a simulated model. Neither is it necessary to start from zero, it
is possible to transfer knowledge from a human expert (if there
exists) to an agent through instrumented command, literally
copying the expert actions observed in real interactions. This
saves time and money, while only requiring the agent’s model.

B. Deep Reinforcement Learning

The first algorithm to successfully apply neural networks
to reinforcement learning was the Deep Q-Network (DQN)
algorithm [8], which optimized a neural network to estimate
the state-action value function by sampling from a replay
buffer, while the policy evaluated all possible actions in a
discrete action space and selected the one that produced the
highest state-action value.

Later, the Double DQN algorithm [9] introduced a change
that reduced overestimation by adding a second set of weights
for the state-action value function network and alternating on
each learning step the weights between the online network
(used to determine the optimal action) and the target network
(used to estimate the state-action value).

There are also other algorithms like A3C [10] and TRPO
[11], where the policy is explicitly represented and is
optimized in order to maximize the objective function. These
are called policy based methods, while the ones that try to
determine the state value function or the state-action value
function are called value based methods.

Both approaches have pros and cons, while policy based
methods are more stable because they optimize directly the
policy, value based methods find the policy indirectly but
reuse data gathered more efficiently. Some algorithms
combine both approaches like the deep deterministic policy
gradient (DDPG) algorithm [12], which extends the structure
presented by the DQN algorithm by combining it with

Universidad Tecnológica Nacional – Facultad Regional de Buenos Aires

deterministic policy gradients and replacing the discrete action
space used by previous algorithms by a parameterized
function represented by a neural network allowing the use of
continuous action spaces.

The soft actor-critic (SAC) algorithm [13][14], which will
be explained in more detail in the following sections, shares a
similar structure with the DDPG algorithm but replaces the
deterministic policy by a stochastic one in order to regulate
exploration according to the policy’s entropy.

C. Project Context

The Grupo de Inteligencia Artificial y Robótica of the
Universidad Tecnológica Nacional hosts a number of research
and development projects focused on the application of
reinforcement learning to simulated and physical robots. One
of the group’s first projects in this area targeted the planar
motion of wheeled robots of different topologies. In recent
years research on legged robots has begun with the objective
of applying them to a variety of different surfaces and
environment. The present paper conveys the results of the first
stage of this project, the objective of which is the development
of the framework required to carry out the agent’s training in
a simulated environment.

II. METHODS

A. The Reinforcement Learning Problem

The reinforcement learning problem consists in finding the
optimum policy, which directs the acting of an agent, in order
to maximize the expected cumulative reward obtained from
the agent’s interactions with its environment.

A complete description of the environment on a given
instant defines a state, and the set of all possible states defines
the state space 𝒮. Similarly, the set of all the possible actions
an agent can take in the environment defines the action space
𝒜.

A trajectory τ, also called episode, is the sequence of
observed states and actions that begin in an initial state and
span until a terminal state is reached or a maximum number
of steps has been executed.

The reward function 𝑟: 𝒮×𝒜×𝒮→ℝ associated to the

environment represents the quality of the state transition
produced by the agent’s action. Equation (1) represents the
infinite-horizon discounted return, the exponentially weighted
average of all the obtained rewards in a given trajectory, with
discount factor γ.

 𝑅(𝜏) = 𝑙𝑖𝑚
𝑇→∞

∑ 𝛾𝑡 𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)

𝑇

𝑡=0

 

The state value function is a function 𝑉𝜋: 𝒮→ℝ defined by

(2), which represents the expected return of a trajectory
obtained by beginning in an initial state 𝑠 and always acting
according to the policy 𝜋.

 𝑉𝜋(𝑠) = 𝔼𝜏~𝜋[𝑅(𝜏) | 𝑠0 = 𝑠] 

The state-action value function, also known as Q-function,

is a function 𝑄𝜋: 𝒮×𝒜→ℝ defined by (3), which represents

the expected return of a trajectory obtained by beginning in an

initial state 𝑠, taking an arbitrary initial action 𝑎 and afterwards
acting by following the policy 𝜋.

 𝑄𝜋(𝑠, 𝑎) = 𝔼𝜏~𝜋[𝑅(𝜏) | 𝑠0 = 𝑠, 𝑎0 = 𝑎] 

The policy is the set of rules followed by the agent in order
to choose its next action. Furthermore, it is possible to define
the optimal policy as the arguments that maximize the state-
action value function.

Finally, the Bellman equations (4) and (5) are a pair of
self-consistency equations that recursively connect the state
and state-action value functions to their values one step later.

 𝑉𝜋(𝑠𝑡) = 𝔼𝑠𝑡+1~ℙ(⋅|𝑠𝑡){𝔼𝑎𝑡~𝜋[𝑟(𝑠𝑡, 𝑎𝑡 , 𝑠𝑡+1)] + 𝛾 𝑉𝜋(𝑠𝑡+1)} 

 𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝑠𝑡+1~ℙ(⋅|𝑠𝑡,𝑎𝑡){𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛾 𝔼𝑎𝑡+1~𝜋[𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)]} 

B. The Environment

The environment is formed by an agent and the horizontal
plane on which it moves. The agent’s objective is to reach
within a certain radius of the environment’s center.

The agent, presented in Fig. 1, models a tetrapod robot
with three degrees of freedom on each leg. The first joint
controls the leg’s position relative to the main body, while the
remaining joints control the angle between adjacent leg
segments. Each joint is capable of moving up to 45° in each
direction with respect to the rest position.

The state space comprises the agent’s position, the agent’s
orientation and the position of each of the agent’s motor
controlled joints, while the action space is composed of the
target positions for all of the agent’s joints.

The reward, defined in (6), is proportional to the change in
the distance to the origin, except when the agent reaches the
center position, in which case it receives the remaining
distance as an additional.

 𝑟(𝑑𝑡 , 𝑑𝑡+1) = {
100(𝑑𝑡 − 𝑑𝑡+1) 𝑠𝑖 𝑑𝑡 > 0,1

100𝑑𝑡 𝑠𝑖 𝑑𝑡 ≤ 0,1
 

Fig. 1. Agent’s model in rest position, dimensions and movement limits.

C. The Reinforcement Learning Algorithm

The agent was trained using the soft actor-critic algorithm
[14]. As other actor-critic algorithms, it divides its
functionalities in two separate blocks: the actor, which selects
the next action to be performed by the agent from the agent’s
policy, and the critic, which evaluates the expected return of
the action from the state-action value function.

Both the policy and the state-action value function are
estimated by multilayered artificial neural networks, which
provide a flexible way to represent parameterized functions.
The stochastic policy network outputs a sample taken from a
flattened Gaussian distribution (7), whose mean value μ and
standard deviation σ are internally estimated by densely
connected layers from the current state of the environment.
The state-action value function network is composed by two
independently trained, densely connected, subnetworks that
estimate the state-action value, the minimum of which is then
taken as the network’s output, to reduce overestimation and
improve the algorithm’s convergence [15].

 𝜋(⋅ |𝑠𝑡) = 𝑡𝑎𝑛ℎ (𝒩(𝜇(𝑠𝑡), 𝜎(𝑠𝑡))) 

Learning is achieved through an iterative process of policy
application, shown in Fig. 2, and policy improvement, shown
in Fig. 3. During policy application the agent acts in the
environment, storing all state transitions in the replay buffer.
Later the policy is improved by sampling the replay buffer and
sequentially training the state-action value function neural
network by stochastic gradient descent on (8) and the policy
neural network by stochastic gradient descent on (9).

 𝐿𝑄 = {𝑄𝜋(𝑠𝑡, 𝑎𝑡) − [𝑟𝑡 + 𝛾 (1 − 𝑒𝑛𝑑𝑡) 𝑉𝑡𝑎𝑟𝑔𝑒𝑡
𝜋 (𝑠𝑡+1)]}

2
 

Fig. 2. Data flow during policy application. For each step, the policy selects

for the current state st the next action at, which is then executed in the
environment producing the reward rt, the next state st+1 and the flag endt that

signals if the reached state is terminal. Afterwards the obtained state

transition tuple is stored in the replay buffer and the algorithm proceeds to
the next step.

Fig. 3. Data flow during policy improvement. For each training step, a

batch of state transition tuples are sampled from the replay buffer and used

to train the state-action value function by minimizing the mean squared
Bellman error. Afterwards the policy is trained by maximizing the output of

the state value function.

 𝐿𝜋 = −𝑉𝜋(𝑠𝑡) = −{𝑄𝜋[𝑠𝑡 , 𝑎𝑡] − 𝛼 ln 𝜋(𝑎𝑡|𝑠𝑡)} ; 𝑎𝑡~𝜋(⋅ |𝑠𝑡) 

To regulate the balance between exploration and
exploitation during training, the algorithm incorporates an
entropy term to the reward. The entropy of a probability
distribution is defined by (10) and can be interpreted as a
measurement of the randomness of the distribution. When
added to the reward, the entropy term preserves the standard
deviation needed for the agent to explore, except in those cases
in which selecting a specific subset of actions yields a reward
greater than the lost entropy.

 𝐻[𝜋(⋅ |𝑠𝑡)] = 𝔼𝑎𝑡~𝜋(⋅|𝑠𝑡)[− ln 𝜋(𝑎𝑡|𝑠𝑡)] = ∫ 𝜋(𝑎𝑡|𝑠𝑡) ln [
1

𝜋(𝑎𝑡|𝑠𝑡)
] 𝑑𝑎𝑡 

 Overall, the Soft Actor-Critic algorithm presents a low
degree of sensibility to hyperparameter tuning, converging for
a wide breadth of values. The first iteration of the algorithm
[13] depended mainly on the tuning of the relative weight of
the entropy term, controlled by coefficient α. The latest
version [14] further simplified this process, dynamically
adjusting the value of α during training by stochastic gradient
descent on (11), which is approximated from the equations
used to solve the dual of the reinforcement learning problem
subjected to a minimum entropy constraint.

 𝐿𝛼 = 𝔼𝑎𝑡~𝜋(⋅|𝑠𝑡)[−𝛼 ln 𝜋(𝑎𝑡|𝑠𝑡) − 𝛼 𝐻𝑚𝑖𝑛] 

D. The Simulation

The simulation framework1 was divided into a
reinforcement learning module and a virtual environment
module. This allows replacing one module without the need to
modify the other, which simplifies the process of changing
environments and reinforcement learning algorithms.
Furthermore, to keep the modules independent, the exchanged
state and action vectors are normalized to the [-1, +1] range
before transmission and are only mapped to the environment’s
limits within the environment module.

The reinforcement learning module was completely
developed in Python, using the NumPy library for vectorized
computation of the neural networks. The virtual environment
module was divided between the Lua script running in the
robot simulator and the environment’s interface in Python, the
communication between both was implemented using sockets,
providing a simple and flexible way to connect multiple
parallel instances of the simulator to run simultaneously.

The virtual environment module used the CoppeliaSim
robot simulator [16] to build a model of the agent by
assembling primitive shapes through joints, the position of
which can be controlled by setting a target position for the
corresponding proportional–integral–derivative controller.
Special care was taken to prevent the accumulation of error in
the physics engine by reloading the agent model and restarting
the simulation for each episode.

An episode begins in a random initial position and
orientation selected by sampling uniform distributions and
discarding any combination that has already reached the
objective. An episode ends when either the agent reaches the
objective, a maximum number of steps is carried out, or the
agent gets too far away from the objective.

1. Authors’ code repository: https://github.com/GIAR-SAC/Tetrapod

For comparison’s sake, the same environment was
executed with a manually programmed policy, in which the
legs over the main body’s diagonals worked in pairs
alternating between being raised and moving in the objective’s
direction and being lowered and moving in the diametrically
opposite direction, resulting in the agent crawling towards the
objective.

III. RESULTS

The agent was trained for a duration of 30000 episodes
using CoppeliaSim’s Newton engine in very accurate
precision with a time differential of 50 milliseconds and a
single pass per frame. Table I presents the set of
hyperparameters used in the agent’s training, which were
referenced from [14] and tuned individually to improve the
expected return and reduce simulation times. Also, the total
number of neurons used in both estimators was lowered in
order to reduce the computational capacity that will eventually
be required for the physical implementation of the robot.

TABLE I. TUNED HYPERPARAMETERS

Hyperparameter Value

Number of episodes 30000

Maximum number of episode’s steps 1000

Replay buffer capacity 106

Discount factor 0.95

Update factor 0.005

Replay batch size 1000

Number of steps per update 3

Q-function neural network’s layers 128 relu - 64 relu - 32 relu - 1 linear

Q-function optimizer (learning rate) Adam (0.001)

Q-function regularization (weight) -

Policy neural network’s layers 64 relu - 32 relu - 12 Flattened Gaussiana

Policy optimizer (learning rate) Adam (0.001)

Policy regularization (weight) -

Initial entropy term weight 0.01

Entropy term weight optimizer
(learning rate)

Adam (0.001)

Minimum expected entropy Dim(𝒜) = 12

a. Internally computes the mean using a hyperbolic tangent layer and the standard deviation using an
exponential layer before using them to sample the flattened Gaussian distribution.

A comparison between the agent’s trajectories starting
from a variety of initial positions when following the
programmed and the learned policies is shown in Fig. 4.
Although both policies manage to reach the objective in a
small number of steps, the way in which the agent moves is
fairly different for each of them. The learned policy exploits
the full movement capabilities of the joints, reaching the
objective in a lower number of steps. Meanwhile, the
programmed policy presents a more regular movement,
behaving almost identically when moving in any direction.

The quality of a policy can be determined by the expected
return that can be obtained by following it. However, this
value may vary significantly depending on the initial state of
the episode. For the proposed reward function, the state
variables that produce the greatest changes to the expected
return are the two components of the position over the plane
and the agent’s orientation.

Fig. 5 presents the obtainable return from different initial
positions when the agent’s orientation aligns with the
direction of the objective for a number of cases. The rightmost
plot presents the return that could be obtained if the agent
reached the objective in a single step i.e. the maximum return.
The second plot from the right show the return that could be
obtained when performing equal distance steps of length 0.1
toward the center, the further away the initial position is from
the objective the more the return changes when compared to
the maximum due to the exponential increase in the
accumulated discount factor. The third and fourth plots
correspond to the obtained return when the agent acted by
following the programmed policy and learned policy
respectively, as the programmed policy needs a larger number
of steps to reach the objective the discount factor had a higher
impact in the return.

Additionally, Fig. 6 compares the obtained return when
following the learned policy against the expected return
computed from the learned state-action value function for the
same set of states and the action selected by the learned policy
for those states. The absolute difference between both was
generally small, correctly approximating the expected return,
becoming more significant around the edges of the area
delimiting the possible random initial positions.

Fig. 4. Trajectories from episodes beginning in different initial positions when following the programmed policy (top) and the learned policy (bottom).

Fig. 5. Obtainable return from different initial positions when the agent’s orientation aligns with the direction of objective.

Fig. 6. Obtained return when acting according to the learned policy (left),

expected return computed from the learned state value function (center) and
the absolute difference between both (right).

IV. DISCUSSION

A. The Reward Function

As in all reinforcement learning algorithms, the way in
which the reward is defined becomes a critical point for the
learning process. The selected reward function must promote
the desired outcome while discouraging undesired behavior.

In this sense a number of alternatives could be proposed to
the reward presented in this work. Giving a fixed reward only
when the objective is achieved or making the reward inversely
proportional to the remaining distance being just a few
examples of this.

However, special care should be taken when evaluating
these alternatives. A reward inversely proportional to the
remaining distance will move the agent closer to the objective
but it will learn to avoid reaching it in order to extend the
episode and continue obtaining the high reward available in
its proximity. On the other hand, rewarding the agent for
fulfilling the objective will encourage it to reduce the length
of the episodes in order to reduce the discount to be applied to
the fixed reward, however it will not be able to differentiate
the quality of the steps taken in early episodes as the reward
will be zero for most of them and the state-action value
function has not yet been stablished.

In comparison, the selected reward provided a way for the
agent to evaluate the quality of the taken action since the
beginning of the training while also avoiding certain caveats
where the agent could exploit the reward function without
reaching the intended objective completely.

B. Learned vs. Programmed

As mentioned in the introduction, in reinforcement
learning the agent is told what to do, not how to do it. The
learned behavior emerges purely from the reward with no
additional knowledge of the complexities involved in moving
the agent, while the programmed policy requires at least a
basic understanding of how each action of the agent will affect
its state, e.g. if all legs are kept touching the ground the robot
slips on the same position instead of crawling.

Also, as can be observed from the presented results, the
learned policy yielded a higher return when compared to the
programmed policy, making the later more efficient from an
optimality point of view. This stems mainly from the
difference in complexity between both policies and is
reflected in the agent’s behavior, both when it performs larger
movements and when it positions itself with its smaller side
facing the objective in order to extend the reach of each step.

On the other hand, when comparing the predictability of
both approaches, it becomes impossible to assert that the
learned policy will not produce any erratic behaviors for
certain states due to the dimensionality of the state space. One
example of this behavior was observed during training for a
small number of states in some iterations of the algorithm,
where the agent flipped itself upside down, a state from which
it cannot recover due to the limitations in the joints’
movements.

C. Virtual Environment

Virtualizing the environment provides a number of
benefits at the time of learning. First and foremost, the agent’s
behavior during the early stages is practically random, which
may end up damaging the physical robot, whereas it produces
no harm at all to its virtual counterpart.

Another advantage of the virtual environment resides in
the possibility of running several instances in parallel. Which
not only allows the execution of multiple instances of the
algorithm to speed up hyperparameter tuning, but also
provides a faster way of interacting with the environment by
having multiple agents acting at the same time in separate
environments while training a single policy and state-action
value function.

Nonetheless, it must be noted that when transferring the
learned policy to the physical implementation of the agent, it
may be necessary to perform some additional episodes of
training to adjust the policy in order to reduce the error due to
inaccuracies inherent to the environment’s model.

D. Adjusting the Learning Process

Monitoring the evolution of the learning process becomes
an especially challenging aspect of high-dimensional
environments. As the number of dimensions increases it
becomes impossible to represent the policy, the state-action
value function and the state value function in their entirety.
This is the reason why Fig. 5 showed the return for a limited
number of states, prioritizing those variables that produce the
biggest changes while adjusting the rest to make the agent start
in similar conditions from different positions.

The mean squared Bellman error is another relevant
indicator that should be tracked during learning in order to

verify the self-consistency of the learned functions. Although
it should be noted that it does not reflect the quality of the
current solution but its validity and should always be paired
with some measurement of the expected return.

Another challenge arises from the large volume of data
that is generated as the training progresses. As the number of
episodes increases the visual separation between points in the
time axis becomes increasingly small, after a certain number
of episodes they start overlapping and eventually result in the
minimum and maximum values overshadowing all
intermediate points in their surroundings. Reducing the
number of plotted points could potentially solve this issue at
the cost of losing some information. Instead, dividing the time
axis in a fixed number of segments and computing the mean
and a few percentiles on each segment produces a similar
result without losing information.

Finally, high dimensional environments tend to require
prolonged execution times for the algorithms to converge. To
avoid having to start over on an eventual premature
termination, e.g. power outage, lack of resources, etcetera, it
is possible to periodically save the execution context
alongside a random number, which is immediately set as the
new random seed for the following period. In this way both
when executing without interruption or when resuming
execution, the random seed at the starting point after a save is
always the same, making it possible to exactly replicate an
execution from any given save point. This functionality can
also be used to test different combinations of hyperparameters
for environments that require extremely long training times
that make it costly to restart training from zero.

V. CONCLUSION

In this work the application of a deep reinforcement
learning algorithm to an environment with continuous state
and action spaces has been analyzed, focusing on the design
process of the framework, the transferability of the learned
policy to a physical implementation and the repeatability of
the presented results.

A brief compilation of the evolution of the field was
presented in the introduction, followed by the formulation of
the reinforcement learning problem, the description of the
environment under analysis, the soft actor-critic algorithm and
the simulation environment used to train the agent.
Afterwards, the results obtained from applying the
reinforcement learning algorithm were shown and compared

against those computed from an idealized analysis and the
ones obtained when following a manually programmed
policy. Finally, some key design choices and possible
solutions to commonly encountered difficulties were
discussed in the last section.

REFERENCES

[1] A. Harry Klopf, “Brain functions and adaptive systems - A heterostatic
theory,” L. G. Hanscom Field, Bedford, Massachusetts, Special
Reports, no. 133, 1972.

[2] R. Sutton, and A. Barto, “Reinforcement learning, an introduction,”
Cambridge MA., MIT press, 1998.

[3] L. P. Kaebling, M. L. Littman y A. W. Moore, “Reinforcement
Learning: a survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237 - 285, 1996.

[4] R. Bellman, “Dynamic Programming,” Princeton University Press,
Princeton, New Jersey, 1957.

[5] R. Sutton, and A. Barto, “Reinforcement learning, an introduction,”
Cambridge MA., MIT press, 2018.

[6] J. Kober, J. A. Bagnell, and J. Peters. "Reinforcement learning in
robotics: A survey," The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238-1274, 2013.

[7] N. Heess et al., "Emergence of Locomotion Behaviours in Rich
Environment," arXiv, 2017.

[8] V. Mnih et al., "Playing Atari with Deep Reinforcement Learning,"
arXiv, 2013.

[9] H. Van Hasself, A. Guez, and D. Silver, "Deep Reinforcement
Learning with Double Q-learning," Proceedings of the AAAI
conference on artificial intelligence, vol. 30, no. 1, 2016.

[10] V. Mnih et al., “Asynchronous methods for deep reinforcement
learning,” International Conference on Machine Learning, pp. 1928-
1937, 2016.

[11] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, “Trust region
policy optimization,” International conference on machine learning,
pp. 1889-1897, 2015.

[12] T. P. Lillicrap et al., "Continuous Control with Deep Reinforcement
Learning," International Conference on Learning Representations,
2019.

[13] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” International conference on machine learning, pp. 1861-1870,
2018.

[14] T. Haarnoja, et al., "Soft Actor-Critic Algorithms and Applications,"
arXiv, 2019.

[15] S. Fujimoto, H. Hoof, D. Meger, “Addressing Function Approximation
Error in Actor-Critic Methods,” International conference on machine
learning, pp. 1587-1596, 2018.

[16] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and
scalable robot simulation framework,” Proc. of The International
Conference on Intelligent Robots and Systems, pp. 1321-1326, 2013.

