
UNIVERSIDAD NACIONAL DEL LITORAL

FACULTAD DE INGENIERÍA QUÍMICA
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Abstract

Modern plants rely on sophisticated control systems to meet performance and
stability requirements. In particular, a conventional feedback control design for
a complex system may result in unsatisfactory performance, or even instability,
in the event of malfunctions in actuators, sensors or other system components.
Hence, in concordance with Gene Kranz’s1 epic quote “Failure is not an option”,
specially in safety-critical systems. For that reason, in order to circumvent such
weaknesses, control systems must be designed to mitigate component malfunctions
while maintaining the required levels of stability and performance.

Accordingly, fault-tolerant control systems are control schemes that possess
the ability to accommodate component faults automatically. They are capable
of maintaining overall system stability and acceptable performance in case such
faults occur. Thus, to design these kinds of systems, several aspects should be
taken into account. Being these the fault type considered, its classification, the
use or not of a mathematical model of the plant, the selection of a fault detection
and diagnosis method, the adoption of a controller reconfiguration strategy, among
others.

In view of these aspects, this thesis addresses the design, development and
evaluation of fault-tolerant controllers for typical industrial processes, which en-
sure the compliance of operational constraints despite the presence of faults. To
begin with, the current state-of-art and the main specific concepts are introduced.
Then, two model-based strategies are presented. On the one side, the design of
a novel observer-based fault detection and diagnosis scheme and the development
of an adaptive predictive controller are combined to deploy a non-linear active
fault-tolerant control system, on the basis of the linear parameter varying system
representation. The controller stability conditions and the observers design are es-
tablished on terms of linear matrix inequalities problems. This proposed scheme is
evaluated on typical non-linear chemical industrial processes. On the other hand,
an optimisation-based fault-tolerant predictive controller was proposed to develop
a tertiary-level energy management system, based on a sugarcane distillery power
plant. This strategy guarantees the uninterrupted and efficient energy generation
on an industrial microgrid, choosing between different energy sources to overcome
the fault effects.

Lastly, it is important to remark that for each proposed scheme a realistic sim-
ulation scenario was presented. Enabling vast discussions about its performance
and effectiveness, via graphical observations and metric indices.

1Chief Flight Director of Gemini, Apollo and Space Shuttle missions at NASA
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Resumen

Las plantas modernas dependen de sofisticados sistemas de control para cumplir
con los requisitos de rendimiento y estabilidad. En particular, el diseño de un
controlador por retroalimentación convencional para un sistema complejo, puede
resultar en un desempeño insatisfactorio, o incluso en inestabilidad, frente al mal
funcionamiento de actuadores, sensores u otros componentes del sistema. Por
lo tanto, en concordancia con la cita épica de Gene Kranz2, “Failure is not an
option”, especialmente en sistemas cŕıticos en seguridad. Por esa razón, para
evitar tales debilidades, los sistemas de control deben diseñarse para mitigar el mal
funcionamiento de los componentes mientras se mantienen los niveles requeridos
de estabilidad y desempeño.

En consecuencia, los sistemas de control tolerantes a fallas son esquemas de
control que poseen la habilidad de soportar fallas en sus componentes. Son capaces
de mantener la estabilidad general del sistema y un rendimiento aceptable en caso
de que ocurran tales fallas. Aśı, para diseñar este tipo de sistemas se deben tener
en cuenta varios aspectos. Siendo estos el tipo de falla considerada, su clasificación,
el uso o no de un modelo matemático de la planta, la elección de un método de
detección y diagnóstico de fallas, la adopción de una estrategia de reconfiguración
del controlador, entre otros.

En vista de estos aspectos, esta tesis aborda el diseño, desarrollo y evaluación
de controladores tolerantes a fallas para procesos industriales t́ıpicos, que aseguren
el cumplimiento de las limitaciones operativas a pesar de la presencia de fallas.
Primero, se introduce el estado de arte y los principales conceptos espećıficos.
Luego, se presentan dos estrategias basadas en modelos. Por un lado, el diseño
de un nuevo esquema de detección y diagnóstico fallas basado en observadores y
el desarrollo de un controlador predictivo adaptativo se combinan para implemen-
tar un sistema de control tolerante a fallas activo no lineal, sobre la base de la
representación de sistemas lineales de parámetros variables. Las condiciones de es-
tabilidad del controlador y el diseño de los observadores se establecen en términos
de problemas de desigualdades lineales matriciales. Este esquema propuesto se
evalúa en t́ıpicos procesos industriales qúımicos no lineales. Por otro lado, se
propuso un controlador predictivo tolerante a fallas basado en optimización para
desarrollar un sistema de gestión de enerǵıa de nivel terciario, basado en una
planta de enerǵıa de una destileŕıa de caña de azúcar. Esta estrategia garantiza
la generación de enerǵıa ininterrumpida y eficiente en una microrred industrial,
eligiendo entre diferentes fuentes de enerǵıa para superar los efectos de las fallas.

2Director de vuelo de las misiones Gemini, Apollo y Space Shuttle en la NASA
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Por último, es importante señalar que para cada esquema propuesto se presentó
un escenario de simulación realista. Habilitando amplias discusiones sobre su
desempeño y efectividad, a través de observaciones gráficas e ı́ndices métricos.





Chapter 1

Introduction

This chapter presents the origin and motivation, as well as the research area
state-of-the-art and objectives of this thesis, which will be separately detailed in
different sections. Additionally, a brief outline is also provided, which introduces
the contents and contributions of each chapter.

1.1 Motivation

Nowadays in process industry, the use of computer algorithms enables operators to
perform advanced control system strategies, offering a wide variety of possibilities.
This improvement allows the achievement of the desired aims, in terms of efficiency
and reliability (e.g. optimising costs and control efforts). Thus, from the growing
demand for efficiency, the strict safety standards and the hardening of the environ-
mental requirements, modern control systems and their algorithms have become
more complex. Unfortunately, all those advantages and features are, to a greater
or lesser degree, subject to the proper behaviour of all components involved in the
system. However, in existing industrial systems, faults will inevitably occur. In
other words, the controller design for complex systems, in case of malfunctions on
actuators, sensors or other components, can result in unsatisfactory performance,
or even lead to system instability.

Therefore, new approaches are addressed in the controllers design to mitigate
components malfunction effects, while maintaining the desired stability and per-
formance properties of the system. This is particularly important for safety-critical
systems, such as airplanes, nuclear power plants, and chemical industries that pro-
cess hazardous materials. In these systems, the consequence of a minor component
malfunction can be catastrophic and therefore the demands for reliability, safety
and fault tolerance are generally high.

Consequently, it is necessary to design control systems which are capable of
tolerating potential faults in its components, maintaining the desired behaviour.
If this is successful, the system operates even after the faults income, possibly
with a short time of degraded performance until the control algorithm adapts to
faulty system. In the literature, this control approach is often known as Fault-
Tolerant Control System (FTCS). More precisely, the FTCSs have the ability

1



2 CHAPTER 1. INTRODUCTION

to accommodate component malfunctions automatically. They are capable of
maintaining an overall system stability and an acceptable performance in the
event of such faults. In other words, a closed-loop control system that can tolerate
component malfunctions, while maintaining the desired performance and stability
characteristics, is an FTCS [1, 2].

FTCS is a strategy consisting of a collection of techniques that have been
developed with the aim of increasing robustness, reliability, and as a consequence,
reducing the risks generated by dangerous behaviours. In general, FTCSs are
classified into two types: Passive Fault-Tolerant Control System (PFTCS) and
Active Fault-Tolerant Control System (AFTCS).

The PFTCSs are fixed control structures, which are designed to be robust
against certain classes of faults previously considered, which are treated essentially
as disturbances. The benefit of this approach is that it does not require fault
diagnosis or on-line controller reconfiguration, but as a counterpart, its capabilities
for fault-tolerance are limited [3].

In contrast, AFTCSs respond to the system component malfunctions in an ac-
tive way by reconfiguration, so that the stability and an acceptable performance
of the entire system can be maintained. Specifically, a system that includes the
AFTCS characteristics is designed to adapt faults at an early stage of its devel-
opment, so that a minor fault in a subsystem does not evolve into general failures
in the system. That is, the AFTCS actively estimate fault magnitudes and uses
them to compensate the fault effects through the closed-loop control system. Con-
sequently, AFTCS can be commanded to either perform the complete shutdown
of the plant safely, or to retain some portion of its control integrity in the event of
some specific faults. Thus, the biggest advantage of AFTCS over the other control
strategies to tolerate faults, is the fact that AFTCS makes “intelligent” use of the
available information about states and redundancies included in the system, in
order to increase its availability.

Accordingly, AFTCS have been used in various applications, such as: safety-
critical systems (nuclear reactors, aircraft, guided missile systems), cost-critical
systems (space structures, space vehicles, automated submarine vehicles) and
volume-critical systems (automotive assembly processes, mobile communication
networks, automated highways) [1, 2, 4, 5, 6, 7, 8, among others].

Furthermore, in order to understand the different study areas covered by
AFTCS, a brief description of its sub-systems is provided. Typically, as shown in
Figure 1.1, an AFTCS could be divided into two sub-systems:

(1) Fault Detection and Diagnosis (FDD),
(2) Fault-Tolerant Controller (FTC).

Usually, the way to address the AFTCS design is to synthesise the FDD and
FTC modules separately. This idea is achieved based on the satisfaction of the
separation principle and despising the bidirectional interactions between them,
which results from disturbances and uncertainties [9].

Thus, into the FDD module, any fault affecting the system is detected and
isolated as quickly as possible, and then the fault magnitude is estimated. Then,
based on the information about the post-fault system (fault location and magni-
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1.2 Brief history of FTCS

As might be expected, it is not an easy task to describe the historical develop-
ment of fault monitoring and supervision methods, since the original contributions
are scattered in technical literature. Perhaps the most elementary method, limit
checking (or trend), is as old as the instrumentation itself, which dates from the end
of the nineteenth century. Besides, monitoring through the use of ink-recorders,
and later point-recorders, became a standard equipment since the middle of the
twentieth century. Then, at the end of the twentieth century, in concordance
with the advent of computers, the situation changed substantially, beginning the
introduction of more complex supervisory and control algorithms [18].

From a practical application viewpoint, a significant amount of developments
on FTCS was motivated by the design of control systems in aviation [19]. The
primary goal was to provide a “self-repair” capacity in order to guarantee a safe
landing, in the event of aircraft component malfunctions. These efforts have been
promoted, in some degree, by two commercial aircraft events in the late of 1970s.
The first one is the case of the Delta Air Lines flight 1080 (April 12, 1977) [20],
where the left elevator jammed in “up” position, and the pilot had no indication
for this malfunction. Fortunately, the pilot, based on his experience and the re-
dundant performance of the Lockheed L-1011 aircraft, successfully reconfigured
the remaining control elements and landed the aircraft safely. Moreover, in the
American Airlines Flight 191 accident, where the McDonnell Douglas DC-10 air-
craft crashed in Chicago (May 25, 1979), the pilot had only 15 seconds to react
before the plane hit the ground. Subsequent investigations concluded that the
accident could have been avoided [21]. Besides, an interesting article [22] provides
further evidence of the need for AFTCS, showing that the fatal crash of the El Al
flight 1862 involving a Boeing 747-200 cargo plane (October 4, 1992) could have
also been avoided. These are three aircraft failures examples that show the need
to implement fault-tolerant flight control systems.

Furthermore, in safety-critical industries such as chemical or nuclear power
plants, the interest in the FTCSs design was intensified after the accident at the
Tennessee Eastman chemical plant (Tennessee, United States, October 4, 1960),
the incident in Three Mile Island (Pennsylvania, United States, March 18, 1979),
the disaster at the Union Carbide chemical plant (Bhopal, India, December 3,
1984) and the tragedy at the Chernobyl nuclear power plant (Pripyat, Ukraine,
April 26, 1986), just to mention the most important cases [1].

Process safety is a major concern in the researchers community, both in the
past and today. Consequently, a wide variety of FTCS methods is available in
literature, and some of them are collected in papers, such as: a deep revision of
process fault detection and diagnosis is presented in the series of works [23, 24,
25]; a bibliographical review on reconfigurable fault-tolerant control is conducted
in [1]; two brief surveys on fault detection methods are tackled in [26] and [27];
a recent survey on fault diagnosis and fault-tolerant techniques is exposed in [28,
29]; lastly, an even more recent review on fault detection and process diagnostics
over industrial processes is exhibited in [30].

Based on these revisions, it is clear that the appropriate behaviour of an
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AFTCS highly depends on a solid FDD strategy, in order to provide the accu-
rate fault information before reconfiguration must be undertaken. Thus, the FDD
module is perhaps the most difficult aspect involved in the AFTCS design. As
a consequence, the development of an FDD module has a highly important role,
because an early detection can avoid system shutdown, breakdowns, and even
worse, the occurrence of potential catastrophes (especially for safety-critical sys-
tems). In that sense, the works [2, 31] show that the modular approach (FDD and
FTC designed separately) presents its benefits, being more flexible for practical
applications and, therefore, easier to test and implement.

In this way, several contributions and theoretical approaches about FDD mod-
ules in Linear Time Invariant (LTI) systems can be found in [11, 18, 31, 32,
33], and the references therein. Besides, there is a considerable amount of arti-
cles that involve model-based developments applied to non-linear systems. For
instance, Kalman filters, fuzzy techniques, adaptive approaches or sliding-mode
observer-based technologies have been recently reported [33, 34, 35, 36, 37, 38],
where in some of them the stability conditions are guaranteed through the reso-
lution of Linear Matrix Inequalities (LMI) problems. Moreover, even some newer
papers have applied the Moving Horizon Estimation (MHE) framework to de-
velop FDD schemes [39, 40, 41]. Lastly, another source of extensive publications
is the database of the SAFEPROCESS technical committee of the International
Federation of Automatic Control (IFAC) [42].

Nevertheless, in regards to the development of an FTC module, recent works
are considering the use of the well-known/established MPC technique [13]. This
is because MPC has inherent fault-tolerance properties [22], such as: dealing with
constraints, updating internal model on-line and optimising the cost function at
each iteration. Indeed, due that MPC optimises the cost function at each sampling
step, it offers a high flexibility to deal with system constraints in both fault-free and
post-fault conditions. This property is especially suitable to adjust control efforts
depending on a timely fault information, as detailed in [8, 16, 39]. However, there
are few works in literature, about AFTCS to accommodate multiple actuators and
sensors faults upon non-linear systems, which motivates this current investigation.
In short, the AFTCS problem is still a challenge due to the troubles of dealing
with non-linearities and post-fault scenarios.

1.3 Contribution of thesis

As detailed in the prequel, the topic of AFTCS has received an increased attention
in a wide range of academic and industrial communities, as well as the demands
for safety and reliability have also increased. Although there are many works in
literature that have developed AFTCS techniques, most of the applications in
model-based fault-tolerant control systems have been used for mechanical, electri-
cal and aerospace systems, while the data-based techniques have been dominant
in petrochemical and chemical processes. This can be explained in the low avail-
ability or complexity of the model and the inherent natural process non-linearities.
For this reason, the main aim of this thesis is the development, application and
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evaluation of novel model-based AFTCS strategies for practical purposes in typical
industrial processes.

To achieve this, two different model-based approaches were addressed through-
out this thesis: on the one hand, owing that the majority of the industrial plants
are inherently non-linear and the faults may often amplify the non-linearities by
driving plants from a relatively linear operating point into a more non-linear op-
erating region, the design of novel FDD and FTC modules to develop a non-linear
AFTCS are presented. There, the importance and practicality of Linear Param-
eter Varying (LPV) system representation provides the foundation of this work.

On the other hand, an optimisation-based fault-tolerant MPC strategy is pro-
posed to develop a tertiary-level Energy Management System (EMS), which guar-
antees the uninterrupted and efficient energy generation on an industrial microgrid,
based on a sugarcane power plant. Where the availability of several renewable en-
ergy sources highlights the capacity of MPC to manage them, seeking maximal
profit and increasing sustainability, despite eventual faults.

In conclusion, the main contributions of this work are epitomised as follow:

• A novel observer-based FDD strategy for non-linear systems is presented.
The observers’ design is based on terms of LMI.

• An MHE procedure coupled to an MPC formulation is addressed to develop
a non-linear predictive controller. Terminal ingredients to guarantee MPC
stability are based on the resolution of off-line LMI problems.

• A model-based AFTCS for non-linear industrial processes is developed. An
autonomous model-update and controller reconfiguration is formulated.

• A fault-tolerant MPC is proposed as an EMS. An MHE method is proposed
to estimate both system states and incipient faults on renewable microgrids.

• Realistic numerical simulation scenarios are presented, showing the effective-
ness of each method. Examples of typical chemical industrial processes are
given, as well as a sugarcane industrial microgrid.

• Performance indices are used to demonstrate and quantify the effectiveness
of the proposed methods.

1.4 Objectives

The overall objective of this thesis is to propose, discuss and explain in detail the
design, testing, and validation of fault-tolerant predictive control strategies using
model-based methods. In order to reach it, this overall objective is divided into
several stage objectives.

• Design and develop FDD modules based on LPV observers.
• Evaluate and validate the proposed FDD approach.
• Design an appropriate FTC module to implement an AFTCS.
• Implement and evaluate the proposed model-based AFTCS strategy.
• Investigate and propose an AFTCS scheme to develop a fault-tolerant EMS
of an industrial energy microgrid, based on a sugarcane processing plant.

• Simulate and evaluate the suggested tertiary-level EMS scheme.
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1.5 Outline of the thesis

The remaining of this thesis is organised as detailed below.
In Chapter 2 some preliminary concepts involved in the AFTCS design are

revisited. Chapter 3 presents the development of an FDD scheme based on a set
of LPV observers. Chapter 4 investigates a polytopic MPC formulation for non-
linear processes. Moreover, Chapter 5 focuses on the application of the FDD and
MPCmethodologies described in previous chapters to conceive an AFTCS strategy
for chemical industrial processes. Finally, Chapter 6 presents a fault-tolerant EMS
of an industrial energy microgrid, particularly the case of a sugarcane distillery
power plant. Concluding remarks and suggestions for future research are discussed
in Chapter 7.
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Chapter 2

Preliminary concepts

In this chapter, a brief overview of some fundamental concepts and general aspects
concerning the design of AFTCS are recalled and presented.

2.1 Definitions

Before designing an AFTCS strategy it is necessary to know in detail the meaning
of some involved basic concepts. These have been compiled from the IFAC SAFE-
PROCESS technical committee [42], and from the existing literature [18, 43, 44].
They are listed below.

• Fault: An unpermitted deviation of at least one characteristic property or
parameter of the system from its acceptable/usual/standard condition.

• Failure: A permanent interruption of a system’s ability to perform a re-
quired function under specified operating conditions.

• Disturbance: An unknown (and uncontrolled) input acting on a system.
• Perturbation: An input acting on a system, which results in a temporary
departure from the current state.

• Symptom: A change of an observable quantity from normal behaviour.
• Error: A deviation between a measured or computed value (of an output
variable) and the true, specified or theoretically correct value.

• Residual: A fault indicator, based on a deviation between measurements
and model-equation based computations.

• Monitoring: A continuous real-time task of determining the conditions
of a physical system, by recording information, recognising and indicating
anomalies in the behaviour.

• Supervision: Monitoring a physical system and taking appropriate actions
to maintain the operation in the case of faults.

• Protection: Means by which a potentially dangerous behaviour of the sys-
tem is suppressed if possible, or means by which the consequences of a dan-
gerous behaviour are avoided.

• Fault detection: Determination of the faults present in a system and the
time of detection.

• Fault isolation: Determination of the kind, location and time of detection

9
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of a fault. Follows fault detection.
• Fault identification: Determination of the size and time-variant behaviour
of a fault. Follows fault isolation.

• Fault diagnosis: Determination of the kind, size, location and time of
detection of a fault. Follows fault detection. Includes fault isolation and
identification.

2.2 Faults classification

According to the above definitions a fault is an unpermitted deviation of at least
one characteristic property or parameter of a system from its standard condition.
It tends to degrade the system’s performance but may not result in complete loss
of system functionality [45]. Faults take place in different parts of a system and
are classified according to where they occur in the system [46].

These faults and their causes are,
• Actuator faults: these are actuator malfunctions that trigger discrepancies
between the computed and real control actions. These include, inter alia,
gear damages, valve clogs and bearing aging.

• Sensor faults: these are discrepancies between the measured and true val-
ues of system output variables. Such faults describe sensor biases, thermal
drifts or accumulation of tartar in sensor elements, among others.

• Component faults: these occur in the plant components themselves and
often result in a change in the dynamical behaviour of the controlled sys-
tem. These are variations in process parameters, such as heat exchanger
coefficient, mass flow leaks or jammed conveyors.

Time-behaviour

On the whole, no particular time-behaviour will be assumed or employed to de-
sign residual generators1. In the analysis, however, it will be distinguished some
typical time-functions, such as abrupt, incipient and intermittent. Accordingly, in
Figure 2.1 their typical time-behaviour is sketched.

t

f(t)

(a) Abrupt

t

f(t)

(b) Incipient

t

f(t)

(c) Intermittent

Figure 2.1: Classification of faults according to their time-behaviour.

1A more detailed explanation about residual generators is found in Section 2.4
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where

Af = A +∆A; Bf = B +∆B; Cf = C +∆C; Df =D +∆D
being ∆A, ∆B, ∆C and ∆D the system parameters deviation, from their nominal
values.

In this context, it is important to note that disturbances are also considered as
unknown extra inputs acting on the system. Thus there is no physical difference
between disturbances and additive faults. This distinction is, indeed, subjective.
As a general rule, the disturbances wished to be detected are considered faults,
while the rest are simply disturbances [45].

Moreover, note that disturbances and model uncertainties have similar effects
on the system. Disturbances are usually represented by unknown extra input sig-
nals that have to be added up to the system output. Besides, model uncertainties
change the model parameters in a similar way as multiplicative faults. However,
an important distinction between disturbances, model uncertainties and faults can
be seen in the fact that disturbances and model uncertainties are always present,
while faults may be present or not [2].

Finally, in this thesis the noise signals are also considered as unknown ex-
tra inputs to the system, but they are assumed to exhibit random behaviour,N(0, σ2

n). Thus, any signal who exhibits a statistical distribution with arithmetic
mean different from zero, is considered as a disturbance.

2.3 Redundancy

The use of redundancy in its many forms is a common strategy used to make more
reliable systems. In engineering, redundancy corresponds to the duplication (or
even more) of system components, or critical functions, generally as a backup. In
particular, in control systems where safety requirements are the greatest priority
(airplanes, nuclear power plants or chemical industries) all or some of their com-
ponents are tripled, or even higher redundancy orders are implemented. In short,
the faults are detected and patched by redundant elements. As a consequence,
due to the fact that these components rarely fail and faults are expected to occur
independently, the probability that all redundant components will fail is extraor-
dinarily small; often only outweighed by other factors, such as human error. Thus,
redundancy is the key ingredient in any fault-tolerant system.

However, it is important to note that the use of redundancy may exhibit some
potential counterproductive effects, decreasing rather than increasing system re-
liability. Specifically, three serious problems are analysed in [48]: (1) the catas-
trophic common-mode error problem; (2) the social shirking problem; and (3) the
overcompensation problem.

Thus, one of the biggest problems is that adding extra components can inad-
vertently create a catastrophic common-mode error, which is generated by a fault
that causes all the components to fail. That is, in complex systems, theoretical
(or design) independence is not necessarily a fact. So there is a possibility of un-
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Analytical redundancy The intuitive idea of the analytical redundancy tech-
nique is to replace the physical redundancy with a process model which is imple-
mented in an algorithm. A process model is a mathematical description of the
monitored process behaviour, which can be obtained using the well-established
process modelling techniques. The analytical redundancy introduces a new view
point of redundancy, where reliability is achieved through software rather than
strictly hardware components.

2.4 Residuals

Residuals are time-varying signals that are used to detect and isolate faults, and
therefore this auxiliary signal constitutes an essential component in FDD modules.
Typically, the residuals are designed to be zero under fault-free conditions (or close
to zero when the process is affected by disturbances and modelling uncertainties),
and distinctly different from zero when faults occur.

Consequently, information about faults are extracted by comparing the residual
signals against suitable thresholds to avoid false alarms arising from measurement
noises, disturbances or model uncertainties. The threshold values may be deter-
mined by statistical considerations, on the basis of the known or assumed noise
statistics. Alternatively, they may be obtained experimentally, covering not only
the noise effects but also the modelling errors. Therefore, the residual vector is
the carrier of the fault information.

Note that, whilst a single residual signal is sufficient to detect faults, a set of
residuals (or a vector of residuals) is required for fault isolation. That is to facili-
tate the fault isolation procedure, where the residual set needs to have distinctive
properties. Thus, there are at least two fundamental residual enhancement ap-
proaches: directional and structured residuals.

Fixed direction residual The main idea behind this approach is to design a
fault detection scheme, in which the residual vector receives specific directions,
depending on the fault that is acting upon the system. In other words, designing
a directional residual vector which lies in a fixed and fault-specified direction in
the residual space, in response to a particular fault. Directional residuals support
the isolation of simultaneous faults if the response directions are independent [49].

Structured residual Another method of fault isolation is to design a set of
structured residuals. The main idea behind this approach is to design each residual
to be sensitive to a subset of faults, whilst remaining insensitive to the rest. The
design procedure consists of two steps, the first step is to specify the sensitivity and
insensitivity relationships between residuals and faults according to the assigned
isolation scheme, and the second is to design a set of residual generators according
to the desired sensitivity and insensitivity relationships. The advantage of the
structured residual set is that the diagnostic analysis is simplified to determine
which of the residuals are non-zero [45].



2.4. RESIDUALS 15

Besides, the faults in which the residue must be sensitive are called monitored
and those in which the residue must be insensitive are called non-monitored. The
non-monitored faults are decoupled from residuals; as a result, the residual gen-
eration problem is essentially a decoupling problem. It is a fact that, when more
faults are decoupled in each residue, greater is the possibility of isolating multiple
faults. The cost for this improvement is in the need of more complex and model
dependent residual generators.

The structured residual approach can be designed in two different ways: dedi-
cated and general residual scheme.

• In a dedicated residual scheme, one measurement is fed into each resid-
ual generator; these generators are designed to be sensitive only to single
faults. In observer-based literature, this is also known as a Dedicated Ob-
server Scheme (DOS).

• An alternative approach is the general residual scheme, also known as the
Generalised Observer Scheme (GOS). In this approach, each residual is
designed to be sensitive to all but one fault.

Each technique has pros and cons, in DOS each observer is driven by only
one output measurement and, as a consequence, the system states should be com-
pletely observable, which is not always the case in practical applications. On the
other hand, in GOS, a set of residuals should be fired from different observers at
the same time to decide which sensor is faulty, making it more reliable than DOS.

Residual generator The dynamic system used to generate residuals is called
as residual generator. Its purpose is to generate fault indicating signals, using the
available input and output information from the monitored system.

A residual generator looks for inconsistencies between the actual system vari-
ables and the mathematical model describing their relationship. That is, measure-
ments are compared to analytically obtained values of the respective variables.
Note that this analysis significantly depends on the available mathematical model
representation.

Ideally, the residual should only be affected by faults. However, the presence of
disturbances, noise and modelling errors also affect the residuals and thus interferes
with the detection of faults. Therefore the residual generator needs to be designed
robust against noise disturbances and model uncertainties. As a consequence,
robustness is perhaps the most important requirement in residual generation.

In addition, the residual vector r(t) ∈ R, is designed to become zero for the
fault-free case

r(t) = 0⇐⇒ u(t) ≠ 0 ∧ f(t) = 0
and non-zero for faulty cases,

r(t) ≠ 0⇐⇒ f(t) ≠ 0 (2.1)

where f(t) corresponds to any fault signal. Thus, the Equation (2.1) is the ele-
mentary rule involved in residual-based fault detection.

No matter what type of method is used, a residual generator is just an algo-
rithm whose input consists of both input and output of the monitored system.
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2.5 FDD methods classification

Usually, FDD methods are classified into two large groups, those that do not
require a mathematical model of the monitored process, and those that do. In this
thesis work, the model-based approach is used. However, to outline the general
context, both are briefly introduced.

• Model-free. The FDD methods which do not use the mathematical model
of the monitored process are called model-free methods. They range from
physical redundancy [50], special sensors [51], through limit-checking [18],
spectral and statistic analysis [26] up to expert systems [52], among others.

• Model-based. On the other hand, the FDD model-based methods are
those which use an explicit mathematical model representation of the moni-
tored process, and in general they rely on the analytical redundancy idea. As
stated in Section 2.3 contrary to physical redundancy, analytical redundancy
assesses the difference between the measured variables of the monitored pro-
cess and their analytical computation. To do this, present and/or previous
measurements data and the mathematical model of the monitored process
are used [45]. Thus, the FDD model-based methods range from parity re-
lations [18, 43], parameter estimation [45, 53], through diagnostic observers
[54, 55], up to Kalman filters [56, 57].

It is important to note that this chapter is not intended to explain in detail all
presented approaches, but the interested reader is invited to check the references
appointed there in.

2.6 Linear parameter varying system represen-

tation

Historically, control system analysis and synthesis techniques have been developed
using LTI models subject to bounded process and measurement disturbances [47,
58, 59]. However, the design of non-linear controllers demands a different strategy
further than just obtaining a linearised model at an operating point, and then
apply a robust technique to deal with model uncertainties. Hence, because of the
difficulty to design a non-linear control system, many authors prefer to represent
these systems by an LPV approach [60, 61, 62], for the observers design [34, 63, 64,
among others]. The basic idea of this is to represent the system as an interpolation
of i -th affine local models, which depend on time-varying scheduling parameters.
These parameter values depend on endogenous variables, such as the states and
inputs (typically available in real-time). That is, this technique represents an at-
tractive solution to schedule a set of linear models by a convex weighting function.
Thus, the LPV modelling framework is powerful since it allows the application of
well-known linear-like control and estimation design tools to a wide range of non-
linear systems. Furthermore, a key feature of the LPV paradigm resides in the
ability to formulate control problems as convex optimisation problems involving
LMI, which are efficiently solved using interior-point methods [65, 66]. A brief
description of the procedure for the LPV system representation of a non-linear
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process model is presented here below.
Being the dynamic of a real (non-linear) industrial process represented by the

following general state-space form:

ẋ(t) = f(x(t), u(t)), (2.2a)

y(t) = g(x(t), u(t)) (2.2b)

x(0) = x0
where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state, input and output vectors,
respectively. Additionally, x0 is the initial value of the state vector. Specifically,
the Equation (2.2a) is called state equation and this determines the system dy-
namics. On the other hand, the Equation (2.2b) is termed as output equation.

Assumption 1. Considering that the state and output functions f(x(t), u(t)) and
g(x(t), u(t)) are continuously differentiable, and using the Parameterised Jacobian
Linearisation (PJL) technique (see Appendix B), which is based on the first-order
Taylor-series analysis, it is possible to approximate, or even represent, the dynamic
behaviour of the system from the Equation (2.2), in different operating points
through a convex set of M affine models that depend on a time-varying parameter
ζ(t) [61, 67].

That is, the polytopic representation of affine LPV system is,

ẋ(t) = M∑
i=1

µi (ζ(t)) {Aix(t) +Biu(t) +∆xi}
y(t) = M∑

i=1

µi (ζ(t)) {Cix(t) +Diu(t) +∆yi}
(2.3)

where Ai, Bi, Ci, Di, ∆xi and ∆yi are constant matrices of appropriate dimensions,
which represent the state, input, output and feedthrough matrices, respectively.
Moreover, the weighting functions µi(⋅) depend on a scheduling parameter ζ(t)
assumed to depend on an endogenous variable (inputs or outputs). In addition,
the polytopic term comes from the fact that the vector µi(ζ(t)) evolves over the
unit M -simplex defined by

P ∶= {µi(ζ(t)) ∶ M∑
i=1

µi(ζ(t)) = 1, µi (ζ(t)) ≥ 0} , (2.4)

being P ∈ Ω ⊂ RM .

2.7 Unknown input observer

Definition 2.1 (Unknown Input Observer). Consider an LTI system described
as follows:,

ẋ(t) = Ax(t) +Bu(t) + Ffu(t)
y(t) = Cx(t) +Du(t) (2.5)
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Afterwards, the prediction horizon is shifted by one sample, and the optimisa-
tion problem is performed again after the problem has been updated with new
information from the measurements. Thus, the MPC considers a finite prediction
horizon, at each sample time k.

Furthermore, there are many different MPC formulations in the literature [14],
each of them are defined by an optimisation problem with different objective func-
tion and/or set of constraints. In general, the optimisation problem is posed as a
minimisation problem in which the objective function penalises the distance be-
tween the reference and the predicted system evolution over the prediction hori-
zon. However, in this section the focus is to introduce the preliminary aspects
involved in MPC, where the solution is found by solving a constrained Quadratic
Programming (QP) program.

Usually, the MPC formulations share three common elements, where different
options can be chosen for each element giving rise to different algorithms. Being
these itemised as follow:

• Prediction model. As was previously introduced, the main idea of MPC is
to use a dynamic model of the plant to forecast system behaviour, and based
on this prediction take the best control policy. In that sense, the model is
the cornerstone of MPC. This should be complete enough to fully capture
the process dynamics and allow the predictions to be calculated, and at the
same time to be intuitive and permit theoretic analysis.
For simplicity’s sake, a discrete-time non-linear model form is considered:

x(j + 1) = f(x(j), u(j)),
x(0) = x0, (2.6)

where f(⋅) is a continuous function of their arguments, x ∈ X ⊂ Rn is the
system state at sampling time k, x0 is the initial state and u ∈ U ⊂ Rm is the
control input.

• Objective function. The MPC algorithms propose different cost func-
tions for obtaining the control action. The general aim is that the future
output should follow a determined reference target at the considered hori-
zon. Consequently, a proper objective function VN(⋅) is defined for the MPC
optimisation problem by:

VN(x;u) = N−1∑
j=0

ℓ(x(j), u(j)) + Vf(x(N)) (2.7)

where N is the prediction horizon length, u(j) is the future control action
computed at the current sampling time k and x(j) is the predicted state
at sampling time k, starting from the initial condition x = x(k). Moreover,
ℓ(x(j), u(j)) and Vf(x(N)) are the stage and the terminal cost functions,
respectively.

• System constraints. Bearing in mind the previous statements, the se-
quence of control actions u ∶= [u(0) u(1) . . . u(N − 1)] is computed by
minimising the objective function while satisfying the system constraints.
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Thus, the control problem PN(x) is defined as follow:

min
u

VN(x,u)
s.t. x(0) = x,

x(j + 1) = f(x(j), u(j)),
u(j) ∈ U, x(j) ∈ X, ∀j ∈ Z0∶N−1

x(N) ∈ Xf

(2.8)

where U ⊂ Rm, X ⊂ Rn and Xf ⊂ Rn are the input, state and terminal
constraint sets, respectively. Moreover U is a compact set, and X, Xf are
closed sets.

Most works on MPC ensure stability by the addition of a suitable terminal
cost and terminal constraint to the optimal control problem solved on-line; the
stabilising conditions are essential conditions that the terminal cost and constraint
must satisfy to ensure stability and recursive feasibility [71].

In a resume manner, there exist different stabilising formulations of MPC [72]:
• terminal equality constraint: the stability condition is achieved by adding a
new constraint over the state at the end of horizon x(N),

x(N) = xs
where xs is the desired steady state.

• terminal cost: the stability condition is achieved by adding an extra term
to the cost function that penalises the state at the end of the horizon. This
term is called terminal cost function Vf(x(N)).

• terminal inequality constraint: the terminal equality constraint is replaced
by a set Xf that has to fulfil certain conditions,

x(N) ∈ Xf .

This approach provides a larger domain of attraction and less numerical
problems than the terminal equality constraint.

• terminal cost and inequality constraint: this approach is the result of the
union of the last two techniques, adding a terminal cost to the cost function
and using an inequality terminal constraint.

In [13, 71, 72, 73, among others] all these formulations are analysed and it
is established that adding a terminal cost Vf(x(N)), together with a suitable
terminal state domain Xf , has resulted to be essential to the stabilising design.
These conditions, also known as terminal ingredients, can be written down as
follows:

Let Xf be a set in Rn, let Vf(x(N)) be a positive definite function, continuous
at the origin and let κ(x) be a control law such that,

• 0 ∈ Xf ;
• f(x,κ(x)) ∈ Xf , ∀x ∈ Xf ⊆ X;
• Vf(f(x,κ(x)) − Vf(x(N)) ≤ −ℓ(x,κ(x)), ∀x ∈ Xf ;
• κ(x) ∈ U, ∀x ∈ Xf .
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Based on this, the optimal cost can be considered as a Lyapunov function [72].
Then, assuming feasibility of the initial state, an MPC solving the optimisation
problem from Equation (2.8) guarantees asymptotic stability of the origin. That
is, the invariant condition on terminal set Xf ensures feasibility of the closed-loop
system, while the condition on terminal function Vf(x(N)) guarantees conver-
gence.

At this point, in short, the MPC implementation could be represented in the
following algorithm:

Algorithm 1: MPC method

1 Measure x(k),
2 Obtain u by solving the problem from Equation (2.8),
3 Apply the control law, κ(x) = u(0),
4 Time update, k ∶= k + 1,
5 Repeat from step 1.

2.9 Moving horizon estimation

While MPC method had its origins in industry [74, 75], MHE was developed
primarily by researchers in academia [13, 76, 73], and was built on the success of
the receding horizon paradigm. Roughly speaking, MHE has been suggested as a
practical strategy to incorporate inequality constraints in states and parameters
estimation. The basic idea of MHE is to formulate the estimation problem as a
QP using a backward moving horizon of the available measurements.

Compared to full information estimation techniques, MHE reduces the com-
putational burden by considering a finite horizon, however, it is non-trivial to
summarise the effect of the discarded data on the current states. Thus, the mea-
surements information which are not included in the estimation window is assim-
ilated into the objective function through an extra term called arrival cost. In
short, the arrival cost can be considered as the analogous to the terminal cost in
MPC. Accordingly, arrival cost is fundamental to guarantee stability in MHE.

The best choice of the arrival cost remains an open issue in the domain of
MHE research [13, 77, 78]. One reasonable solution is to approximate the arrival
cost for the constrained problem with the arrival cost for the unconstrained prob-
lem. That is, for linear unconstrained systems, the standard Kalman Filter (KF)
covariance updated formula can be used to express the arrival cost explicitly [76].
However, for non-linear or constrained systems, a general analytical expression
for the arrival cost is rarely available, and it is often estimated using linearisation
approximation as in the Extended Kalman Filter (EKF) formulation [79]. This
method to approximate the arrival cost does not consider the bounds on state esti-
mates in a systematic manner, but it allows to reduce the size of the optimisation
problem, while retaining a good performance and robustness [13].

By and large, MHE is a multi-variable estimation algorithm that uses:

• an internal dynamic model of the process,
• a history of past input and output measurements, and
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• an optimisation cost function VT (⋅) over the estimation horizon
to compute the optimum states and parameters estimation.

Specifically, the cost function for the MHE optimisation is given by:

VT (x) = ℓac(x̂(k − T )) + k−1∑
i=k−T

(ℓ(ω(i), ν(i))) ,
where ℓac(⋅) is the arrival cost and ℓ(⋅) denotes the main optimisation cost along
the backward horizon. Moreover, ω represents process disturbance and ν the
output measurement noise. Therefore, the main optimisation function is given as
follows2:

ℓ(ω(i), ν(i)) = ∥ω(i)∥2Q + ∥ν(i)∥2R,
where Q and R are adequate weighting matrices.

On the other hand, the arrival term ℓac included in the cost function is used
to penalise the distance between the state estimated at the start of the backward
horizon (k−T ) and a previous state estimation x. In other words, the arrival cost
weights the influence of the past information outside the estimation horizon, i.e.
from t = 0 to t = k − T , in a single concatenated term. This offset is given by:

ℓac(x̂(k − T )) = ∥x̂(k − T ) − x∥2P
where P is a positive definite penalty matrix and as previously stated, the estimate
x̂(k − T ) is often given by an EKF algorithm. More details on why this arrival
term is necessary are given in [80, 81].

Finally, at each sampling instant k, the optimisation problem defined in Equa-
tion (2.9) below is solved, and a current state estimation becomes available for
control purposes.

min
x

VT (x)
s.t. x(i + 1) = f(x(i), u(i)) + ω(i),

y(i) = g(x(i)) + ν(i),
x ∈ X, i ∈ Zk−T ∶k.

(2.9)

At the next sampling instant, the following arrival term ℓac(⋅) is updated by
an EKF guess and the horizon window T slides forward by one unit.

At this point, in a resume manner, the MHE implementation could be repre-
sented in the following algorithm:

Algorithm 2: MHE method

1 Collect the data set based on the available information from the last T
steps,

2 Compute the arrival cost ℓac(⋅), through an EKF algorithm,
3 Estimate the states, solving the constrained optimisation problem from

Equation (2.9),
4 Time update, k ∶= k + 1,
5 Repeat from step 1.

2The weighted norm ∣∣z∣∣2
M

denotes the weighted norm of z, zTMz



Chapter 3

Observer-based fault detection
and diagnosis

This chapter presents the development of a novel FDD scheme based on a set of
observers. Specifically, the design of two types of observers applied to LPV systems
is addressed, being these a Linear Parameter Varying Reduced-order Unknown In-
put Observer (LPV-RUIO) and a full-order Linear Parameter Varying Unknown
Input Output Observer (LPV-UIOO). Then, based on them, two banks of gen-
eralised observers are constructed to generate residuals that allow the detection,
isolation and diagnosis of actuator and sensor malfunctions over non-linear sys-
tems, which accept LPV representation. Furthermore, to evaluate the behaviour
and capabilities of the proposed FDD scheme, it was simulated on two typical
chemical industrial processes, firstly in a Heat Exchanger (HE) and secondly in a
Continuous-Stirred Tank Reactor (CSTR).

Finally, it should be noted that the main results of this chapter can be found
in works [55, 82, 83].

3.1 Introduction

As stated previously, the appropriate behaviour of an AFTCS highly depends on
a solid FDD module. This is specially critical in industrial processes, where the
problem is still a challenge due to the troubles of dealing with non-linearities and
model mismatches. In light of the foregoing, this chapter presents the design of a
novel FDD scheme, composed of a bank of two types of observers, applied to LPV
systems.

The main motivation for the use of two types of observers, to deal with actu-
ators and sensors faults, is the possibility to exploit each of its specific goodness.
That is, the use of LPV-RUIOs allows an easy way to compute the actuator fault
estimation (without the use of extended observer, or the computation of the bad
conditioned pseudo-inverse matrices), enabling a design with more degree of free-
dom, relieving the designer work to select the desired actuator input as unknown
input without resulting unfeasible. On the other hand, the LPV-UIOOs are the
simplest way to deal with sensors faults, with a better trade-off about perfor-

23
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mance and off-line design complexity, which is ideal to improve the efficiency of
the proposed strategy. In such a way, the observers design is mainly doing off-line,
and only a slight use of computational resources is needed at each sample time to
perform on-line the FDD tasks, enabling its application as a part of an AFTCS.

Notation With the purpose of simplifying the chapter’s structure, the duality
between continuous-time and discrete-time is assumed equivalent, except in cases
indicated explicitly. For that, the differential operator ρ is used, which denotes the
time derivative for continuous-time models and the step forward shift operator for
discrete-time models. That is, ρx(ι) represents ẋ(t) and x(k + 1) for continuous-
time and discrete-time, respectively. In addition, ι represents the time variable
(t ∈ R and k ∈ Z) for continuous-time and discrete-time cases. A similar notation
was used in [84].

3.2 LPV system with additive faults

Based on a non-linear system represented by an LPV model (see Section 2.6), that
consider the income of additive input and output faults. That is, the polytopic
representation of an affine LPV system is,

ρx(ι) = M∑
i=1

µi (ζ(ι)) {Aix(ι) +Biu(ι) + Fifu(ι) +∆xi}
y(ι) = M∑

i=1

µi (ζ(ι)) {Cix(ι) +Diu(ι) +Hify(ι) +∆yi}
(3.1)

where x(ι) ∈ Rn, u(ι) ∈ Rm, fu(ι) ∈ Rq, y(ι) ∈ Rp, fy(ι) ∈ Ro are the state vector,
the input vector, the fault input vector, the output vector and the fault output
vector, respectively. Additionally, Ai, Bi, Ci, Di, Fi, Hi, ∆xi and ∆yi are constant
matrices of appropriate dimensions.

Moreover, throughout this chapter, the following assumptions are made.

Assumption 2. In general, for strictly proper systems, the matrices Di are null
and, as a consequence, the output equation in Equation (3.1) is reduced to a simple
weighting combination of the states and faults variables. On the other hand, the
matrices Ci, for this study purpose, are composed by identity matrices of appro-
priate dimensions Ip×n. Thus, the final output equation of Equation (3.1) results,

y(ι) = Cx(ι) +Hfy(ι). (3.2)

Assumption 3. The actuators and sensors faults vectors satisfy the following
euclidean-norm bounded constraint,

∥fu(ι)∥ < βu, ∥fy(ι)∥ < βy,
where βu > 0 and βy > 0 are known constants (βu ∧ βy ∈ R+).
Assumption 4. Faults can occur in all system elements (actuators and sensors),
but they do not occur at the same time.
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Consequently, taking all the above into account, Section 3.3 introduces the
design procedure for an LPV-RUIO. Moreover, Section 3.4 presents the design
procedure for an LPV-UIOO. Lastly, the FDD strategy built using these observers
is presented in Section 3.5.

3.3 Design of LPV-RUIO

Based on the observer development for linear systems with unknown input [85],
recently reformulated as a reduced-order observer applied to an LPV system with
unknown input [82]. If the term Hfy(ι) = 0 is considered (no sensors faults occur
in the system, simultaneously), and under the assumption that the rank of Fi =
q (being Fi a specific column of Bi, that corresponds with the faulty input to
diagnose), then a set of non-singular matrices is selected as,

Ti = [Ni Fi] , Ni ∈ Rn×(n−q).

Thereby, the system from Equation (3.1) is equivalent to,

ρx̄(ι) = M∑
i=1

µi(ζ(ι)) {Āix̄(ι) + B̄iu(ι) + ∆̄xi + F̄ifu(ι)} (3.3a)

y(ι) = M∑
i=1

µi(ζ(ι)) {C̄ix̄(ι)} (3.3b)

where

x(ι) = Tix̄(ι) = Ti [x̄1(ι)x̄2(ι)] ; ∆̄xi = T −1i ∆xi = [∆̄xi1∆̄xi2
]

Āi = T −1i ĀiTi = [Āi11 Āi12

Āi21 Āi22

] ; B̄i = T −1i Bi = [B̄i1

B̄i2

]

C̄i = CTi = [CNi CFi]; F̄i = T −1i Fi = [ 0Iq]

(3.4)

with x̄1(ι) ∈ Rn−q and x̄2(ι) ∈ Rq.
Because of Equation (3.4) it is observed that Equation (3.3a) involves directly

the unknown input in the state x̄2(ι). As a consequence, it is possible to drop this
state and rewrite the system from Equation (3.3) without the unknown input as,

[In−q 0]ρx̄(ι) = M∑
i=1

µi(ζ(ι)){[Āi11 Āi12]x̄(ι) + B̄i1u(ι) + ∆̄xi1} (3.5a)

y(ι) = M∑
i=1

µi(ζ(ι)) {[CNi CFi]x̄(ι)} . (3.5b)

Assuming that x̄2(ι) is obtained from y(ι), and if the matrices [CFi] have full
column rank, then there exists non-singular matrices

Ui = [CFi Qi] , Qi ∈ Rn×(n−q)
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being

U−1i = [Ui1

Ui2

] , Ui1 ∈ Rq×n, Ui2 ∈ R(n−q)×n
multiplying both sides of Equation (3.5b) by U−1i and isolating,

x̄2(ι) = M∑
i=1

µi(ζ(ι)) {Ui1y(ι) −Ui1CNix̄1(ι)} (3.6a)

y(ι) = M∑
i=1

µi(ζ(ι)) {CNix̄1(ι)} (3.6b)

afterwards, substituting Equation (3.6a) into Equation (3.5a) and combining it
with Equation (3.6b) derive in Equation (3.1) transform to,

ρx̄1(ι) = M∑
i=1

µi(ζ(ι)){Ãi1x̄1(ι) +Ei1y(ι) + B̄i1u(ι) + ∆̄xi1} (3.7a)

y(ι) = M∑
i=1

µi(ζ(ι)) {C̃i1x̄1(ι)} (3.7b)

with C̃i1 = CNi, Ãi1 = Āi11 − Āi12Ui1CNi and Ei1 = Āi12Ui1 .
At this point, if the pair (Ãi1 , C̃i1) is observable, following the conventional

Luenberger observer design procedure [86] (see Appendix A), it is possible to
design a reduced-order observer for an LPV system free of unknown inputs from
Equation (3.7) as,

ρΦ(ι) = M∑
i=1

µi(ζ(ι)) {KiΦ(ι) + B̄i1u(ι) +L∗i y(ι) + ∆̄xi1} (3.8)

where Φ(ι) ∈ R(n−q) is the observer state vector, L∗i = Li+Ei1 and Ki = Ãi1 −LiC̃i1 .
Moreover, Li ∈ R(n−q)×(p−q) are the gains of the observer to be designed.

For that, the state estimation error is defined as,

e(ι) = x̄1(ι) −Φ(ι) (3.9)

therefore, the estimation error dynamic is

ρe(ι) = ρx̄1(ι) − ρΦ(ι)
= M∑

i=1

µi(ζ(ι)) {Ãi1x̄1(ι) −KiΦ(ι) −Liy(ι)}
= M∑

i=1

µi(ζ(ι)) {Ki(x̄1(ι) −Φ(ι))} .
At last, in a resume manner, the necessary conditions for the observer existence

are:
I. Ãi1 is asymptotically stable.
II. (Ãi1 , C̃i1) is observable.
III. C and Fi are full row and column rank, respectively.
IV. rank(CFi) = rank(Fi).
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Continuous-time case

The estimation error dynamic for the continuous-time case results

ė(t) = M∑
i=1

µi(ζ(t))Kie(t) (3.10)

in this way, if Ki is quadratically Hurwitz, ė(t)→ 0 asymptotically.
Through the following theorem the sufficient LMI conditions are presented for

the LPV-RUIO synthesis.

Theorem 3.1. If there exists a symmetric matrix X ≻ 0 and Wi, such that the
following conditions hold ∀i ∈ Z1∶M :

(XÃi1 −WiC̃i1)T + (XÃi1 −WiC̃i1) + 2αX ≺ 0 (3.11)

then the observer from Equation (3.8) is an LPV-RUIO. That is, e(t) towards
zero asymptotically for any initial state e(0).
Proof. From Equation (3.9), and choosing a Lyapunov function with a symmetric
matrix X ≻ 0.

V (t) = e(t)TXe(t) (3.12)

thus, the exponential convergence of the estimation error is guaranteed if,

V̇ (t) + 2αV (t) < 0 (3.13)

where α is the decay rate constant [66]. Then, using Equation (3.10) and Equa-
tion (3.12) it derives in,

V̇ (t) = ėT (t)Xe(t) + e(t)XėT (t)
= M∑

i=1

µi(ζ(t))eT (t)KT
i Xe(t) + M∑

i=1

µi(ζ(t))eT (t)XKie(t)
= M∑

i=1

µi(ζ(t)) {eT (t) (KT
i X +XKi) e(t)}

(3.14)

hence, replacing Equation (3.12) and Equation (3.14) in Equation (3.13) it results,

M∑
i=1

µi(ζ(t)) {eT (t) (KT
i X +XKi + 2αX) e(t)} < 0.

Indeed, notice that (KT
i X +XKi +2αX) ≺ 0, ∀i ∈ Z1∶M , implies that e(t) towards

zero asymptotically for any initial state e(0).
Since Ki = Ãi1 −LiC̃i1 , and replacing in the previous inequality,

(Ãi1 −LiC̃i1)TX +X(Ãi1 −LiC̃i1) + 2αX ≺ 0
ÃT

i1
X − C̃T

i1
LT
i X +XÃi1 −XLiC̃i1 + 2αX ≺ 0.

Moreover, to eliminate the existing non-linearities,Wi =XLi is defined. Therefore,

(XÃi1 −WiC̃i1)T + (XÃi1 −WiC̃i1) + 2αX ≺ 0.
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Remark 3.1. The Theorem 3.1 shows that the LPV-RUIO design for continuous-
time case is solved through the LMI from Equation (3.11). For that, the LMI Lab
[65] package of Matlab software is used.

Thereby, from Equation (3.8), with Φ(t)→ ˆ̄x1(t) pursuant to t→∞, getting

x̂(t) = M∑
i=1

µi(ζ(t))Ti ˆ̄x(t)
= M∑

i=1

µi(ζ(t))Ti [ Φ(t)
Ui1y(t) −Ui1CNiΦ(t)]

(3.15)

with x̂(t)→ x(t) when t→∞.

Discrete-time case

The estimation error dynamic for the discrete-time case results

e(k + 1) = M∑
i=1

µi(ζ(k))Kie(k) (3.16)

in this way, if Ki is quadratically Schur, e(k + 1)→ 0 asymptotically.
Through the following theorem the sufficient LMI conditions are presented for

the LPV-RUIO synthesis.

Theorem 3.2. If there exists a symmetric matrix X ≻ 0 and Wi, such that the
following hold ∀i ∈ Z1∶M :

[ 2αX ÃT
i1
X − C̃T

i1
W T

i

XÃi1 −WiC̃i1 2αX
] < 0 (3.17)

then the observer from Equation (3.8) is an LPV-RUIO. That is, e(k) converges
asymptotically to zero from any initial state e(0).
Proof. From Equation (3.9) and choosing a Lyapunov function with a symmetric
matrix X ≻ 0.

V (k) = e(k)TXe(k) (3.18)

thus, the exponential convergence of the estimation error is guaranteed if,

V (k + 1) + 2αV (k) < 0 (3.19)

where α is the decay rate constant [66]. Then, using Equation (3.16) and Equa-
tion (3.18) it obtains,

V (k + 1) = eT (k + 1)Xe(k + 1)
= M∑

i=1

µi(ζ(k)) {eT (k) (KT
i XKi) e(k)} (3.20)
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thus, replacing Equation (3.18) and Equation (3.20) in Equation (3.19) it results,

M∑
i=1

µi(ζ(k)) {eT (k) (KT
i XKi + 2αX) e(k)} < 0

note that (KT
i XKi + 2αX) < 0, ∀i ∈ Z1∶M , implies that e(k) tends asymptotically

to zero from any initial state e(0).
Since Ki = Ãi1 −LiC̃i1 , and replacing the previous inequality,

(Ãi1 −LiC̃i1)TX(Ãi1 −LiC̃i1) + 2αX < 0.
Moreover, to eliminate the existing non-linearities, Wi =XLi is defined, and then
applying the Schur complement results

[ 2αX ÃT
i1
X − C̃T

i1
W T

i

XÃi1 −WiC̃i1 2αX
] < 0.

Remark 3.2. The Theorem 3.2 shows that the LPV-RUIO design for discrete-
time case is solved through the LMI from Equation (3.17). For that, the LMI Lab
[65] package of Matlab software is used.

Thereby, from Equation (3.8) with Φ(k)→ ˆ̄x1(k) pursuant to k →∞. That is,

x̂(k) = M∑
i=1

µi(ζ(k))Ti ˆ̄x(k)
= M∑

i=1

µi(ζ(k))Ti [ Φ(k)
Ui1y(k) −Ui1CNiΦ(k)]

with x̂(k)→ x(k), with k →∞.
The following algorithm resumes the design procedure for the LPV-RUIO.

Algorithm 3: LPV-RUIO design:

1 Choose a scheduling parameter and compose the weighting functions,
2 Obtain the LPV model (Equation (3.1)), and discretise if necessary,
3 Check the existence conditions from 3.3.I to 3.3.IV,
4 Determine the X and Wi matrices using the Theorem 3.1 for

continuous-time case, and the Theorem 3.2 for discrete-time case,
5 Compute the observer gain matrices, Li =X−1Wi, L∗i = Li +Ei1 and

Ki = Ãi1 −LiC̃i1 .

3.4 Design of LPV-UIOO

Considering that the matrix H corresponds with a row of C, which is non-
monitored output (faulty sensor), and choosing a transformation matrix T2, such
that J = T2C, where J ∈ Rp−o only contains the C rows corresponding with the
monitored outputs (non-faulty sensors). Therefore, based on the development of
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the UIO for linear systems [87], the output equation of the system model from
Equation (3.2) is transformed to,

ỹ(ι) = Jx(ι).
Thereby, an UIO with the purpose of estimating the state variables x(ι), even

with unknown input presence, is formulated as,

ρz(ι) = M∑
i=1

µi(ζ(ι)){Niz(ι) +Giu(ι) +Liỹ(ι) +∆zi}
x̂(ι) = z(ι) −Eỹ(ι)
ŷ(ι) = Cx̂(ι)

(3.21)

where z(ι) ∈ Rn is the full-order observer state vector, and the matrices Ni ∈ Rnxn,
Gi ∈ Rnxp, Li ∈ Rnxp and E ∈ Rnxp are the observer gains to be determined. In
addition, the weighting functions µi(.) are the same as used in Equation (3.1).

For that, defining the state estimation error

e(ι) = x̂(ι) − x(ι)
= z(ι) −Eỹ(ι) − x(ι)
= z(ι) −EJx(ι) − x(ι)
= z(ι) − (I +EJ)x(ι)

(3.22)

being T1 = (I + EJ), the estimation error results e(ι) = z(ι) − T1x(ι) and the
estimation dynamic is

ρe(ι) = ρx̂(ι) − ρx(ι)
= M∑

i=1

µi(ζ(ι)){Nix(ι) +Giu(ι) +Liỹ(ι) +∆zi} − T1ρx(ι)
= M∑

i=1

µi(ζ(ι)){Nie(ι) + (NiT1 +LiJ − T1Ai)x(ι) + (Gi − T1Bi)u(ι)
− T1Fifu(ι) +∆zi − T1∆xi}.

Accordingly,

ρe(ι) = M∑
i=1

µi(ζ(ι))Nie(ι)
if the following constraints hold

T1Fi = 0 (3.23a)

Gi − T1Bi = 0 (3.23b)

NiT1 +LiJ − T1Ai = 0 (3.23c)

∆zi − T1∆xi = 0. (3.23d)
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It is easy to see that Equation (3.23a) implies that EJFi = −Fi, so to assure
the existence of the matrix E it must be fulfilled that

rank(JFi) = rank(Fi). (3.24)

As a consequence the necessary existence conditions are:

I. Ai is asymptotically stable.
II. (Ai, J) is observable.
III. J and Fi are full row and column rank, respectively.
IV. rank(JFi) = rank(Fi).
It is important to note that, the observer from Equation (3.21) becomes in a

traditional Luenberger observer if T1 = I (that is E = 0), and without disturbance
presence in the system (fu = 0).
Continuous-time case

The estimation error dynamic for the continuous-time case results

ė(t) = M∑
i=1

µi(ζ(t))Nie(t) (3.25)

in this way, if Ni is quadratically Hurwitz, ė(t)→ 0 asymptotically.

Through the following theorem the sufficient LMI conditions are presented for
the LPV-UIOO synthesis.

Theorem 3.3. If there exist the matrices S, Wi, ∀i ∈ Z1∶M and a symmetric
positive defined matrix X ≻ 0 such that

((X + SJ)Ai −WiJ)T1 + ((X + SJ)Ai −WiJ) + 2αX < 0 (3.26)

subject to the decouple unknown input restriction from Equation (3.23a)

(X + SJ)Fi = 0 (3.27)

then, the observer from Equation (3.21) is an LPV-UIOO. That is, e(t) converges
asymptotically to zero from any initial state e(0).
Proof. From Equation (3.22), and choosing a Lyapunov function with a positive
defined symmetric matrix X =XT ≻ 0.

V (t) = e(t)TXe(t) (3.28)

as a consequence, the exponential convergences of the estimation error is guaran-
teed if,

V̇ (t) + 2αV (t) < 0 (3.29)
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where α is the decay rate constant [66]. Then, using Equation (3.25) and Equa-
tion (3.29) it obtains,

V̇ (t) =ėT (t)Xe(t) + e(t)XėT (t)
= M∑

i=1

µi(ζ(t))eT (t)NT
i Xe(t) + M∑

i=1

µi(ζ(t))eT (t)XNie(t)
= M∑

i=1

µi(ζ(t))eT (t)(NT
i X +XNi)e(t)

(3.30)

thus, replacing Equation (3.30) and Equation (3.28) in Equation (3.29) it results,

M∑
i=1

µi(ζ(t)) {eT (t) (NT
i X +XNi + 2αX) e(t)} < 0.

Note that (NT
i X +XNi + 2αX) < 0, ∀i ∈ Z1∶M , implies that e(t) tends asymptoti-

cally to zero for any initial state e(0).
From Equation (3.23c) defining Ki = NiE +Li, it is obtained Ni = T1Ai −KiJ .

Replacing in the previous inequality

(T1Ai −KiJ)TX +X(T1Ai −KiJ) + 2αX < 0
AT

i X +AT
i J

T
1 E

TX − JTKT
i X +XAi +XEJAi −XKiJ + 2αX < 0

then, to eliminate the existing non-linearities, new variables are introduced S =
XE, Wi =XKi

((X + SJ)Ai −WiJ)T + (X + SJ)Ai −WiJ) + 2αX < 0
furthermore, based on Equation (3.23a) it results

(X + SJ)Fi = 0.

Additionally, the observer matrices result

Ni = (I +X−1SJ)Ai −X−1WiJ

Gi = (I +X−1SJ)Bi

Li =X−1Wi −NiE

∆zi = T1∆xi.
(3.31)

Remark 3.3. The Theorem 3.3 shows that the LPV-UIOO design for continuous-
time case is solved through the LMI from Equation (3.26) subject to the restriction
of Equation (3.27). For that, the Yalmip [88] package in Matlab software is used.
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Discrete-time case

The estimation error dynamic for the discrete-time case results

e(k + 1) = M∑
i=1

µi(ζ(k))Nie(k) (3.32)

in this way, if Ni is quadratically Schur, e(k + 1)→ 0 asymptotically.
Through the following theorem the sufficient LMI conditions are presented for

the LPV-UIOO synthesis.

Theorem 3.4. if there exist the matrices S, Wi, ∀i ∈ Z1∶M and a positive defined
symmetric matrix X ≻ 0 such that

[ 2αX AT
i X +AT

i J
TST − JTW T

i

XAi + SJAi −WiJ 2αX
] < 0 (3.33)

subject to the decouple unknown input restriction of Equation (3.23a)

(X + SJ)Fi = 0 (3.34)

then, the observer from Equation (3.21) is an LPV-UIOO. That is, e(k) converges
asymptotically to zero from any initial state e(0).
Proof. From Equation (3.32), and choosing a Lyapunov function with a positive
defined symmetric matrix X ≻ 0

V (k) = e(k)TXe(k) (3.35)

as a consequence, the exponential convergence of the estimation error is guaranteed
if,

V (k + 1) + 2αV (k) < 0 (3.36)

where α is the decay rate constant [66]. Then, using Equation (3.32) and Equa-
tion (3.36) it obtains,

V (k + 1) = eT (k + 1)Xe(k + 1)
= M∑

i=1

µi(ζ(k))eT (k)(NT
i XNi)e(k) (3.37)

thus, replacing Equation (3.36) and Equation (3.35) in Equation (3.37) it results,

M∑
i=1

µi(ζ(k)) {eT (k) (NT
i XNi + 2αX) e(k)} < 0

Note that (NT
i XNi + 2αX) < 0, ∀i ∈ Z1∶M , implies that e(k) tends asymptotically

to zero for any initial state e(0).
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From Equation (3.23c) defining Ki = NiE +Li, it is obtained Ni = T1Ai −KiJ .
Replacing that in the previous inequality

(T1Ai −KiJ)TX(TAi −KiJ) + 2αX < 0
since T1 = (I +EJ),

(Ai +EJAi −KiJ)TX(Ai +EJAi −KiJ) + 2αX < 0
then, to eliminate the existing non-linearities, new variables are introduced S =
XE, Wi =XKi, and using the Schur complement

[ 2αX AT
i X +AT

i J
TST − JTW T

i

XAi + SJAi −WiJ 2αX
] < 0

furthermore, based on Equation (3.23a) it results,

(X + SJ)Fi = 0.

Additionally, the observer gain matrices are:

Ni = (I +X−1SJ)Ai −X−1WiJ

Gi = (I +X−1SJ)Bi

Li =X−1Wi −NiE

∆zi = T∆xi.
(3.38)

Remark 3.4. The Theorem 3.4 shows that the LPV-UIOO design for discrete-
time case is solved through the LMI from Equation (3.33) subject to the restriction
from Equation (3.34). For that, the Yalmip [88] package in Matlab software is
used.

The following algorithm resumes the design procedure for the LPV-UIOO.

Algorithm 4: LPV-UIOO design:

1 Choose a scheduling parameter and compose the weighting functions,
2 Obtain the LPV model (Equation (3.1)), and discretise if necessary,
3 Check the existence conditions from 3.4.I to 3.4.IV,
4 Determinate the X, S and Wi matrices using the Theorem 3.3 for

continuous-time case, and the Theorem 3.4 for discrete-time case,
5 Compute the observer gain matrices E =X−1S, Ki =X−1Wi,

T1 = (I +EJ), Ni = T1Ai −KiJ , Gi = T1Bi, Li =Ki −NiE, ∆zi = T1∆xi.

3.5 Fault detection and diagnosis

As commonly used in literature [31, 18, 11], the residual pattern should be cus-
tomised to follow a certain structure (generalised residuals), enabling an extra
degree of freedom in the observer design. Therefore, the structured residuals are
characterised by selective fault responses. That is, any residual is design to be
sensitive to one group of faults and insensitive to others.





36 CHAPTER 3. OBSERVER-BASED FDD

fault). Based on this observation, each residual is compared against a threshold,
and depending on that, it reveals if the fault occurs, or not:

Fault = ⎧⎪⎪⎨⎪⎪⎩
False if ∣r(ι)∣ ≤ rth(ι)
True if ∣r(ι)∣ > rth(ι) . (3.39)

In particular, with the aim of reduce the false positives detection, during the
initial convergence, an exponential threshold is introduced. Given by,

rth(ι) = rthi
e−

ι
τ + rth; (3.40)

where rthi
, τ and rth are the threshold initial value, the convergence period and

the nominal threshold value (obtained based on modelling uncertainties, due to
the LPV representation), respectively.

LPV-UIOO bank

In the same way, the Figure 3.1b shows the sensor residue generator structure. In
this case, the scheme uses an observers bank that is driven by all inputs and all
but one outputs of the system, so each output residual is

r(ι) = ŷ(ι) − y(ι)
= Cz(ι) −CEỹ(ι) −Cx(ι) −Hfy(ι)
= Ce(ι) +CT1x(ι) −CEJx(ι) −Cx(ι) −Hfy(ι)
= Ce(ι) −Hfy(ι)

in such a way, if the system is without faults, each residual vector r(ι) tends to
zero asymptotically for any initial state r(0).
Remark 3.6. It is important to note that the residual vector is composed from
monitored and non-monitored components, which are corresponding with the mon-
itored and non-monitored outputs.

Therefore, only the non-monitored components of the residual vector are af-
fected by a fault fy(ι), and all the others should be zero. That is, when a moni-
tored output fault income (Hfy = 0) the residual vector differed from zero in their
monitored components

r(ι) = Ce(ι).
Conversely, if a non-monitored output fault income (Ce(ι) = 0) the residual

differed from zero in their non-monitored components

r(ι) =Hify(ι). (3.41)

This means, using the same method as introduced in Equation (3.39), it is set-
ting an exponential threshold for each monitored residue components, and thereby
depending on the result of its comparison, it reveals if the fault occurs, or not.
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3.5.2 Fault detection and isolation

Bearing this in mind, the threshold test may be performed separately for each
residual, yielding to a decision incidence matrix, and then the isolation task is
fulfilled using this matrix. As an example, the fault isolation based on an incidence
matrix and four residual components is presented,

⎛⎜⎜⎜⎝

f1
f2
f3
f4

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝

0 1 0 1
1 0 1 0
1 1 0 0
0 0 1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

r1
r2
r3
r4

⎞⎟⎟⎟⎠
being the binary variables True = 1 and False = 0.
3.5.3 Fault estimation

When the fault detection and isolation task are successfully achieved, the actuator
or sensor fault estimation is computed.

Actuators

Hence, the actuator estimation task is performed using the corresponding observer
to the associated fault (selected as unknown input signal).

Continuous-time case For that, from Equation (3.3a), and taking into account
that ˆ̄x(t)→ x̄(t) pursuant to t→∞, it is possible to estimate the unknown input

f̂u(t) = M∑
i=1

µi(ζ(t)){Ui1 ẏ(t) − Āi22Ui1y(t) −G1Φ̇(t) −G2Φ(t) − B̄i2u(t) + ∆̄xi2}
where G1 = Ui1C̃i1 and G2 = Āi21 − Āi22Ui1C̃i1 .

Discrete-time case In the same way,

f̂u(k − 1) = M∑
i=1

µi(ζ(k)){Ui1y(k) −G1y(k − 1) −G2Φ(k) −G3Φ(k − 1)
− B̄i2u(k − 1) + ∆̄xi2}

where G1 = Āi22Ui1 , G2 = Ui1C̃i1 and G3 = Āi21 − Āi22Ui1C̃i1 .

Sensors

Besides, the sensor estimation task is performed using the k-th non-monitored
residue component from the corresponding observer to the associated fault (se-
lected as non-monitored signal). From Equation (3.41), and taking into account
the Assumption 2, that is Hi is a unitary gain selector vector. So, fy(ι) results:

fy(ι) = rk(ι).





3.6. ILLUSTRATIVE EXAMPLE I (HE) 39

Based on these considerations, Table 3.1 shows its physical and operational
parameters.

Table 3.1: Parameters of the HE process.

Name Description Value

ρ1 Fluid 1 density 1 kg l−1

ρ2 Fluid 2 density 1 kg l−1

ρp Wall density 7.874 kg l−1

Cp1 Heat capacity 1 1000 cal kg−1K
Cp2 Heat capacity 2 1000 cal kg−1K
Cpp Wall specific heat 1075.53 cal kg−1K
A Heat exchange area 0.881m2

h1 Heat transfer 1 32374 calmin−1K−1m−2

h2 Heat transfer 2 14716.67 calmin−1K−1m−2

V1 Tube Volume 16 l
V2 Case Volume 2.11 l
Vp Wall Volume 1.19 l
θ1e Input 1 Temp. 450K
θ2e Input 2 Temp. 900K

Taking all the above into account, their non-linear model equations are [59,
pp. 67-72]:

V1

dθ1s(t)

dt
= q1(t)(θ1e − θ1s(t)) −

Ah1

ρ1Cp1

(θ1s(t) − θp(t))

V2

dθ2s(t)

dt
= q2(t)(θ2e − θ2s(t)) +

Ah2

ρ2Cp2

(θp(t) − θ2s(t))

Vp

dθp(t)

dt
=

Ah1

ρpCpp

(θ1s(t) − θp(t)) −
Ah2

ρpCpp

(θp(t) − θ2s(t))

(3.42)

It should be note that, according to Figure 3.2, the state variable θ1s is controlled
by the cold process flow rate q1 and the hot stream flow rate q2.

Furthermore, applying the PJL technique (see Appendix B) it is possible to
rewrite the non-linear system from Equation (3.42) as an LTI model around the
i-th operating point xi = {θ1si , θ2si , θpi},

Ai =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

−Ah1+q1ρ1Cp1

V1ρ1Cp1
0 Ah1

V1ρ1Cp1

0 −Ah2+q2ρ2Cp2

V2ρ2Cp2

Ah2

V2ρ2Cp2

Ah1

VpρpCpp

Ah2

VpρpCpp
−Ah1+Ah2

VpρpCpp

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Bi =
⎡⎢⎢⎢⎢⎢⎢⎣

θ1e−θ1s
V1

0

0 θ2e−θ2s
V2

0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, Ci =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
, Di =

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
.

Finally, being the non-linear process model from Equation (3.42), it was de-
velop an FDD scheme with the aim to detect, isolate y diagnose faults in multiple
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actuators and sensors. Therefore, based on the novelty FDD scheme, introduced
through the Sections 3.2 to 3.5, the suitable matrices and involved functions were
designed.

LPV-RUIO

According to Algorithm 3 the scheduling parameter vector, with dimension N = 2,
was defined depending on the outputs, ζ(t) ∶= [θ1s(t) θ2s(t)]. Moreover, to obtain
a proper representation, L = 3 linearisation points per parameter was used. Then,
based on Appendix B the non-linear system from Equation (3.42) was rewritten
such as an LPV model. As a result,M = LN = 9 weighting functions corresponding
to each linear model was setted. Next, in the same way as Appendix B.3, the
proper membership functions of each parameter were obtained.

At last, defining F = [θ1e−θ1si
V1

0 0]T , it was possible to construct the matrices

of the observer from Equation (3.8) that was used to estimate the faults of the

valve q1. On the other hand, defining F = [0 θ2e−θ2si
V2

0]T , and repeating the

previous procedure, the observer was constructed to estimate the faults of the
valve q2.

LPV-UIOO

Similarly, as was defined in the Algorithm 4, and furthermore using the same LPV
model representation of the non-linear system from Equation (3.42), developed
previously, the LPV-UIOO design is presented.

For that, firstly the output θ1s was selected as a non-monitored output (Hi

corresponds with the θ1s row of the output matrix Ci), and F = [θ1e−θ1siV1
0 0]T

was defined, then the appropriate T2 matrix was chosen (null space of Hi). Thus,
if the existence conditions were verified, it is possible to construct the matrices of
the observer from Equation (3.38), that was used to diagnose faults of the output
sensor θ1s . On the other hand, choosing the output θ2s as non-monitored output,

and defining F = [0 θ2e−θ2si
V2

0]T , if the existence conditions were verified, and

selecting another T2 matrix, a new observer from Equation (3.38) was constructed
to diagnose faults of the output sensor θ2s .

Numerical simulation

To evaluate the performance and effectiveness of the proposed FDD scheme, it was
simulated on the non-linear system from Equation (3.42), during 8h and using a
sampling period Ts = 3 s. In particular, to show its dynamism a set of set-points
changes were introduced.

1. A shift from the initial condition θ0
1s
= 495K, θ0

2s
= 695.915K to θ1s = 497.32K

was applied between t = 160min and t = 200min.
2. From t = 340min to t = 380min another change up to θ1s = 498K, was

introduced.
3. Finally the output θ2s was carried up to 680K from t = 520min to t = 560min.
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Based on these considerations, the Table 3.2 shows its physical and operational
parameters. Therefore, the CSTR process consists of an irreversible, exothermic

Table 3.2: Parameters of the CSTR process.

Name Description Value
qe Feed flow rate 100 lmin−1

Te Feed temperature 350K
CAe Feed concentration 1mol l−1

Tce Inlet coolant temp. 350K
E/R Activation energy 1 × 104K
∆H Heat of reaction −2 × 105 calmol−1

Cp, Cpc Specific heats 1 cal g−1K
ρ, ρc Liquid densities 1 × 103 g l−1
hA Heat transfer term 7 × 105 calmin−1K
k0 Reaction rate constant 7.2 × 1010 lmin−1

qsmax
Max. output flow rate 110 lmin−1

qcmax
Max. coolant flow rate 110 lmin−1

reaction, A → B, in a variable volume reactor cooled by a single coolant stream
which can be modelled by the following equations:

dV (t)
dt

= qe − qs(t)
dCA(t)
dt

= qe

V (t)(CAe −CA(t)) − k0e −E
RT (t)CA(t)

dT (t)
dt
= qe

V (t)(Te − T (t)) − k1e
−E

RT (t)CA(t)
+ qc(t)
V (t)k2(1 − e

−k3
qc(t) )(Tce − T (t))

(3.43)

where

k1 = ∆Hk0
ρCp

, k2 = ρCpc

ρcCp

, k3 = hA

ρcCpc

.

Notice that, according to Figure 3.8, the state variables V and CA are controlled
by the process flow rate qs and the coolant flow rate qc, respectively. It should be
clarified that the state variable CA is controlled indirectly from the state T .

Furthermore, applying the PJL technique (see Appendix B), it is possible to
rewrite the system from Equation (3.43) as an LTI model around the i-th operating
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point xi = {Vi, CAi
, Ti},

Ai =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

qe(CAi
−CAe)

V 2

i

− qe
Vi
− k0e −ERTi −ECAi

k0e
−E
RTi

RT 2

i

A31 −k1e −ERTi A33

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Bi =
⎡⎢⎢⎢⎢⎢⎣
−1 0
0 0
0 B32

⎤⎥⎥⎥⎥⎥⎦
, Ci =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
, Di =

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
.

where

A31 = qe(Ti − Te)
V 2

i

− k2qci(e
−k3
qci − 1)(Ti − Tce)

V 2

i

A33 = k2qci(e
−k3
qci − 1)
Vi

− qe
Vi
− ECAi

k1e
−E
RTi

RT 2

i

B32 =
k2(Ti − Tce)(e−k3qci − 1)

Vi
+ k2k3(Ti − Tce)e

−k3
qci

Vi
.

Finally, following the design procedure used in the previous example, previ-
ously introduced through Sections 3.2 to 3.5, the suitable matrices and involved
functions were designed.

LPV-RUIO design

According to Algorithm 3 the scheduling parameter vector, with dimension N = 2,
was defined depending on the outputs, ζ(t) ∶= [V (t) T (t)]. Moreover, to obtain
a proper representation, L = 3 linearisation points per parameter was used. Then,
based on Appendix B the non-linear system from Equation (3.43) was rewritten
such as an LPV model. As a result,M = LN = 9 weighting functions corresponding
to each linear model was setted. Next, in the same way as Appendix B.3, the
proper membership functions of each parameter were obtained.

Moreover, setting Fi = [−1 0 0]T and solving the LMI from Equation (3.11),
the matrices to construct the observer from Equation (3.8) that are used to esti-

mate faults over the valve qs, were designed. At last, defining Fi = [0 0 B32]T ,
and repeating the previous procedure, the observer was constructed to estimate
faults on the valve qc.

LPV-UIOO

Similarly, as was defined in the Algorithm 4, and furthermore using the same LPV
model representation of the non-linear system from Equation (3.43), developed
previously, the LPV-UIOO design is presented.

It is noteworthy, that the existing hard correlation over the states CA and
T hinder the correct fault detection and isolation task design. In consequence,
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firstly the output V was selected as a non-monitored output (Hi corresponds with

the V row of the output matrix Ci), and Fi = [−1 0 0
0 0 B32

]
T

was defined, then

the appropriate T2 matrix was chosen (null space of Hi). Thus, if the existence
conditions are verified, it is possible to construct the matrices of the observer
from Equation (3.38) that is used to diagnose faults of the output sensor V . On
the other hand, choosing the output T as non-monitored output, and defining

Fi = [−1 0 0]T , if the existence conditions are verified, and selecting another T2
matrix, a new observer from Equation (3.38) was constructed to diagnose faults
of the output sensor T .

Numerical Simulation

Again, to evaluate the performance and effectiveness of the proposed FDD scheme,
it was simulated on the non-linear system from Equation (3.43), using a sampling
period Ts = 3 s. In particular, to show its dynamism, a set of set-points changes
were introduced.

1. A shift from the initial condition V 0 = 96m3, T 0 = 440K to T = 445K was
applied between t = 160min and t = 200min.

2. From t = 340min to t = 380min a displacement up to V = 110m3, was
introduced.

3. Finally the output T was carried up to 450K from t = 520min to t = 560min.

And the following exponential faults were considered:

1. from 30min to 130min a leak in valve qs coupling, producing a loss of 5%
from qsmax

,
2. a clog in valve qc of up to 5% from qcmax

income between 400min and 500min,
3. at 220min to 320min an exponential calibration error in the V sensor of up

to 1.5% from Vmax,
4. since 580min up to 680min an exponential accumulation of tartar in the

sensor of T , inducing an error of up to 1% from Tmax.

The high slopes in these faults were chosen to illustrate worst-case conditions
and expose the capacity of the proposed FDD scheme to detect, isolate and diag-
nose such cases. A white measurement noise was added, as well.

Figures 3.9 to 3.12 show the simulation results when the actuators and sensors
faults occur. In fact, the estimated output signals of the non-linear system from
Equation (3.43), and their output measures are depicted in Figure 3.9. It is easy
to see that, when a sensor fault affects the system, its control loop is unable to
reach the target set-point (due to the erroneous measurement of process variables).
In contrast, when an actuator becomes faulty the control loop (PI controller)
automatically compensates the tracking error, and as shown in Figure 3.9 only
a small peak is appreciated (this compensation is not possible when the control
input is subject to restrictions). On another note, it is possible to appreciate the
convergence capacity at the beginning.

Furthermore, the Figure 3.10 exhibits the behaviour of the weighting functions.
As expected, the weight varies in concordance with the set-points changes.
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FDD strategy, two numerical simulations of typical chemical industrial processes
were given. Consequently, these simulations results confirm the performance and
effectiveness of the proposed scheme over non-linear systems in the presence of
external disturbance.

At last, in order to enable the reader to replicate and enhance the results shown
here, the scripts used are available on a repository3 under GPL-v3.0 license.

3https://github.com/ebernardi/FDD



Chapter 4

Linear Parameter Varying Model
Predictive Control

In this chapter a predictive controller formulation is developed within an LPV
formalism, which serves as a non-linear process model. The proposed strategy
is an adaptive MPC, designed with terminal set constraints and considering the
scheduling polytope of the model. At each sample time, two QPs programs are
solved: the first QP considers a backward horizon to find a virtual model-process
tuning variable that defines the best LTI prediction model, regarding the vertices
of the polytopic system; then, the second QP uses this LTI model to optimise
performances along a forward horizon. This chapter ends with a realistic Solar-
Thermal (ST) collector process simulation, comparing the proposed MPC to other
techniques from the literature. Discussions concerning the results, the design
procedure and the computational effort are presented.

Finally, it should be noted that the main results of this chapter can be found
in works [90, 91, 92].

4.1 Introduction

Bearing in mind the concepts from Chapter 2 where the traditional MPC method
was shortly presented, it should be noted that due to its formulation, the predic-
tion model is the cornerstone of MPC [70]. Thus, the inclusion of a non-linear
process model is not a trivial task and heavily increases the complexity of the re-
sulting optimisation problem [93], which makes it tougher for real-time modules.
Accordingly, if sought to be really implementable, these Non-linear Model Predic-
tive Control (NMPC) algorithms must be adapted, or approximated, by reducing
complexity and resorting to some sub-optimality, as it is done with real-time it-
eration methods, such as ACADO [94], and gradient-based, such as GRAMPC
[95].

In such a way, at the same time that literature presented many advances re-
garding MPC tools, many others have been devoted to design methods for LPV
systems [61, 96]. Specifically, as introduced in Section 2.6, LPV models are used
to represent non-linear systems as parameter dependent on known and bounded

51
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scheduling parameters. Furthermore, as recently reviewed in [97], MPC strategies
based on LPV models for non-linear processes are a promising lead for real-time
applicable NMPC algorithms. Accordingly, it becomes evident that fast MPC
methods for non-linear systems are lacking. Therefore, the main motivation of
this chapter is to propose an MPC scheme for non-linear processes.

Hence, the proposed scheme is an adaptive control method that determines
the optimal control policy through two consecutive QP problems. The first QP is
an MHE [98, 78], which uses available data from a backward horizon of Ne steps,
to minimise the difference from the data and a polytopic LPV model with a fixed
virtual tuning variable used to determine an LTI model which better represents
the real process at the current operating point. Then, considering that the pa-
rameter remains constant throughout the following Np steps, an MPC problem is
solved, through a second QP. Moreover, this Moving Horizon Estimation - Model
Predictive Control (MHE-MPC) method also includes terminal ingredients (stage
cost and set constraints) to ensure stability despite the model simplifications.

4.2 Model statement

Evoking the discrete-time LPV model from Section 2.6:

x(k + 1) = M∑
i=1

µi (ζ(k)) {Aix(k) +Biu(k) +∆xi}
y(k) = M∑

i=1

µi (ζ(k)) {Cix(k) +Diu(k) +∆yi} ,
(4.1)

assuming that

Ω = Co{[A1,B1], [A2,B2], . . . , [AM ,BM]} ,
and considering the goal of applying MPC to a non-linear process, the LPV frame-
work offers some advantages that can be used to simplify this non-linear problem
into a QP formulation. In a regular NMPC formulation, it would be imperious
to know the exact behaviour of the process model along the prediction horizon.
Besides, in the quasi-Linear Parameter Varying (qLPV) case, it is necessary to
know the future values of the scheduling parameter along Np, coupled as

Γ(k) = col{ρ(k + 1), ρ(k + 2), . . . , ρ(k +Np − 1)} . (4.2)

Thus, the main advantage of LPV setting appears with regard to Γ(k), since
the LPV model can be described, for all future instants k + j, by a generic pair[A(ρ(k + j)),B(ρ(k + j))] which belongs to the polytope Ω. Therefore, any pair
can be represented as a convex combination of the LTI vertices of this polytope
as follows:

A(ρ(k + j)) = M∑
i=1

µi(k + j)Ai and B(ρ(k + j)) = M∑
i=1

µi(k + j)Bi

with
M∑
i=1

µi(k + j) = 1 and 0 ≤ µi(k + j) ≤ 1, i ∈ Z1∶M .
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Note that each µi(k + j) is a weighting variable that determines how much does
the i-th vertex of the scheduling polytope (LTI model) represents the LPV model
at a given future instant k + j (see more in Appendix B.3).

In other words, due to this polytopic characteristic of the LPV model, Γ(k)
can be replaced in the MPC problem by the respective convex sum of the M LTI
models, which are always known. Thus, if the M weighting variables µi(k + j) are
assumed to be known along Np, then the non-linear problem is converted into a QP
version, which can be evaluated much faster than full-blown NMPC procedures.

Remark 4.1. Instead of using the polytopic representation of the LPV model,
it could also be admitted that ρ is known for all future instants inside the Np

horizon. However, to say that the complete future scheduling vector Γ(k) is known
is obviously false, since only the instantaneous value of ρ is known. Thus, in
[99, 100] different estimation strategies are used to provide a guess Γ̂(k) at each
instant k to substitute Γ(k) in the MPC problem and render it as QP version of
this control problem.

4.3 Adaptive MHE-MPC method

With the previous formalities in mind, this section presents an adaptive MPC
design procedure for non-linear systems modelled under an LPV formalism. This
MHE-MPC regulation policy tries to find, at each sampling instant k, the best LTI
prediction model for the next Np steps, based on the previous Ne steps of data,
and uses some terminal ingredients to guarantee stability. The basic idea behind
this method is to consider the LPV polytopic combination variables µi as virtual
weights that, at each sampling instant, indicate which is the best LTI combination
model that can be used to momentarily describe the controlled process.

Therefore, from now on, the vector µi is treated as a new decision variable
of the optimisation problem. In this sense, the MHE-MPC method adapts the
process model to the uncertain system into a single LTI prediction model, at each
sampling instant, weighting the LTI vertex of polytope Ω to find the ideal one for
the prediction of state variables for the following Np steps.

Due to the simplification of finding an LTI prediction model, the major con-
sequence is having model-process mismatches regarding the control horizon. This
means that the proposed method is obviously a priori sub-optimal, which does
not mean that the achieved results will not be very near the optimal condition.
Moreover, a great advantage of using a simplified prediction model is that the
MHE-MPC frameworks yields one QP for identification purposes (regarding µi)
and another QP for control purposes, which can be solved on-line with fast solvers
and used for a real-time implementation of the MHE-MPC strategy for industrial
processes.

4.3.1 Backward QP - The MHE

This problem is used to find a constant vector µi that optimally matches the
polytopic LPV model to the past real data set. Indeed, this procedure minimises
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the model-data discrepancy with respect to µ and the variance of µ (νµ) throughout
the backward horizon, at each sample time.

This virtual tuning variable is found with the solution of the following optimi-
sation problem, considering x and u as measured data and µ(k − 1) as the result
from the previous iteration:

min
µ

k∑
j=k+Ne−1

(e(j)TQee(j) + νTµQννµ)
s.t. e(j + 1) = x(j + 1) − (Ax(j) +Bu(j)) ,

A = M∑
i=1

µiAi and B = M∑
i=1

µiBi,

M∑
i=1

µi = 1, 0 ≤ µi ≤ 1,
µ = col{µi(k)}, µ = µ(k − 1) + νµ,

with j ∈ Zk−Ne∶k−1 and i ∈ Z1∶M . Moreover, Ne is the estimation horizon and
the matrices Qe and Qν are tuning weights of this optimisation procedure. For
simplicity’s sake, they are taken as weighted identity matrices.

Remark 4.2. Note that the above QP works exactly as the MHE scheme for
the estimation of time-varying parameters, proposed in the literature [78, 98] and
briefly introduced in Section 2.9.

4.3.2 Forward QP - The MPC

On the other hand, the forward QP is used to obtain a control law regarding
constraints on the states, inputs and outputs. To achieve this, the MPC for
tracking method [101] is considered for regulation purposes. Specifically, this
control design ensures that the controller asymptotically lead the process to a
steady-state reference xs in an admissible trajectory from any feasible initial state
x0. The approach consists basically in adapting the standard MPC cost function
(i.e. weighting the quadratic difference between output and reference).

Remark 4.3. The MPC for tracking design embeds an artificial reference xa to
the optimisation problem and sets the system states to track this artificial variable.
Altogether, it determines that this artificial set-point must be as close as possible
to the real state reference xs, which altogether ensures an enlarged domain of
attraction. The target operation point ps = (xs, us) is an admissible steady-state
for the system.

Assumption 5. Consider Q ∈ Rn×n and R ∈ Rm×m as positive definite matrices;
and κ ∈ Rm×n as an arbitrary stabilising state-feedback control gain of the process
model. For these matrices, it is implied that Ai+Biκ is quadratically Schur. Then,
there exists another positive definite matrix P ∈ Rn×n such that

(Ai +Biκ)TP (Ai +Biκ) − P ≤ −(Q + κTRκ)
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Moreover, as long as the Assumption 5 holds, the MPC problem is formulated
with the following cost function, considering that µ represents the value obtained
with the backward MHE scheme, i.e.:

VN(x, xs, µ;u, xa, ua) = V d
N(x,µ;u, xa, ua) + V t

N(xs;xa)
with

V d
N(x,µ;u, xa, ua) =

Np−1∑
j=0

∥x(j) − xa∥2Q + ∥u(j) − ua∥2R,
where Np is the prediction horizon. The couple (xa, ua) is the so-called artificial
reference, which represents the best steady state reachable by the system in Np

steps, starting from the initial condition x = x(k). At last, V t
N(xs;xa) is the

terminal cost function, which is defined as,

V t
N(xs;xa) = ∥xa − xs∥2ϕ + ∥x(Np) − xa∥2P ,

being ϕ and P the appropriates weighting matrices. Then the term ∥x(Np)−xa∥2P
is an offset that penalises the final state deviation from this target operation and
the offset term ∥xa − xs∥2ϕ ensuring that the artificial variable tracks the real set-
point variable, with the actual target goal ps. Note that the inclusion of this
suitable penalisation of the terminal state x(Np) can steer to asymptotic stability
with good performances, as evidenced in [102].

Remark 4.4. The objective of the inclusion of the artificial target point pa works
as follows. Consider that the system evolves as predicted (with µi representing
the weight for the LPV model) and that the actual target point ps = (xs, us) is
an admissible point contained inside the tracking set T ∶= X ×U and that it can be
tracked within Np steps. Then, pa becomes an asymptotically stable point in closed-
loop, since the MPC will ensure convergence to it. If the system cannot ensure that
the target reference ps is tracked within the horizon of Np steps, then the artificial
reference xa enables it to stabilise at more options of closed-loop equilibria points,
as close as possible to xs, since xa is set to converge to the actual target. Note
that the weighting matrix ϕ is taken as a parameterised version of P , i.e. ϕ = αP ,
with α ∈ R.

Finally, at each time step k = k0, the controller is found with the solution of
the following optimisation problem:

min
u,xa,ua

VN(x, xs, µ;u, xa, ua),
s.t. x(0) = x,

x(j + 1) = Ax(j) +Bu(j),
xa = Axa +Bua, (ua, xa) ∈ Zs = Xs ×Us,

A = M∑
i=1

µiAi and B = M∑
i=1

µiBi,

x(j) ∈ X, u(j) ∈ U, ∀j ∈ Z0∶Np−1,

x(Np) ∈ Xf ,

(4.3)
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where i ∈ Z0∶Np−1, and Xf is an adequate robust terminal invariant set that contains
ps. To determine this invariant set, some suggestions are also given in [103, 104,
105]. Synthetically, the essential idea on how to determine this robust invariant
set for the LPV system from Equation (4.1), is to find Xf ⊂ X so that for all
possible x(k0) ∈ Xf there must exist a feasible input u = κ(x(k0)) ∈ U which
guarantees that x(k0 + 1) lies inside Xf despite model-process mismatches, as
shown in Section 4.3.3.

After all, by considering a receding horizon policy, the proposed regulation
control policy is given by κ(x(k0)) = u(0).
4.3.3 Stability analysis

In Section 2.8 the terminal ingredients was introduced as the key elements to en-
sure stability and recursive feasibility of state-feedback predictive control loops.
Thus, the usual approach with terminal ingredients resides in ensuring that condi-
tions are met by: (a) the terminal set Xf and (b) the terminal cost Vf(x(Np)) with
respect to a nominal state-feedback controller u(k) = κ(x(k)), which is usually the
unconstrained solution of the MPC problem. Therefore, this section presents the
development of a sufficient stability condition for the proposed MHE-MPC mech-
anism in order to verify these conditions. The approach here presented is based
on the vast existing related-literature (i.e. [100, 106, 107, 108, 109, 110, 111, 112,
among others])

Terminal Ingredients

Firstly, to define the terminal ingredients it must be considered that there exists
a nominal state-feedback gain κ ∶ Rn → Rn×m. For demonstration simplicity and
notation lightness, a regulation problem will be considered. However, for the
tracking case, the nominal feedback is given by u(k) = κ (x(k) − xs) (the terminal
constraint (x(Np) − xs) ∈ Xf and the terminal cost V (x(Np) − xs)).

This nominal controller purpose is to demonstrate stability and recursive fea-
sibility properties of the proposed MHE-MPC mechanism. Anyhow, it represents
the infinite-horizon Linear-Quadratic Regulator (LQR) solution for an LPV sys-
tem model from Equation (4.1), which verifies

κLQR = arg min
κLQR

∞∑
j=0

(∥x(k + j)∥2Q + ∥u(k + j)∥2R)
Besides, for regularity, the largest ellipsoidal invariant set is considered as the

terminal constraint Xf .

Definition 4.1 (Largest invariant ellipsoid [66]). Given the discrete dynamical
system from Equation (4.1), a subset

ξ = {x(k) ∈ Rn ∣ x(k)TWx(k) ≤ 1}
of the state space Rn is said to be an asymptotically stable invariant ellipsoid, if
it has the property that, whenever x(k1) ∈ ξ, then all trajectories x(k) ∈ ξ for all
times k ≥ k1 and x(k)→ 0 as k →∞.
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Which results in an ellipsoid centred at the origin,

Xf = {x(Np) ∣ x(Np)TWx(Np) ≤ 1} . (4.4)

Furthermore, this terminal set is a sub-level set of terminal cost V (⋅), which is
taken as a Lyapunov function as follows:

V (x(Np)) = x(Np)TPx(Np).
Accordingly, this nominal feedback gain κLQR and the terminal ingredients

verbalised through the symmetric Lyapunov matrix P are so that the following
Input-to-State Stability (ISS) theorem is guaranteed.

Theorem 4.1 (Input-to-State Stability). Assume that a nominal control law u =
κ(x(k)) = Kx(k) exists. Moreover, consider that the MPC is in the framework
of the optimisation problem from Equation (4.3), with a terminal state set given
by Xf and a terminal cost V (x(Np)). Then, the ISS is ensured if the following
conditions are hold ∀µi(⋅) ∈ P:
(C1) The origin lies in the interior of Xf .
(C2) Any consecutive state to x(k), given by (Ai +BiK)x(k) lies within Xf (i.e.

this is an invariant set).
(C3) The discrete algebraic Ricatti equation is verified within this invariant set,

this is, ∀x(k) ∈ Xf :

V (x(k + j + 1)) − V (x(k + j)) ≤ −x(k + j)TQx(k + j) − u(k + j)TRu(k + j).
(C4) The image of the nominal feedback always lies within the admissible control

input domain: Kx(k) ∈ U.
Assuming that the initial solution of the MPC problem u, computed with respect to
the initial state x(0), is feasible, the MPC algorithm is indeed recursively feasible,
asymptotically stabilising the state origin [113].

Proof. Consider an initial state condition x(k0). Assume that the optimal control
sequence at time k0 is

u⋆(k0) = [u⋆(k0), u⋆(k0 + 1), . . . , u⋆(k0 +Np − 1)]T .
Then, the next feasible solution (possibly sub-optimal) at instant k0 + 1 is given
by:

u(k0 + 1) = [u(k0 + 1), u(k0 + 2), . . . , u(k0 +Np − 1),Kx(k0 +Np)]T .
Accordingly, the MPC cost function VN(⋅) evolution is,

VN(k0) =
Np−1∑
j=0

(∥x(k0 + j)∥TQ + ∥u(k0 + j)∥TR) + V (x(k0 +Np)),
VN(k0 + 1) =

Np−1∑
j=0

(∥x(k0 + 1 + j)∥TQ + ∥u(k0 + 1 + j)∥TR) + V (x(k0 + 1 +Np)),
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and its decay between time instants k0 and k0 + 1 results,

∆VN(k0) = VN(k0 + 1) − VN(k0)
= − x(k0)TQx(k0) − u(k0)TRu(k0) + V (x(k0 + 1 +Np))
+ x(k0 +Np)T (Q +KTRK)x(k0 +Np) − V (x(k0 +Np)).

Assuming that u⋆(k0) was indeed applied to the plant at instant k0 (this input is
the first entry of the optimal solution u⋆(k0) at time k0), it follows that:

∆VN(k0) = − x(k0)TQx(k0) − u⋆(k0)TRu⋆(k0) + V (x(k0 + 1 +Np))
+ x(k0 +Np)T (Q +KTRK)x(k0 +Np) − V (x(k0 +Np)). (4.5)

From condition (C3), it can pursue with the negativeness of the following term:

0 ≥ V (x(k0 +Np + 1)) − V (x(k0 +Np)) + x(k0 +Np)T (Q +KTRK)x(k0 +Np).
Thus, substituting this inequality into Equation (4.5), it results:

∆VN(k0) ≤ −x(k0)TQx(k0) − u⋆(k0)TRu⋆(k0).
Since Q and R are positive defined matrices by construction (they are the MPC

tuning weights matrices) and u⋆(k0) and x(k0) are known1, it follows that:

∆VN(k0) ≤ 0,
which means that the MPC cost function decays along k.

From the optimality of the solution u⋆(k + 1), it follows that the cost con-
structed with this sequence (V ⋆N(k0 + 1)) holds as a lower-bound with respect to
VN(k0+1), this is V ⋆N(k0+1) ≤ VN(k0+1). Then, using this argument on ∆VN(k0)
it arrives at:

VN(k0 + 1) − VN(k0) ≤ 0,
V ⋆N(k0 + 1) ≤ VN(k0 + 1) ≤ VN(k0),

which proves that V ⋆N is a Lyapunov function and x will converge to the origin
(due to condition (C1)), as long as the initial condition provides, in fact, a feasible
starting point. Note that condition (C2) is necessary to map a feasible x(k0 + 1).
Condition (C4) is necessary to ensure the admissible inputs u.

Now, in order to find some nominal state-feedback gain K, some terminal set
Xf and some terminal offset cost V (⋅), an offline LMI problem is proposed in the
sequel. These LMI problems are such that a positive definite matrix P is found
to ensure that the conditions of Theorem 4.1 are satisfied.

These LMI problems are provided through the following theorem, which aims to
find the largest terminal set Xf that is invariant under the nominal control policy
u(k) = κ(x(k)) for all k, while remaining admissible, i.e. κ(x(k)) ∈ U,∀x(k) ∈
X. Note that the previously defined largest ellipsoidal set is posed through a
maximisation problem.

1Note that x(k0 + 1) = Aix(k0) +Biu
⋆(k0).
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Theorem 4.2 (Terminal Ingredients). The conditions (C1)-(C4) of Theorem 4.1
are satisfied if there exist the symmetric positive definite matrices P ∶ Rn → Rn×n,
Z ∶ Rn → Rn×n and a rectangular matrix L ∶ Rn → Rm×n such that P = γY −1,
K = LY −1, W = Z−1 and that the following LMIs hold for all µi(⋅) ∈ P.

Thus, in order to construct the suitable matrices K, P and W , the following
consecutive problems are considered:

Feasibility problem:

min
Y,L,γ

γ

s.t. Y ≻ 0,
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y Y AT
i +LTBT

i Y Q1/2 LTR1/2

AiY +BiL Y 0 0
Q1/2Y 0 γI 0
R1/2L 0 0 γI

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≻ 0.

(4.6)

Terminal region problem:

max
Z

det(Z)
s.t. Z ≻ 0,

[ −Z Z(Ai +BiK)T(Ai +BiK)Z −Z ] ≺ 0,
KlZK

T
l ≤ u2l .

where Kl denotes the l-th row of K and ul refers to the bound of the l-th input.

Proof. To demonstrate the validity of this theorem through its synthesis, all con-
ditions of Theorem 4.1 will be satisfied.

Firstly, note that condition (C1) trivially holds due to the form of Xf . As gives
Equation (4.4), this terminal set is defined as an ellipsoid, which holds the origin
of Rn by construction.

The condition (C2), control invariance of the terminal set Xf , is verified as
follows: suppose that the terminal constraint set is an ellipsoid (Definition 4.1).
It is possible to apply the state feedback law u =Kx(k) to any non-zero x(k) ∈ ξ,
which according to the invariance condition results in

x(k + j + 1)TWx(k + j + 1) ≤ x(k + j)TWx(k + j).
Thus, considering the system from Equation (4.1)

x(k + j)T ((Ai +BiK)TW (Ai +BiK) −W)x(k + j) ≤ 0,
that is

(Ai +BiK)TW (Ai +BiK) −W ≤ 0.
Then, pre and post-multiplying by Z and considering W = Z−1,

Z −Z(Ai +BiK)Z−1(Ai +BiK)Z ≻ 0.
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Finally, applying the Schur complement (see Appendix C), it results in:

[ Z Z(Ai +BiK)T(Ai +BiK)Z Z
] ≻ 0

ensuring that ξ is an asymptotically stable invariant ellipsoid. Proving the condi-
tion (C2).

The discrete Ricatti condition (C3) is verified through the solution of the
LMI from Equation (4.6). That is, consider a quadratic function V (x(k)) =
x(k)TPx(k), P ≻ 0 at the state x(k) of the system from Equation (4.1). At
sampling k, suppose V (⋅) satisfies the following inequality for all x(k+ j), u(k+ j)
with j ≥ 0. As a consequence,

V (x(k + j + 1)) − V (x(k + j)) ≤ −(x(k + j)TQx(k + j) + u(k + j)TRu(k + j)) .
From the quadratic function V (⋅) required to satisfy condition (C3) and substi-
tuting u(k + j) =Kx(k + j)
x(k + j + 1)TPx(k + j + 1) − x(k + j)TPx(k + j) ≤ − x(k + j)TQx(k + j)− x(k + j)TKTRKx(k + j)

moreover, considering the system from Equation (4.1) to replace Aicl = Ai +BiK

x(k + j)T (AT
icl
PAicl − P +Q +KTRK)x(k + j) ≤ 0.

That is,

AT
icl
PAicl − P +Q +KTRK ≤ 0

with P = γY −1; K = LY −1. Then,
AT

icl
γY −1Aicl − γY −1 +Q + Y −1LTRLY −1 ≤ 0

pre and post-multiplying by Y (which leaves the inequality unaffected),

(AiY +BiL)TγY −1(AiY +BiL) − γY + Y QY +LTRL ≤ 0,
using Cholesky factorisation and multiplying all terms by γ−1

Y (Q1/2)Tγ−1Q1/2Y +LT (R1/2)Tγ−1R1/2L − (AiY +BiL)TY −1(AiY +BiL) − Y ≻ 0.
Finally, applying the Schur complement (see Appendix C), it results in:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y Y AT
i +LTBT

i Y Q1/2 LTR1/2

AiY +BiL Y 0 0
Q1/2Y 0 γI 0
R1/2L 0 0 γI

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≻ 0

proving the condition (C3)
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Lastly, the condition (C4) is verified through the maximum norm of the projec-
tionKx(k) of any state point x(k) that belongs to some ellipsoid x(k)TWx(k) ≤ 1,
which is given by

√
KW −1KT [113]. It means that the projection Klx(k) (i.e. l-th

control signal) is bounded, in norm, by ul. That is,

KlW
−1KT

l ≤ u2l ,
replacing W = Z−1, it results in:

KlZK
T
l ≤ u2l .

Satisfying the condition (C4).

Remark 4.5. The LMIs of Theorem 4.2 are solved over the admissible parameter
set ∀µi(⋅) ∈ P. This choice is conservative since the conditions need only to hold
within the terminal region Xf . However, the terminal region is calculated only
after the solutions of such LMIs. Further conservatism comes from considering
constant unknown matrices Y , Z, K. The conditions can be relaxed by including
parameter dependency with relevant basis functions.

It must be noted that the above proof demonstrates that the solution of the
LMIs presented in Theorem 4.2 ensures the existence of positive definite matrices
P and W which are used to compute the MPC terminal ingredients V (⋅) and Xf

such that ISS of the closed-loop is guaranteed, verifying the conditions of Theo-
rem 4.1. Furthermore, when the MPC is designed with these terminal ingredients,
for whichever initial condition x(0) ∈ Xf , it remains recursively feasible for all
consecutive discrete time instants k > 0.

4.4 quasi-Linear Parameter Varying

Model Predictive Control method

One of the motivations of this chapter is to compare some predictive control meth-
ods that have been applied for ST collector systems. For this goal, the proposed
MHE-MPC method will be compared to a quasi-Linear Parameter Varying Model
Predictive Control (qLPV-MPC) technique, which is based on a sequence of con-
trol invariant sets to embed the non-linearities. Therefore, this section rapidly
recalls the qLPV-MPC design procedure, from [90].

For this method the system model from Equation (4.1) is now considered as a
qLPV model, so the application of this model to the standard MPC, from Equa-
tion (2.8), is in fact a non-linear problem. Because the values from Equation (4.2)
are needed to solve the optimisation procedure, but they are unknown at the
instant k, as discussed in Section 4.2.

Thus, the rationale of the following method is to convert the standard MPC
problem (including the qLPV model) into a QP, which can be tackled by most
standard solvers. To do so, a major relaxation is needed, which is to consider a
guess for the evolution scheduling parameters, namely Γ̂(k). According to [99,
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100], this guess is taken as ρ̂(k + j) = ρ(k) for j ∈ Z0∶Np−1, which translates the
prediction model into:

x(k + j) = Aj(Γ̂(k))x(k) +Bj(Γ̂(k))u,
which is linear because the non-linear terms become constant matrices, dependent
on the frozen Γ̂(k).

Performing this simple relaxation does not in itself guarantee feasibility nor op-
timality of the control solution κ(x(k)). Therefore, the MPC for tracking method,
proposed by [101] (presented in Section 4.3.2), and a contractive terminal set con-
straint must be added. As a consequence, definitions and concerned aspects to
the contractive terminal set are introduced in the sequel.

In [114], the notion of control-invariant reachable set is presented and must be
recalled:

Definition 4.2. A set Υ ⊂ Rn is said to be control invariant for the system
from Equation (4.1), with u(k) ∈ U, if, for all possible x(k) ∈ Υ, there exists an
admissible input u = κ(x(k)) so that x(k + 1) lies inside Υ.

Definition 4.3. The one-step set from Υ, namely Q1{Υ}, is the set of states
that the system can steered from within one step k to the target set Υ with an
admissible control action u(k) ∈ U. A given set Υ is control invariant if and only
if Υ ⊆ Q1{Υ}.
Definition 4.4. A sequence of control invariant sets {Υj} is the set sequence
through which x can be steered through, leaping from one set Υj to the following
Υj−1, with feasible control actions, until finally reaching the target invariant set
Υ. This is: {Υj} is a sequence s.t. each Υj−1 ⊆ Q1{Υj} ∀j.

MPC design coupled to the use of control invariant set sequences is used to
make sure that the algorithm guarantees asymptotic convergence [102]. Anyhow,
to compute a reachable sequence of control invariant sets for the case of qLPV
models, the bounds of the scheduling parameters and their derivatives must be
taken into account. Note that, for the qLPV case, the one-step-ahead set from
state x(k) contains all states derived with scheduling parameter derivatives smaller
than or equal to their min/max bounds (dρ / dρ). This means that x(k + 1), for
whichever ρ(k + 1) ∈ P , is, at most, equal to x⋆(k + 1) = A(ρ⋆)xk +B1(ρ⋆)u(k) +
B2w(k), where ρ⋆ = ρ(k − 1) + dp, being dp either equivalent to dρ or dρ, knowing

that (dρ, dρ) are the bounds on the scheduling parameter variation rate.
For the qLPV case, the control invariant set Υ must be computed at the first

iteration of the MPC algorithm, considering x = x(k) and abiding to:

ΥMax ⊆ Υ ⊆ ΥMin and ps ∈ Υ, (4.7)

where ps is the target operation point and ΥMax is the set achieved with a sequence
of Nr maximal scheduling parameter variations, i.e. {ρ(k) + dρ, ρ(k) + 2dρ, . . .},
and admissible control laws; ΥMin is the set for a sequence for minimal variations
of ρ.
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Then, for each iteration k, the sequence of reachable sets is computed as the
union of the worst-case wider sets, using the upper ρ+⋆ = ρ(k) + dρ and the lower
ρ−⋆ = ρ(k) + dρ. This is, for j =max{Nr − j,0}, . . . ,0:

{Υj} ∶= col{Υj}, (4.8)

where Υj = (x(k + j + 1) ∈ x+⋆) ∪ (x(k + j + 1) ∈ x−⋆), with x+⋆ = A(ρ+⋆)x(k + j) +
B(ρ+⋆)u(k + j) and x−⋆ = A(ρ−⋆)x(k + j) +B(ρ−⋆)u(k + j).

In order to guarantee that, within Nr fixed steps from k0, the controlled system
converges to the target control invariant set Υ in Equation (4.7), containing the
steady-state equilibrium goal ps, the following contractive terminal set constraint
is used:

x(k0 +Nr) ∈ Υj, j =max{Nr − k,0},
with the sequence of control invariant sets given by Equation (4.8). Note that
the terminal set Υj is equal to the largest Υ at the initial instant k0 being shrank
subsequently until, at k0 +Nr, it becomes the smallest set ΥNr

. Moreover, note
that Np is a sliding-horizon, while Nr is not, being fixed at the first iteration k0.
This means that k gets closer to k0 +Nr as it advances. This constraint makes
the MPC method intrinsically time-varying, since, for Nr samples, the sets are
contracting.

With the above constraint coupled to the MPC design, indeed there appear
further holds on stability and feasibility, which are needed due to model-plant
differences, i.e. Γ(k) ≠ Γ̂(k). The sequence of control invariant sets makes sure
that the terminal constraints contracts and the states converge to the desired
target ps (or as closely as possible, due to the pseudo-referencing tool).

4.5 Temperature control in Solar Collectors

The addition of renewable energy sources to power plants are a good way to
reduce greenhouse gas emissions and environmental impact. Anyhow, an inherent
problem to be solved is how to integrate these energy sources without loosing
efficiency and dispatchability of energy plants. As discussed in the literature [115],
current solar energy technologies are of two main kinds: photovoltaic systems, that
directly covert solar radiance into electric energy, and solar-thermal systems, which
usually generate heated fluid (or steam).

Solar radiance is an intermittent energy source. When there occurs a cloudy
period of the day, for instance, energy might be running low if no compensation
strategy is considered. A practical solution for this matter, adopted in the majority
of modern ST systems [116], is to include accumulation tanks to store energy (hot
fluid) while there is no process demand, and a complementary (auxiliary) energy
source (say, for instance, a gas heater), that could be used when there is no sun
or the accumulation tanks are not sufficient to meet the demand fully. A modern
ST unit is usually a structure that integrates a solar-thermal collector field, some
accumulation tanks and a gas heater. Figure 4.1 gives an illustration of such
complete ST collectors.
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radiance;
• The heat transfer absorption coefficient (external temperature to plates),
denoted h0, is constant, while the heat transfer coefficient of the fluid (fluid
to plates), denoted hi(⋅), varies positively according to the temperature of
the plates.

Then, the following partial-differential dynamics arise due to balance of energy
equations, where t represents the time variable and s the space variable:

ǫmCmAe

dTp

dt
(t) = deπνI(t) − deπh0(Tp(t) − Te(t)) − diπhi(Tp(t))(Tp(t) − Tf(t))

ǫfCfAi

∂Tf

∂t
(t, s) = −u(t)ǫfCf

∂Tf

∂s
(t, s) + diπhi(Tp(t))(Tp(t) − Tf(t)).

(4.9)

In these temperature gradient dynamics of Equation (4.9), I(t) stands for solar
radiance focused upon the collectors (which is a load disturbance from a control
viewpoint); Tp, Te and Tf are, respectively, the collector plate, the external (load
disturbance as well) and the fluid temperatures; u is the inlet fluid flow, which is
the control input of the system; finally, Ai and Ae are, respectively, the internal
and external surfaces of the pipes, that have (internal and external) diameters of
di and de.

For application purposes, as seen in [117, 119], the space-derivative term
∂Tf

∂s
(t, s) can be replaced by either a non-linear function or an apparent transport

delay. In resemblance to the use of a transport delay function, it is consider that
this term is sufficiently approximated by the following exponential non-linearity,
which takes tss seconds to stabilised, for Tf(tss) = Tmax

f :

∂Tf(t, s)
∂s

≈ 1 − e−Tf (t)/Tmax

f

(1 − e−1) , (4.10)

which means that the diffusion of the thermal energy of the fluid flowing along
the flat collectors increases with respect to its temperature Tf(t) until a certain
level is attained Tmax

f , after which the diffusion is constant, i.e. the whole fluid
inside the flat collector is at the same temperature. This approximation is quite
reasonable with respect to the ST application and in accordance with [117].

On the other hand, the heat transfer coefficient of the fluid hi (Tp(t)) is given
according to the following non-linear equation:

hi (Tp(t)) = hi (1 − e−Tp(t)/Tmax
p

1 − e−1 ) , (4.11)

where hi is the maximal heat transfer coefficient of fluid, attained for Tp(t) = Tmax
p ,

see [117].

4.5.2 Model parameters

Regarding the non-linear model from Equation (4.9) with the relaxations of Equa-
tions (4.10) and (4.11), the parameters have been identified and adjusted for the
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CIESOL tested [103]. The numerical values for these parameters are given in
Table 4.1.

Table 4.1: Parameters of the ST process.

Name Value Name Value
ǫm 1100 kgm−3 Cm 440 Jkg−1 ○C−1

ǫf 1000 kgm−3 Cf 4018 Jkg−1 ○C−1

Ae 0.0038m2 Ai 0.0013m2

di 0.04m de 0.07m

h0 11 hi 800
ν 3.655

4.5.3 Performance goals and constraints

The goal of this ST system is to track outlet temperature references to cover a
certain heat demand, which is done by varying the inlet fluid flow u. This collector
field has a surface area of 160m2, distributed in ten parallel rows composed of eight
collectors per row.

In terms of performances, the temperature set-point tracking must be done
as fast as possible, while respecting the maximal temperature of 300 ○C that the
inlet fluid can tolerate. Moreover, the temperature of the plates must not surpass
600 ○C. These performances can be evaluated using usual reference-tracking indices
(see Appendix D).

The inlet flow (control input) must be always positive (no fluid can be extracted
from the ST units, only injected) and abide to a maximal value of 0.35m3 s−1,
which is the upper constraint of the injection pump. Moreover, the control policy
must be evaluated within Ts = 3 s, which is the sampling period of this ST unit.

The disturbances to this system (the solar radiance and external temperature
variables) are assumed to be measurable from a control viewpoint. This is quite
reasonable, given that accurate estimations for the future behaviour (of some
hours ahead) of these disturbances can be indeed obtained [115]. These estimation
results, specially considering solar data, can be provided with deep and recurrent
neural network tools, as seen in [120, 121]. It must be noted that this forecasting
problem is, by itself, a complex task with its difficulties, but it is not the focus of
this work.

Table 4.2 resumes the state and input constraints. Note that the fluid and
plate temperatures are lower-bounded by external temperature to the ST system,
Te(t). If there is no sun, the ST system will reach a thermal equilibrium with
Te(t). For simplicity, since Te(t) > 0 ○C, the lower bounds on Tp and Tf can be
taken as 0 ○C.
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Table 4.2: Constraints of the considered ST system.

Variable Range
u(t) ∈ U U ∶= {u ∈ R ∣ 0 ≤ u ≤ 0.35m3 s−1}
Tp(t) ∈ Tp Tp ∶= {Tp ∈ R ∣ Te(t) ≤ Tp ≤ Tmax

p }, Tmax
p = 600 ○C

Tf(t) ∈ Tf Tf ∶= {Tf ∈ R ∣ Te(t) ≤ Tf ≤ Tmax

f
}, Tmax

f = 300 ○C

4.5.4 Simulation results

Since the proposed MHE-MPC method has been thoroughly explained and the
qLPV-MPC has also been recalled, this section presents realistic simulation re-
sults of the considered ST system. These control methodologies are compared
against each other but also to a simpler linearisation-based MPC (denoted stan-
dard Model Predictive Control (sMPC)), which solves the QP in Equation (4.3)
taking all weighting variables as µi = 1/M , which is a linear model for the ST
system, considering the M vertices of the polytope Ω. This last technique can be
understood as a nominal, averaged LTI MPC paradigm, since it takes the tuning
variables µi as equally weighted. As might be expected, this controller is not able
to achieve successful results for a large operation region, and it might even lead
to infeasibility, since it takes an average of the M model-tuning variables, which
obviously does not represent the whole scheduling polytope Ω.

The following results comprise the constrained regulation of the outlet temper-
ature x2, despite variations upon the solar radiance (I) and outside temperature
(Te) disturbances w. Real meterological data from the region of the CIESOL
testbed is used for the solar radiance and temperature disturbances, considering
a full hour of simulation [122]. These disturbances are known from a control
viewpoint; they are given in Figure 4.3.

Accordingly, the ST system is emulated using a realistic, high-fidelity model,
considering the non-linear Equation (4.9). Remember that these non-linear equa-
tions have been previously validated to thoroughly emulate the CIESOL ST sys-
tem [117]. The controllers were synthesised using Matlab with Yalmip toolbox
[88]. Moreover, the MHE weighting matrices were set to Qe = 1 × 105 and Qν = 1.
Besides, the MPC weighting matrices were defined as Q = diag{0 , 1 × 104} and
R = 1 × 101. However, it is important to highlight that all implemented MPC
algorithms use the same set of weighting matrices, the same prediction horizon
Np = 10 (Ne = 10 for the MHE-MPC case), and operate with the same sampling
period, i.e. Ts = 3 s.

The reference tracking goal is set as 97 ○C for the fluid temperature x2(k),
and 109.93 ○C for the plate temperature x1(k). In fact, the hard-constrained set-
point is the one for x2, which must be tracked with minimal error as possible.
Notice that integral action is not necessary in the Equation (4.3), since ±0.5 ○C
is tolerated. If sought, integral action could be easily included by defining a new
constraint u(k + i) = u(k + i− 1)+ δu(k + i). Note that all methods guarantee that
the constraints on x and u (given in Table 4.2) are respected.

Figure 4.4 exhibits the achieved performances for the simulation run in terms
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Then, with the purpose of highlighting the behaviour of the proposed strategy
a realistic ST collector process simulation, comparing the proposed MPC to other
techniques from the literature (qLPV-MPC and sMPC), was addressed. Conse-
quently, these simulations results confirm the performance and effectiveness of the
proposed scheme over non-linear systems in the presence of external disturbance.
Some discussions regarding the results, the design procedure and the computa-
tional effort were presented.

For further works, parameter-dependent constraint and terminal set will be
included into the MPC design procedure so that a larger domain of attraction
could be obtained.

At last, in order to enable the reader to replicate and enhance the results shown
here, the scripts used are available on a repository3 under GPL-v3.0 license.

3https://github.com/ebernardi/LPVMPC



Chapter 5

Fault-Tolerant Linear Parameter
Varying Model-based Predictive
Control

In recent years, FTC has become a relevant research field and has attracted signif-
icant attention because of its applicability to industrial processes, which increases
their security and reliability. Consequently, this chapter presents a model-based
strategy for fault-tolerance in non-linear chemical processes. Specifically, the tech-
niques addressed throughout Chapters 3 and 4 were integrated to develop an
AFTCS strategy, which allows to track a reference even in the presence of actu-
ator and sensor faults. Moreover, as previously stated, the observers convergence
and the controller stability were guaranteed in terms of LMI problems. Finally,
a numerical simulation based on a typical chemical industrial process (the highly
non-linear CSTR) shows that the proposed method can achieve satisfactory per-
formance in fault-tolerance.

It should be noted that the main results of this chapter can be found in works
[8, 123, 124].

5.1 Introduction

Nowadays, control systems have evolved into sophisticated algorithm-based strate-
gies. These advanced techniques allow high performance even to control unstable
systems, optimising costs and control efforts. Nevertheless, in the event of unex-
pected scenarios or situations, which are not typically considered in the controller
design process, the problem of achieving a suitable performance and stability re-
quires a different strategy rather than just having a robust controller. As previ-
ously explained, this challenge has motivated the AFTCS strategy [2, 8]. This
approach is assimilated as a variable structured technique because the controller
is reconfigured when a fault occurs, so the stability and an acceptable system
performance can be maintained.

As could be expected, the appropriate behaviour of an AFTCS depends on a
solid FDD module to provide an early detection and sizing of faults, which can
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strategy. To do that, some concepts from the preceding chapters need to be recalled.
As a consequence, previous concepts and formulations are specifically evoked with
the purpose to create a clean procedure and expose a structured AFTCS design
framework.

5.2 Model statement

Recalling the discrete-time LPV model with additive input and output faults, from
Equation (3.1). That is,

x(k + 1) = M∑
i=1

µi (ζ(k)) {Aix(k) +Biu(k) + Fifu(k) +∆xi}
y(k) = M∑

i=1

µi (ζ(k)) {Cix(k) +Diu(k) +Hify(k) +∆yi}
(5.1)

where x(k) ∈ Rn, u(k) ∈ Rm, fu(k) ∈ Rq, y(k) ∈ Rp, fy(k) ∈ Ro are the state vector,
the input vector, the fault input vector, the output vector and the fault output
vector, respectively. Moreover, Ai, Bi, Ci, Di, Fi, Hi, ∆xi and ∆yi are constant
matrices of appropriate dimensions.

Furthermore, without loss of generality the Assumptions 2 to 4 are considered
true, then the development of a novel AFTCS strategy is addressed below.

5.3 Fault detection and diagnosis

Bearing in mind the previous statements, the Sections 5.3.1 and 5.3.2 briefly
present the design procedure for the discrete-time case of the LPV-RUIO and
LPV-UIOO, respectively. Notice that a detailed version which explains these
techniques step-by-step was introduced in Chapter 3.

5.3.1 Design of the LPV-RUIO

Firstly, if the termHfy(k) = 0 is considered (no sensors faults occur in the system),
and under the assumption that the rank of Fi = q (being Fi a specific column of
Bi, that corresponds with the faulty input to diagnose), then, after performing
some algebraic operations, the system from Equation (5.1) is transformed into a
new LPV system without unknown inputs,

x̄1(k + 1) = M∑
i=1

µi(ζ(k)){Ãi1x̄1(k) +Ei1y(k) + B̄i1u(k) + ∆̄xi1}
y(k) = M∑

i=1

µi(ζ(k)) {C̃i1x̄1(k)}
with C̃i1 = CNi, Ãi1 = Āi11 − Āi12Ui1CNi and Ei1 = Āi12Ui1 .
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At this point, if the pair (Ãi1 , C̃i1) is observable, it is possible to design a
reduced-order observer for (5.2) as,

Φ(k + 1) = M∑
i=1

µi(ζ(k)){KiΦ(k) + B̄i1u(k) +L∗i y(k) + ∆̄xi1} (5.3)

where Φ(k) ∈ R(n−q) is the observer state vector, L∗i = Li+Ei1 and Ki = Ãi1 −LiC̃i1 .
Moreover, the matrices Li ∈ R(n−q)×(p−q) are the observer gains to be designed.

Consequently, the necessary existence conditions are:
1. Ãi1 is asymptotically stable.
2. (Ãi1 , C̃i1) is observable.
3. C and Fi are full row and column rank, respectively.
4. rank(CFi) = rank(Fi)
Accordingly, through the Theorem 3.2 the sufficient LMI conditions for the

LPV-RUIO synthesis, were presented.
Thereby, from Equation (5.3) with Φ(k)→ ˆ̄x1(k) pursuant to k →∞. That is,

x̂(k) = M∑
i=1

µi(ζ(k))Ti ˆ̄x(k)
= M∑

i=1

µi(ζ(k))Ti [ Φ(k)
Ui1y(k) −Ui1CNiΦ(k)]

with x̂(k)→ x(k), with k →∞.

5.3.2 Design of LPV-UIOO

On the other hand, considering that the matrix H corresponds with a row of C,
which is a non-monitored output (faulty sensor), and choosing a transformation
matrix T2, such that J = T2C, where J ∈ Rp−o only contains the C rows correspond-
ing with the monitored outputs (non-faulty sensors). Thus, the output equation
of the system model from Equation (5.1) is transformed to,

ỹ(k) = Jx(k).
Thereby, an UIO with the purpose of estimating the state variables x(k), even

with unknown input presence, is formulated as,

z(k + 1) = M∑
i=1

µi(ζ(k)){Niz(k) +Giu(k) +Liỹ(k) +∆zi}
x̂(k) = z(k) −Eỹ(k)
ŷ(k) = Cx̂(k)

where z(k) is the full-order observer state vector, and the matrices Ni ∈ Rnxn,
Gi ∈ Rnxp, Li ∈ Rnxp and E ∈ Rnxp are the observer gains to be determined. In
addition, the weighting functions µi(.) are the same as used in Equation (5.1).
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Thus,

e(k + 1) = M∑
i=1

µi(ζ(k))Nie(k)
if the following constraints hold

T1Fi = 0
Gi − T1Bi = 0
NiT1 +LiJ − T1Ai = 0
∆zi − T1∆xi = 0

being T1 = (I + EJ). In this way, if Ni is quadratically Schur, e(k + 1) → 0
asymptotically.

As a consequence, the necessary existence conditions are:
1. Ai is asymptotically stable.
2. (Ai, J) is observable.
3. J and Fi are full row and column rank, respectively.
4. rank(JFi) = rank(Fi).
Accordingly, through the Theorem 3.4 the sufficient LMI conditions for the

LPV-UIOO synthesis, were presented.

Remark 5.2. The Theorems 3.2 and 3.4 show that the observers designs are solved
through LMI problems. For that, the Yalmip [88] and LMI Lab [65] packages of
Matlab software are used.

5.3.3 Detection and diagnosis scheme

As presented in Section 3.5, the residual pattern should be customised to follow
a certain structure (generalised residuals). Thus, the structured residuals are
characterised by selective fault responses. In other words, any residual is sensitive
to one group of faults and insensitive to others.

Fault detection and isolation

Taking all the above into account, a threshold test may be performed separately
for each residual, yielding to a decision incidence matrix, and then the isolation
task is fulfilled using this matrix.

Fault estimation

When the fault detection and isolation tasks are successfully achieved, the actuator
or sensor fault estimation is validated.

Actuators Hence, the actuator fault estimation task is performed using the cor-
responding LPV-RUIO to the associated fault (selected as unknown input signal).
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Sensors Besides, the sensor fault estimation task is performed using the k-th
non-monitored residue component from the corresponding LPV-UIOO to the as-
sociated fault (selected as non-monitored signal).

5.4 Fault-tolerant controller

The aim of this section is to develop an FTC to abide actuators and sensors faults.
This strategy looks for, at each sampling time k, the best prediction model for
the next Np steps (based on the previous Ne steps) and compute the near-optimal
sequence of control actions using some terminal ingredients to guarantee stability.
As a consequence, this Fault-Tolerant Model Predictive Control (FT-MPC) strat-
egy is divided into two QP problems: the backward MHE QP and the forward
MPC QP. Notice that this FT-MPC is based on the MHE-MPC one, which was
presented in detail in Chapter 4.

5.4.1 Backward QP - The MHE

As previously stated, the backward QP is used for identification purposes. The
basic idea behind this, is to consider the interpolation variables µj to compose the
best LTI combination model to be used to momentarily describe the controlled
process. This procedure minimises the model discrepancy with respect of µ and its
variance throughout that time. This is achieved with the solution of the following
optimisation problem, from k = k0, considering x̃ = x − xf and ũ = u + uf as the
fault-compensated input and output data, and µk−1 as the result from the previous
iteration:

min
µ

k∑
j=k−Ne+1

(e(j)TQee(j) + νTµQννµ)
s.t. e(j + 1) = x(j + 1) − (Ax(j) +Bu(j)) ,

A = M∑
i=1

µiAi and B = M∑
i=1

µiBi,

M∑
i=1

µi = 1, 0 ≤ µi ≤ 1,
µ = col{µi(k)}, µ = µk−1 + νµ,

(5.5)

where j ∈ Zk−Ne∶k−1 and i ∈ Z1∶M . Moreover, Ne is the estimation horizon and
the matrices Qe and Qν are the appropriate dimension tuning weights of this
optimisation procedure, considered as identity matrices.

5.4.2 Forward QP - The MPC

On the other hand, the forward QP is capable of obtaining a control law that
takes into consideration constraints on the states, inputs and outputs. For that,
the proposed cost function of the FT-MPC optimisation problem is given by:

VN(x̃, xs, µ;u, xa, ua) = V d
N(x̃, µ;u, xa, ua) + V t

N(xs;xa)
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with

V d
N(x̃, µ;u, xa, ua) = Np−1∑

j=0

∥x̃(j) − xa∥2Q + ∥ũ(j) − ua∥2R,
where Q ∈ Rn×n and R ∈ Rm×m are positive definite matrices, and Np is the predic-
tion horizon. The couple (xa, ua) is the artificial reference, which represents the
best reachable steady state by the system in Np steps, starting from the initial
condition x̃ = x̃(k). At last, V t

N(xs;xa) is the end cost function, which is defined

V t
N(xs;xa) = ∥xa − xs∥2ϕ + ∥x̃(Np) − xa∥2P .

being ϕ and P the appropriates weighting matrices. Then the term ∥x̃(Np)−xa∥2P
is an offset that penalises the final-state deviation from this target operation and
the offset term ∥xa−xs∥2ϕ ensures that the artificial variable tracks the real set-point
variable, with the actual target goal.

Thus, for any current compensated state x̃, the optimisation problem to be
solved at each time step k = k0 is given by

min
u,xa,ua

Np−1∑
j=0

VN(x̃, xs, µ;u, xa, ua),
s.t. x(0) = x̃,

x(j + 1) = Ax(j) +Bũ(j),
xa = Axa +Bua, (ua, xa) ∈ Zs = Xs ×Us

A = M∑
i=1

µiAi and B = M∑
i=1

µiBi,

x(j) ∈ X, ũ(j) ∈ U, ∀j ∈ Z0∶Np−1

x(Np) = x(Np) ∈ Xf ,

(5.6)

considering that µi represents the value obtained by the backward MHE QP for
µ. Additionally, Xf is an adequate robust controlled positively terminal invariant
set that contains the set-point ps = (xs, us) (see Chapter 4).

Remark 5.3. Note that this fault-tolerant predictive controller uses a feedforward
compensation of actuator faults and a compensated version of the measurable out-
puts to compute the fault-tolerant control policy (reconfiguration mechanism).

Remark 5.4. The stability proof of the system from Equation (5.1) in closed-
loop with the proposed fault-tolerant controller is equivalent to the one presented
in Chapter 4 for the nominal MHE-MPC. It is due to the convergence of the
compensated variables x̃ and ũ depends purely from the FDD module, which is
assumed to be fast enough.

5.5 Illustrative example (CSTR)

Recalling the CSTR process, presented in Section 3.7, where its non-linear model
is described in Equation (3.43) and its physical and operational parameters are
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and repeating the previous procedure, the observer to estimate faults on the valve
qc was constructed.

LPV-UIOO As previously stated, the existing hard correlation over the states
CA and T hinder the correct fault detection and isolation task design. As a
consequence, firstly the output V was selected as a non-monitored output (Hi

corresponds with the V row of the output matrix Ci), and Fi = [−1 0 0]T was
defined, then the appropriate T2 matrix was chosen (null space of Hi). Thus,
it was possible to construct the matrices of the first observer that was used to
diagnose faults of the output sensor V . Besides, choosing the output T as non-

monitored output, defining Fi = [−1 0 0]T , and selecting another T2 matrix,
another observer was constructed to diagnose faults of the output sensor T .

Controller design

On the other hand, based on the strategy presented in Section 5.4 the FTC is
developed. To do that, firstly Ne = Np = 8 was used. Secondly, the constraints
qs ∈ [90,110], qc ∈ [90,105], V ∈ [90,110], CA ∈ [0.03,0.17], T ∈ [440,450] and
the corresponding sets U and X were defined (Hardware constraints). Then, the
weighting matrices Qe = 1×105, Qν = 1, Q = diag{0 , 1×104} and R = 1×101 were
settled. Lastly, the optimisation problems from Equations (5.5) and (5.6) were
properly deployed, using computer-aided tools.

5.5.2 Numerical simulation

To evaluate the performance and effectiveness of the proposed AFTCS strategy,
it was simulated on the non-linear CSTR system model, from Equation (3.43),
during 3h and using Ts = 3 s (requirement imposed by the available hardware). In
particular, to show its behaviour, a group of set-point changes were made from
the initial condition V 0 = 100m3, T 0 = 447K.

1. Firstly, a step change to V = 98m3 and T = 445K was applied at the start,
i.e. t = 0min.

2. Then, an increment of V = 12m3 was added at t = 7min.
3. At t = 25min an abrupt displacement up to V = 95m3, T = 442K was

introduced.
4. Another step change was applied at t = 45min to V = 98m3, T = 445K.
5. Finally, when t = 65min, the volume was carried up to V = 91m3, keeping
T = 445K.

Furthermore, with the purpose of exposing the fault-tolerance capacity, the
following faults were considered:

1. since 10min up to 20min an exponential accumulation of tartar in the sensor
of T , inducing an error of up to 0.5% from Tmax,

2. from 30min to 40min a leak in valve qs coupling, producing a loss of 5%
from qsmax

,
3. at 50min to 60min an exponential calibration error in the V sensor of up to

2% from Vmax,









Chapter 6

Fault-Tolerant Energy
Management System

This chapter presents an optimisation-based control method to develop a fault-
tolerant EMS for an industrial microgrid, based on a sugarcane power plant. The
studied microgrid has several renewable energy sources, such as photovoltaic pan-
els, wind turbines and biomass power generation, being subject to different oper-
ational constraints and load demands. The proposed management policy guaran-
tees that these demands are met at every sampling instant, despite eventual faults.
This law is derived from the solution of an optimisation problem that combines
the formalism of an MHE scheme (to estimate faults) and an MPC loop (for fault-
tolerant control goals); it chooses which energy source to use, seeking maximal
profit and increasing sustainability. The predictive controller part of the scheme
is based on a linear time-varying model of the process, which is scheduled with
respect to the fault estimation brought up by the MHE. Furthermore, a realistic
numerical simulation confirms the effectiveness and performance of the proposed
control method.

Finally, it should be noted that the main results of this chapter can be found
in work [39].

6.1 Introduction

The improvements to reduce the effect of climate changes necessarily involve a sus-
tainable development plan, for which, the replacement of fossil fuels by renewable
energy sources seems like the evident path. An important aspect to consider is the
efficiency of energy production. Consequently, future (large scale) energy projects
will have to include strategies to integrate the renewables coherently, with appro-
priate management policies which guarantee uninterrupted and efficient energy
generation.

The smart-grid/microgrid concept has come to focus under this scope; these
technologies allow the efficient use and generation of energy, intelligently managing
the available energy sources together with storage units to increase the reliability
of the renewable systems. Thus, the core idea of the concept is to “shift” elec-
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tric load demands to periods when the renewables are generating energy, avoiding
their intermittent characteristic, see [125, 126]. In addition, with the inclusion
of intermediate storage units coupled to the energy generation (batteries, super-
capacitors, fly-wheels and others), the excessive energy produced at a given instant
can be stored to compensate, at a future moment, lacking production. As pro-
posed in [127], a microgrid is henceforth understood as a set of generators, loads
and storage units concatenated together as a single system. Note that many ex-
perimental implementations of optimised renewable smart-grids have been seen
through the literature, such as in [128, 129].

Hence, the energy management problem of microgrids is a significant issue to
be studied in order to allow an optimal and eco-friendly operation of future energy
matrices. For such, MPC schemes have been successfully applied to a diverse set
of recent renewable applications [130, 131, 132, 133, 134, among others].

However, as discussed in previous chapters, unexpected scenarios or unusual
events sometimes occur, which are not typically considered in the standard MPC
design process. As a consequence, the problem of guaranteeing load demands
requires a different strategy rather than just having a robust controller.

This challenge has motivated several MPC-based AFTCS studies for micro-
grids. In terms of papers, some results are mentioned:

• A fault-tolerant predictive strategy is developed in [135, 136] to ensure the
proper amount of energy in the storage devices is kept so that consumer
demand is always covered. In these works, the fault term is included in the
optimisation procedure, therefore finding a time-varying control policy that
incorporates the variability of the energy plant’s behaviour due to faults in
the nominal process model;

• Based on a similar paradigm, in [137] the authors develop a predictive con-
troller that mitigates the effects of faults in a microgrid based on a diagnosis
level. The reconfiguration block acts to make changes on constraints as well
as references passed to the MPC.

• Recently, in [97] an energy coordination AFTCS has been proposed. There
the AFTCS was synthesised based on several diagnosis observers. The main
drawback, as discussed therein, is that the approach was not unified with
respect to fault estimation, the implementation complexity growing linearly
according to the number of control inputs.

As a result, the integration of AFTCS requires a solid detection and an accurate
estimation of the level of faults, so that smooth performance degradation can be
obtained. It must be commented that many papers have detailed the ability of
the MHE optimisation to be adapted to estimate faults (and level of faults) in
a controlled process, as if it was embedded into some concentrated time-varying
model parameter [81, 33]. Consequently, the MHE method is an interesting option
to be directly combined to an FTC layer, since it shares the same usual quadratic,
constrained optimisation formalism with MPC.

It seems very reasonable that both MPC and MHE could be combined to
design an AFTCS, yet this has not been formally conducted in the literature for
the case of renewable smart-grids. Therefore, it is the main motivation of this
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Remark 6.2. The model above is conceived following an Energy Hubs framework,
which is based on mass and energy balance relationships. The inputs to the sys-
tem are those passed as set-points to the subsystems of the microgrid (detailed
in Figure 6.2). The model has inherently more inputs than outputs, since it has
multiple energy inputs which are linearly combined to produce a single energy de-
mand outlet. The subsystems (assumed to be regularly controlled by local PI and
Proportional-Integral-Derivatives (PIDs)) are viewed as static gains between their
inlet variables and output flows. As an example, the CHP unit gives the relation-
ship between the inlet of compressed biogas (output to the biogas stock XBg) and
the outlets of electric power and heated water.

The considered microgrid has five states (stocks), thirteen control inputs (set-
points to the subsystems), five disturbances (renewable inputs), five measured
outputs (states) and five controlled outputs (which relate to the demands). There-
fore, according to [129], the dimensions of the matrices in the above are: A ∈ R5×5,
B1 ∈ R5×5, B2 ∈ R5×13, C1 ∈ R5×5, D11 ∈ R5×5, D12 ∈ R5×13, C2 ∈ R5×5, D21 ∈ R5×5 and
D22 ∈ R5×13.

The system state vector x is defined in Equation (6.2), where each entry stands
for the normalised percentage of the storage units: battery bank, bagasse stock,
straw stock, biogas stock and hot water tank. The system’s measured outputs are
also these states: y(k) = x(k).

x(k) = [XBat(k) XBag(k) XStr(k) XBg(k) XT (k)]T . (6.2)

The input vector u stands for hourly set-points for the internal subsystems4.
The complete control vector is given by Equation (6.3), where each entry stands
for set-points of: energy boiler, lower efficiency turbine, higher efficiency turbine,
energy flow to (from) the battery bank, CHP, water chiller, heat exchanger, high-
to-middle pressure reduction valve, middle-to-low pressure reduction valve, hot
water escape flow, middle pressure steam escape flow, low pressure steam escape
flow, and the power available to the external network, respectively.

u(k) = [SPA
TU(k) SPB

TU(k) PotNet(k) SPB
C (k) . . .

QOut
V (k) QM

Esc(k) QB
Esc(k) SPCHP (k) . . .

SPCh(k) SPTC(k) PotBat(k) QMB
V (k) QT

Esc(k)] .
(6.3)

The system’s controlled outputs z are defined in Equation (6.4), being PP the
electric power produced to supply the sugarcane processing demand (kW); QM

V

the flow of middle pressure steam (Mgh−1); QL
V the flow of low pressure steam

(Mgh−1); QCW the flow of chilled water required by the fermentation and distillery
process (m3 h−1); finally, PS represents the electric power available to the external
network (kW).

z(k) = [PP (k) QM
V (k) QL

V (k) QCW (k) PS(k)]T . (6.4)

4From an hourly controller’s point-of-view, it is assumed that the sampling period is large
enough so that all these set-points have been accurately tracked by their respective subsystems
(if no fault occurs).
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The load disturbances w are defined in Equation (6.5), being Wnd the speed
of the wind (kmh−1), present in the microgrid’s area, Irrd the amount of solar
irradiance (Wm−2) upon the solar panels, Bag, Str and Bg represent the income
(Mgh−1) of bagasse, straw and biogas to the plant5, respectively.

w(k) = [Wnd(k) Irrd(k) Bag(k) Str(k) Bg(k)]T . (6.5)

Assumption 6. The external disturbances w are dependent on the weather con-
ditions on the sugarcane field (solar irrandiance and wind speed). It is assumed
that the proposed AFTCS has access to estimations of these disturbances, ŵ, that
can be used for feedforward compensation. Neural Network methods can be used
for their estimation, as done in [120].

6.2.2 Demands and operational constraints

To sustain the sugar and ethanol production process, the following demands must
always be guaranteed:

• electric power to sustain the plant (in average, 8000kW) and to sell the
surplus to a local DNO (a contract of 11.52GWh per month has to be
respected). This power generation can be continuous, maintaining a constant
rate value, or time-varying, with different values at each hour of the month.
Moreover, a tolerance of ±ψ (1.728GWh) is allowed upon this goal;

• steam in different pressures;
• cold water.

The operational constraints are given by the physical requirements of each sub-
system: upper and lower limit bounds of states x and internal set-points uj.

6.3 Proposed AFTCS/EMS

The main contribution of this chapter is to propose a novel AFTCS for (a sugar-
cane) renewable microgrid, as follows:

Problem 1. Find an accurate fault estimation vector Λ̂(k), and an optimal con-
troller that determines the set-points u(k) in order to guarantee that the outputs
z(k) are equal to the (known) demands zr(k), despite the presence of faults and
the renewable disturbances.

This chapter proposes a modular optimisation-based procedure to solve Prob-
lem 1. The fault estimation part of the solution is derived from an MHE scheme,
whilst the control part is handled by an (model-update) MPC. The outline of the
proposed method is illustrated by Figure 6.4, where the process model block stands
for what is given by Equation (6.1). In the sequel, both MHE and MPC are ex-
plained more minutely.

5These three incomes are proportional to the sugarcane crop, harvest and milling.
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Finally, the arrival term lac included in the cost function is used to penalise the
distance between the state estimate at the start of the horizon backward (k −Ne)
and a previous state estimate x̄a. As previously introduced in Section 2.9 this
term is known as an “arrival cost” because it weights the influence of the past
information outside the estimation horizon, i.e. from t = 0 to t = k−Ne, in a single
concatenated term. This offset is given by:

lac(x̂a(k −Ne)) = ∥x̂a(k −Ne) − x̄a∥2P
where xa = [x̂′ Λ̂′]′ and P is a positive definite penalty matrix. The estimate
x̂a(k −Ne) is given by a simple EKF.

At each sampling instant k, the optimisation problem defined in Equation (6.6),
below, is solved and a current estimation of states and faults (i.e. x̂(k), Λ̂(k))
becomes available for control and monitoring purposes. At the next sampling
instant, the following arrival term lac(⋅) is updated by an EKF guess and the
horizon window Ne slides forward by one unit.

min
Λ̂

JMHE

s.t. x̂(i + 1) = Ax̂(i) +B1w(i) +B2Λ̂(i)u(i) +wx(i),
Λ̂(i + 1) = Λ̂(i) +wλ(i), i ∈ Zk−Ne∶k−1,

y(i) = C2x̂(i) +D21w(i) +D22Λ̂(i)u(i) + ν(i),
Λ̂min ≤ Λ̂(i) ≤ Λ̂max,

x̂min ≤ x̂(i) ≤ x̂max, i ∈ Zk−Ne∶k,

(6.6)

Let the steps of the MHE fault estimation be rapidly recalled:
(a) Collect the data set based on the available information from the last Ne

steps, through w, u and y;
(b) Compute an state estimate at the arrival moment, i.e. Ne steps behind k,

through an EKF guess, given by x̂a(k −Ne);
(c) Based on the previous state estimate, from the last MHE iteration, given by

x̄a, compute the arrival term offset lac(⋅);
(d) Solve the constrained optimisation problem, resolving the QP given by Equa-

tion (6.6);
(e) Pass the output of the QP solution, the vector of estimated fault terms Λ̂,

to the MPC algorithm, which is detailed in the sequel.

6.3.2 Fault-tolerant model predictive control

The complete AFTCS is derived with an MPC algorithm for fault-tolerant control
purposes. This MPC includes performance goals (such as demand deliverance) and
process operational constraints. To design this model-based predictive controller,
that takes the Λ̂(k) fault information from the MHE, a cost function JMPC is
minimised subject to constraints and the load demands variables zr(k), previously
detailed in Section 6.2.2.
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For the energy plant to abide to the energy production rules, supplying the
local DNO with 11.52GWh per month, the following cost function is established:

JMPC =
Np−1∑
i=0

∥ED(i)∥2Qs
+ ∥z(i) − zr(i)∥2Qz

+ ∥ǫ(i)∥2Qǫ
+ ∥x(i) − xref∥2Qx

+ quu(i),
where ED(i) denotes the difference from the energy delivered to the external grid
and the energy contract generation goal, weighted through Qs; the demand com-
pliance error term is expressed through z(i)−zr(i), which is weighted through Qz;
a slack variable ǫ, weighted through Qǫ, is introduced to the optimisation proce-
dure to account for the contract tolerance; the deviance x(i) − xref is optimised
to bring the states close to a certain reference value, weighted through Qx; finally,
qu linearly weights the control inputs - note that linearity is allowed because the
control vector u is always positive.

The delivered energy deliverance is measured through:

ED(i) = [TsPS(i) − ǫ(i) − Econ −Esum

Tgoal
] ,

where Esum represents the electric energy that has already been produced (until
instant k), Econ stands for the energy sales contract value; (Econ−Esum) represents
how much electric energy the microgrid still has to produce until the end of the
month, due to contract requirement, taking Tgoal as the remaining time until the
end of the month, in hours.

The reference to the states x̂ref , represents a vector of 50% references, used so
that the states stay close to this mean value. The prediction horizon of the MPC
algorithm is denoted Np. Note that zr stands for the load demands the EMS must
guarantee, to maintain the sugar/ethanol production process running.

The MPC synthesis, then, resides in minimising JMPC , with x(0) = x(k) and
considering a frozen LTI version of the model in Equation (6.1), updated with
Λ(i) = Λ̂(k) (informed by the MHE), subject to the following operational con-
straints:

x(i + 1) = Ax(i) +B1ŵ(i) +B2Λ̂u(i),
z(i) = C1x(i) +D11ŵ(i) +D12Λ̂u(i),
xmin ≤ x(i + 1) ≤ xmax

umin ≤ u(i) ≤ umax

0 ≤ z(i)
0 ≤ ǫ(i) ≤ ψ, i ∈ Z0∶Np−1.

Note that the slack variable ǫ is included directly into JMPC , since it is evident
that the energy generation has the production as close as possible to the contract
goal Econ, which means that ǫ has to be as close to zero as possible.

The cost function JMPC is very similar to the one used in [138], embedding
contract generation goals through ED and demand compliance error term through(z − zr), while altogether maintaining the stocks (states) close to a half-full ref-
erence. The values for the weighting matrices Qs, Qz, Qǫ, Qx and qu can also be
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terms Λ̂ as well as the control signal u, i.e. ̺ = col{Λ̂, u}T :
min
̺

aMHE(i)JMHE + aMPC(i)JMPC ,

s.t. aMHE(i) = 1 and aMPC(i) = 0, ∀i ∈ Zk−Ne∶k−1

x̂(i + 1) = Ax̂(i) +B1w(i) +B2Λ̂(i)u(i) +wx(i), ∀i ∈ Zk−Ne∶k−1

Λ̂(i + 1) = Λ̂(i) +wλ(i), ∀i ∈ Zk−Ne∶k−1

y(i) = C2x̂(i) +D21w(i) +D22Λ̂(i)u(i) + ν(i), ∀i ∈ Zk−Ne∶k−1

xmin ≤ x̂(i + 1) ≤ xmax, ∀i ∈ Zk−Ne∶k−1

Λ̂min ≤ Λ̂(i) ≤ Λ̂max, ∀i ∈ Zk−Ne∶k−1

aMHE(i) = 0 and aMPC(i) = 1, ∀i ∈ Zk∶k+Np−1

x(i + 1) = Ax(i) +B1ŵ(i) +B2Λ̂(k − 1)u(i), ∀i ∈ Zk∶k+Np−1

z(i) = C1x(i) +D11ŵ(i) +D12Λ̂(k − 1)u(i), ∀i ∈ Zk∶k+Np−1

xmin ≤ x(i + 1) ≤ xmax, ∀i ∈ Zk∶k+Np−1

umin ≤ u(i) ≤ umax, ∀i ∈ Zk∶k+Np−1

0 ≤ z(i), ∀i ∈ Zk∶k+Np−1

0 ≤ ǫ(i) ≤ ψ, ∀i ∈ Zk∶k+Np−1

(6.7)

Note that this single QP is subject to the whole set of constraints (those of
both MHE and MPC). The new horizon is, thus, Ne +Np. In this problem, u is

fixed for the first part (past values) and Λ(Ne + i) = Λ̂(Ne) for i = 1 to Np.

6.3.4 Robustness remarks

Some few words must be stated about robustness, stability and feasibility of the
proposed solution:

• With respect to the MHE problem for estimating faults, since the open-
loop microgrid plant is a priori stable, and the optimisation problem is
data-based, local asymptotic convergence of the fault vector λ̂(k) is always
ensured. Moreover, since the variability term wλ(k) of the optimisation
problem is not constrained (but minimised), recursive feasibility is also al-
ways ensured. Demonstrating robustness of the MHE scheme is not the focus
of this work, and has been discussed in other papers [77, 139]. Note that
the robustness and uncertainty considerations of fault estimation schemes
for microgrid have also been previously discussed in [140], considering the
same sugarcane-based system.

• Regarding the MPC problem of the considered microgrid, robustness, fea-
sibility and stability remarks have been discussed in [138, 97]. Essentially,
robustness and recursive feasibility of this optimisation loop can be verified
regarding how the optimisation function JMPC is formulated. Synthetically,
it must be K-class lower-bounded with respect to x, with its offset term, if
present, K-class upper-bounded with respect to x. Moreover, the offset cost
should be decreasing along the horizon. Indeed, all these conditions are veri-
fied and the MPC solution is recursively feasible for the considered microgrid
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problem, which means that for whichever starting condition x(0) within the
operational set (delimited by xmin and xmax), the proposed AFTCS will en-
sure convergence to some stable equilibrium as k → ∞ through a sequence
of admissible control policies.

• The robustness of the MHE and MPC verified separately does not a pri-
ori ensure the robustness of the joint AFTCS version of Equation (6.7).
Therefore, if one is to implement the joint AFTCS formulation, the total
cost function Jfull should be analysed: This cost must verify the quadratic
boundedness and Lyapunov-decay along the horizon (the same conditions
stated above regarding JMPC).

• It must also be commented that the best performance solution of the con-
sidered problem is the one with a Fault-Forecast-MPC, which embeds to the
model the future behaviour of Λ (along the horizon). Of course, such formu-
lation is not possible, since only the instantaneous values of Λ are available
(from the MHE layer) at each sampling instant k.

6.4 Results and analysis

In this Section, high-fidelity simulation results are given in order to illustrate
the proposed Fault-Tolerant EMS. The strategies were synthesised using Yalmip
package [88], Gurobi optimisation solver [141] and Matlab software.

6.4.1 Simulation model

The considered simulation model for the sugarcane plant microgrid is the one pro-
posed and validated in [129]. This model describes the dynamics of the microgrid
from a tertiary-level control viewpoint, which means that it is assumed that local
controllers are acting to ensure that each subsystem tracks its operational set-
point determined by the EMS (the proposed AFTCS) withing one hour, which is
the sampling period of the model.

These local controllers are those that regulate the Boilers, Turbines, CHP,
Batteries and so forth (the thirteen subsystems presented in Figure 6.2). These
lower control layers consist on classical PI and PID controllers. These controllers
are not concerned with loss of effectiveness faults (gain decreases). From the
viewpoint of the MPC, each (locally-controlled) subsystem operates as a static
gain between input and output (set-point), meaning that transient dynamics are
not present, just the integration dynamics that derive from balance of energy and
mass relationships.

6.4.2 QP criteria selection

Firstly, Table 6.1 synthesises the general performances obtained with the proposed
AFTCS framework with respect to the adapted selection criteria of the (MHE and
MPC) QPs. This is an important feature to be analysed, because the execution
time of the AFTCS also changes according to the size of the horizons (Ne and Np).
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The performance results comprised in this table are measured through the average
Root Mean Square (RMS) index of the demand tracking error, i.e. RMS{z − zr},
where RMS{⋅} measures the RMS value of the discrete-time variable over the
whole simulation span. The “H RMS” index measures the RMS value for the
first Np samples of (z − zr) (inside the horizon). The IAE is a well-known time-
domain index; it measures the integral of the average tracking error, i.e. of (z−zr)
along the simulation (see Appendix D). These results exhibit that, when smaller
horizons are tested, the control strategy forces the convergence of the outputs
to the demands at the first instants, while for larger horizons this condition is
relaxed. Moreover, as expected, the average computational stress increases with
the size of the horizons, since the generated QPs have larger orders. Analysing
the obtained results, it seems that an adequate trade-off seems to be the choice
of Np = Ne = 10h, which is coherent with the discussion in [138]. For this reason,
through the sequel, the results consider Np = Ne = 10h.

Table 6.1: MHE-MPC performances vs. length of the horizon.

Horizon MHE MPC RMS H RMS IAE
5 h 0.0652 s 0.0113 s 0.3308 0.2440 6.8814
10 h 0.1036 s 0.0151 s 0.3417 0.2205 7.3599
15 h 0.1482 s 0.0197 s 0.3689 0.2791 8.2567
20 h 0.1841 s 0.0257 s 0.3887 0.3422 8.8167
24 h 0.1967 s 0.0261 s 0.4579 0.4120 10.7764

Note that, for all these possible horizon sizes (for both Np and Ne), the yielded
QPs were evaluated within 1 s (this is the OCE index7). Note that the sampling
period of the process is of a full hour, which means that the computational burden
of the QPs is not an implementation issue. Larger horizons (greater than 24 h)
have also been tested; anyhow, performances were not enhanced. This is coherent
with the average settling period of the considered fault terms, which is smaller
than 10 h.

Remark 6.3. Many other horizon values were tested. There are only subtle differ-
ences between the results (indices) achieved with intermediate horizons (between 5
and 10 h, 10 and 15 h and so on). Therefore, Table 6.1 concatenates the horizons
which presented the best results in terms of the performance indices.

6.4.3 Simulation

The following simulation scenario is considered: a whole month of energy gener-
ation and demand subject to average sun and wind availability, as presented in
[120]. Moreover, as done in [33], faults are emulated to occur in several subsys-
tems, as displays Figure 6.6: Turbine A (6.6a), high-to-middle pressure (HP-MP)
reduction valve (6.6b), CHP (6.6c) and water chiller (6.6d).

7In an i5-3337U CPU@2.7GHz (2 Cores) with 8GB of RAM
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(b) from 100 h, a gas leakage and partial clogging on hot water flow duct occur
on the CHP unit;

(c) partial clogging in the expansion valve and an increased bearing temperature
of the compressor motor of the water chiller income at 300 h;

(d) at 440 h, a steam leakage, implying a loss of mass flow, occurs in the pressure
reduction valve (HP-MP).

Now, the control results achieved with the proposed AFTCS are given in Fig-
ures 6.7 to 6.9. These figures stand for the total energy generation, the elec-
tric power and cold water production and the two steam demands, respectively.
Therein, FT-MPC (dashed bold line) stands for the proposed AFTCS and, for
comparison goals, sMPC (full blue line) stands for a “standard” MPC, taken from
[138]. This sMPC solves the same MPC optimisation problem, minimising JMPC ,
but disregards the effect of the faults. Consequently, if no faults occur (Λ(k) = I13)
the operation of both FT-MPC and sMPC would be the equivalent.

Firstly, regarding what Figure 6.7 shows, it must be commented that the DNO
contract is accomplished by controlling both strategies. This can be explained
since the MPC optimisation weights (Qs through qu) were chosen so that the most
important goal is to achieve the energy sales contract (as explained, ∣∣Qs∣∣∞ is the
biggest norm of these weights). Figure 6.7a depicts this fact, where the energy
generation by the green sources8 (the same happens with both control strategies,
since these variables are not controllable) is shown together with the energy sold
by the microgrid to the network, when controlled via FT-MPC or sMPC. Then,
Figures 6.7b and 6.7c further detail how this total energy generation is performed
with each strategy, FT-MPC and sMPC, respectively. The energy generation by
the turbines9 plays the biggest role with regard to this matter, since the AFTCS
further boosts its generation to account for the losses implied by the faults; it is
the turbine generation that is adapted to produce more energy that is not sold,
needed to sustain internal process, i.e. demand upon z1. The difference between
the strategies grows roughly 1GW until the end of the month. With both control
strategies, the energy produced in the CHP unit is the same, since this subsystem
is boosted to its maximal production (the set-point SPCHP (k) defined by the
controllers is always saturated), since it is the most energy-efficient subsystem of
the considered microgrid.

It is also important to notice that the slack variable ǫ in the MPC QP allows
to the AFTCS controller overachieve the DNO quota, in the case of sudden (last-
minute) disturbances. Such phenomenon is allowed by the tolerance factor in this
DNO contract, as explained in Section 6.2.2.

8Note that the green sources only provide a small percentage of the entire generation, for
both cases, as expected, regarding the considered scenario, as seen in [120].

9The main subsystem used by the AFTCS to tolerate the faults is the (highly efficiency)
turbine A.
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presence of faults, while always attending to the load demands and producing
the defined amount of energy. The presented approach highlights the interest of
the proposed MHE/MPC paradigm for the development of Fault-Tolerant EMSs.
Simulation results show that the proposed scheme can accurately re-adjust the
control law so that effects of faults are mitigated.
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Chapter 7

Conclusions and future works

This final chapter contains a summary of the thesis proposals, a detailed discussion
of the achieved results and a perspective of possibles future research directions.

7.1 Summary

This thesis addressed the problem of analysing and designing control methods to
mitigate, as well as possible, the fault occurrence of actuator and sensor elements
on industrial processes, where the fault presence can lead the system to a degraded
performance, or in worst cases to instability.

To achieve this, firstly, Chapter 1 introduced the reader on the origin and
motivation, as well as the research area state-of-the-art and objectives of this
thesis. Secondly, some existing and basic concepts required by the AFTCS design
were recalled in Chapter 2.

Furthermore, two different model-based approaches were presented on this the-
sis: on the one hand, throughout Chapters 3 to 5 the design of a novel observer-
based FDD module and an innovative QP-based adaptive FTC method were com-
bined to develop a non-linear AFTCS, on the basis of LPV system representation.
A sketched procedure about its application on a non-linear chemical industrial pro-
cess was given. On the other hand, on Chapter 6, an optimisation-based AFTCS
strategy was proposed to develop a tertiary-level EMS, based on a sugarcane dis-
tillery power plant. Where the availability of several renewable energy sources
exposes the capacity of proposed integrated AFTCS to mitigate faults, seeking
maximal profit and increasing sustainability.

Lastly, it is noteworthy that for each studied method a detailed computer-
aided simulation scenario was exhibited. Enabling qualitative and quantitative
discussions about its performance and effectiveness, via graphs and metric indices
respectively.

7.2 Contributions

The main contributions of this thesis are highlighted as follows:

107



108 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

• The development of a novel observer-based FDD strategy for non-linear sys-
tems was presented. The observers design and its stability conditions are
based on terms of LMI.

• An MHE procedure coupled to an MPC formulation was addressed to de-
velop a non-linear predictive controller. Terminal ingredients to guarantee
MPC stability are based on the resolution of off-line LMI problems.

• A model-based AFTCS for non-linear industrial processes was developed.
• An integrated fault-tolerant EMS MPC was addressed. An MHE method is
proposed to estimate both system states and incipient faults on renewable
microgrids.

• Realistic numerical simulation scenarios were presented, showing the effec-
tiveness of each method. Examples of typical chemical industrial processes
are given, as well as a sugarcane industrial microgrid.

• Performance indices were used to demonstrate and quantify the effectiveness
of the proposed methods.

7.3 Future works

The fault-tolerance control system remains an interesting and open research area
involving different fields of knowledge. Accordingly, with respect to the solutions
presented in this thesis remarkable future research topics are:

• The study and development of FDD schemes to achieve simultaneous fault
detection and estimation.

• The research and design of simultaneous integrated AFTCS for non-linear
systems. With the purpose of reducing the undesirable effects introduced by
FDD-FTC interactions.

• Consider the inclusion of parameter-dependent constraints and terminal set
into the MPC design procedure, to obtain a larger domain of attraction.

• Evaluate the economic impacts of stopping subsystems for repairs. Planning
the extension of the plant model knowledge, considering the maintenance
actions, that could allow a more realistic scenario.
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Appendix A

State observer

A.1 Observability

This concept was introduced by Rudolf E. Kalman in [142], and it is related
to the condition of observing or estimating the system state variables from its
outputs, generally measurable. Essentially, a system is completely observable if
every system state variable affects some of its outputs.

In practice, one of the main difficulties in a state feedback control implemen-
tation lies in the fact that the state variables are not accessible by direct mea-
surement, therefore, to construct the corresponding control signals, it becomes
necessary the estimation of non-measurable state variables. Such estimates are
possible if, and only if, the system is completely observable [47, 58].

A state observer estimates the state variables based on the measurements of
the output variables y(t), and on the knowledge of its input variables u(t). If the
state observer captures all system state variables, regardless of whether some are
available for direct measurement, it is called full-order state observer. On the other
hand, if it does not estimate all system state variables, it is called reduced-order
state observer.

Definition A.1 (Observability). Considering an LTI system described by

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) (A.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the vector of states, inputs and
outputs, respectively. Moreover, A, B, C and D are constant matrices of appro-
priate dimensions. The state x(t0) is said to be observable if given any input u(t),
there exists a finite time tf ≥ t0, such that the knowledge of u(t) for t0 ≤ t ≤ tf ,
the matrices A, B, C and D; and the output y(t) for t0 ≤ t ≤ tf , are sufficient
to determine x(t0). If every state of the system is observable for a finite tf , the
system is said to be completely observable, or simply, observable [58].

The Definition A.1, is the formal statement of observability. The following
theorem introduces the necessary and sufficient conditions for the system to be
observable.
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Theorem A.1. For the system described by Equation (A.1) to be completely
observable, it is necessary and sufficient condition that the observability matrixO ∈ Rnp×n has a row rank of n,

O =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

⋮
CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A.2)

The condition also refers that the pair (A,C) is observable.

Proof. As generally known, the solution of the Equation (A.1) is

x(t) = eAtx(0) + ∫ t

0

eA(t−τ)Bu(τ)dτ,
and consequently, the output is,

y(t) = CeAtx(0) +C ∫ t

0

eA(t−τ)Bu(τ)dτ +Du(t).
Thus, for observability evaluation purposes, it can be considered that the input

u(t) is null and by means of the Cayley-Hamilton theorem the output is,

y(t) = n−1∑
k=0

αk(t)CAkx(0),
or,

y(t) = [α0(t) α1(t) ⋯ αn−1(t)]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

CA0

CA1

⋮
CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
x(0).

Therefore, if all the state variables affect some of its outputs y(t) (the system
is completely observable) the rank of the matrix

O =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

⋮
CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

should be n.

A.2 Full-order state observer.

Given an LTI system described by the Equation (A.1), and assuming that the
pair (A,C) is observable, it is possible to formulate a full-order state observer,
proposed by Luenberger [86] and depicted in Figure A.1, as:

˙̂x(t) = Ax̂(t) +Bu(t) +L(y(t) −Cx̂(t)) (A.3a)

ŷ(t) = Cx̂(t) (A.3b)
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Appendix B

Parameterised Jacobian
Linearisation

This technique is one of the most used methodologies to obtain LPV models [60,
143]. Specifically, considering a non-linear system where the following differential
equations govern the system state variables evolution,

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t)) (B.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state, input and output vectors,
respectively. Moreover, f(x(t), u(t)) ∶ Rn×Rm → Rn and g(x(t), u(t)) ∶ Rn×Rm →
Rp are continuous smooth non-linear functions. The PJL technique is used to
build an LPV model from the non-linear system equations. As a consequence, the
arising model is formed by local approximations of the non-linear plant dynamics,
around selected operating points. Therefore, the foundation of this method is the
development of the first-order Taylor series expansion, with respect to the operat-
ing points (x̄, ū) (see Appendix B.1). Then, the combination of the resulting affine
models compound a polytopic representation of the non-linear plant, not only on
the set of linearisation points, but also on those contained (see Appendix B.3).

B.1 Taylor series expansion

Definition B.1 (Taylor series). Let be f(x) an analytic function defined on the
open disk ∣x − x0∣ < R0 (centred at x0 with radio R0) in C. Then, f(x) admits
power series representation as:

f(x) = ∞∑
n=0

an(x − x0)n (∣x − x0∣ < R0),
where

an = f (n)(x0)
n!

(n = 0, 1, 2, . . .).
Thus, this power series representation is known as Taylor series expansion of n-
order from the function f(x) on the open disk ∣x − x0∣ < R0 centred at x0. The
special case x0 = 0, is also called MacLaurin series.
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B.2 Linearisation of non-linear systems

Based on the first-order Taylor series expansion (Definition B.1) and being (x̄, ū)
a fixed point. Therefore, the matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m

are defined by:

A = ∂f(x(t), u(t))
∂x

∣(x̄,ū), B = ∂f(x(t), u(t))
∂u

∣(x̄,ū),
C = ∂g(x(t), u(t))

∂x
∣(x̄,ū), D = ∂g(x(t), u(t))

∂u
∣(x̄,ū).

Accordingly, the non-linear system from Equation (B.1) results in the following
related system:

ẋ(t) = Ax(t) +Bu(t) +∆x

y(t) = Cx(t) +Du(t) +∆y

(B.2)

where ∆x = f(x̄, ū) − (Ax̄ +Bū) and ∆y = g(x̄, ū) − (Cx̄ +Dū). Note that, when
the fixed point (x̄, ū) corresponds with an equilibrium, the system from Equa-
tion (B.2) is linear. That is, ∆x = 0 and ∆y = 0. Lastly, it is also noted that
the Taylor series expansion transforms non-linear terms, not related to vectors of
inputs and states, into terms related to any of them.

B.3 Weighting functions

As previous sections stated, it is possible to represent, a non-linear system through
an LPV model, using the PJL technique. For that, firstly a variable parameter
vector ζ(t) ∈ RN must be defined, on which the system matrices depend. Secondly,
the number of linearisation points per parameter L is adopted. It is important
to note that the N and L dimension are closely related to the non-linear model
representation capacity. That is, the amount of affine models need to proper
represent the non-linear system through an LPV model, is M = LN .

As an example, the development of weighting functions with dimensions N = 2
and L = 3 is presented. Thus, the L linearisation points per parameter are selected,

ρj,1 =min{ζj(t)}, ρj,2 =mid{ζj(t)}, ρj,3 =max{ζj(t)}.
being j ∈ Z1∶N . Then, the membership functions for each parameter are obtained,

Mj,1(ζj(t)) = ρj,1 − ζj(t)
ρj,2 − ρj,1 , Mj,2(ζj(t)) = ρj,2 − ζj(t)

ρj,1 − ρj,3 , Mj,3(ζj(t)) = ζj(t) − ρj,3
ρj,3 − ρj,2 .

Following, the M weighting functions corresponding to each affine model are de-
fined as,

µk+L(l−1)(ζ(t)) =M1,l(ζ1(t))M2,k(ζ2(t)), with k ∧ l ∈ Z1∶L.
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Lastly, the polytopic LPV model is obtained,

ẋ(t) = M∑
i=1

µi (ζ(t)) {Aix(t) +Biu(t) +∆xi}
y(t) = M∑

i=1

µi (ζ(t)) {Cix(t) +Diu(t) +∆yi}
(B.3)

where ∆xi
= f(xi, ui) − (Aixi + Bui) and ∆yi = g(xi, ui) − (Cxi + Dui). More-

over, the variable indicated with a subscript i corresponds to its value at the i-th
linearisation point, being i ∈ Z1∶M .
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Appendix C

Linear Matrix Inequalities

C.1 Introduction

Historically, the first LMI appeared in 1982, when the Russian mathematician
Aleksandr Lyapunov presented his doctoral dissertation, titled: “General Prob-
lem of the Stability of Motion”1. There, the main theoretical basis of almost all
controller design was introduced. Being this the well-known Lyapunov stability
theory [66, 65]. Specifically,

Definition C.1. Considering an autonomous continuous-time LTI system

ẋ(t) = Ax(t) (C.1)

with x(t) ∈ Rn and A ∈ Rn×n. It is said to be asymptotically stable if and only if
there exists a positive definite matrix P such that the following Lyapunov equation
holds:

ATP + PA < 0 (C.2)

The requirement P ≻ 0, ATP +PA < 0 is usually called as Lyapunov inequality
on P , which is a special form of an LMI. Lyapunov also showed that this LMI
could be explicitly solved. Indeed, it is possible to choose any Q = QT > 0 and then
solve the linear equation ATP + PA = −Q for the matrix P , which is guaranteed
to be positive-definite if the system from Equation (C.1) is stable.

C.2 LMI regions

The concept of LMI region is also useful to formulate pole placement problems in
terms of LMI, which can be solved efficiently using many existing software.

Definition C.2. Let D be a region on the complex plane. If there exist matrices
L = LT ∈ Rmxm and M ∈ Rmxm such that:

D = {s ∣ s ∈ C ∶ L + sM + s̄MT < 0}, (C.3)

1Translated from Russian
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then D is called LMI region and it is usually denoted by D(L,M). Moreover, fD(s) =
L + sM + s̄MT 2 is called characteristic function of the LMI region D(L,M).

The following proposition reveals a fundamental property of LMI regions.

Proposition 1. An LMI region is convex and symmetric about the real axis.

Proof. The symmetry property is obvious. To show the convexity, two points
s1, s2 ∈ D are arbitrarily chosen,

s∗ = θs1 + (1 − θ)s2, 0 ≤ θ ≤ 1.
Therefore, it has

L + s1M + s̄1MT < 0, and L + s2M + s̄2MT < 0.
Using this relationship it is derived in,

L + s∗M + s̄∗MT = L + (θs1 + (1 − θ)s2)M + (θs̄1 + (1 − θ)s̄2)MT

= L + θs1M + θs̄1MT + (1 − θ)s2M + (1 − θ)s̄2MT

= θ(L + s1M + s̄1MT ) + (1 − θ)L + s2M + s̄2MT

< 0, ∀ 0 ≤ θ ≤ 1.
Showing the convexity of the set D in the Equation (C.3).

The LMI regions are quite general since its closure is the set of symmetrical
convex regions with respect to the real axis. Indeed, LMI regions include relevant
regions such as disks, cones, strips, etc., as well as any intersections of the above.

Examples

As the Definition C.2 states, an LMI region is a complex-plane region characterised
by a function of s and s̄. To illustrate this concept consider the following three
complex-plane regions, depicted in Figure C.1.

R(s)

ıR(s)

−α

(a) Half-plane.

R(s)

ıR(s)

−q

r

(b) Disk centred at (−q,0)
with radius r.

R(s)

ıR(s)

θ

(c) Cone centred at the ori-
gin, with inner angle θ.

Figure C.1: LMI regions.

2s̄ denotes the complex conjugate of s.
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Firstly, the complex-plane region from the Figure C.1a represented by

Dα = {x + ıy ∣ x < −α < 0},
is an LMI region because

Dα = {x + ıy ∣ x < −α}
= {s ∣ R(s) < −α}
= {s ∣ 1

2
(s + s̄) < −α} ,

that is, Dα is an LMI region with L = 2α and M = 1. Thus, the characteristic
function results

fDα
(s) = 2α + s + s̄.

Secondly, the complex-plane region from the Figure C.1b given by

Dq,r = {x + ıy ∣ (x + q)2 + y2 < r2},
is also an LMI region because

Dq,r = {x + ıy ∣ (x + q)2 + y2 < r2}
= {s ∣ (s + q)(s̄ + q) < r2}
= ⎧⎪⎪⎨⎪⎪⎩s

RRRRRRRRRRR [
−r s + q
s̄ + q −r ] < 0

⎫⎪⎪⎬⎪⎪⎭
= ⎧⎪⎪⎨⎪⎪⎩s

RRRRRRRRRRR [
−r q

q −r] + s [0 1
0 0
] + s̄ [0 1

0 0
]
T

< 0⎫⎪⎪⎬⎪⎪⎭ ,
that is, Dq,r is an LMI region with

L = [−r q

q −r] , M = [0 1
0 0
] .

Lastly, the complex-plane region from the Figure C.1c performed by

Dθ = {x + ıy ∣ ∣y∣ < −x tan θ},
with 0 < θ < π

2
, is an LMI region. In fact,

Dθ = {x + ıy ∣ ∣y∣ < −x tan θ}
= {{x + ıy ∣ y2 < x2 tan2 θ, x tan θ < 0}
= {x + ıy ∣ y2 cos2 θ < x2 sin2 θ, x sin θ < 0}
= ⎧⎪⎪⎨⎪⎪⎩x + ıy

RRRRRRRRRRR [
x sin θ ıy cos θ−ıy cos θ x sin θ

] < 0⎫⎪⎪⎬⎪⎪⎭
= ⎧⎪⎪⎨⎪⎪⎩s

RRRRRRRRRRR [
(s + s̄) sin θ ı(s − s̄) cos θ(−s + s̄) cos θ (s + s̄) sin θ ] < 0

⎫⎪⎪⎬⎪⎪⎭
= ⎧⎪⎪⎨⎪⎪⎩s

RRRRRRRRRRR s [
sin θ cos θ− cos θ sin θ

] + s̄ [ sin θ cos θ− cos θ sin θ
]
T

< 0⎫⎪⎪⎬⎪⎪⎭ ,
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that is, Dθ is an LMI region with

L = 0, M = [ sin θ cos θ− cos θ sin θ
] .

C.3 Schur complement

Convex quadratic inequalities are converted to LMI form using Schur comple-
ments.

Definition C.3. Let Q(x) = Q(x)T , R(x) = R(x)T , and S(x) depend affinely on
x. Then the LMI

[Q(x) S(x)
S(x)T R(x)] > 0 (C.4)

is equivalent to the matrix inequality

R(x) > 0, Q(x) − S(x)R(x)−1S(x)T > 0 (C.5)

or equivalently,

Q(x) > 0, R(x) − S(x)TQ(x)−1S(x) > 0. (C.6)

In other words, the set of non-linear inequalities from Equations (C.5) and (C.6)
can be represented as the LMI of the Equation (C.4).



Appendix D

Performance Indices

The design of modern control systems requires a metric to evaluate its perfor-
mance. Accordingly, the error and the time at which it occurs are the valuable
factors to be considered. Thus, a performance index is a single measure of a sys-
tem’s performance that emphasises those characteristics of the response that are
deemed to be important. In short, a performance index is a quantitative measure
of the performance of a system and it is chosen so that emphasis is given to the
important system specifications. Some of the most important indices are listed
below:

• Integral Absolute Error (IAE)

IAE = ∫ ∞

0

∣e(t)∣dt,
• Integral of Squared Error (ISE)

ISE = ∫ ∞

0

e(t)2dt,
• Root Mean Square (RMS)

RMS =
√

1

n
(e(k + 1)2 + e(k + 2)2 + . . . + e(k + n)2),

• Total Variance (TV)

TV =∑∣δu(k)∣ =∑∣u(k) − u(k − 1)∣,
• On-line Computational Effort (OCE)

OCE = elapsed time

Ts
100%.
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Retardés”. PhD thesis. Grenoble Institute of Technology, 2008 (cit. on
pp. 16, 115).

[61] Javad Mohammadpour and Carsten W. Scherer. Control of Linear Parame-
ter Varying Systems with Applications. Springer, 2012. isbn: 9781461418320.
doi: 10.1007/978-1-4614-1833-7 (cit. on pp. 16, 17, 51).

[62] Guang-Ren Duan and Hai-Hua Yu. LMIs in Control Systems. Taylor &
Francis, 2013. isbn: 978-1-4665-8300-9 (cit. on p. 16).

[63] C. M. Astorga-Zaragoza, Didier Theilliol, Jean-Christophe Ponsart, and
Mickael Rodrigues. “Observer synthesis for a class of descriptor LPV sys-
tems”. In: Proceedings of the American Control Conference. 2011, pp. 722–
726. isbn: 9781457700804. doi: 10.1109/acc.2011.5990835 (cit. on
p. 16).

[64] Habib Hamdi, Mickael Rodrigues, Chokri Mechmeche, Didier Theilliol, and
Naceur Benhadj Braiek. “Fault detection and isolation in linear parameter-
varying descriptor systems via proportional integral observer”. In: Inter-
national Journal of Adaptive Control and Signal Processing 26.3 (2012),
pp. 224–240. doi: 10.1002/acs (cit. on p. 16).



BIBLIOGRAPHY 131

[65] Pascal Gahinet, Arkadi Nemirovski, Alan J. Laub, and Mahmoud Chilali.
LMI Control Toolbox For Use with MATLAB. Tech. rep. MathWorks, Inc.,
1995 (cit. on pp. 16, 28, 29, 77, 119).

[66] Stephen P. Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan
Balakrishnan. Linear Matrix Inequalities in System and Control Theory.
Vol. 15. Society for Industrial and Applied Mathematics, 1994, p. 203.
isbn: 089871334X. doi: 10.1109/TAC.1997.557595 (cit. on pp. 16, 27, 28,
32, 33, 56, 119).

[67] Damiano Rotondo. Advances in Gain- Scheduling and Fault Tolerant Con-
trol Techniques. Springer International, 2018. isbn: 9783319629018 (cit. on
p. 17).

[68] Jie Chen and Ron J. Patton. Robust Model-Based Fault Diagnosis for Dy-
namic Systems. Kluwer Academic Publishers, 1999. isbn: 978-0-7923-8411-
3 (cit. on p. 18).

[69] Julio Elias Normey-Rico and Eduardo F. Camacho. Control of Dead-time
Processes. Springer, 2007. isbn: 978-1-84628-828-9 (cit. on p. 18).

[70] Eduardo F. Camacho and Carlos Bordons.Model Predictive Control. Vol. 53.
9. Springer, 2007. isbn: 978-1-85233-694-3. doi: 10.1007/978-0-85729-
398-5 (cit. on pp. 18, 51).

[71] David Q. Mayne and Paola Falugi. “Stabilizing conditions for model pre-
dictive control”. In: International Journal of Robust and Nonlinear Control
29.4 (2019), pp. 894–903. issn: 10991239. doi: 10.1002/rnc.4409 (cit. on
p. 20).

[72] Antonio Ferramosca. “Model Predictive Control of Systems with Changing
Setpoints”. PhD thesis. Universidad de Sevilla, 2011, p. 255 (cit. on pp. 20,
21).

[73] Graham C. Goodwin, Maŕıa M. Seron, and José A. De Dona. Constrained
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[128] Esther Mengelkamp, Johannes Gärttner, Kerstin Rock, Scott Kessler, Lawrence
Orsini, and Christof Weinhardt. “Designing microgrid energy markets: A
case study: The Brooklyn Microgrid”. In: Applied Energy 210 (2018), pp. 870–
880. issn: 03062619. doi: 10.1016/j.apenergy.2017.06.054 (cit. on
p. 86).

[129] Marcelo Menezes Morato, Paulo Renato Costa Mendes, Alex Amadeu Cani,
Julio Elias Normey-Rico, and Carlos Bordons. “Future Hybrid Local En-
ergy Generation Paradigm for the Brazilian Sugarcane Industry Scenario”.
In: International Journal of Electrical Power and Energy Systems 101 (2018),
pp. 139–150. issn: 01420615. doi: 10.1016/j.ijepes.2018.03.024 (cit.
on pp. 86–88, 90, 97).

[130] Mario Petrollese, Luis Valverde, Daniele Cocco, Giorgio Cau, and José
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