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Abstract: The heart of a fuel cell is the membrane-electrode assembly consisting of two porous electrodes, where the 
electrochemical reactions take place, and the ionomer conductive membrane, which allows the proton exchange from the anode to the 
cathode. The porosity of the electrodes plays an important role in the fuel cell performance. One of the drawbacks presented by the 
porous electrodes is the accumulation of water in their structure, which implies a hindrance for the reactive gas transport to reach the 
catalytic reactive sites. In this paper, a mathematical model of a porous electrode, assuming single pores with uniform distribution, is 
introduced to determine the influence of water accumulation in the electrode on the fuel cell performance under different operating 
conditions. It is demonstrated that at low current densities, water accumulation has no effect in the fuel cell behavior, whereas at high 
current densities its performance is severely affected. 
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Nomenclature 

A Electrode area (cm2) 

C Concentration (mol·cm-3) 

F Faraday Constant (96487 C) 

i Current density (A·cm-2) 

i0 Exchange current density (A·cm-2) 

iL Limit current density (A·cm-2) 

M- Anode water balance (mol·s-1) 

M+ Cathode water balance (mol·s-1) 

Mmax Water amount to complete flooding (mol·s-1) 

p Total pressure (atm) 

2Hp  H2 pressure (atm) 

pgas Air pressure (atm) 

R Ideal gas constant (8.3142 J·mol-1·K-1) 

T Temperature (K) 

E Operation voltage (V) 

ENernst Nernst operation voltage (V) 

Wtr-EOD 
Water transport through the membrane 
(mol·cm-2·s-1) 

Whum 
Water inlet to the cell due to reactant gas 
humidity (mol·cm-2·s-1) 

Wgen Water production at the cathode (mol·cm-2·s-1) 

                                                           
*Corresponding author: Ana M. Castro Luna, Ph.D., 
professor, research fields: fuel cells and electrochemistry. 

Wout Water exit from the cell (mol·cm-2·s-1) 

x Molar fraction 

2H Oa  Water activity 

xhum 
Molar fraction corresponding to humidification 
condition 

VOhm Ohmic loss (V) 

Greek letters 

σ Membrane ionic conductivity (S·cm-2) 

δ  Membrane thickness (cm) 

ηact Activation overpotential (V) 

 
Activation overpotential corresponding to 
hydrogen oxidation reaction (V) 

 
Activation overpotential corresponding to oxygen 
reduction reaction (V) 

 Concentration overpotential (V) 

ρ Density 

ζ Stoichiometry coefficient 

α Charge transfer coefficient 

Є0 Initial electrode porosity 

Єhum 
Porosity corresponding to humidification 
condition 

λ 
Water content or local ratio H2O/SO3

- in the 
membrane 

ηdrag Electro-osmotic drag coefficient 

 

D 
DAVID  PUBLISHING 



Effect of Water Content in the Gas Diffusion Layer of H2/O2 PEM Fuel Cell 

  

214

1. Introduction 

Fuel cells are electrical power sources on which the 

chemical energy contained in a compound as 

hydrogen is spontaneously converted into electricity. 

The process is cleaner and more efficient than that 

based on burning fossil fuels, which is seriously 

harmful to the environment. As long as the reactant 

and oxidant are supplied, fuel cells can provide 

electricity and reach high efficiency, because they 

involve a single transformation step and unlike 

conventional heat engines, they are not under Carnot 

limitation. 

Polymer electrolyte membrane fuel cells (PEMFCs) 

are very attractive as power sources in portable, 

transport and stationary applications, because they can 

deliver high power density at low temperatures, are 

noiseless and lightweight, have low maintenance and 

have no mechanical components. They are also 

friendly to the environment. 

Nafion® membrane is usually employed in 

PEMFCs as ionomeric electrolyte, which is a 

peruorsulfonic acid membrane consisting of a 

hydrophobic polytetrauoroethylene backbone 

functionalized with hydrophilic sulfonic-acid at the 

end of lateral chains. The content of water in the 

membrane affects its ionic conductivity, because 

proton migration occurs in the ionomeric hydrated 

phase with participation of dissociated sulfonic groups 

[1-3]. In the search of highly efficient and reliable 

PEMFCs, considerable work has been done. Many 

internal and external factors affect their performance, 

such as catalytic performance, complex reaction 

pathways, materials degradation, mass transport, fuel 

cell design and assembly, operational conditions. 

[4-8]. 

A model of the processes taking place inside the 

fuel cells could help to understand what is the most 

important factors to improve and optimize its 

performance. Due to the complexity of the   

processes in real cells, one dimension and constant 

temperature are assumed, in most of the previously 

studied models [9-13]. In general, the models are able 

to give reasonable predictions of the cell performance 

in the low and intermediate current density ranges, but 

failed to reproduce the experimental curves at high 

current densities, where an abrupt potential drop is 

observed. 

Some authors consider that the electrode porosity 

does not change during cell operation; however, it is 

well known that it can be affected by many factors 

when current is drained. One of the most significant 

factors is water accumulation in the electrode porous 

layer, which can provoke flooding, a non-uniform 

pore distribution and an increase in the reactant 

transport resistance [14]. 

The aim of this work is to evaluate the role of the 

relative humidity of the reactive gases needed to avoid 

the accumulation of water in the porous electrode. A 

simplified model which considers a H2/O2 PEMFC 

operating under steady state conditions at constant 

temperature with a single pore distribution is 

introduced and discussed. 

2. Mathematical Model 

The model to be considered takes the following 

premises into account: 

The reactant concentration of both gases (H2/O2) is 

constant. 

The fuel cell work under isothermal conditions. 

The potential at the membrane electrode interface is 

constant. 

The pressure of gases and fluids is constant. 

There are no changes in the material properties in 

20-90 ºC temperature range. 

An ideal behavior of gases and fluids is considered. 

A uniform pore distribution in the electrode is 

assumed. 

The proton exchange membrane is always 

completely hydrated. 

2.1 Description of the Fuel Cell 

Typically, each individual PEMFC is made of a 
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layered structure consisting of an 

electrode-membrane-electrode assembly (MEA), 

which is constrained among two flow field plates, 

which plays two roles i) by collecting the current and 

ii) by supplying the reactants through the gas diffusion 

layer (GDL) to the catalytic active sites. The MEA 

comprises two electrodes separated by a thin Nafion® 

membrane (Fig. 1). 

The electrodes are composed of two layers, the gas 

diffusion layer (GDL) and the catalytic layer (CL). 

The CL is the site where the electrochemical reaction 

takes place, whereas the GDL supplies the reactants 

(which run through the flow channels of the flow field 

plates) and it also drains the products from the CL 

(heat, water and electrons). The GDL needs to be 

efficient for the gas transporting from the gas flow 

channels to the electrolyte/electrode interface [15]. To 

achieve the goal it is necessary to maintain free void 

pores to ease the diffusive flow of the gases. It is well 

known that preventing water away from condensing in 

the pores and consequently from obstructing the gas 

pathway; the GDL material must be hydrophobic. 

Teflon treatments of the GDL reduce the amount of 

water in the pores facilitating the gas transport toward 

the catalytic sites. 

It is important to stress that the GDL plays an 

essential role in regulating the flow of water away 

from the catalyst layer in PEM fuel cells. However, at 

higher current densities, the produced liquid water has 

to be removed with the effluent through the gas flow 

channels. 

Some models assumed that water and gas move 

through separate pores. Some authors claimed that a 

distribution of pore sizes must be determined to 

follow the behavior of the GDL, closely. Thus 

Benziger et al. [16] suggest that water move through 

large pores and the small pores are kept free of liquid 

water. 

During fuel cell operation (Fig. 2), H2 reaches, by 

diffusion through the porous electrode, the anode 

reaction sites of the catalysts and the hydrogen 

oxidation reaction (HOR) (as shown in Eq. (1)) takes 

place. 

2 2 2  H H e             (1) 

At the cathode, the oxygen reduction reaction 

(ORR) with protons and electrons takes place. 

2 2
1 2 2
2

O H e H O            (2) 

Consequently, the global fuel cell reaction is: 

2 2 2
1
2

H O H O             (3) 

2.2 Water Accumulation in the Porous Electrodes 

The water balance in the porous electrode (Fig. 3) 

results from the correlation between: i) the water inlet 

from the humidified reactant gases, ii) the water 

produced according to Eq. (2), iii) the internal water 

transport through the membrane between anode and 

cathode and iv) the water outlet from the humidified 

gases which have not reacted [17]. 
 

 
Fig. 1  Membrane-electrode assembly (MEA).  
 

 
Fig. 2  Schematic drawing of a H2/O2 fuel cell and the 
reactions involved in a PEMFC.  
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Fig. 3  Water transport in a typical PEM fuel cell.  
 

The inner water transport through the membrane 

results from many contributions; among the most 

important, it can be mentioned: 

 The electro-osmotic drag (EOD) associated to 

proton migration, which can be characterized by the 

electro-osmotic drag coefficient described by the 

number of water molecules moving with each proton 

[11]. 

 The back-diffusion due to the water 

concentration gradient between cathode and anode. 

 The thermal osmotic drag (TOD) caused by 

differences in temperature along the membrane. 

 The hydraulic permeation due to different 

pressures on each side of the membrane. 

The model is developed considering that i) the fuel 

cell is working in an isothermal condition, ii) the 

water amount in the membrane is constant, iii) no 

pressure gradient is applied, consequently, the thermal 

osmotic drag, the hydraulic permeation and the back 

diffusion caused by concentration gradient can be 

neglected. 

2.3 Water Inlet 

Relative humidity is defined as the ratio of the 

actual water vapor pressure to the saturation water 

pressure, usually expressed in percentage. A given 

amount of water coming with the reactant gases (H2, 

air/O2) is taken into account in line with Eqs. (4) and 

(5) [10]. 

2 1

hum
hum

hum

xiW
F x
 







           (4) 

2

2

0

0(1 )
4 1

hum
Nhum

hum
O

xxiW
F x x
 




 


      (5) 

2.4 Water Produced 

A given amount of water is obtained from the ORR 

and can be taken into account according to: 

2gen
iW
F

              (6) 

2.5 Water Outlet 

A certain amount of the reactive gases are not able 

to react in the PEMFC and they exit taking a certain 
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the cathode gas inlet in order to avoid flooding during 

fuel cell operation. A theoretical approach of how 

PEMFC works is proposed. Of the many parameters 

that play a part in improving the PEMFC behavior, the 

water content in the gas that fed the cathode is 

systematically studied in reference to PMFC 

performance by using a simple pore approach of the 

GDL. 

A model is presented and discussed in which 

PEMFC operating under steady state and isothermal 

conditions together with a simple and uniform porous 

electrode structure, is assumed. From the current 

potential relationship obtained, it is concluded that for 

relative humidity values in the air higher than 30%, 

the fuel cell performance starts to decay. The losses in 

efficiency are ascribed to the partial flooding of the 

porous structure of GDL, which is more severe at 

higher current densities. 
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