Research on methanol-tolerant catalysts for the oxygen reduction reaction

M. Asteazaran¹ · G. Cespedes² · S. Bengió² · M. S. Moreno³ · W. E. Triaca¹ · A. M. Castro Luna¹,²

Abstract Direct methanol fuel cells (DMFCs) generate electricity in a clean and efficient way, so they are a valuable alternative to traditional environmentally harmful technologies. Portable power sources are one of the applications of passive DMFCs. One of the requirements in these devices is the use of high alcohol concentration. Methanol permeation across the polymer electrolyte membrane (methanol crossover) causes a loss of fuel cell efficiency as the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) occur simultaneously at the cathode. To develop methanol-tolerant catalysts with suitable activity, different PtM/C and PtMRu/C combinations with M = Co or Fe were prepared by a modified impregnation method. The synthesized catalysts were studied to determine the role of the components in enhancing the ORR and simultaneously discouraging the MOR. The materials were characterized by TEM, XPS and EDS. Well-distributed particles for all the catalysts were shown by TEM. XPS spectra revealed that the method produces a great amount of metallic Pt. The electrochemical characterization was carried out by linear sweep voltammetry and cyclic voltammetry, in a three-electrode electrochemical cell with a glassy carbon rotating disk electrode covered with a thin catalytic layer and a Nafion® film as the working electrode. Binary and ternary catalysts have a good activity for the ORR. However, the enhanced activity of binary catalysts is lost when the ORR is studied in the presence of methanol. Ternary catalysts containing Ru showed higher methanol-tolerance, regardless of the composition.

Keywords ORR · DMFC · Methanol crossover · Methanol-tolerant catalyst · Trinmetallic catalyst · Direct methanol fuel cells

1 Introduction

Direct methanol fuel cells (DMFCs) are attractive devices to obtain energy in a clean and efficient manner, which is important to substitute traditional environmentally harmful technologies [1, 2]. Due to the use of methanol, an easy-handling fuel with exceptionally high energy density, DMFCs have received a large endorsement to substitute H2/O2 fuel cells in some application fields such as portable or signal devices [3–6]. It is widely recognized that among pure metals, platinum has the highest catalytic activity for oxygen reduction, but it is yet necessary to overcome kinetic limitations on the oxygen reduction reaction (ORR). In order to achieve catalysts with higher catalytic activity than that of Pt for the ORR, different Pt-based catalysts have been prepared and analyzed. Thus, improvements in specific activity with PtCo/C, PtNi/C or PtCr/C, and enhancement in specific activity on leached PtCo/C have been reported for ORR [7, 8]. The observed electrocatalytic effects were ascribed to several factors (interatomic spacing, preferred orientation, etc.) that contribute to enhancing the ORR. The activity enhancement has also been
attributed to Pt segregation and to an increase of d-electron
vacancies in the Pt surface layer caused by the underlying
transition metal that contribute to weakening the O-O bond
of adsorbed O₂ [8, 9].

Moreover, one of the most important challenges for the
mass commercialization of DMFCs is caused by the
competition between the ORR and the methanol oxidation
reaction (MOR) on the Pt cathode due to methanol per-
meation from the anode [1, 6]. Consequently, a mixed
potential is established at the electrode, which leads to a
reduction in the cell voltage as well as in the cell efficiency
[3]. One way of addressing the problem is to find catalysts
with good performance for the ORR that are tolerant to
methanol. Due to the extensive achievements in the fuel
cell field, the effect of catalyst nanostructure on catalysis
has attracted increasing attention [10, 11]. In previous work
related to the search of a methanol-tolerant cathode catalyst
for DMFCs, the authors demonstrated the importance of
focusing not only on the composition but also on the cata-
lyst synthesis method, since a different complex behavior
can be obtained depending on both aspects [12].

In this work, supported nanomaterials with different
compositions obtained by a modified impregnation method
were systematically studied, and the role of catalyst com-
position for the ORR in the presence of methanol is
discussed.

2 Experimental

In order to develop methanol-tolerant cathodes with suit-
able activity at low temperature, we prepared different
carbon-supported Pt/MC and Pt/MRuC catalysts, with
M = Co or Fe. The synthesis procedure, using slight
modifications of published procedures, was the impregna-
tion method via a seed-mediated growth, employing ethy-
lene glycol and NaBH₄ as reducing agent [13].

2.1 Catalyst preparation

Following [13], a calculated amount of H₂PtCl₆, MClₓ
(M = Fe and Co) and in some instances of RuCl₃ was
dissolved separately in ethylene glycol. The solutions were
subjected to ultrasonic agitation and purged with N₂ for
10 min. Subsequently, a calculated amount of functional-
ized carbon support (Vulcan® XC-72R) was added to a
given volume of ethylene glycol and ultrasonicated for
30 min under N₂ flow; its pH was changed to 10 by adding
NH₄OH. Afterward, 0.2 mL of the Pt precursor and 2 mL
of a freshly prepared 0.1 M NaBH₄ solution were added to
the carbon suspension under ultrasonic agitation to form Pt
seeds. Then, the remaining precursor solutions and a given
amount of NaBH₄ solution were added to the mixture.

Finally, the catalyst suspension was subjected to ultra-
sonication for 2 h under N₂ flow. The solid obtained after
filtering the suspension was thoroughly washed with
abundant distilled water and dried overnight in an oven at
70 °C. The catalysts were denoted as Pt/MC or Pt/MRuC.
It is noteworthy to mention that the functionalization of the
support was achieved after an oxidative treatment in 70 %
HNO₃ solution at 140 °C for 2 h following [14].

2.2 Physicochemical catalysts characterization

The distribution and size particles of the supported cata-
lysts were analyzed by high resolution transmission elec-
tron microscopy (HRTEM), their bulk compositions by
energy-dispersive X-ray spectroscopy (EDS), and the
surface composition and the chemical state of the active
components by X-ray photoelectron spectroscopy (XPS).
The electrochemical characterization was obtained em-
ploying a standard three-electrode electrochemical cell. A
rotating disk electrode (RDE) of glassy carbon (0.071 cm²
geometric area) covered with a thin layer of catalyst
powder, attached by a 0.1 μm Nafion® thin film, was used
as working electrode [15]. The catalyst loading on the RDE
was adjusted to 28 μg cm⁻². A Pt foil of 1 cm² geometric
area was used as counter electrode and a saturated calomel
electrode (SCE) as reference electrode. In this work, all
potentials are referred to that of the reversible hydrogen
electrode (RHE). Current densities were normalized by the
electrochemical surface area (ESA) obtained from the CO
stripping assuming 0.42 mCcm⁻² for one monolayer
oxidation of adsorbed carbon monoxide. The CO stripping
was carried out by first bubbling the solution with CO for
20 min and then with N₂ for another 20 min, while the
potential was held at 0.05 V. Two cycles at 0.010 V⁻¹
between 0.05 V and 0.8 or 1.1 V, depending on the catalyst
composition, were performed immediately after the CO
purging.

The working solution was an O₂-saturated 0.5 M H₂SO₄
solution with different CH₃OH concentrations. The elec-
trochemical experiments were conducted at room tem-
perature. In order to get a stable voltammetric profile, prior
to ORR experiments, the potential of the working electrode
was cycled at a rate of 0.1 V⁻¹ in a N₂-purged 0.5 M
H₂SO₄ solution for 60 cycles between 0.05 and 1.1 or
0.8 V, depending on the catalyst composition. The polar-
ization curves were obtained starting from the open circuit
potential value up to 0.050 V at a scan rate of 0.005 V⁻¹
and a disk rotation rate of ω = 2000 rpm. The background
current was measured by running the polarization curves
under identical conditions to those of linear sweep voltammetry (LSV) for ORR, under N₂-purged 0.5 M
H₂SO₄ solution. This background current was subtracted
from the experimental ORR current to eliminate any
contributions of capacitive current. The current densities of the polarization curves shown in this work were calculated taking into account the geometric area of the electrode.

3 Results and discussion

3.1 Physicochemical characterization

3.1.1 EDS analysis

The atomic percentage ratios of the components in the prepared binary and ternary catalysts, determined from EDS, are shown in Table 1. The atomic percentages of Ru and Pt are almost the same, whereas the atomic percentages of Co and Fe are approximately half that of Pt.

3.1.2 XPS analysis

The Pt 4f and Ru 3d X-ray photoelectron spectra of the carbon-supported PtCoRu and PtFeRu are shown in Fig. 1a–d.

The elemental Pt 4f core-level spectrum is composed of two peaks that correspond to the spin–orbit split 4f7/2 and 4f5/2. For all synthesized catalysts the Pt 4f spectra could be deconvoluted into two pairs of doublets. The Pt 4f7/2 peaks at binding energy (BE) 71.9 eV for both trimetallic catalysts, PtFeRu/C (Fig. 1a) and PtCoRu/C (Fig. 1b), could be assigned to Pt(0). It is worth noting that the peaks are shifted apart 1 eV to more bounded states with respect to the nominal value of bulk Pt. This shift is probably due to a contribution from metal-support interaction or effects due to the small size of the nanoparticles (NP) [16]. The second Pt 4f5/2 peak for PtFeRu/C at BE = 73.9 and 73.7 eV for PtCoRu/C could be attributed to the formation of an intermediate oxide between Pt(II) and Pt(III), as has been already reported in the literature [12, 17].

In regard to Ru, the XPS spectrum is obtained in the region of Ru 3d core-level peak, which partially overlaps with the C 1s core-level peak. Despite the overlapping, the Ru 3d photoelectron peaks were deconvoluted into two double peaks. The Ru 3d5/2 peaks at BE = 280.1 and 280.2 eV for PtFeRu/C (Fig. 1c) and PtCoRu/C (Fig. 1d), respectively, are assigned to Ru (0) and the peak at BE = 281.1 and at 281.3 eV to Ru(IV), probably as RuO₂. The shift from the value 280.8 eV for bulk Ru(IV) could also be attributed to final state effects because of the small size of NP [12]. Additionally, a satellite peak at ca. 3 eV higher BE than the value for the Ru(IV) main peak can be identified. In Fig. 1c, d, several C 1 s components are plotted.

Table 1 EDS and XPS atomic percentage ratios (%) of the synthesized catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>EDS</th>
<th>XPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pt</td>
<td>Co</td>
</tr>
<tr>
<td>PtFeRu/C</td>
<td>41</td>
<td>24</td>
</tr>
<tr>
<td>PtCoRu/C</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>PtCo/C</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>PtFe/C</td>
<td>77</td>
<td>23</td>
</tr>
</tbody>
</table>

Fig. 1 XPS spectra of Pt 4f from PtFeRu/C (a) and PtCoRu/C (b) and of Ru 3d from PtFeRu/C (c) and PtCoRu/C (d).
The atomic percentage ratios of the catalyst components determined by XPS, along with the values obtained by EDS, are listed in Table 1. The amount of the different components changed at the surface, as compared to those of the bulk, suggesting segregation issues [18, 19].

Summing up, we can confirm that in all synthesized catalysts Pt is mostly as Pt(0), whereas Co and Fe are largely as Co or Fe(II and III) oxides and Ru mainly as RuO₂. The relative intensities of the different components of Pt 4f½, Co 2p½, Fe 2p½, and Ru 3d½ peaks on the ternary catalysts are given in Table 2.

Table 2: Relative intensities (%) for different species as observed of XPS spectra for different catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pt species (Pt 4f½)</th>
<th>Relative intensities %</th>
<th>Co species (Co 2p½)</th>
<th>Relative intensities %</th>
<th>Fe species (Fe 2p½)</th>
<th>Relative intensities %</th>
<th>Ru species (Ru 3d½)</th>
<th>Relative intensities %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtCoRu/C</td>
<td>Pt°</td>
<td>90</td>
<td>Co°</td>
<td>6</td>
<td>Ru°</td>
<td>27</td>
<td>RuOs</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>PtOₓ</td>
<td>10</td>
<td>CoOₓ</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PtFeRu/C</td>
<td>Pt°</td>
<td>91</td>
<td>Fe°</td>
<td>8</td>
<td>Ru°</td>
<td>20</td>
<td>RuOs</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>PtOₓ</td>
<td>9</td>
<td>FeOₓ</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2 TEM images of PtCo/C (a) and PtFeRu/C (b)

Fig. 3 Polarization curves for ORR on the synthesized catalysts in O₂-saturated 0.5 M H₂SO₄ at v = 0.005 Vs⁻¹ and w = 2000 rpm (a); specific activity at 0.80 V (b); onset potential for the ORR employing the different catalysts (c)
3.1.3 TEM images

For all catalysts, HRTEM showed NP homogenously spread on the carbon support with narrow size distribution and uniform shape. We estimate that binary catalysts have an average particle size of ca. 3.0 nm, Fig. 2a, whereas the ternary catalysts have slightly bigger particles with an average particle size of ca. 3.5 nm, Fig. 2b.

3.2 Electrochemical performance

Typical polarization curves for ORR on PtCo/C, PtCoRu/C, PtFe/C and PtFeRu/C electrodes in an O2-saturated 0.5 M H2SO4 solution, at a rotating disk rate \(\omega = 2000 \) rpm, are shown in Fig. 3a, the specific activity (mA/cm²) at 0.80 V expressed as the kinetic current normalized by the ESA of the electrode is shown in Fig. 3b, and the onset potential for ORR in Fig. 3c. The onset potential value for the ORR on PtCo/C is close to that on Pt/C E-TEK (i.e. 0.857 V), also measured in our laboratory. Polarization curves on PtCo/C, PtCoRu/C, PtFe/C and PtFeRu/C electrodes for ORR at \(\omega = 2000 \) rpm in an O2-saturated 0.5 M H2SO4 solution with and without 0.1 M CH3OH, a typical concentration used in methanol tolerance studies, are shown in Fig. 4a–d, respectively. It can be noticed from the onset potential that both binary catalysts show the best catalytic activity for ORR, which can be associated with high Pt(0) content on the catalyst surface composition as reported by XPS, favoring the adsorption-reduction process of O2. Nonetheless, both binary catalysts are less tolerant to methanol as shown in Fig. 4a, c, PtFe/C being more methanol-tolerant as claimed in [20].

On the other hand, ternary Pt-based catalysts, Fig. 4b, d, show higher methanol tolerance than binary Pt-based catalysts. It is well known that the addition of Ru enhances the MOR. The addition of Ru enhances the methanol oxidation.
rate since methanol oxidation follows the bifunctional mechanism where Pt provides sites for C–H bond cleavage and CO adsorption, and Ru activates water to produce reactive oxides that enable the conversion of adsorbed methanol fragments to CO₂. From XPS studies on PtRu samples, it was concluded that the Ru species responsible for improving the MOR is a hydrated Ru oxide, namely, RuO₃Hₓ [21–23]. On the other hand, it has been recognized that a composite Pt-based catalyst capable of oxidizing methanol requires a minimum of three active Pt sites in close proximity. Accordingly, we postulate that the tolerance of our ternary catalysts is caused by (i) the presence of atoms different to Pt, blocking methanol adsorption on Pt sites causing a dilution effect [24] and (ii) the fact that according to our XPS results, in our ternary catalysts Ru is mostly anhydrous RuO₂ with a minor content of Ru(0) and both species are not suitable for enhancing the MOR [22].

The most alcohol tolerant of the synthesized catalysts is PtCoRu/C, Fig. 4b. The presence of both Ru and Co atoms on the catalyst makes methanol adsorption unlikely given that there are not a sufficient number of active Pt sites nearby on the PtCoRu/C or the reported Ru oxide is not the hydrated oxide (RuO₃Hₓ) capable of improving the MOR. It is important to notice that regardless of the dilution effect, the catalytic activity of the Pt composite electrode for the MOR is not seriously hindered, since fewer nearby Pt sites are required for oxygen adsorption. The ligand effect, which concerns the electron transfer from Fe or Co to the noble metals, may explain the changes in the d band centers that weaken the O₂ adsorption strength and also help in the removal of the adsorbed O intermediates, improving the ORR [25].

In Fig. 4b, d, the polarization curves for ORR employing PtCoRu/C, and PtFeRu/C with and without methanol show that despite the similarity of both ORR polarization curves, PtCoRu/C is the most methanol-tolerant cathode. Notably, taking into account the similar Ru content on both ternary catalysts, shown in Table 1, the higher methanol tolerance of PtMnRu/C catalysts could be attributed to appreciable Ru content.

4 Conclusions

In this study, PtCoRu/C and PtFeRu/C ternary electrocatalysts together with the binary PtCo/C and PtFe/C combinations were prepared by a modified impregnation method via a seed-mediated growth, with ethylene glycol as solvent and sodium borohydride as reducing agent. The catalytic NPs were well dispersed on the carbon support. The trimetallic catalysts exhibit similar ORR activity to that of Pt and a superior methanol tolerance than Pt or binary Pt combinations. Among binary catalysts, PtFe/C is more methanol-tolerant.

Trimetallic PtMnRu/C catalysts show the lowest activity towards methanol oxidation. The high methanol tolerance of the PtMnRu/C catalysts during the ORR can be explained by the low activity for methanol oxidation, originated from the composition effect that causes changes in the distribution of active sites, and to the presence of RuO₂, which is inactive for MOR enhancement.

Acknowledgments This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), and Universidad Tecnológica Nacional (UTN-FRLP). AMCL is member of the research career at CIC. GC and MA acknowledge financial support through a Ph.D fellowship from CIC and CONICET, respectively.

References