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Abstract

We consider the flow of disks of diameter d driven by a conveyor belt of dynamic friction coefficient µ through an aperture on a flat
barrier. The flow rate presents two distinct regimes. At low belt velocities v the flow rate is proportional to v and to the aperture width
A. However, beyond a critical velocity, the flow rate becomes independent of v and proportional to (A − kd)3/2 in correspondence
with a two-dimensional Beverloo scaling. In this high-velocity regime we also show that the flow rate is proportional to µ1/2. We
discuss that these contrasting behaviors arise from the competition between two characteristic time scales: the typical time a disk
takes to stop on the belt after detaching from the granular pack and the time it takes to reach the aperture.
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1. Introduction

Conveyor belts are widely used in the industry to transport
granular matter in bulk. From raw materials, to seeds to cans
and bottles, conveyor belts are chief in moving materials min-
imizing relative granular flow [1]. When a constriction is used
to force grains to flow through a narrower section, the flow rate
has to accommodate. The phenomenon is similar to the one ob-
served during the discharge of a vertical silo through an opening
in the base. Despite the many studies carried out in silo dis-
charge (see for example [2, 3] and references therein), little has
been discussed on the belt driven flow rate trough a bottleneck.

De Song et al. [4] have shown that a critical transition exists
for a given belt velocity vc. These authors carried out experi-
ments of the discharge of disks of diameter d that are driven by
a belt at constant v towards a barrier with an aperture of width
A. For velocities below vc they show that the flow rate is pro-
portional to the belt velocity. Beyond vc the flow rate seems to
presents a new linear dependence with v showing a lower slope.

More recently, Aguirre et al. have argued that for v > vc

the flow rate should become independent of v [5, 6]. More-
over, they put forward a simple argument for the existence of
the transition and infer an expression for vc as a function of the
belt–disk dynamic friction coefficient µ and the aperture width
A.

In this work, we carry out discrete element method (DEM)
simulations of disks on a conveyor belt flowing pass an aper-
ture on a flat barrier for a wide range of belt velocities. We
show that the transition described by De Song et al. is in ac-
cordance with the predictions of Aguirre et al. However, the
experiments in Ref. [4] are conducted at intermediate velocities
and were unable to show the full range of responses predicted.
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Figure 1: Schematic diagram of the belt conveying disks of diameter d through
an aperture of width A at velocity v.

The second linear regime described in Ref. [4] is only a narrow
portion of a transition regime between the low-velocity and the
high-velocity regimes of the phenomenon. A simple criterion
allowed us to define vc in terms of the relative velocity of the
disks with respect to the belt at the time they exit. We will
present results for different µ and A and show that the predicted
dependence of vc on these variables are indeed observed in our
simulations.

The rest of the paper is organized as follows. In section 2, we
summarize the theoretical predictions. In section 3, the details
of the DEM simulations are given. Section 4 presents the results
of the simulations and a discussion in view of previous studies.
The conclusion are drawn in section 5.

2. Flow regimes in a conveyor belt driven discharge

Consider a set of disks of diameter d and mass m on a con-
veyor belt with disk–belt dynamic friction coefficient µ. The
disks are contained by a rectangular frame with an aperture on
the “bottom” side towards they are dragged to at constant ve-
locity v (see Fig. 1). Disks will pack against this side and flow
pass the orifice. When a steady flow is set, inside the confining
frame disks in the pack rearrange while the conveyor belt slides
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beneath until they set free from the the packing (loosing contact
with neighbors) and move away through the opening.

Each disk that sets free requires a period of time t in order
to stop on the conveyor belt and move with it at v. During
this time, the disk accelerates with constant acceleration a =

µg (each disk of mass m is subjected to the dynamic fiction
force mgµ). Therefore, to change its velocity in the laboratory
reference system from zero to the belt velocity v, the disk needs
a lapse of time t = v/(µg). Over this time the disk travels a
distance

x =
a
2

t2 =
v2

2µg
. (1)

If x is small (low-velocity regime), disks that detach from the
packing will attain the belt velocity v before reaching the aper-
ture. Since the flow rate Q is proportional to the velocity of the
outflowing disks, Q ∝ Ae f f v. Here Ae f f is an effective outlet
width that accounts for the boundary effects at the edges of the
aperture (the so called empty annulus [7]). As it is customary,
we take Ae f f = A − kd, and select k to fit the data. In the dis-
charge of three-dimensional silos k ≈ 1.0 [2, 3], however, in
two-dimensional setups k ≈ 3.0 [3]. It is worth mentioning that
this empty annulus effect can be taken into account in a much
careful fashion by considering the velocity profile across the
aperture width as done by Janda et al. [8]. We will follow the
simpler traditional correction since we are focusing here on a
different aspect of the flow rate.

If the acceleration phase takes some time, disks will reach
the outlet still with acceleration a (high-velocity regime). In
this case, the characteristic velocity of the outflowing disks can
be estimated as

√
aAe f f /2. Here, we have made the rough as-

sumption that disks detach from the rest of the pack at a distance
Ae f f /2 before reaching the outlet. Then, in the high-velocity
regime,

Q ∝ Ae f f
√

aAe f f =
√
µgA3/2

e f f . (2)

This corresponds to the two-dimensional Beverloo scaling [8].
In the high-velocity regime, we should therefore observe a dis-
charge of accelerated grains similar to the one observed in silos
with an effective acceleration µg. It is important to notice that
the flow rate becomes independent of the belt velocity v in this
regime. Therefore, one should expect no improvement in flow
rate by increasing v at high velocities.

We can estimate the critical belt velocity vc around which a
change of regime (low- to high-velocity) is expected. If the dis-
tance x traveled by disks before stopping on the belt is greater
than the distance from the point of detachment of the grains
from the rest of the packing to the plane of the orifice, which
we approximate as A/2, most disks will exit still accelerated.
Hence, from Eq. (1) we can predict

vc = Cc
√

gµA, (3)

with Cc a proportionality constant. Notice that vc is independent
of the size and mass of the disks, only A and µ can be used to
tune vc. Equations (2) and (3) were put forward by Aguirre et
al. [5] without empirical evidences.
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Figure 2: (a) Flow rate Q as a function of belt velocity v for µ = 0.5 and var-
ious outlet widths A = 6.0d (red squares), 7.0d (magenta circles), 8.0d (green
up triangles), 9.0d (blue down triangles), 10.0d (yelow diamonds). (b) Same
as part (a) for A = 8.0d and various belt–disk friction coefficients µ = 0.1 (red
squares), 0.3 (magenta circles), 0.5 (yellow up triangles), 1.0 (blue down trian-
gles) The straight lines correspond to linear fits to the data at low and high v.
The arrows indicate the critical velocity vc defined in terms of the probability
of finding disks flowing out accelerated (see main text and Fig. 4).

In the rest of the paper we will show that these predictions
are confirmed in numerical simulations of the conveyor belt.
We will use a simple criterion to obtain vc from the simulations.
Moreover, we will show that the transition region between the
two extreme regimes, which is of interest in many industrial
applications, is rather wide.

3. DEM simulation

We have followed the standard techniques on discrete ele-
ment methods (see for example Refs. [9, 10]). We used a ve-
locity Verlet algorithm to integrate the Newton equations for N
monosized disks (diameter d and mass m) in a rectangular box
of width L = 25d. We studied system sizes between N = 1000
and N = 2000.

The disk–disk and disk–wall contact interaction comprises a
linear spring–dashpot in the normal direction

Fn = knξ − γnvn
i, j (4)

and a tangential friction force

Ft = −min (µ|Fn|, |Fs|) · sign (ζ) (5)
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that implements the Coulomb criterion to switch between dy-
namic and static friction [11].

In Eqs. (4)–(5), ξ = d −
∣∣∣ri j

∣∣∣ is the particle–particle over-
lap, ri j represents the center-to-center vector between particles
i and j, vn

i, j is the relative normal velocity, Fs = −ksζ − γsvt
i, j

is the static friction force, ζ (t) =
∫ t

t0
vt

i, j (t′) dt′ is the relative

shear displacement, vt
i, j = ṙi j · s + 1

2 d
(
ωi + ω j

)
is the relative

tangential velocity, and s is a unit vector normal to ri j. The
shear displacement ζ is calculated by integrating vt

i, j from the
beginning of the contact (i.e., t = t0). The disk–wall interaction
is calculated considering the wall as an infinite radius, infinite
mass disk. The interaction parameters are the same as for the
disk-disk interaction.

In these simulation we used the following set of parameters:
friction coefficient µ = 0.5 (notice that in this type of simula-
tions µdynamic = µstatic), normal spring stiffness kn = 105(mg/d),
normal viscous damping γn = 300(m

√
g/d), tangential spring

stiffness ks = 2
7 kn, and tangential viscous damping γs =

200(m
√

g/d). The integration time step is δ = 10−4
√

d/g.
Units are reduced with the diameter of the disks, d, the disk
mass, m, and the acceleration of gravity, g.

Disks lay flat on a belt that moves at constant velocity v. The
belt–disk interaction is modeled only via the tangential force in
Eq. (5). In this case, we have used different friction coefficients
µ for the belt-disk interaction. Every disk is considered to be
always in contact with the belt exerting a normal force Fn = mg.
The frictional force due to the rotation of disks is not taken into
account in our simulations. We assume that this force has very
little impact on the dynamics.

Disks initially placed at random without overlaps on the belt
are dragged towards “the base” of the confining box. After all
disks are piled against the base, we open an aperture of width A
in the base and record the flow of disks through it. The initial
transient flow is disregarded in our analysis, only the steady
state flow will be reported. For some set of parameters we have
repeat some of the simulations up to 10 times with different
initial conditions to estimate the error in the flow rate. Since we
have found these errors are rather small, we report in all cases
the flow rate obtained from a single discharge for each set of A,
µ and v.

4. Results

In Fig. 2, we plot the flow rate, in number of disks per unit
time, as a function of the belt velocity for various aperture sizes
A and belt–disk friction coefficients µ. As we have discussed in
section 2, the flow rate presents a linear increase at low v and
saturates to a constant value for high v. The transition region
between these two extreme regimes is somewhat wide. While
the full development of the high-velocity regime occurs after vc

surpasses 3 to 4
√

dg (depending on A and µ), the low-velocity
linear increase is departed from soon after v > 0.1vc.

In a previous study by de Song et al. [4], the maximum belt
velocities attained where roughly 3.0

√
dg. Only for the smaller

apertures this maximum velocity is just into the high-velocity
regime. This prevented the clear observation of the plateau we
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Figure 3: (a) Flow rate Q in the high-velocity regime as a function of the width
A of the aperture for µ = 0.5. (b) Same as (a) as a function of µ for A = 8.0d.
The solid line corresponds to the Beverloo rule (Q = C

√
µg(A − kd)3/2) with

C = 0.866 and k = 3.23.

report in Fig. 2, which was later anticipated by Aguirre et al.
[5].

The saturation value for Q at high v depends both on A and
µ as predicted by Eq. (2) (see Fig. 2). However, the slope of
the low-v regime depends only on A. Indeed, as we mentioned
in section 2, at low velocities all disks pass the outlet at the belt
velocity regardless of µ. In Fig. 3, we show the saturation flow
rate as a function of A and µ. The results are in good agreement
with Eq. (2), displaying a 3/2-power dependence of Q with
A and a 1/2-power dependence with µ. This confirms that the
flow in the high-velocity regime is analogous to a gravity driven
discharge of a two-dimensional silo with an effective gravity
given by µg. Notice that Ae f f = A − kd and the fit yields k ≈ 3
in accordance with Ref. [3].

In order to define a critical velocity beyond which the flow
becomes independent of v, we have measure the component of
the velocity of the disks in the direction of the belt velocity
when they reach the opening. Disks that have attained the belt
velocity are at rest with respect to the conveyor belt, disks that
have a lower velocities are still sliding on the belt. We define the
probability P of a disk exiting at the belt velocity v as the frac-
tion of disks that reached v when their centers cross the plane of
the aperture. In Fig. 4, we show this probability as a function
of v for different A and µ. At low v, P shows that about 80%
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Figure 4: (a) Probability of finding a disk leaving the confining frame at the belt
velocity as a function of the belt velocity v for µ = 0.5 and A = 6.0d (red filled
squares), 7.0d (blue filled circles), 8.0d (orange filled diamonds), 9.0d (green up
triangle), 10.0d (magenta down triangle), 13.0d (black hollow squares), 17.0d
(purple hollow circles), 20.0d (yellow hollow diamonds). (b) Same as (a) for
A = 8.0d and µ=0.1 (red squares), 0.3 (blue circles), 0.5 (magenta up triangles)
and 1.0 (yellow down triangles).

of the disks exit at velocity v. Although we may have expected
that all disk reach the belt velocity at very low v, we have to
consider that disks at the edges of the orifice interact with the
“bottom” barrier and their velocities are in general smaller than
v. Interestingly, P presents this 80% value for all apertures stud-
ied, indicating that not only the disks touching the edges of the
aperture are affected in their velocity but also other disks at the
exit line.

From Fig. 4, we can observe that P falls to zero at a well
defined value of v for each A and for each µ. Beyond this zero-
P point, all disks leave the confining frame at a velocity lower
than the belt velocity, meaning that they are still accelerating
when crossing the exit line. We use this as a definition of the
critical velocity vc for given A and µ. The critical velocities so
obtained are indicated with arrows in Fig. 2.

The critical velocity obtained from Fig. 4 is plotted as a func-
tion of A and µ in Fig. 5. As we can see, the square root de-
pendency on A and µ predicted by Eq. (3) is confirmed in the
simulations. Hence, Eq. (3) allows us to estimate the maxi-
mum belt velocity for which an improvement in throughput can
be expected from an increase of v.

The predicted vc sets the range where Q can be predicted
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Figure 5: (a) Critical velocity vc as a function of the aperture width A for µ =

0.5. (b) Same as part (a) as a function of µ for A = 8.0d. The values have been
obtained as the belt velocity for which all disks leave the confining frame with
velocities below the belt velocity (see Fig. 4). The lines in the plots correspond
to fits using Eq. (3) with Cc = 0.92.

with simple arguments. For v > vc, Eq. (3) holds, for v < 0.1vc

Q = Ae f f v. For 0.1vc < v < vc, the mixed dynamics with disks
exiting at the belt velocity in coexistence with disks exiting ac-
celerated gives rise to a flow rate non-trivially dependent of v.
Interestingly, this intermediate regime may be of particular in-
terest to many industrial conveyor belts.

5. Conclusions

We have shown by means of DEM simulations that there ex-
ist two extreme regimes in the flow rate of disks driven by a
conveyor belt through an aperture in a barrier. At low velocities
the flow rate is proportional to the belt velocity, whereas at high
velocities the flow rate reaches a plateau. This implies that at
high belt velocities there is no improvement in throughput.

In the high velocity regime, the flow rate follows the two-
dimensional version of the Beverloo rule with a 3/2-power de-
pendency on the aperture width and an effective gravity given
by µg. The maximum attainable flow rate can therefore be con-
trolled only through the aperture size or the belt–disk friction
coefficient. Equation (2) provides an expression to calculate
the maximum flow rate.

Our results indicate that previous studies [4] where a dy-
namic transition was observed, explored a limited range of belt
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velocities, which prevented the full development of the high ve-
locity regime.

The transition region of intermediate velocities has been
found to be rather wide. Many industrial conveyor belts may
work at these velocities. Unfortunately, at present, a model to
predict the flow rate at these intermediate velocities is still lak-
ing.
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