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Abstract

A particle damper (PD) is a device that can atten-
uate mechanical vibrations thanks to the dissipa-
tive collisions between grains contained in a cavity
attached to the vibrating structure. It has been re-
cently suggested that, under working conditions in
which the damping is optimal, the PD has a univer-
sal response in the sense that the specific dissipa-
tive properties of the grains cease to be important
for the design of the device. We present evidence
from simulations of PDs containing grains of dif-
ferent size, shape and restitution coefficient, that
the universal response is also valid when fragmen-
tation of the grains occurs (generally due to inten-
sive operation of the PD). In contrast, the welding
of grains (caused by operation under high tempera-
tures) can take the PD out of the universal response
and deteriorate the attenuation. Interestingly, we
observed that even at working conditions off the
optimal damping, the shape of the grains remains
unimportant for the response of the PD.

1 Introduction

A particle damper (PD) consists of a cavity par-
tially filled with grains. This device can attenuate
mechanical vibrations through friction and inelas-
tic collisions of the grains when it is attached to a
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vibrating structure. In recent years, PDs have been
widely studied due to the good performance they
have as passive vibration control system in harsh
environments.

Different industries have applied this technology
to control undesirable vibrations and noises. While
the aerospace industry has been the pioneer in the
area (Ehrgott et al., 2009; Panossian, 2002), a num-
ber of studies have been recently published with
applications in the automotive (Xia et al., 2011),
energy (Velichkovich and Velichkovich, 2001) and
medical (Heckel et al., 2012) industries.

PDs are efficient in a wide range of frequencies
(Panossian, 1992), but due to their highly non-
linear behavior (Sánchez and Carlevaro, 2012), its
analysis and design present complications. PDs are
the successors of impact dampers (see e.g. (Dun-
can et al., 2005; Grubin, 1956; Masri, 1970)), where
the single body inside the cavity of these is simply
replaced with a sample of granular material (Araki
et al., 1985). Many studies have focused on the pre-
diction of the main characteristics of PDs through
simplified models of a single particle (Duncan et al.,
2005; Friend and Kinra, 2000; Ramachandran and
Lesieutre, 2008). However, the complex cooper-
ative dynamics of the grains is ignored in these
works.

The performance of a PD depends on many fac-
tors such as shape and size of the cavity, number
of particles, coefficient of friction and restitution,
type of excitation and operation frequencies, among
many others (Marhadi and Kinra, 2005). Depend-
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Figure 1: Schematic representation of the SDoF
system with a particle damper. M : mass of the
primary system. K: Spring constant. C: struc-
tural damping. mp: total mass of the grains. Lz:
height of the cavity. u(t): displacement imposed to
the base. z(t): displacement of the primary system.

ing on some of these factors, one of the mechanism
of dissipation (friction or inelastic normal collision)
will dominate (Bai et al., 2009; Chen et al., 2001).

Several works have shown, that under harmonic
excitation, a prismatic PD has the best perfor-
mance of damping for a given value of the enclo-
sure height (Lz) (Papalou and Masri, 1998; Saeki,
2002). This optimal damping occurs when, near
resonance, the grains impact against the floor and
ceiling of the cavity in anti-phase, where the rel-
ative velocity between the granular bed and the
enclosure is maximized at the time of collision (Lu
et al., 2010; Sánchez and Pugnaloni, 2011). For an
optimal PD, it has been shown that the natural fre-
quency of the system equals the natural frequency
of the undamped system (Sánchez and Pugnaloni,
2011).

Previous investigations have considered the rel-
evance of the material of the grains (dissipative
mechanisms) in PDs (Bai et al., 2009; Chen et al.,
2001; Marhadi and Kinra, 2005). Recently, it has
been shown that the performance of a PD is inde-
pendent of the the material properties of the grains
if the optimal Lz is used (Sánchez et al., 2012).
This universal behavior can be explained through
the effective inelastic collapse of dense granular ma-
terials (Sánchez et al., 2012).
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Figure 2: Frequency Response Function (FRF) for
a system with N = 180 hexagonal particles (cir-
cumscribed radius r = 0.0015 m, µ = 0.50, and
e = 0.50) and three different heights of the en-
closure Lz = 0.040 (green triangles), 0.1225 (red
squares) and 0.372 m (blue circles). The black solid
line corresponds to the response of the system with-
out the PD. The amplitude zmax of the oscillation
of the primary mass is platted against the excita-
tion frequency f .

In this work, we show that this universality of
the response of a PD remains valid even if grains
of different shape are considered. We have carried
out simulations with triangular, square and hexag-
onal grains and with different dissipative proper-
ties. Furthermore, we show that the fragmentation
of particles, which is likely when operating in harsh
environments, does not lead to changes in the re-
sponse of the system. This phenomenon explains
the low maintenance requirements of these devices,
since a degradation of the granular material does
not lead to any significant change of the PD per-
formance. We also consider the possibility of weld-
ing of grains (due to operation in high temperature
conditions). In this case, the vibration attenuation
is observed to decrease. Interestingly, our results
show that even for non-optimal PD, the shape of
the grains is a factor that does not influence the
response.
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2 Simulation

We carry out molecular dynamic type simulations
(also known as discrete element method) by solv-
ing the Newton–Euler equations of motion for rigid
bodies confined on a rectangular box. All simu-
lations were done in two-dimensions (2D). Figure
1 shows a schematic representation of the system.
The primary system consists of a mass M = 2.37
kg, a linear spring with spring constant K = 21500
Nm−1 and a viscous damper, which accounts for
any structural damping, with damping constant
C = 7.6 Nsm−1. Under these conditions the un-
damped natural frequency is f0 = 15.16 Hz.
The cavity of the PD has been modeled as a

rectangular box of sides Lx = 0.036 m and 0.040
m< Lz < 0.372 m. The walls were modeled with
coefficient of friction µ = 0.50 and coefficient of
restitution e = 0.50. The bodies (particles) are
placed in the rectangular box embedded in the pri-
mary system. The particles may have different
shapes: triangles, squares and hexagons. The total
mass of the particles is mp = 0.227kg. In all cases,
the mass ratio mp/M ≈ 10% is kept constant. The
restitution coefficient (e) and the friction coefficient
(µ) are both set to 0.50 in most simulations, but
different values have been tested in the some cases.
The system is excited via a harmonic displace-

ment [u(t) = U cos(ωt) with U = 0.0045 m] of the
base to which the spring and viscous damper are
attached (see Fig. 1). The excitation frequency
ω = 2πf with f between 5.0 Hz and 20.0 Hz.
We have considered the gravitational field g =

9.8 ms−2 in the negative vertical direction. Al-
though the primary system can only move in the
z-direction, the grains can move freely inside the
rectangular box. Particles, initially placed at ran-
dom without overlaps in the box, are allowed to
settle until they come to rest in order to prepare
the initial packing. Then, the same protocol is ap-
plied to each sample for every frequency. For all
analyzes, we used only the last 10% of the simu-
lation time in order to ensure a stationary regime.
The total simulation time corresponds to 200 s.
The simulations were implemented by means of

the Box2D library (Catto, 2012). Box2D is an
open source code written in C++ that uses a con-
straint solver to handle hard bodies. The equa-
tions of motion are integrated by Box2D through
a symplectic Euler algorithm. At each time step

of the simulation, a series of iterations (typically
20) are used to resolve penetrations between bod-
ies (grains) through a Lagrange multiplier scheme
(Catto, 2005). The contact of each polygonal par-
ticle is defined by a manifold. After resolving pen-
etrations, the friction (through Coulomb criterion)
and the inelastic collision at each contact is solved
and new linear and angular velocities are assigned
to each particle. The time step used to integrate
the equations of motion is 0.005 s. Box2D has
been previously used for simulations of granular
materials subjected to mechanical vibrations and
results showed remarkable agreement with experi-
ments and other simulation approaches (Carlevaro
and Pugnaloni, 2011).

In practice, Box2D attains combined fea-
tures of traditional discrete element meth-
ods and event driven simulations of hard
particles. As it is done in event driven
simulations, the impulses calculated on
oblique impacts of given restitution coeffi-
cient and friction are used to update po-
sitions(orientations) and velocities(angular
velocities). This effectively models hard
bodies; however, instead of calculating only
simple two-body collisions, the algorithm is
able to calculate the effect of all neighbors on
a given body simultaneously. This scheme
allows for a faster and flexible modeling of
non-spherical objects. However, as in event
driven simulations, the force law between
contacts is not defined and we lack flexibil-
ity of using sophisticated interaction models
such as the Hertz-Kuwabara-Kono model.
Only the effective friction and restitution of
a material can be set.

3 Results

Figure 2 shows the Frequency Response Function
(FRF) for the primary system with a PD containing
N = 180 hexagonal particles (with circumscribed
radius r = 0.0015 m, µ = 0.50, and e = 0.50) for
three different heights Lz = 0.040, 0.1225 and 0.372
m of the cavity. In this case, the height of the gran-
ular bed at rest is approximately L0 = 0.039 m. As
we can see, the results of these 2D simulations using
hexagonal grains are consistent with previous 3D
simulations (Fang and Tang, 2006; Saeki, 2002) and
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(a) Frag. 0% (b) Frag. 25% (c) Frag. 50% (d) Frag. 75% (e) Frag. 100%

Figure 3: Snapshots of granular samples at rest. (a) 180 hexagons (0% fragmentation). (b) 135 hexagons
and 270 triangles (25% fragmentation). (c) 90 hexagons and 540 triangles (50% fragmentation). (d) 45
hexagons and 810 triangles (75% fragmentation). (e) 1080 Triangles (100% fragmentation).

experiments (Liu et al., 2005; Saeki, 2002). We can
observe a shift in the natural frequency of the sys-
tem compatible with an effective mass varying from
Meff = M (when Lz is large) to Meff = M + mp
(when Lz is small enough to prevent the motion
of the particles inside the cavity). Notice how-
ever that a detailed study has shown that this fre-
quency shift does not occur in a monotonous way:
The effective mass present overshoots and under-
shoots beyond the two limit cases (M and M+mp)
(Sánchez and Pugnaloni, 2011).
Previous works (Papalou and Masri, 1998; Saeki,

2002; Sánchez and Pugnaloni, 2010) have shown the
existence of an optimum height of the cavity of the
PDs for which the best damping performance is ob-
tained. This is also observed in our 2D simulations.
From Fig. 2, it is clear that between the two limit
cases (Lz small and very large) there is a height
(Lz = 0.1225 m) that yields the best attenuation
of the response.
Even though our simulations are two-

dimensional, the results obtained are consistent
with the phenomenology observed in realistic
particle dampers. In the next sections we will

also show that 2D setups have the same response
functions as realistic PDs under some working
conditions.

3.1 Effect of particle fragmentation

During the operation of a PD, grains inside the
cavity are prone to fragmentation and wear. This
may compromise, in principle, the damping perfor-
mance. To evaluate the effect of fragmentation, we
carried out simulations in which hexagonal parti-
cles are progressively replaced by triangles, mim-
icking the fragmentation of the hexagons. A regu-
lar hexagon can be built up out of six equilateral
triangles. Thus, the fragmentation of a hexagon is
simulated via substitution by six identical particles
which occupy the same space and have the same
total mass as the original hexagon.
We have simulated various combinations of

hexagons and triangles representing different de-
grees of fragmentation. The materials properties
of the grains are shown in Table 1. The optimum
height of the enclosure is chosen to yield best damp-
ing performance for the reference system that con-
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Hexagons
Circumscribed Radius r 0.0015 m

Density (2D) ρ 215.77 kgm−2

Coefficient of restitution e 0.50
Coefficient of friction µ 0.50

Triangles
Circumscribed Radius r 0.00086 m

Density (2D) ρ 215.77 kgm−2

Coefficient of restitution e 0.50
Coefficient of friction µ 0.50

Table 1: Material properties of the particles for the
simulations of fragmentation.

sist only of hexagonal grains (this corresponds to
Lz = 0.1225m). Despite the simulated fragmenta-
tion, the height of the granular bed at rest remains
fairly constant (L0 ≈ 0.039 m). Figure 3) shows
snapshots of the system at rest for different degrees
of fragmentation.

In Fig. 4 we show the FRFs for the five systems
shown in Fig. 3. The FRF of the system is unaf-
fected by the fragmentation of particles in the en-
closure. This has important practical implications
since the fragmentation during operation of a PD
would not compromise the damping performance
of the device, reducing the need for maintenance.
This “universal” FRF observed in Fig. 4 is con-
sistent with previous suggestions based on studies
using different numbers of spherical grains (Sánchez
et al., 2012). However, notice that the present work
is taking due care of the shape that fragments have
(they are different to the original particle) and still
a universal FRF is found for the optimum Lz.

The universal response can be explained in terms
of the effective “inelastic collapse” of the granu-
lar bed (Luding and McNamara, 1998; McNamara
and Young, 1992). This phenomenon occurs when
a granular sample that is being excited has a high
density. Under such conditions, the granular pack
achieves the dissipation of all the kinetic energy of
the grains in a short time, even if the collisions
between grains have a very high coefficient of resti-
tution. In dense granular systems, the number of
collisions per unit time grows quickly with the num-
ber of grains involved. Even a minute dissipation
in each collision is enough to make the system, as a
whole, fully dissipative. Since this condition of hav-
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Figure 4: FRF for the system with the various dis-
tribution of particle size and shape shown in Fig.
3. The total mass of the grain mp = 0.227 kg re-
mains constant. Each curve corresponds to a differ-
ent level of fragmentation of the hexagons (see leg-
ends). Blue triangles correspond to the FRF from
3D DEM simulations of the same primary system
with an optimal PD with N = 250 spherical par-
ticles and the same total mass but different inter-
action forces between the grains (Sánchez et al.,
2012). The black line corresponds to the response
of the system without the PD.
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Property Value

Young’s modulus E 2.03× 1011 Nm−2

Density 8030 kgm−3

Poisson’s ratio υ 0.28
Friction µd 0.3

Normal damping γn 3.660× 103 kgs−1m−1/2

Shear damping γs 1.098× 104 kgs−1m−1/2

Particle radius 0.003 m

Table 2: Material properties of the spheres for the
3D DEM simulations. For a description of the
normal and shear damping coefficients involved in
the particle–particle interaction force see (Sánchez
et al., 2012).

ing a dense granular pack is always present for the
motion of the granular bed at and around the reso-
nant frequency for the optimum Lz, the response of
the primary system is similar in all cases regardless
of the material properties, shape of the grains and
number of particles. This response is comparable
to the response that the system would have if the
entire set of grains were replaced by a single body
with zero coefficient of restitution (Sánchez et al.,
2012).

To further emphasize the universal character of
the FRF, we include in Fig. 4 the results from
a simulation of a three-dimensional (3D) PD with
N = 250 steel spheres (Sánchez et al., 2012). For
these simulations, we have implemented a discrete
element method (DEM) (Cundall and Strack, 1979)
in C. This code uses the model of Hertz–Kuwabara–
Kono for normal interactions of the grains and
the frictional model of Coulomb for the tangential
interactions (Brilliantov et al., 1996; Pöschel and
Schwager, 2004; Schäfer et al., 1996). The mate-
rial properties that we have used for the spheres
are presented in Table 2. As we can see, the curves
from 2D and 3D simulations are similar to each
other. This confirms that the universal FRF is also
valid if dimensionality is changed.

3.2 Effect of particles fusion

PDs have become important as passive vibration
control systems in harsh environments. In partic-
ular, they are used in environments with extreme
temperatures (high and low) or with elevated pres-

sures. Although the optimal PD has a universal
response (independent of the material used for the
grains and independent of the fragmentation of the
particles), at high temperatures a wrong choice of
materials may cause the welding of particles, which
would reduce the effective number of grains in the
cavity. It is known to reduce the number of colli-
sions per unit time and prevent inelastic collapse.

In order to study the possible effect of the fusion
of particles within the cavity, we have carried out
simulations with square particles that are progres-
sively replaced by bigger grains. In our simulations,
we replace four square grains by a larger square
with the area and mass equivalent to the total area
and mass of the four grains removed. In this way,
the total mass in the enclosure remains constant,
but the number and size distribution of the parti-
cles change. We have used the optimal Lz for the
original system that consist in N = 128 squares
of radius 0.0021 m with µ = 0.50 and e = 0.50.
Figure 5 shows snapshots of the different systems
simulated with varying degree of particle fusion.

In Fig. 6, we plot the FRFs for the different de-
grees of fusion shown in Fig. 5. The figure shows
that for a large number of small square particles
(see Fig. 5(a)) the response is optimum. This re-
sponse coincides with the universal FRF also ob-
served for hexagons in the previous section.

As the fusion of the grains progresses, the attenu-
ation of the vibration degrades. In particular, a res-
onance peak starts to develop for frequencies below
the natural frequency of the primary system (com-
pare with the FRF of the system with an empty
enclosure in Fig. 6). It is clear that the reduction
of the total number of particles in the cavity com-
promises the ability of the PD to dissipate the ki-
netic energy. Therefore, appropriate maintenance
tasks should be scheduled if working under condi-
tions that may favor particle welding.

It is worth mentioning here that our observations
indicate that whenever the granular layer in the PD
exceeds four or five layers of grains, the effective in-
elastic collapse is achieved. This is consistent with
previous studies on vibration of granular material
(Chung et al., 2011), and PDs (Marhadi and Kinra,
2005; Sánchez et al., 2012). Therefore, the deterio-
ration of the attenuation due to fusion only occurs
when the number of granular layer decays below
this threshold.
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(a) (b) (c) (d) (e)

Figure 5: Snapshots of granular samples at rest. (a) 128 squares (circumscribed radius r = 0.0021 m).
(b) 32 squares resulting from welding sets of four squares from panel (a). (c) Six squares [from welding
sets of 16 squares from (a)] mixed with eight squares [from welding sets of four squares from (a)]. (d)
One square [welding 64 squares from (a)] mixed with four particles [welding sets of 16].(e) Two particles
made out of 64 squares from (a) each.
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Figure 6: FRF for the system with the various dis-
tribution of sizes of square particles shown in Fig.
5. The total mass of the grains mp = 0.227 kg re-
mains constant. Each curve corresponds to a differ-
ent level of fusion (see legends). The black full line
corresponds to the response of the system without
the PD.

3.3 Effect of material properties and

shape for non-optimal PDs

From section 3.1, we conclude that the shape of the
particles in the enclosure of a PD is not significant
for the response of the system if the optimum Lz is
chosen. In this section we consider different grain
shapes and coefficients of restitution to evaluate to
what extent the shape of the particles and material
properties can influence the behavior of the PD if
the inelastic collapse is not achieved. In order to
show the difference in the behavior when the in-
elastic collapse happens and when it does not, the
number N of particles was changed. The mate-
rial density of the particles is adjusted when N is
changed so as to keep the total mass of the par-
ticles constant. Properties of the grain for these
simulations are shown in Table 3.

Figure 7(a) shows the FRF for PDs with only
two particles (where inelastic collapse is not likely)
when different grain shapes and restitution coeffi-
cients are used. These results show, again, that
the response of the PD is not longer universal if
few particles are used. The FRF depends on the
restitution coefficient, with a clear improvement in

damping for smaller restitutions, as it should be ex-
pected. However, the different shapes of the grains
in the cavity has very little impact on the FRF. Tri-
angles, squares and hexagons yield similar results.
The subtle differences between FRF for different
particle shapes can be attributed to the small dif-
ferences in the height of the granular bed at rest
due to the different arrangements each grain shape
can take.

When the number of layers of grains in the PD
is somewhat larger, N = 64, the response of the
PD becomes independent of the coefficient of resti-
tution (see Fig. 7(b)). This is in agreement with
previous studies using spherical particles (Sánchez
et al., 2012). The emergence of inelastic collapse
makes the system to follow the universal FRF.

In Fig. 8, we show in more detail the maximum
amplitude of vibration of the primary system at the
resonance frequency (f = 14.5 Hz) as a function of
the coefficient of restitution for grains of different
shapes. Once again, the response is independent
of particle shape (whether there exist an inelastic
collapse or not). If a large number of particles is
used, the inelastic collapse also leads to a constant
response as a function of restitution. However, if
only a few particles are inserted in the enclosure,
the attenuation is more effective as restitution is
decreased.

4 Conclusions

We have considered the effect of fragmentation and
fusion of particles in a PD on the vibration attenu-
ation. The results of our simulations indicate that,
if a sufficiently large number of particles are used
(typically over six layers of grains), fragmentation
of particles is unable to alter the response of the
PD. In contrast, fusion will reduce the effective
number of grains, preventing the inelastic collapse,
which may eventually deteriorate the damping abil-
ity of the PD. Form a practical perspective, this im-
plies that working under conditions where fragmen-
tation is likely does not require maintenance of the
PD (such as replacement of particles). However,
if fusion is possible, regular maintenance inspec-
tions should be carried out. Notice however that
fragmentation may eventually convert the granular
sample into a fine powder. In such extreme cases
a more careful study is necessary since the aero-
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Big squares N = 2 Small squares N = 64
Circumscribed radius r 0.017 m Circumscribed radius r 0.0029 m

Density (2D) ρ 197.08 kgm−2 Density (2D) ρ 201.10 kgm−2

Big triangles N = 2 Small triangles N = 64
Circumscribed radius r 0.019 m Circumscribed radius r 0.0034 m

Density (2D) ρ 240.74 kgm−2 Density (2D) ρ 227.57 kgm−2

Big hexagons N = 2 Small hexagons N = 64
Circumscribed radius r 0.012 m Circumscribed radius r 0.0024 m

Density (2D) ρ 303.43 kgm−2 Density (2D) ρ 237.05 kgm−2

Table 3: Material properties of the particles for simulations of Section 3.3.

dynamic interaction of the powder particles with
the air in the cavity may significantly affect the re-
sponse of the PD.
The results we have presented for PD containing

grains of different shapes indicate that the geom-
etry of the particles has not impact on the damp-
ing performance. Even if few particles are used
—where the inelastic collapse is not at play and
the FRF deviates from the universal response— a
change in the particle shape does not affect signifi-
cantly the response of the PD.
In summary, the use of a large number of par-

ticles in a PD ensures that a universal FRF will
be obtained if the optimal enclosure height is used.
This universality not only implies that the mate-
rial properties of the grains are irrelevant (Sánchez
et al., 2012), also the shape of the grains, and
in particular their fragmentation, is unimportant.
However, if few particles are inserted in the PD, the
response will be sensitive to the material proper-
ties, whereas will remain insensitive to the particle
shape.
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Figure 7: FRF for different particle shapes and
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